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§ 1. Introduction

Let J(X) be the J-group of a CW-complex X of finite dimension. Then by
J. F. Adams [2] and D. Quillen [10], it is shown that

(1.1) J(X) = KO(X)/Ker J, Ker J = Σk(r\ek
e(Ψk-l)KO(X)),

where KO(X) is the XO-group of X, J: KO(X)-+J(X) is the natural epimorphism
and Ψk is the Adams operation.

In this paper, we study the J-group of the standard lens space modulo 2r

L"(2') = S*n+lIZ2r, Z2r = {z 6 S1 : z2" = 1} ,

which is the orbit manifold of the unit (2n + l)-sphere S2n+1 in Cn+ί by the
diagonal action z(z0,..., zn)=(zz0,..., zzn). In the case r=l, Lπ(2) is the real
projective space RP2n+ί, and its J-group J(LΠ(2)) is determined by J. F. Adams
([1, Th. 7.4], [2, II, Ex. (6.3)]).

Let η be the canonical complex line bundle over LΠ(2Γ), i.e., the induced
bundle of the canonical complex line bundle over the complex projective space
CPn = S2w+1/S1 by the natural projection Ln(2r)->CPn. Then, the main purpose
of this paper is to prove the following

THEOREM 1.2. Let r ̂ 2 and let r(ηl - 1) e KO(Ltt(2r)) be the real restriction
of the stable class of the i-fold tensor product ηi = η®--^η of the canonical
complex line bundle η over Ln(2r). Then the order of the J-image

is equal to

2/(».';v>5 /(n,r; v) = max{s-v + [n/25]25~v: v<|s<r and 25<jn},

where v=v2(0 is the exponent of 2 in the prime power decomposition of i and
max 0=0.

Recently, we have proved in [5, Th. 1.1, 3.1] that the above theorem is valid
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also for any odd prime p instead of 2 and any r ̂  1, by replacing 2 with p and 2s

with jps(p-l).

On the group structure of the reduced J-group J(Ln(2r)) (r^2), we have the
following theorem, where

(1.3) *s =

(1.4) X(d,v) =

(1.5)

THEOREM 1.6. (i) J(L"(2r)) (r^2) is generated by

JK and αs = Jr(η2s-ϊ)

w/iere κ=p — 1 and p is f/ie non-trivial real line bundle over Ln(2r).

(ii) ([6,Th.4.5]) J:

(iii) 77ιe relations of J(Ln(2r)) for r^3 are grii en as follows:

(a) The case n ̂  1 mod 4 :

(1.6.1) 2l+ '-*Jκ = Q, 2r~ί+2a^0 = 0, 2r-1

(1.6.2) 2fl"^Jκ + Σ^22r-1-t'(1+fl'-^-2at, = 0 ι

(1.6.3) 2'-*-2+<χ -f ΣSJί1'"1"3*2'"^1-1-11^ = 0

(1.6.4) Σs,=o(-l)2s"w2-Λ

where 5 = 1 if2d^bs+ί, =0 otherwise.

(1.6.5) 22ί~2a0 - ΣUi yft»K = 0

(b) Tfte case n = l mod 4: ΓΛe relations in (a), excluded the one in (1.6.4)
for s = r— 2, 2d = l + ί>Γ_1 and the one in (1.6.5) for f=α 1 + l, and in addition,

(1.6.6) 2βoα0-ΣUι27(α1 + l,ϋ)αl,=0 where 2t^a1-^ l<2t+ί if aί<2r'2.

For the special case that n=2Γ~1α or 2r""1α — 1, we can reduce the relations
of J(LΛ(2Γ)) in (iii). of the above theorem to more simple ones, and J(Ln(2r)) is
given by the following explicit form, where ZΛ<x> denotes the cyclic group of
order h generated by the element x.

THEOREM 1.7. (i) 7/n = 2|-1α-l (r^3, α^2), then J(L"(2r)) is the direct
sum
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®'s=
2o Z/,(s)<αs> Θ ZΛ(r_1

where /z(s) = 2α* = 22r~ s~ l f l-V0r0^s^r-l.

(ii) I f n = 2r~ίa (r^3, αΞ>2), ί/ien J(LW(2Γ)) is f/ie direct sum

= 2β.

By using the above theorem, we can determine the kernel of the homo-
morphism

(1.8) i* : J(L»(2Γ))

induced by the inclusion i: Ln~1(2f) c LW(2Γ) as follows:

PROPOSITION 1.9. i* in (1.8) is isomorphic if n=Ξ3mod4, epimorphic

otherwise, and

, Z4<2J(σ2m+1)> if n = 4m + 2

Ker i* = I Z2<J(σ2w+1)> i/ n = 4m + 1

IzXJCσ2"1)) i/ n = 4m>0,

= r(?/ - 1) e n(L"(2 r))

w=2mίnίr+1'ί+2> /or Λ=4/w =2^ wzϊA (2, ̂ ) = 1.

By this proposition, we see immediately the following

THEOREM 1.10. The order of the reduced J-group J(Ln(2r)) is equal to

where as is the integer given by (1.3) and

(1.11) ε = 1 if n = Imod4, = 0 otherwise.

By using Proposition 1.9 and Theorem 1.7(ii), we can prove Theorem 1.2 by

the induction on n and r.

We prepare in § 2 some known results on the K- and XO-groups of LΠ(2Γ)

given in [4], and determine in §3 the generators of Ker J in (1.1) for X=Ln(2r)
explicitly. Some lemmas for the coefficient X(d,v) in (1.4) are prepared in §4.

By using these results, we prove Theorem 1.6 in § 5, and Theorem 1.7 in §6.

In §7, we prove Proposition 1.9 in Corollary 7.11 and Theorem 1.10 in Proposi-

tion?^) by using the results on Ker{ΐ*: Xb(Ln(20)->jfθ(LΛ-1(2r))} ([4,
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Prop. 4.4]) and by studying the Adams operation Ψ3 on KO(Ln(2r)). Theorem
1.2 is proved in §8.

For the special case that r^5, we give the direct sum decomposition of
J(L"(2r)) in Proposition 9.3.

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Kobayashi for their valuable suggestions and discussions.

§ 2. The structures of K(Ln(2r)) and KO(L"(2r))

In this section, we prepare some known results on the K- and XO-rings of

the standard lens space L"(2r).
Let η be the canonical complex line bundle over Lw(2r). Then,

(2.1) (N. Mahammed [9]) the K-ring of Ln(2r) is the quotient ring

of the integral polynomial ring Z[rβ by the ideal generated by η2r — l and
07-1)Π+1, and the order of the reduced K-group K(L(2r)) is equal to 2™.

Moreover, consider the elements

(2.2) σ = f 7-l = σ(0), σ(s) = η2* - 1 = (1 + σ)25 - 1 (s^O)

in K(Ln(2r)). Then, (2.1) implies that

(2.3) σ(s) = 0 for s^r, σ1 = 0 for z>n,

and by [8, Lemma 2.3], we see that

(2.4) 2'-s-ί+a*σb*σ(s) = 0 (s^O)

where as and bs are the integers in (1.3), i.e.,

(2.5) n = 2sas + bs, Q^bs<2s.

We notice that the group structure of K(Ln(2r)) is given explicitly in [4,
Th. 3.1].

For the reduced KO-gτoup KO(Ln(2r))9 consider the elements

(2.6) κ = p - l , σ = rσ = σ(0), σ(s) = r(η2* - 1) = rσ(s) ,

where p is the non-trivial real line bundle over Lπ(2r) and r: K-*KO is the real
restriction. Then, the equalities

(2.7) ([4, Prop. 6.3 (i)]) σ(5) = 4σ(s-l) + σ(5^1)2 = σ2ϊ + Σ^-ι1 y&* (s>0)

hold, and we have the following
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THEOREM 2.8 ([4, Th. 1.9]). In the reduced KO-ring KO(Ln(2r))9 there
hold the relations

( 1 if n Ξ 1 mod 4,
(2.9) ^ = 0 for i>a1+ε9 a, = [n/2], ε = \ J

I 0 otherwise,

(2.10) σ(r-l) = 2κ;;

and KO(Ln(2r)) (r^2) is the direct sum

(2.11)

where the order u(i) and the generator c^ are given by using as and bs in (2.5)
and κ9 σ and σ(s) in (2.6) as follows:

(i) r = 2: u(0) = 2, σ0 = K; (n = 0),

(ii) r ^ 3 : (a) The case nφ\ mod 4 : For i = 0,

ιι(0) = 2, σ0 = K

ndfor ί = 2 +d^α1 with O^s^r—2 and

w(l) = 2r~1+2es σ t = σ;

w(0 = 2'-s-2+β% σf = σ(s) + Σ?=ι 2(2t~]

rα s + 1 4- 1 for
fl/(ί), β'(0 = , ,

/or

i/ i =

(b) The case n = lmod4: u(ι) and σf are the same as (a) i/ i^aί-

-2f-2(αr_ !-!)*>, and

u(0 = 2a»-1, σf = σd

u(0 = 2, σf = or* i/ i = fll +1 (n<2r"i).

We notice the following lemma for the real restriction r: X(Ln(2r))

KO(L»(2')).

*) The condition i&a^l mod 2r~2 in (b) on p. 471 of [4, Th. 1.9] is incomplete. It should
be replaced by /=£iz1+l-2r-2(tfr-i-O of above.
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LEMMA 2. 12. (i) r(ηl -*/-') = 0 (i^l).

(ii) σkσ(s)1 = r(σ2k-1σ(s)2l/(l + σ)k-1(l + σ(s)y) (s>0, k>0, /£0),

2σkσ(s)1 = r(σ2kσ(s)2l/(l + σ)*(l + σ(s))') (s > 0, k > 0, / > 0) ,

(ϋi) σ* - r {Σf-i {ΣJ=έ ( -

PROOF, (i) Consider the complexification c: KO-*K and the conjugation
/: £->*:. Then cr=l + ί and tη=η~1 by [1, Th. 5.1], and hence cr(//'-^-ί)=0.

Since c: XO(LB(2'-))-^X(-L''(20) is monomorphic if n = 3 mod4 by [11, (A.13)]
(cf. [4, Prop. 5.3]), we see (i) for n s3 mod 4 and so for any n by the naturality.

(ii) By [4, Lemma 6.2(i)], we see easily that

= cr(σ2kσ(s)2ll(\ +

and these imply (ii) by the same way as the above proof.

(iii) By the first equality of (ii), we see that

(by (2.2))

(by (i))

§ 3. Some relations in J(LΠ (2r))

Now, consider the real restriction and the J-homomorphism

K(L»(2r)) JL> KO(Ln(2')) JL> J(L«(2r)) (r ̂  2) ,

where J is an epimorphism and

(3. 1) Ker J = Σ* Lk9 Lk = ne ̂ (^fc - l)Xb(L»(20)

by (1.1). Furthermore, consider the subgroup PΓof K(Ln(2r)) defined by

(3.2) W=Σk Wk, Wk = Γ\ee
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where Ψ£ is the Adams operation on X(LΠ(2Γ)). Then, we have

LEMMA 3.3. (i) W is the subgroup of K(Ln(2r)) generated by

σd(l + σ)σ(s)

(ii)

(iϋ) Ker J is generated by

(iv) Consider the elements

(3.4) αs = Jσ(s) = Jrσ(s) 6 J(L»(2')) (α. = 0 if s ̂  r)

given in Theorem 1.6. Then (iii) means the equalities

(3.5) Jr(σdσ(s)) = ( - l)dαs (0 ̂  5 ̂  r - 2, 0 ̂  d < 2s) .

(v) The equalities (3 A) for s = r — 1 and (3.5) imply

(3.6) Jr(σdσ(s)) = ( - l)das (0 ̂  s ̂  r - 1, 0 ̂  </ < 2s) .

PROOF, (i) Since Ψζη^η" by [1, Th. 5.1], the last half of (2.1) shows
that Wk = Q if k = 0mod2 and Wk is generated by {ηkj — ηj} otherwise. By these
facts and the relation η2r = l in (2.1), we see that Wis generated by the elements

(*) α(s, fc) = ηk2s - η2*, 0 ̂  s < r, 1 ̂  fc < 2r-5, (2,fc) = 1 .

Since α(f,l) = 0 and a(t9k + 2s~t)-oι(t9k) = ηk2tσ(s) for Ogί^5, the elements

(**)

are the linear combinations of the elements of (*) and the converse is also true.

Further it is easy to see that the elements in (i) are the linear combinations of the
elements of (**) and the converse is true.

(ii) Since the order of XO(Ln(2r)) is a power of 2 by Theorem 2.8, Lk in
(3.1) is 0 if fc=0mod2. Also the group KO(Ln(2r)) is generated by K and σί

(i^l) by Theorem 2.8. We see easily that ψkp = pk=p if k = lmod2 by [1,

Th. 5.1] and p2 = l ([4, (1.4)]), and so (^-1)^=0 if fc=l mod 2. Therefore

Ker J is generated by the elements (Ψk .- ϊ)σl (i ̂  1). By Lemma 2.12 (iii), we see

that σl' = rx for some.xeK(LM(2Γ)). Since ψk°rτ=r*Ψk

c by [3, Lemma A2], we
have (!Fk-l)σί=(!Fk-l)rx = r(^--l)x. Therefore KerJcrPF holds. Also
the converse is easily seen by the equality ψk°r = r°Ψk

c.
(iii) Consider the elements r(σd(l + σ)σ(r-l)) (0^rf<2r"1-l). Then we

have
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r(σ«(l + σ)σ(r-l)) = rfofo-W1--'-!)) (by (2.2))

(by if-i^-i-i and Lemma 2.12(i)).

In the above equalities, we see easily that each element η2'"1'1 — ̂  is a linear
combination of the elements ηk2s-η2' (0^s<r-2, l^fc<2l>-5-1, (2,fc) = l) and
hence that of the elements σ*(l + σ)σ(s) (0^s<r-l, 0^d<25-l) in the same
way as the proof of (i). Thus we have (iii).

(iv) is an immediate consequence of (iii) and (1.1).
( v ) follows from (i)-(iv). q. e. d.

For any non-negative integers α, b, u and v, consider the integers θ(a,b; u9v)
and θ(a v) defined by

(3.7.1) 0(α,fe;u)t;)=Σίέo(-l)ί2"

(3.7.2) θ(a; υ) - 0(α,0; «,p) = Σig

Then, we have the following

LEMMA 3.8. The equalities (3.4) for s = r— 1 and (3.5) imply the equalities

(3.8.1) Jr(σ"σ(«)») = (-!)«+» Σ^Jβ(β,6;ιι,β+l)(«.+1-αi) (σ + 62 >0),

(3.8.2) JK^) = (-l)«+1as + (-l)«

where as=0/or s^r.

To prove this lemma, we prepare two lemmas for the integers in (3.7.1-2).

LEMMA 3.9. (i) Θ(a9b;u,v) is the constant term q0 of the right hand side

of

x2")* = Σ?V ίix1 mod l-x2v.

(ϋ) θ(α,fr;M,t;) = 0 if 6^1, M^U.

(iii) Θ(a,b;u9v)=l if a + b2u<2v.

PROOF, (i) follows immediately from the definition (3.7.1). (ii) and (iii)
are seen easily by (i). q. e. d.

LEMMA 3.10. (i) ££ι (-iy e(a+j,b; u,v) = - fl(fl,6 + l;ιι,ι?).
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(ϋ) Σ}=ι(- ιyyθ(α+7;t>) = o if u^v.

PROOF. We notice that ((1 +x) -!)*(!+ x)a=xk(l + x)° shows the equality

A)
(i) By (3.7.1) and the above equality, the left hand side of (i) is equal to

and the last is equal to the right hand side, since () + ( __ i ) = ( ) •

(ii) The result follows from (i) for b = 0 and Lemma 3.9 (ii). q. e. d.

PROOF OF LEMMA 3.8. By Lemma 3.3(v), it is sufficient to show that (3.6)
implies (3.8.1-2).

We show the first equality of (3.8.2) by the induction on α. For α = l, the
desired equality is the definition (3.4). Let 2*^α<2s+1, s^l and d = a-2s.
Then we have

Jr(σβ) = Jr{σdσ(s)-(σdσ(s)-σa)}

= (- l)"αs - Jr( Σ Jίi1 ( 2j )̂  +') (by (3.6) and (2.2))

(by the inductive assumption)

(-l)d+1αs + (-l)d Σ£έβ(d+2 ; f > + l)(αβ+1-oO (by Lemma 3.10 (ii)).

Thus the first equality of (3.8.2) holds, and so the last one of (3.8.2) by Lemma
3.9 (iii). Since (3.8.1) for ί> = 0 is (3.8.2), we show (3.8.1) by the induction on b.
Letfe^l. Then

r(σ^σ(u)^) (by (2.2))

1

(by the inductive assumption)

-β(β,ft; u,t>+l)(α,,+ !-<*„) (by Lemma 3.10 (i))
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Therefore we have (3.8.1). q. e. d.

By the above results, we have the following

PROPOSITION 3.11. J(L"(2r)) 0^2) is generated by

JK and αs (O gs^r — 2),

where JK is the J -image ofκ in (2.6) and αs is the element of (3.4). Furthermore,
J: κb(Ln(4J)^J(Ln(4)), and the relations between these generators for r^.3 are

given by the J -images

ί\ if n Ξ 1 mod 4,
(3.11.1) J(σO = 0 for ai+s<i<2'~i, ε=\

( 0 otherwise,

(3.11.2) M(iV(^) = 0 for 0^i^N' = min (2r~l -1,

of the relations (2.9) for i<2r~ί and w(0^ = 0 of (2.11) in KO(Ln(2r)\ Here,

the left hand sides of (3.11.1-2) can be written by JK and αs(0:gs^r— 2) by
using Lemma 2.12 (ii), (3.8.1-2) and the equality

(3.11.3) αr_ ! = J(σ(r- 1)) = 2Jκ (cf. (2.10) and (3.4)) .

PROOF. By Theorem 2.8 and (2.7), KO(Ln(2rJ) (r^>2) is an abelian group

generated by the elements

σi (l^i<2r-1) and K

with the relations (2.9) for a x + ε < i < 2r~ ί and w(i)^ = 0 in (2. 1 1). Furthermore,
by Lemma 2.12(iii) and (2.2), the subgroup generated by σ f (1 gi<2r~1) coincides

with the one generated by

r(σdσ(s))

and it contains Ker J, which is generated by

r(σdσ(s) + σd+1σ(s

and is 0 if r = 2, by Lemma 3.3(iii). Thus, we see the proposition for J(Ln(2r))
= KO(Lw(20)/Ker J, by Lemmas 3.3 (iv)-(v) and 3.8. q. e. d.

We notice that there hold the relations

(3.12) 2r-s-1+**as = 0 (0^s<r) in J(L»(2r)),

where as is the integer in (2.5). In fact, (3.12) is the Jr-images of the relations
(2.4) in K(Ln(2r)) by (3.6). In § 5, we use these relations to represent the left
hand sides of (3.11.1-2) by JK and αs.
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§4. Some preliminary lemmas for binomial coefficients

In this section, we prepare .some lemmas for the integers Θ(a,b;u9v) and
θ(α ί ) given by (3.7. 1-2).

LEMMA 4.1. Let 0 ̂  v < r. Then

(4.2) Σϊr=od(-Vk(2rkd)θ(2d + l + kιv + l)

=(-DdΣJ-ez(//2t+

1

v) = (-i)dZ,6z(J+f+

+2-v) if d=0;

(4.3) z r ^ " 1 - ^ - ! ' " "
if l^

(4.4) Σ f = Γ o 2 u - d ( - l r " -

and

and ίfte ίasί is egwa/ to 2(—ϊ)d+ίX(d9v) i f u = v9 where

(4.5) X(d,v) = Σ7 ez (- l)y(2"+

fs ί/ie integer given by (1.4).

PROOF. By Lemma 3.9 (i), we see easily that the left hand sides of (4.2-4)
are the constant terms of the polynomials of degree less than 2v+ί obtained from

(4.2)' (l-(l-x))2r-d(l-

(4.3)' xr-t-^l-xy-^l-x29),

(4 AY x2r-2u-d(l-x)2d(l-x2u)2

by reducing mod 1— x2"+1, respectively.
Thus we see the first equality in (4.2). The second equality in (4.2) is clear.

Since r>υ9 (4.3)' is congruent to

mod 1 — x2v+1. The last is a polynomial in x with degree less than 2v+l by the
assumption ί^d<2v+l

9 and its constant term is 0. Thus we see (4.3).

(4.4)' is equal to
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Thus the left hand side of (4.4) is equal to

which is clearly the right hand side of (4.4). The desired result for u = v is clear.
q.e.d.

Now, in the rest of this section, we give some lemmas for the integers X(d,v)
given in (4.5).

By (4.5), we see immediately the following

LEMMA 4.6. X(d,v) is the constant term p0 of the right hand side of

where u is a sufficiently large integer with 2M^max {2ϋ+1, 2v + d}.

From now on, we denote by

v(n) = v2(n) and μ(ri) = μ2(n) for any positive integer n

the exponent of 2 in the prime power decomposition of n and the number of
terms in the dyadic expansion of π, respectively. Also, we regard that μ(0) = 0.

LEMMA 4.7 (M. Sugawara). (i) μ(d) + v(d) ^ m if d <2m.

(ii) μ(d + c) + μ(d-c) ^ 2μ(d) + v(c) - m if

PROOF, (i) Let d = 2d* + - + 2ά* ( d1 > - > dt ̂  0). Then μ(d) = t and v(d)
= dt by definition, and we see easily (i).

(ii) Let c = 2 c l H ----- f-2C| (c1> >c/^0). If c = d, then (ii) is seen easily
by (i). If f=l and c<d, then (ii) holds since the right hand side is equal to
2 4-c/ — m which is non-positive. Thus, we assume c<d and prove (ii) by the
induction on t.

Suppose ί^2 and d1=cί. Then

μ(d + c) = μ(d-2d' + c-2'0 + 1, μ(d-c)

Thus we see (ii) for /=! easily since c — 2C1=0, and for /^2 by the inductive as-
sumption since d— 2dl<2m~1.

Suppose t^2 and ί/ι>c1> >cs^J2>cs+1, and put
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d' = d - 2*ι = 2d* +-.+ 2dt < 2d*+ί,

c' = 2C*+1 +•••+ 2C' = c - c" < d', c" = 2C1 +•••+ 2C ;

and consider the non-negative integers α and jδ such that

μ(d + c) = μ(d' + c' + 2d* + c") = μ(d' + c') + α,
(*)

-c) = μ(d'-c' + 2'*-cr) = Xd'-c') + β.

If s = 0, then c" = 0, c' = c and β = 1, and hence we see (ii) by the inductive assump-
tion. If s = /, then c" = c, c'=0 and we see (ii) easily. Let 0<s</. Then, (*)
and the inductive assumption imply that

μ(d + c) + μ(d-c) ^2t-2 + ct- (d2 + l) + α + β.

If α + j?^l, then this implies (ii) easily. If α + jS=0, i.e., if α = 0=j3, then the
definition (*) implies that

Thus, we see that c'<2d2~l and so cs+ί^d2 — 29 and that

μ(d-c} = μ(d/-(2^ + c') + 2^~(^-2^)) ̂  μ(d' - 2C 4- c')) + l

By the inductive assumption or (ii) for d = c, these equalities imply easily (ii).

q.e.d.

LEMMA 4.8. v(n!) = Σi^i [w/2f] = n - μ(n).

PROOF. The desired equalities follow immediately from the definitions of
v(n!) and μ(n). q.e.d.

By the above lemmas, we can study the exponent of 2 in the prime power
decomposition of X(d,v).

LEMMA 4.9. Put

X(d,υ) = 2^d^ξ(d9v) (ξ(d,v): odd integer)

for the integer X(d,v) (d>0, u^O) in (4.5). Then,

(i) v(d,0) = 2d, «d,0) = l;

(ii) v(d,ι?) = [d/2^1] + μ(d~2ϋ-1[d/2t'-1])

PROOF, (i) is obvious by the definition of X(d,ϋ).
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(ii)

The case a = 0 : X(d,υ) = ( 2* ) by (4.5), and

(4.10) v = v((2fe)!)-2v(fe!) = 2b-μ(2b)-2(b-μ(b» = μ(b)

by Lemma 4.8. Thus the desired equality is obtained.
The case a > 0 : Put (1 - x)2" = 1 + y + 2B(x) (y = x2"). Then

(4.11) (l-x)2dxc(y~l) = ((l-x)2v)*(l-x)2bxc(y-l)

= 2"B(x)a(y - 1) (1 - x)2bxc mod 1 - y2

Let Z?=0. Then, since

B(χ)a = Σίία""1^ ̂ fc where ck is odd if and only if k=2v~1a,

(4.11) for c = 2u-2v-d=2u-2v-2v-1a (2"^max {2ϋ+1, 2v + d}) implies that

(-l^l-x)2^^-!) = 2β(l-y) + 2e+1P(x) mod 1-y2

for some polynomial P(x). Thus, we see (ii) by Lemma 4.6.
Let 0 < b < 2V~ x . Consider the set

and the involution σ: Δ-+Δ given by σ(i,j) = (i,2v~i— 7 + 1). Put

^(U) = 2ί-1(2j-l) and a(/J)=(-ir-12-("-'

for(i,;)eJ. Then,

(4.12.1) β(ij) = 2" - βσ(i,j), a(U) = aσ(iJ)Ξl mod 2;

and ΰ(x)=((l - jc)2" - ί-y)/2 is given by

(4.12.2) B(x) = Σ(i(J-)^ ̂ (ί,Λ A(i,j) = 2"-'α(i,7>"('.».

To study B(x)a, we consider the set

F = {/: {!,..., α}^}

and the involution σ: F-*!7 given by σf=σ°f. Then σ has only one fixed point
g, the constant map to (v9 1), and

(*) F = {g} U G U σG (disjoint union)
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for some G c F. For any /e F9 let /(i, j) ((i,j) e J) be the number of elements in
/''((U)), which satisfies Σ(ij)eJ(iJ) = a. Then by (4.12.1-2) and (*), we see
easily that

(3.13) B(x) = Σ/eFΠf-tΛ/W - A(v,l)° + Σ/6G(Π?=ι Af(ί) + Π?=ι Aof(i))

where p(/), α(/) and fc(/) for /e G are given by

x/) = ΣΛΛ* (p - o/(u) = Σr-i (f - o/i (/,= Σfr '/a/)) ,
«(/) = Π(u)e^ α(i,7)/(ί '') = 1 mod 2,

Now, by Lemma 4.6, (4.11) for c=2«-2»-d (d=2"-1α + f>, 2B^max{2e+1,
2"+ί/}) and (4.13), we obtain easily the equality

In this equality, φ,l) and α(/) are odd, and v(f2£\\=μ(b) by (4.10). Thus,

we see the desired result v(d9v) = a+μ(b) by showing that

(4.14)

for any fe G and / with m^b. By Lemma 4.8, this is equivalent to

(4.14)' X/) + l + μ(b + m)+μ(ί>-m) > 2μ(b).

If m=0, then (4.14)' is trivial. Suppose m>0. Then by Lemma 4.7,

m) + μ(b - m) ^ 2μ(ί?) + v(m) -0+1,

since Q<m^b<2v~1. On the other hand, by the definitions of p(f), k(f) in
(4.13) and m in (4.14), we see easily that

^ »-i0, v(m) ^ i0-l (ι0

These inequalities imply (4.14)', and we obtain (4.14) as desired. q.e.d.

LEMMA 4.15. Let ζ(d,υ) be the odd integer given in Lemma 4.9. Then

(i) «2 -i ff»- 2-1(/1) for v^s9

and ξ(2s~1,s) = l i/s = l, s 3 mod 8 if s^2.
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(ϋ) ξ(2^-l) = 2-2^2*^-ή = l mod4 for s^2.

PROOF. The first equalities in (i) and (ii) follow from the definition (4.5) and
Lemma 4.9. For the rest, it is sufficient to show that

= 3 modS if s^2.

The left hand side of (*) is the product of

for 2 ̂  fc ̂  5, 1 ̂  q < 2*"1 and (2,q) — 1 . In the group Z£ of reduced residue classes
mod 8, (2* - q)l(2k'1 - q) = 1 if fc ̂  4, and (7/3) (5/1) (3/1) = 3. Thus, we see (*).

LEMMA 4.16. LetQ<d<2s. Then

PROOF. Set X'(d,v) = Σ jezί d^Ό . \ . Then, we can show that

(4.17) Σ?=ι 2-iX(d,v- i) = X'(d,υ)

by the induction on υ as follows. The desired equality is (4.17) for t> = s, since

X'(d,v)= (2j} =X(d,v) by the assumption Q<d<2s.

By the definition, we see that X(d9Q) = X'(d,0) = 2X'(d,l), which is (4.17) for
υ = l. Assume (4.17) for v. Then, we see that

9v-i) + X(d,υ) = X'(d,Ό)

which is (4.17) for υ+ί. Thus (4.17) holds for v^ 1. q. e. d.

§ 5. Proof of Theorem 1.6

By using (3.8.1-2), Lemma 2.12(ii) and the results obtained in the previous
section, J(σl) in (3.11.1) and u(ί)J(σt) in (3.11.2) can be represented by JK and αs

as follows.

LEMMA 5.1. If2t^i<2t+i^2f-1

9then

7(ι» =Σy6z( l + 2»l(2/+ l))is the integer given in (1.5).

PROOF. By Lemma 2.12 (ii), we see that
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since (1 + σ)*r = η2" = 1 by (2. 1). Therefore

- i+l

The coefficient of αϋ+ j — αυ in the right hand side of this equality is given by (4.2).
Thus, we see the desired equality

by noticing Σ jez ( ?̂ ί ) = 22ί~2 and Y(i,t;) = 0 for v ̂  ί + 1 . q. e. d.

In the following lemmas, we use the relation

(5.2) 2*- -l+ uv = Q (O^txr) in J(L"(2r)) (cf. (3.12)).

LEMMA 5.3. Let O^s^r-2, l^d<2s and as+1^l. Γften, in J(LΠ(2Γ)),

«-3+-+ι(a.+ 1-al,) = 0.

PROOF. 0(2d-l + fc,l;s + l,u+l) = 0 for

by Lemma 3.9 (ii). Also

for

by αr=0 and (5.2), since at^at, if t<t' by the definition of at in (2.5).
Furthermore (4.3) shows that

(2d-l + fc,l;5+l,t;+l) = 0 for ι; =

Thus, we see the lemma. q. e. d.

LEMMA 5.4. u(ΐ)J(σ^ in (3.11.2) for r^3 can be written as follows:

(a) The case riφ 1 mod 4:

r2--'Jιc+ Σ^2o22I""1"ι;(β-1+1>-2αt, (αx(5.4.1) u(

For i=2* + d£a1 with O^s^r—\
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(5.4.2) iiflVfo) = 2'-1+2"α0,

(5.4.3) w(OJ(σ,0 = 2^-2+β*αs + Σ;=UΓ~s"3+2s"v(βs+1)α, if * = 2S^

(5.4.4) iφVC^Σ'^oC-l)25'^'^^ if i£3,

(b) The case n = lmod4: u(ί)J(σ?) are the same as (a) if ιVflι

(5.4.5) M

(5.4.6) u

Here as, bs and a'(ϊ) are the integers in (1.3) and Theorem 2.8 (ii), and X(d9v)
and Y(d,v) are the ones in (1.4-5).

PROOF. We see (5.4.1-3, 6) immediately from the definitions of u(ΐ) and σt

in Theorem 2.8 (ii), by (3.4) and Lemma 5.1.
Consider u(ί) and σt for the case that

in Theorem 2.8 (ii), (a), i.e.,

(as+ί + 1 for 2d<b5+lί

>, α'(ί)= "( ,(as+ί for s+ί9

Then, by noticing that the condition α^i* implies α'(i)^2, and by using the last
two equalities in Lemma 2.12(ii), (2.2) and (l + σ)2r=l in (2.1), we see that

*ι = C + Σίίl (-l)2*-1^-!)-'̂ ^^^^ where

ζ = Kσ^-Kl + σ)2r-2s-%(5 + 1)), Cα = r(σ

By expanding (1 + σ)f and by using (3.8.1), we have

J(ζ) = Σ^-o25-d(-i)k(2r~£s "*) ΣUflίM

/(O = Σ?^2u-d(-l)fc(2Γ~^^ΣΓ4fl(2d+fe,2;W,t;+^

Lemma 5.3 means that w(ϊV(0=0 These and Lemma 3.9 (ii) imply that

ii(ί\Ί(fτ\ — Vr-1 V«»in{s,y}/ 1\2s-«9ι— s-5+2»~M + 1α'(i)n //y __/γ ΛM^I J^; — £,„=(> 2-tt=o H~~A; z Pt?fMVα»+ι αtJ>

where the coeflBcient p,,tll is equal to



/-groups of lens spaces modulo powers of two 677

(by(4.4)).

If i?— Ig s^M or s^v^u, then we see easily that

r-s-4+2s-M+1a'(0 ^ r-l-v+av > r-l-(Ό+ΐ) + av+l9

by noticing af(ί)^29 α'(i)^α5+1 and that the definitions of at and bt imply

(5.5) a. = 2'-"β, + [6,/2'] ̂  0, if ί^ϋ.

Therefore, by (5.2) and the last half in (4.4),

(*) tφy(σf) = Σ^oC-i)2*"^1^-*-4*2'*1-"^

Furthermore, we see by (5.5) that

because α'(i) = as+ί + l^2if2d^bs+ί9 and

α'(0 = β.+ ι ^ 2 and v(d,t;) ̂  [d/2-i] ̂  [bs+1/2^] if 2d>bs+ί

by Lemma 4.9. Thus, by the definition X(d,υ) = 2v(d v)ξ(d,v) in Lemma 4.9, we
see that 2'-*-4+2s+ί-v*'WX(d,v)aυ+ί=Q in (*), and (5.4.4) is shown.

Finally, (5.4.5) is shown in the above proof of tι(OJ(0=0 f°Γ i=2r~2 + d,
2d=b r_1 + l. q.e.d.

Now, we are ready to prove Theorem 1.6 in § 1.

PROOF OF THEOREM 1.6. Based on Proposition 3.11, we complete the proof
of Theorem 1.6 by combining (5.2), (3.11.3), Lemmas 5.1 and 5.4. q.e.d.

§ 6. Proof of Theorem 1.7

Let r^3, n^lmod4 and n^2r-l. Then, the relations (1.6.1-4) of

J(Ln(2Γ)) in Theorem 1.6(iiί) are written as follows:

(6.1) 2ί+a"^Jκ = 0, 2Γ-1+β°-*'α0 = 0, 2f-^v+a^υ = 0

(6.2) 2 '-«Λe + Σrr=o 2a"-2-V"-*t2υl+2r-ί-v αv = 0,
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(6.3) Σ£=o2r-s-3+Λ»-[**/2r]+2s"X = 0

(6.4.1) Σ$=0(-l)2s-"2'-s-4+β»-^+^^ = 0

(6.4.2) Σί=o(~l)2s"υ2r-s-4+α--[6^1/2w]+v(d'v)ξ(d,ι;)αt; = 0

by (5.5) and X(d9Ό) = 2v<d v>ξ(d9Ό) in Lemma 4.9.

LEMMA 6.5. The relations (6.1), (6.3) and (6.4.1) are equivalent to (6.1),
(6.3) and

(6.6) 2'-*-3+β»-^+'/2υJ+2s+1-χ = 0

PROOF. By Lemma 4.9, we see that v(d,v):>l (t ^O, d^l). Thus (6.6)
implies (6.4.1). Also we notice that (6.1) implies (6.6) for s with ί?s+1<25. In
fact, if fcs+1<2s, then

r-s-3 + αϋ-[6s+1/2t;] + 2s+1-tJ ^ r-l-v + av for t ^s,

since2 -0ϊ>2-ι;+l.
Now suppose that (6.1), (6.3) and (6.4.1) hold. Then, we can prove (6.6) by

the induction on 5 as follows :
Let s = l. If 62<2, then (6.6) for 5=1 holds by the above notice. Assume

&2^2. Then b2 = 2 + bί and [ί>2/2] = l, and (6.4.1) for d=l is the following
form:

2r~3+aia1 -2r-i+a°-biOL0 = 0,

because v(l,l) = l = £(l,l) and v(l,0) = 2, ξ(l,0) = l by X(l,l)=2 and Z(l,0)=22.
On the other hand, (6.3) implies

2l"~3+αια1 + 2r~2+βo~ί'1α0 = 0.

Therefore 2Γ-2+β°-*'α0=0=2r-3+β'α1, which are (6.6) for s = l.
Let s>l, and assume inductively (6.6) for s — 1, i.e.,

(*) 2r-s-2+a»-V>«/2vi+2s-votv = 0 (O^ι gs-1).

If bs+1<25, then (6.6) holds for 5 by the above notice. Assume
Then bs+ί =2s + ίv Consider (6.4.1) for s and d=2k (0<fc<5);

(**) ΣS=o (-l)2s"υ2^-4+Λ^t^^/2υ^2s+1-υ+v(2k»t')ξ(2k,t;)αt, = 0.

Here, 2s+1-y-[frs+1/2t'] = 2s-t'-[6s/2y], and ξ(2k,v) is odd and
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v(2*,ι?)=l if fc<ϋ, = 2*-»+1 if fc£ι>,

by Lemma 4.9. Thus, by (6.1) for t; = s and (*), (**) is

ΣU+i 2'-*-3+β"-^-/2ι;]+2s+1-χ = 0 (0£fc<s).

These equalities and (6.3) imply (6.6) for s, as desired. q.e.d.

Now, we are ready to prove Theorem 1.7(i).

PROOF OF THEOREM 1 .7 (i). Let n = 2r~1α - 1 (r ̂  3, a ̂  2). Then frs+ i =
2* +1-l (O^s^r-2). Thus there is no relation in (6.4.2), and (6.6) for s = r-2
is the following form :

(*) 2^ = 0

Furthermore, (*) and (6.2) imply

Conversely, it is easily seen that (*) and (**) imply (6.6) for s<r— 2, (6.1),
(6.2) and (6.3).

Thus, Theorem 1.7(i) is proved by Theorem 1.6(iii) and the above lemma.
q.e.d.

To prove Theorem 1.7(ii), we use the following

LEMMA 6.7. Assume b ί+1=0. Then the relations (6.1), (6.3) for s = t and
(6.4.2) for s = l and 2t~l^d<2t are equivalent to the relations (6.1) and

2r-4+.ιαι = 2-3+«oαo (if t = i)9

(O.o)
2r-ί-3+αtαt + 2^t"2+a^^^ί + 2r-'+e«-*ai_2 = 0 (if ί^2).

PROOF. Let t = l and assume b2 = bί=Q. Then, the relation (6.8) is
(6.4.2) for s = l = d, since v(l,l) = l = £(l,l) and v(l,0) = 2, ξ(l,0) = l. Also, (6.3)
for s = l follows from (6.8).

Let t*>2 and assume bt+ x =0. Consider (6.4.2) for s = ί and d = 2ί~1 :

Here, ξ(2t'i9υ) is odd and

-1 mod 4 if t

1 mod4 if ι; = ί-l,

by Lemmas 4.9 and 4.15. Thus, (6.1) and (*) imply (6.8), since 2*>fc + 3 if fc^'3.
Conversely, assume (6.1) and (6.8). Then (6.3) holds for s = t, since
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ΣUo2r-ί-3 fβt'+2t"vαι; = 2'-<-2+fl<α, + 2'-<-

Furthermore, we can show the equality

(**) Σt

v^o(-^2t~v2r-'t-4+av+v(d'v)ξ(d9v^v = 0

in (6.4.2) for s=t as follows: Let d=2*-ί + 2k (0^fc<f-l). Then, ξ(d,v) is
odd and

v(d,v) = 2'-* + 1 if k<v^t, = 2'-" + 2*-"+1 if O

by Lemma 4.9. Thus (**) holds by (6.1) and (6.3), since 2t~v'£t-v+2 if t-v
^2. Let d^I'-i + d' with μ(d')^2. Then,

v(d,ι;) ̂  2'-" + 2 (by Lemma 4.9) ,

and we see (**) by (6.1). q. e. d.

LEMMA 6.9. Assume fcί+ι=0. Then, the relations (6.1), (6.3) for l^s^t
and (6.4.1-2) for l^s^t are equivalent to the relations (6.1) and

(6.10) 2'-ί-3+fl»αr = 2'-ί-2+β»-'αt,_1

PROOF. The assumption bt+ί=0 implies bs+ί=0 (l^s^f). Therefore,

there is no relation in (6.4.1).
Now, suppose that (6.1) and (6.3), (6.4.2) for l^s^f hold. Then, by the

above lemma, there hold the relations

oα

(6.8)'
2r-s-3+<ι,αs + 2r-s-2+β-»αs_1 + 2r-s+a*-2(xs-2 = 0

Thus (6.10) for f = 1 is the first equality in (6.8)'.
Assume inductively that (6.10) holds for t — 1 (^ 1), i.e., that

(6.10)' 2r-'-2+-«al, = 2r-ί-1+β«'-%_1 (l^ϋ<0

Then, (6.10) for v = t follows easily from (6.8)' for s = f, (6.10)' for t;=ί-l and
(6.1) for v = t— 1. Let l^s<f and assume inductively that (6.10) holds for s<t;
^ t. Consider the equality

<xv = Q for 2s~1^d<2s

in (6.4.2). Then, by (4.5), Lemma 4.9 and the condition 25~ί^d<2s, we see

that v(d,v)=v(d,s) and ξ(d,υ) = ξ(d9s) for sgυgt, since

Therefore

(a) ΣUs in (*) is equal to
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-2r-'-4+β +v<* »>£(d,s)αJ (by the inductive assumption (6.10) for

Furthermore, if v<s, then v(d9Ό)^2*~v(*zs — Ό + ΐ) by Lemma 4.9, and hence
Therefore

(b) Σί=o in (*) is equal to

ΣϊΆ 2Γ-ί-4+β-1-<s-1-t;>+v(d t'>ξ(d,t;)αs_1 (by (6.10)')

= 2r-ί-3+fl*-ι+v(d 5>£(d,s)αs_. t (by Lemma 4.16) .

Thus, (*) is the following form :

(**) 2r-ί-4+β +v(d's)α5 = 2' ~ί-3+β-ι+v(d s)α5_1 for 2s

since ξ(d,s) is odd. (**) for d = 2s~l is (6.10) for t? = s, since v(25"1,s) = l by

Lemma 4.9. Therefore, (6.10) holds for 1 ̂ u g t by the induction on υ\ and hence

(6.10) is shown by the induction on ί.

Conversely, we see easily that (6.1) and (6.10) imply (6.8)'. Furthermore

(**) follows from (6.10), since v(d,s)^l for 2s~1^d<2s by Lemma 4.9. There-

fore we see that (6.1) and (6.10) imply (6.3) and (6.4.2) by the above lemma and

the above proof. q. e. d.

PROOF OF THEOREM 1 .7 (ii). Let n = 2r~ίa (r ̂  3, a ̂  2). Then br_ ± = 0.

Thus (6.10) for f =r-2 is the following form:

Furthermore, by (6.2) and (6.1), we see that

(**) 2a'-tJκ + 2a"-*ar_2 = 0.

Conversely, it is easily seen that (*), (**) and 2r"1+β°α0=0 imply (6.10) for

ί<r-2, (6.1), (6.2) and (6.3).

Thus, Theorem 1.7(ii) is proved by Theorem 1.6(iii) and the above lemma.
q. e. d.

Finally, we notice the following

REMARK 6.11. In J(L2Γ"1(2Γ)) (r^3), there hold the relations

22αr_2 4- 25αr-3 = 0 = 2Jκ + 22αr_2.

In fact, the last two relations are (6.2) and (6.3) for s = r-2, respectively, by

(6.1). The first one is (6.10) for ί=r-3, which is valid by Lemma 6.9 since ί?r_2

=0 and (6.4.1-2) holds for sgr-3 by (1.6.4).
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§ 7. The induced homomorphism on the /-groups of

the inclusion L»~l(2r) c L»(20

Throughout this section we assume r^2, and we use the following notation:

(7.1) L2"+1 = L«(20, L?" =18(20*

where Lg(20 = { [>o, > ^ J e L"(20 : *» is real ^ 0} c L"(20 Then we have

(7.2) Lf/Iί"1 = Sk.

For the induced homomorphism

it : KO(L*) — > K~0(Lr ) (V. I*-* -elf) ,

we have the following proposition, where the elements

(7.3) σ = rσ = rη - 2 and K = p - 1 in Xb(L?) (fe>0)

are the ones in (2.6) for fc=2n-f l, and are defined to be the images i*rt + ισ and
: for fc = 2n.

PROPOSITION 7.4 ([4, Prop. 4.4]). ij is isomorphic if fe = 7, 6, 5 or 3
mod 8, and epimorphic otherwise. Furthermore,

/T c\

+1y if fc =

Z2<σ2w+1> ϊ/ fc =

LEMMA 7.6. The equality κσ2m = 2rσ2m holds in KO(L*m+1).

PROOF. Consider the c-images of 2Γσ2m and σ2m+1 in XO(L?m+3), where c
is the complexification. Then c(2rσ2m) = 2rσ4m= -2r"1σ4l«+1^0 and c(σ2m+1)

= (T4m+2=0 in ^(Lf^+3) by j 4> Lemmas 4.3 and 2.9 (ii)] and (2.4). Thus σ2m+1

7*2Γσ2m^O in KO(L*m+3), and so 2Γσ2m^O in XO(Lfw+0 by the above proposi-
tion. Therefore by the above proposition, we have κσ2m=2rσ2m in KO(Lξm+l).

q.e.d.

To study the induced homomorphism if: 3(Lfy-+3(L*r* \ we use the
following

(7.7) ([2, II, (3.12)] and [10]) Let X -!-» 7-JU Z be a cofibering of finite
connected CW-complexes and assume that the upper sequence in the commuta-
tive diagram
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KO(Z) -^ KO(Y) -ίίU KO(X)

1'
J(Z) JEί

is exact. Then, the lower sequence is also exact.

LEMMA 7.8. Let Ψ3 be the Adams operation on JC0(L*), Then

32ί - 1 = 2V+3 mod 2V+4, where v = v2(i).

PROOF. For the first half, it is sufficient to show !F3σ = σ(σ + 3)2, since Ψ3

is a ring homomorphism. By the complexification c: KO(Lk

r) -+ K(Lk

r), we see
that

= c(σ(σ + 3)2),

since σ = r(fj~l), cr=l-fί and tη = η~^ (t is the conjugation). By [4, Prop.
5.3], c: XO(Lk

r)->K(LΪ) is monomorphic if fc = 7mod8. Thus Ψ3σ = σ(σ + 3)2

in KO(Lk) for k^7 mod 8, and also so for any k by the naturality.
The last half can be shown by the induction on v. If v = 0 (i is odd), then

32ί-l=(23 + l) ί-l==23mod24. Let v^l and assume 3 2 v"-lΞΞ2 v + 2mod2 v + 3

for any positive odd integer u. Then 32v+lt t-l=(32v«)2-l==(l + 2v+2 +
2v+3α)2 -1 = 2V+3 mod 2V+4. Therefore we have the desired result. q. e. d.

By using the above results and Theorem 1.7, we see the following proposi-
tion, where (ii) is Theorem 1.10:

PROPOSITION 7.9. (i) The induced homomorphism

is isomorphic ifk = l, 6, 5 or 3 mod 8, epimorphic otherwise, and

{ Z4<2J(<τ2m+1)> if k

(7.10) Kerij? = ^ Z2<2'J(σ2" )> if k

0 if k

Z2h<J(σ2m)> if k=8m>0,

where /=v2(4m), i.e., 4m=2lq with odd q, and h=τain
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(ii)

φ(n9r) =

wftere #G is ίfce order o/α group G, αs and ε are ffte integers in (1.3) and (1.11),

PROOF. Consider (7.7) for the cofibering Lf^cLf-^S* in (7.2). Then,
the first half of (i) is obvious by the first half of Proposition 7.4.

Furthermore, by (7.5) and Lemma 7.6, it is easy to see that Ker i\ is a cyclic
group generated by the generator of the group given in the right hand side of
(7.10).

Now, we can show that

'4 if fc=8m+4,

2 if fc=8w+2, or fc=8m-f 1 and r</+2,

1 if k=8m + l and r^J+2,

2Λ if fc=8m>0.

In fact, Ker iξm+4 is generated by 2J(σ2w+1). On the other hand, (Ψ3- I)(σ2m+1)

=(34m+2_1)d:2m+ι=23^2m+ι (fl . odd) jn χo(L?m+5) by Lemma 7.8 and (2.9).

Therefore 23J(σ2m+1) = 0 in J(L?w+5)= J(L?m+4) by (1.1), since *J(L*r) is a power
of 2 by Theorem 2.8 and (1.1). Thus, (*) for k = 8m + 4 holds. (*) for the second
case is easily seen by (7.5) and (7.7) for the cofibering LJΓ1 cL*-»Sk. Now, the
generator of Ker /£w+1 is 2rJ(σ2m). On the other hand, by Lemma 7.8 and (2.9),
(Ψ*-l)σ2m = (34m-l)σ2m = 2l+2bσ2m (b: odd) in KO(Ls

r

m+1). Thus 2l+2J(σ2m)
=0 in J(L?W+1) by (1.1), and (*) for the third case is valid. Finally, Ker iξm is
generated by J(σ2m) and 2ΓJ(σ2m) = 0 = 2/+2J(σ2m) in J(L?m) by the above proof.
Thus (*) holds for fc = 8m.

Now, (*) implies that

Sβ3 *Ker i8*m+1 ^ 2— t+i, Π^ό1)/4] #Ker f8*m+2 ^

and hence we see by the routine calculations that

(**) (*) implies #J(Lπ(2r))^2«Kπ'Γ> and the equality holds if and only if the
equality holds in (*) for any k^

On the other hand, by Theorems 1.6(ϋ), 2.8 (i) and 1.7(ii), we see easily that

*J(LΛ(20) = 2*('' Γ> for n=2'~1α-l, a^2.

Thus, we see the proposition by (**). q. e. d.
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Proposition 7.9 (i) implies immediately the following corollary, which is
Proposition 1.9:

COROLLARY 7.11. For the induced homomorphism

i*:

i* is isomorphic i/n = 3mod4, epimorphic otherwise, and

Z4<2J(σ2w+1)> if n=4m + 2,

(7.12) Keri*= Z2<J(σ2w+1)> if n=

u<^2w)> if n=4m>0,

where M=2mίn<'+1 ί+2> (/=v2(4m)).

§ 8. Proof of Theorem 1.2

To prove Theorem 1.2, we prepare some lemmas.

LEMMA 8.1. The following equality holds in J(L"(2r)) (r^2):

Jr(η* - 1) = Jrσ(v) = αv for i ̂  1,

where v = v2(i) is the exponent of 2 in the prime power decomposition of i.

PROOF. By the proof of Lemma 3.3, we notice that the kernel of J:
Kb(Lπ(2r))->J(Lπ(2r)) is generated additively by the elements

If 2s^i<2s+1, then >/ί-l=^σ(s) + ̂ -l where j = i-2s by (2.2). If j>0 in
addition, then Jr(f;ί-l) = Jr(τ/ /-l) by the above notice and σ(s) = 0 (s^r). By
continuing this process, we have the desired equality by the definitions of v2(i)
and αs in (3.4). q. e. d.

Now, let/(n,r; v) be the non-negative integer such that

(8.2) *Jrσ(v) = *αv = 2/(n»r;v) in J(Ln(2'))

by Proposition 7.9 (ii), where #α denotes the order of α. Then by the definition
of αv in (3.4) and (2.9),

(8.3) /(n,r;v) = 0 if n=0 or

LEMMA 8.4. Ifn=2r~1a and r^3, then

/(n,r;v) = r-l~v+2f-1-vα for n>0,



686 Kensό FUJII

PROOF. The equality for a^.2 is easily seen from Theorem 1.7(ii) and cnr,l

= 2Jκ of (3.11.3).
Consider the case n=2 f~1. Then, by Corollary 7.11,

U(σ2m) = 2'+l in J(L2r-'(2')) (4m = 2'-1).

On the other hand, 2fσ2m = 2r^m~2σ in KO(L2r'\2r)) by [8, Lemma 2.3].

Thus, we obtain

#α0 = U(σ) = 2'-1+2'"1.

Furthermore, this relation, the ones in J(L2r"1(2r)) given in Remark 6.11 and
α r_ ! =2κ: imply immediately

which is the equality for a = 1 . q. e. d.

Consider the commutative diagram (r^3)

Ker i* c J(L»(2')) — *-?-+ 3(Ln~\2r}}

(8.5) \** |*' .

Ker /'* c J(L«(2'-1)) -£!* J(Ln-1(2r~1))

of the induced homomorphisms, where i and Γ are the inclusions and π and π'
are the natural projections induced by the inclusion Z2r-^^Z2r. Then we have
the following

LEMMA 8.6. If nφQmod2r-1 (r^3), then

π* I Ker/*: Ker i* — >KerΓ*

is isomorphic.

PROOF. If n = 4m=2lq (q: odd), then the assumption n^0mod2 r~1

implies r— !>/ and so min {r-f-1, / + 2} = / + 2 = min {r,/H-2}. Thus, we see
immediately the lemma by Corollary 7.11, by noticing that π*rη = rπ*η = rη and
hence π* J(σi) = J(^\ q. e. d.

LEMMA 8.7. 7/n^Omod2 l>-1 (r^3), then

/(n,r; v) = max {f(n - l,r; v), /(n,r- 1 v)} .

PROOF. Consider the diagram (8.5). Then the definition (8.2) implies that

/(n,r; v) ̂  max [f(n - l,r; v), /(n,r- 1 v)} ,



/-groups of lens spaces modulo powers of two 687

since i*αv = αv and π*αv = αv. Moreover, if/(n,r; v)>max {/(n-l,r; v),/(n,r-l;
v)}, then the non-zero element 2/<fI r;v>~1αv in J(L"(2r)) is mapped to 0 by i* and
π*. This contradicts Lemma 8.6. Thus we have the lemma. q.e.d.

PROOF OF THEOREM 1.2. By (8.3), it is sufficient to show that

(8.8) /(n,r;v) = max{s-v + [n/2s]2s~v: v^s<r and 2s^

(8.8) for r = 2 is an easy consequence of Theorems 1.6 (ii), 2.8 (i), (3.11.3) and
(3.4). By Lemma 8.4, (8.8) holds if r^3 and n = Omod2I>-1.

For the case r^3 and 2r-1α<n<2r-1(α + l), assume inductively that (8.8)
holds for (n- l,r; v) and (n,r- 1 v) instead of (n,r; v). Then, we see easily that
the right hand side of the equality in Lemma 8.7 is equal to

r/(n,r-l;v) if α=0,

tmax{/(n,r-l;v), r-l-v+Kn-l)^-1^-1^} if

and hence to the right hand side of (8.8). Thus Lemma 8.7 implies (8.8) by the
induction on n and r.

These complete the proof of Theorem 1.2. q. e. d.

§9.

J(Ln(4)) is given by Theorems 1.6(ii) and 2.8 (i).
In this section, we present the direct sum decomposition of J(L"(2Γ)) for

r = 3, 4 or 5 explicitly in Proposition 9.3 without proof, which is obtained from
Theorem 1.6 by the direct computations of the integers X(d,v) and Y(d9υ) for
v^3 and the routine calculations.

Before we state the result, we notice the following

PROPOSITION 9.1. (i) In Theorem 1.6, J(Lw(2r)) (r^3) is the direct sum
of the subgroup Zm(r.^Jκ + ct{r — 1)> and the one generated by αs (O^s gr — 2),
-where

m(r-l) = 2, α(r-l) = 0 if

m(r-l) = 2"'~S α(r-l) = ΣSo^2'"1"5-1^1^-^-1^ if n^2r^.

(ii) Let n<2r. Then there exists an isomorphism

/: J(L»(2'«)) s J(L»(20)

which is given by

(9.2) /(Jκ) = Jκ + α(r-l), /(αs) = αs
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PROOF. In the relations (1.6.1-6) of Theorem 1.6, JK appears only in the

first one of (1.6.1) and (1.6.2). Thus (i) follows immediately from Theorem 1.6.

(ii) The assumption n<2r implies that w(r-l) = 2 = m(r) in (i) and that

#J(L"(2'+1)) = #J(LW(20) by Proposition 7.9 (ii). On the other hand, π*(αs) = αs

and π*(Jκ;) = Ofor the homomorphism π*: J(Lw(2Γ+1))^J(LΠ(2r)) induced by the

natural projection π: LΠ(2r)->Lw(2r+ΓK Thus, we obtain the desired iso-

morphism / by (9.2). q. e. d.

PROPOSITION 9.3. *> Let r=3, 4 or 5. Then J(L"(2Γ)) is the direct sum

and the last summand is the one given in (i) of the above proposition, and the

order m(i) (O^ί^r — 2) and the element α(ι) (Ig/^r — 2) are given in Table 1,

2 or 3 for r = 3, 4 or 5, respectively, where J(L"(2r)) for n<2Γ~1 (r = 4 or 5) 1*5

isomorphic to J(L"(2Γ~1)) by (ii) of the above proposition.

TABLE 1 (r=3)

«(*£«

0

1

2,3

4f

4/+1

4/+2, 3

m(0) 1 m(l)

1

2

23

24f+2

24ί + 3

1

22f-l

22f

22ί+l

α(l)

23α0 (/=!), -2^+ιαo(/>l)

2"+iα0

0

TABLE 2 (r=4)

Λ(ί^D

8ί

8t+l

8/4-2, 3

8/+4

8/+5

8/+6, 7

"*(0)

28ί+3

28ί+6

28ί+7

m(l)

24ί~1

24r

24ί+2

24ί+3

«0)

253α0 (/=!),
-2^+iα0(r>l)

-2^+ 0̂

2*'+3αo

0

m(2)

22t 1

22ί

92ί+l

«(2)

23α, 29α« Γ/ 1}
22ί+1α1+26ί+3«0 (/>!)

22ί+1α1+26ί+4α0

*) In [7, Prop. 5.3], T. Kobayashi and M. Sugawara have already computed /(Ln(8)), and
J(Ln(l6)) has been computed by T. Kobayashi.
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TABLES (r=5)

689

n(t^l)

16t

16(+1

16/+2, 3

16/+4

16/+5

16/+6, 7

16f+8

16/+9

16/+10, 11

16/+12

16/+13

16/+14, 15

m(Q)

2l6f+4

2l6ί+6

2l6ί+7

2l6ί+ll

?16ί+14

2l6ί+15

1*0

28ί~1

28ί

28ί+2

28ί+3

28ί+4

28ί+6

28ί+7

α(D

-2«<+X

-2«<+iα0

28ί+1α0

28ί+5«z α0

-2*<+5«0

2«'+7α0

0

/*2)

24f-l

24ί

24ί+1

24ί+2

24f+3

«(2)

o5,v i olSxv /"# ^Z aί-\-21JaQ (t—l),

-24ί+13α1+212ί+3α0 (/>!)

-2^+i«1-212ί+4α0

24ί+1α1+212ί+4α0

24ί+3αι+2l
2ί+10α()

o

Λ(^l)

16ί^«^16r+7

16r+8, 9, 10, 11

16r+12, 13, 14, 15

1*3)

22ί~1

2a«

22ί+1

α(3)

-23α2-29«1-22iα0 (r=l),

22ί+1α2+26ί+3α1+214ί+7α0 (ί>l)

-22ί+1α2+26ί+4α1+214ί+10«0

0
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