J-groups of lens spaces modulo powers of two

Kensô Fuili

(Received April 30, 1980)

§1. Introduction

Let $J(X)$ be the J-group of a $C W$-complex X of finite dimension. Then by J. F. Adams [2] and D. Quillen [10], it is shown that

$$
\begin{equation*}
J(X)=K O(X) / \operatorname{Ker} J, \quad \operatorname{Ker} J=\Sigma_{k}\left(\cap_{e} k^{e}\left(\Psi^{k}-1\right) K O(X)\right), \tag{1.1}
\end{equation*}
$$

where $K O(X)$ is the $K O$-group of $X, J: K O(X) \rightarrow J(X)$ is the natural epimorphism and Ψ^{k} is the Adams operation.

In this paper, we study the J-group of the standard lens space modulo 2^{r} $(r \geqq 2)$:

$$
L^{n}\left(2^{r}\right)=S^{2 n+1} / Z_{2^{r}}, \quad Z_{2^{r}}=\left\{z \in S^{1}: z^{2 r}=1\right\},
$$

which is the orbit manifold of the unit $(2 n+1)$-sphere $S^{2 n+1}$ in C^{n+1} by the diagonal action $z\left(z_{0}, \ldots, z_{n}\right)=\left(z z_{0}, \ldots, z z_{n}\right)$. In the case $r=1, L^{n}(2)$ is the real projective space $R P^{2 n+1}$, and its J-group $J\left(L^{n}(2)\right)$ is determined by J. F. Adams ([1, Th. 7.4], [2, II, Ex. (6.3)]).

Let η be the canonical complex line bundle over $L^{n}\left(2^{r}\right)$, i.e., the induced bundle of the canonical complex line bundle over the complex projective space $C P^{n}=S^{2 n+1} / S^{1}$ by the natural projection $L^{n}\left(2^{r}\right) \rightarrow C P^{n}$. Then, the main purpose of this paper is to prove the following

Thborem 1.2. Let $r \geqq 2$ and let $r\left(\eta^{i}-1\right) \in \tilde{K O}\left(L^{n}\left(2^{r}\right)\right)$ be the real restriction of the stable class of the i-fold tensor product $\eta^{i}=\eta \otimes \cdots \otimes \eta$ of the canonical complex line bundle η over $L^{n}\left(2^{r}\right)$. Then the order of the J-image

$$
J r\left(\eta^{i}-1\right) \in \tilde{J}\left(L^{n}\left(2^{r}\right)\right)
$$

is equal to

$$
2^{f(n, r ; v)}, f(n, r ; v)=\max \left\{s-\dot{v}+\left[n / 2^{s}\right] 2^{s-v}: v \leqq s<r \text { and } 2^{s} \leqq n\right\},
$$

where $v=v_{2}(i)$ is the exponent of 2 in the prime power decomposition of i and $\max \varnothing=0$.

Recently, we have proved in [5, Th. 1.1, 3.1] that the above theorem is valid
also for any odd prime p instead of 2 and any $r \geqq 1$, by replacing 2 with p and 2^{s} with $p^{s}(p-1)$.

On the group structure of the reduced J-group $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$, we have the following theorem, where

$$
\begin{align*}
& a_{s}=\left[n / 2^{s}\right], \quad b_{s}=n-2^{s} a_{s} \quad(0 \leqq s<r), \tag{1.3}\\
& X(d, v)=\sum_{j \in Z}(-1)^{j\left(2^{v}+1\right)}\binom{2 d}{d+2^{v} j}, \tag{1.4}\\
& Y(d, v)=\sum_{j \in Z}\binom{2 d-1}{d+2^{v}(2 j+1)} \tag{1.5}
\end{align*}
$$

Thborem 1.6. (i) $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$ is generated by

$$
J \kappa \quad \text { and } \quad \alpha_{s}=J r\left(\eta^{2 s}-1\right) \quad(0 \leqq s \leqq r-2),
$$

where $\kappa=\rho-1$ and ρ is the non-trivial real line bundle over $L^{n}\left(2^{r}\right)$.
(ii) $\quad([6, T h .4 .5]) \quad J: \widetilde{K O}\left(L^{n}(4)\right) \cong \tilde{J}\left(L^{n}(4)\right)$.
(iii) The relations of $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ for $r \geqq 3$ are given as follows:
(a) The case $n \neq 1 \bmod 4:$
(1.6.1) $\quad 2^{1+a_{r-1}} J \kappa=0, \quad 2^{r-1+2 a_{1}} \alpha_{0}=0, \quad 2^{r-1-s+a_{s}} \alpha_{s}=0 \quad(1 \leqq s \leqq r-2)$.
(1.6.2) $\quad 2^{a_{r-1}} J \kappa+\sum_{v=0}^{r-2} 2^{2 r-1-v\left(1+a_{r-1}\right)-2} \alpha_{v}=0 \quad$ if $\quad a_{1} \geqq 2^{r-2}$.
(1.6.3) $\quad 2^{r-s-2+a_{s}} \alpha_{s}+\sum_{v=0}^{s-1} 2^{r-s-3+2^{s-v}\left(1+a_{s}\right)} \alpha_{v}=0 \quad\left(1 \leqq s \leqq r-2,2^{s} \leqq a_{1}\right)$.
(1.6.4) $\sum_{v=0}^{s}(-1)^{s-v} 2^{r-s-4+2^{s+1-v}\left(a_{s+1}+\delta\right)} X(d, v) \alpha_{v}=0$

$$
\left(1 \leqq s \leqq r-2,1 \leqq d<2^{s}, 2^{s}+d \leqq a_{1}\right)
$$

where $\delta=1$ if $2 d \leqq b_{s+1},=0$ otherwise.
(1.6.5) $\quad 2^{2 i-2} \alpha_{0}-\sum_{v=1}^{t} Y(i, v) \alpha_{v}=0 \quad$ where $\quad 2^{t} \leqq i<2^{t+1} \quad\left(a_{1}<i<2^{r-1}\right)$.
(b) The case $n \equiv 1 \bmod 4:$ The relations in (a), excluded the one in (1.6.4) for $s=r-2,2 d=1+b_{r-1}$ and the one in (1.6.5) for $i=a_{1}+1$, and in addition, (1.6.6) $\quad 2^{a_{0}} \alpha_{0}-\sum_{v=1}^{t} 2 Y\left(a_{1}+1, v\right) \alpha_{v}=0$ where $2^{t} \leqq a_{1}+1<2^{t+1} \quad$ if $\quad a_{1}<2^{r-2}$.

For the special case that $n=2^{r-1} a$ or $2^{r-1} a-1$, we can reduce the relations of $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ in (iii), of the above theorem to more simple ones, and $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is given by the following explicit form, where $Z_{h}\langle x\rangle$ denotes the cyclic group of order h generated by the element x.

Thborbm 1.7. (i) If $n=2^{r-1} a-1(r \geqq 3, a \geqq 2)$, then $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is the direct sum

$$
\oplus_{s=0}^{r-2} Z_{h(s)}\left\langle\alpha_{s}\right\rangle \oplus Z_{h(r-1)}\left\langle J \kappa+\sum_{s=0}^{r-1} 2^{a_{s}-a_{r-1}-1} \alpha_{s}\right\rangle,
$$

where $h(s)=2^{a_{s}}=2^{2 r-s-1 a-1}$ for $0 \leqq s \leqq r-1$.
(ii) If $n=2^{r-1} a(r \geqq 3, a \geqq 2)$, then $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is the direct sum

$$
Z_{k(0)}\left\langle\alpha_{0}\right\rangle \oplus \oplus_{s=1}^{r-1} Z_{k(s)}\left\langle\alpha_{s}-2^{a_{s-1}-a_{s}+1} \alpha_{s-1}\right\rangle \oplus Z_{k(r-1)}\left\langle J \kappa+2^{a_{r-2}-a_{r-1}} \alpha_{r-2}\right\rangle,
$$

where $k(0)=2^{r-1+n}, k(s)=2^{a_{s}-1}=2^{2 r-s-1 a-1}$ for $1 \leqq s \leqq r-2$ and $k(r-1)=2^{a_{r-1}}$ $=2^{a}$.

By using the above theorem, we can determine the kernel of the homomorphism

$$
\begin{equation*}
i^{*}: \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \longrightarrow \tilde{J}\left(L^{n-1}\left(2^{r}\right)\right) \tag{1.8}
\end{equation*}
$$

induced by the inclusion $i: L^{n-1}\left(2^{r}\right) \subset L^{n}\left(2^{r}\right)$ as follows:
Proposition 1.9. i^{*} in (1.8) is isomorphic if $n \equiv 3 \bmod 4$, epimorphic otherwise, and

$$
\operatorname{Ker} i^{*}= \begin{cases}Z_{4}\left\langle 2 J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } n=4 m+2 \\ Z_{2}\left\langle J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } n=4 m+1 \\ Z_{u}\left\langle J\left(\bar{\sigma}^{2 m}\right)\right\rangle & \text { if } n=4 m>0,\end{cases}
$$

where $\bar{\sigma}=r(\eta-1) \in \tilde{K O}\left(L^{n}\left(2^{r}\right)\right)$ and

$$
u=2^{\min \{r+1, l+2\}} \text { for } n=4 m=2^{l} q \text { with }(2, q)=1 .
$$

By this proposition, we see immediately the following
Thborem 1.10. The order of the reduced J-group $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is equal to

$$
2^{\varphi(n, r)}, \quad \varphi(n, r)=(r+1) a_{r-1}+\sum_{s=1}^{r-2}(s+2)\left[\left(a_{s}+1\right) / 2\right]+1+\varepsilon,
$$

where a_{s} is the integer given by (1.3) and

$$
\begin{equation*}
\varepsilon=1 \quad \text { if } n \equiv 1 \bmod 4, \quad=0 \quad \text { otherwise. } \tag{1.11}
\end{equation*}
$$

By using Proposition 1.9 and Theorem 1.7 (ii), we can prove Theorem 1.2 by the induction on n and r.

We prepare in $\S 2$ some known results on the K - and $K O$-groups of $L^{n}\left(2^{r}\right)$ given in [4], and determine in $\S 3$ the generators of $\operatorname{Ker} J$ in (1.1) for $X=L^{n}\left(2^{r}\right)$ explicitly. Some lemmas for the coefficient $X(d, v)$ in (1.4) are prepared in $\S 4$.

By using these results, we prove Theorem 1.6 in $\S 5$, and Theorem 1.7 in § 6. In §7, we prove Proposition 1.9 in Corollary 7.11 and Theorem 1.10 in Proposition 7.9 (ii) by using the results on $\operatorname{Ker}\left\{i^{*}: \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right) \rightarrow \tilde{K O}\left(L^{n-1}\left(2^{r}\right)\right)\right\}([4$,

Prop. 4.4]) and by studying the Adams operation Ψ^{3} on $\tilde{K O}\left(L^{n}\left(2^{r}\right)\right)$. Theorem 1.2 is proved in $\S 8$.

For the special case that $r \leqq 5$, we give the direct sum decomposition of $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ in Proposition 9.3.

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§2. The structures of $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ and $\tilde{K O}\left(L^{n}\left(2^{r}\right)\right)$

In this section, we prepare some known results on the K - and $K O$-rings of the standard lens space $L^{n}\left(2^{r}\right)$.

Let η be the canonical complex line bundle over $L^{n}\left(2^{r}\right)$. Then,
(2.1) (N. Mahammed [9]) the K-ring of $L^{n}\left(2^{r}\right)$ is the quotient ring

$$
K\left(L^{n}\left(2^{r}\right)\right)=Z[\eta] /\left\langle\eta^{2 r}-1,(\eta-1)^{n+1}\right\rangle
$$

of the integral polynomial ring $Z[\eta]$ by the ideal generated by $\eta^{2 r}-1$ and $(\eta-1)^{n+1}$, and the order of the reduced K-group $\tilde{K}\left(L\left(2^{r}\right)\right)$ is equal to $2^{r n}$.

Moreover, consider the elements

$$
\begin{equation*}
\sigma=\eta-1=\sigma(0), \quad \sigma(s)=\eta^{2 s}-1=(1+\sigma)^{2 s}-1 \quad(s \geqq 0) \tag{2.2}
\end{equation*}
$$

in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$. Then, (2.1) implies that

$$
\begin{equation*}
\sigma(s)=0 \text { for } s \geqq r, \quad \sigma^{i}=0 \text { for } i>n, \tag{2.3}
\end{equation*}
$$

and by [8, Lemma 2.3], we see that

$$
\begin{equation*}
2^{r-s-1+a_{s}} \sigma^{b_{s}} \sigma(s)=0 \quad(s \geqq 0) \tag{2.4}
\end{equation*}
$$

where a_{s} and b_{s} are the integers in (1.3), i.e.,

$$
\begin{equation*}
n=2^{s} a_{s}+b_{s}, \quad 0 \leqq b_{s}<2^{s} . \tag{2.5}
\end{equation*}
$$

We notice that the group structure of $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ is given explicitly in [4, Th. 3.1].

For the reduced $K O$-group $\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)$, consider the elements

$$
\begin{equation*}
\kappa=\rho-1, \quad \bar{\sigma}=r \sigma=\bar{\sigma}(0), \quad \bar{\sigma}(s)=r\left(\eta^{2 s}-1\right)=r \sigma(s), \tag{2.6}
\end{equation*}
$$

where ρ is the non-trivial real line bundle over $L^{n}\left(2^{r}\right)$ and $r: K \rightarrow K O$ is the real restriction. Then, the equalities
(2.7) ([4, Prop. 6.3(i)]) $\bar{\sigma}(s)=4 \bar{\sigma}(s-1)+\bar{\sigma}(s-1)^{2}=\bar{\sigma}^{2 s}+\sum_{j=1}^{2 s-1} y_{s j} \bar{\sigma}^{j} \quad(s>0)$
hold, and we have the following

Thborbm 2.8 ([4, Th. 1.9]). In the reduced KO-ring $K \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)$, there hold the relations

$$
\begin{align*}
\bar{\sigma}^{i}=0 \quad \text { for } \quad i>a_{1}+\varepsilon, \quad a_{1} & =[n / 2], \quad \varepsilon= \begin{cases}1 & \text { if } n \equiv 1 \bmod 4, \\
0 & \text { otherwise },\end{cases} \tag{2.9}\\
\bar{\sigma}(r-1) & =2 \kappa ; \tag{2.10}
\end{align*}
$$

and $\widetilde{\mathrm{KO}}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$ is the direct sum

$$
\begin{equation*}
\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)=\oplus_{i=0}^{N^{\prime}} Z_{u(i)}\left\langle\bar{\sigma}_{i}\right\rangle, \quad N^{\prime}=\min \left\{2^{r-1}-1, a_{1}+\varepsilon\right\}, \tag{2.11}
\end{equation*}
$$

where the order $u(i)$ and the generator $\bar{\sigma}_{i}$ are given by using a_{s} and b_{s} in (2.5) and $\kappa, \bar{\sigma}$ and $\bar{\sigma}(s)$ in (2.6) as follows:

$$
\begin{array}{llll}
r=2: & u(0)=2, & \bar{\sigma}_{0}=\kappa & (n=0), \tag{i}\\
& u(0)=2^{a_{1}+\varepsilon}, & \bar{\sigma}_{0}=\kappa+2^{a_{1}} \bar{\sigma} & (n \geqq 1) ; \\
& u(1)=2^{2 a_{1}+1}, & \bar{\sigma}_{1}=\bar{\sigma} & (n \geqq 1) .
\end{array}
$$

(ii) $r \geqq 3$: (a) The case $n \neq 1 \bmod 4:$ For $i=0$,

$$
\begin{array}{ll}
u(0)=2^{a_{r-1}}, & \bar{\sigma}_{0}=\kappa+\sum_{t=1}^{r-1} 2^{\left(2^{t-1}\right)\left(a_{r-1}+1\right)-1} \bar{\sigma}(r-1-t) \\
u(0)=2, & \bar{\sigma}_{0}=\kappa
\end{array}\left(n<2^{r-1}\right), ~\left(n<2^{r-1}\right) ; ~ \$
$$

and for $i=2^{\boldsymbol{a}}+d \leqq a_{1}$ with $0 \leqq s \leqq r-2$ and $0 \leqq d<2^{s}$,

$$
\begin{aligned}
& u(1)=2^{r-1+2 a_{1}}, \quad \bar{\sigma}_{1}=\bar{\sigma} ; \\
& u(i)=2^{r-s-2+a_{s}}, \quad \bar{\sigma}_{i}=\bar{\sigma}(s)+\sum_{t=1}^{s} 2^{(2 t-1)\left(a_{s}+1\right)} \bar{\sigma}(s-t) \quad \text { if } \quad i=2^{s} \geqq 2 ; \\
& u(i)=2^{r-s-3+a^{\prime}(i)}, \quad a^{\prime}(i)=\left\{\begin{array}{lll}
a_{s+1}+1 & \text { for } & 2 d \leqq b_{s+1}, \\
a_{s+1} & \text { for } 2 d>b_{s+1},
\end{array}\right. \\
& \bar{\sigma}_{i}=\bar{\sigma}^{d-1} \bar{\sigma}(1) \prod_{t=0}^{s-1}(2+\bar{\sigma}(t))-2^{a^{\prime}(i)-1} \bar{\sigma}^{d} \bar{\sigma}(s)+\sum_{t=2}^{s+1} 2^{\left(2^{t-1) a^{\prime}}(i)-1\right.} \bar{\sigma}^{d} \bar{\sigma}(s+1-t) \\
& \text { if } i=2^{s}+d \geqq 3, d \geqq 1 .
\end{aligned}
$$

(b) The case $n \equiv 1 \bmod 4: u(i)$ and $\bar{\sigma}_{i}$ are the same as (a) if $i \neq a_{1}+1$ $-2^{r-2}\left(a_{r-1}-1\right)^{*)}$, and

$$
\begin{array}{lll}
u(i)=2^{a_{r-1}}, \quad \bar{\sigma}_{i}=\bar{\sigma}^{d-1} \bar{\sigma}(1) \prod_{t=0}^{r-3}(2+\bar{\sigma}(t)) \\
& \text { if } i=a_{1}+1-2^{r-2}\left(a_{r-1}-1\right)=2^{r-2}+d, & 2 d=b_{r-1}+1 \quad\left(n \geqq 2^{r-1}\right) ; \\
u(i)=2, \quad \bar{\sigma}_{i}=\bar{\sigma}^{i} & \text { if } i=a_{1}+1 \quad\left(n<2^{r-1}\right) .
\end{array}
$$

We notice the following lemma for the real restriction $r: K\left(L^{n}\left(2^{r}\right)\right) \rightarrow$ $K O\left(L^{n}\left(2^{r}\right)\right.$).
*) The condition $i \not \equiv a_{1}+1 \bmod 2^{r-2}$ in (b) on p. 471 of [4, Th. 1.9] is incomplete. It should be replaced by $i \neq a_{1}+1-2^{r-2}\left(a_{r-1}-1\right)$ of above.

Lemma 2.12. (i) $r\left(\eta^{i}-\eta^{-i}\right)=0 \quad(i \geqq 1)$.
(ii) $\quad \bar{\sigma}^{k} \bar{\sigma}(s)^{l}=r\left(\sigma^{2 k-1} \sigma(s)^{2 l} /(1+\sigma)^{k-1}(1+\sigma(s))^{l}\right) \quad(s>0, k>0, l \geqq 0)$,

$$
\begin{aligned}
& 2 \bar{\sigma}^{k} \bar{\sigma}(s)^{l}=r\left(\sigma^{2 k} \sigma(s)^{2 l} /(1+\sigma)^{k}(1+\sigma(s))^{l}\right) \quad(s>0, k>0, l>0), \\
& \bar{\sigma}^{d-1} \bar{\sigma}(1) \prod_{t=0}^{s=1}(2+\bar{\sigma}(t))=r\left(\sigma^{2 d-1} \sigma(s+1) /(1+\sigma)^{d}(1+\sigma(s))\right) \\
& \\
& \quad(d>0, s \geqq 1) .
\end{aligned}
$$

(iii) $\quad \bar{\sigma}^{k}=r\left\{\sum_{i=1}^{k}\left\{\sum_{j=0}^{k=i}(-1)^{j}\binom{2 k}{j}\binom{k-j}{i}\right\} \sigma^{i}\right\}$.

Proof. (i) Consider the complexification $c: K O \rightarrow K$ and the conjugation $t: K \rightarrow K$. Then $c r=1+t$ and $t \eta=\eta^{-1}$ by [1, Th. 5.1], and hence $c r\left(\eta^{i}-\eta^{-i}\right)=0$. Since $c: \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right) \rightarrow \widetilde{K}\left(L^{n}\left(2^{r}\right)\right)$ is monomorphic if $n \equiv 3 \bmod 4$ by [11, (A.13)] (cf. [4, Prop. 5.3]), we see (i) for $n \equiv 3 \bmod 4$ and so for any n by the naturality.
(ii) By [4, Lemma $6.2(\mathrm{i})]$, we see easily that

$$
\begin{aligned}
& c\left(\bar{\sigma}^{k} \bar{\sigma}(s)^{l}\right)=\operatorname{cr}\left(\sigma^{2 k-1} \sigma(s)^{2 l} /(1+\sigma)^{k-1}(1+\sigma(s))^{l}\right), \\
& 2 c\left(\bar{\sigma}^{k} \bar{\sigma}(s)^{l}\right)=\operatorname{cr}\left(\sigma^{2 k} \sigma(s)^{2 l} /(1+\sigma)^{k}(1+\sigma(s))^{l}\right) \\
& c\left(\bar{\sigma}^{d-1} \bar{\sigma}(1) \prod_{t=0}^{s=1}(2+\bar{\sigma}(t))\right)=\operatorname{cr}\left(\sigma^{2 d-1} \sigma(s+1) /(1+\sigma)^{d}(1+\sigma(s))\right)
\end{aligned}
$$

and these imply (ii) by the same way as the above proof.
(iii) By the first equality of (ii), we see that

$$
\begin{align*}
\bar{\sigma}^{k} & =r\left(\sigma^{2 k-1} /(1+\sigma)^{k-1}\right)=r\left((\eta-1)^{2 k-1} \eta^{-k+1}\right) \tag{2.2}\\
& =r\left\{\sum_{i=0}^{2 k-1}\binom{2 k-1}{i}(-1)^{i+1} \eta^{i-k+1}\right\} \\
& =r\left\{(-1)^{k}\binom{2 k-1}{k-1}+\sum_{j=0}^{k-1}(-1)^{j}\binom{2 k}{j} \eta^{k-j}\right\} \tag{i}\\
& =r\left\{\sum_{i=1}^{k}\left\{\sum_{j=0}^{k=1}(-1)^{j} \cdot\binom{2 k}{j}\binom{k-j}{i}\right\} \sigma^{i}\right\} .
\end{align*}
$$

§3. Some relations in $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$
Now, consider the real restriction and the J-homomorphism

$$
\tilde{K}\left(L^{n}\left(2^{r}\right)\right) \xrightarrow{r} \tilde{K O}\left(L^{n}\left(2^{r}\right)\right) \xrightarrow{J} \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \quad(r \geqq 2),
$$

where J is an epimorphism and

$$
\begin{equation*}
\operatorname{Ker} J=\sum_{k} L_{k}, \quad L_{k}=\cap_{e} k^{e}\left(\Psi^{k}-1\right) \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right) \tag{3.1}
\end{equation*}
$$

by (1.1). Furthermore, consider the subgroup W of $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ defined by

$$
\begin{equation*}
W=\sum_{k} W_{k}, \quad W_{k}=\cap_{e} k^{e}\left(\Psi_{c}^{k}-1\right) \tilde{K}\left(L^{n}\left(2^{r}\right)\right) \tag{3.2}
\end{equation*}
$$

where Ψ_{c}^{k} is the Adams operation on $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$. Then, we have
Lemma 3.3. (i) W is the subgroup of $\widetilde{K}\left(L^{n}\left(2^{r}\right)\right)$ generated by

$$
\sigma^{d}(1+\sigma) \sigma(s) \quad\left(0 \leqq s \leqq r-1,0 \leqq d<2^{s}-1\right) .
$$

$$
\begin{equation*}
\operatorname{Ker} J=r W \text {. } \tag{ii}
\end{equation*}
$$

(iii) $\operatorname{Ker} J$ is generated by

$$
r\left(\sigma^{d}(1+\sigma) \sigma(s)\right) \quad\left(0 \leqq s \leqq r-2,0 \leqq d<2^{s}-1\right) .
$$

(iv) Consider the elements

$$
\begin{equation*}
\alpha_{s}=J \bar{\sigma}(s)=J r \sigma(s) \in \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \quad\left(\alpha_{s}=0 \text { if } s \geqq r\right) \tag{3.4}
\end{equation*}
$$

given in Theorem 1.6. Then (iii) means the equalities

$$
\begin{equation*}
J r\left(\sigma^{d} \sigma(s)\right)=(-1)^{d} \alpha_{s} \quad\left(0 \leqq s \leqq r-2,0 \leqq d<2^{s}\right) \tag{3.5}
\end{equation*}
$$

(v) The equalities (3.4) for $s=r-1$ and (3.5) imply

$$
\begin{equation*}
\operatorname{Jr}\left(\sigma^{d} \sigma(s)\right)=(-1)^{d} \alpha_{s} \quad\left(0 \leqq s \leqq r-1,0 \leqq d<2^{s}\right) . \tag{3.6}
\end{equation*}
$$

Proof. (i) Since $\Psi_{c}^{k} \eta^{i}=\eta^{k i}$ by [1, Th. 5.1], the last half of (2.1) shows that $W_{k}=0$ if $k \equiv 0 \bmod 2$ and W_{k} is generated by $\left\{\eta^{k j}-\eta^{j}\right\}$ otherwise. By these facts and the relation $\eta^{2 r}=1$ in (2.1), we see that W is generated by the elements

$$
\begin{equation*}
\alpha(s, k)=\eta^{k 2^{s}}-\eta^{2 s}, \quad 0 \leqq s<r, \quad 1 \leqq k<2^{r-s}, \quad(2, k)=1 . \tag{*}
\end{equation*}
$$

Since $\alpha(t, 1)=0$ and $\alpha\left(t, k+2^{s-t}\right)-\alpha(t, k)=\eta^{k 2^{t}} \sigma(s)$ for $0 \leqq t \leqq s$, the elements

$$
\begin{equation*}
\eta^{j} \sigma(s), \quad 0 \leqq s<r, \quad 1 \leqq j<2^{s} \tag{**}
\end{equation*}
$$

are the linear combinations of the elements of $(*)$ and the converse is also true. Further it is easy to see that the elements in (i) are the linear combinations of the elements of (**) and the converse is true.
(ii) Since the order of $\widetilde{\mathrm{KO}}\left(\mathrm{L}^{n}\left(2^{r}\right)\right)$ is a power of 2 by Theorem $2.8, L_{k}$ in (3.1) is 0 if $k \equiv 0 \bmod 2$. Also the group $\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)$ is generated by κ and $\bar{\sigma}^{i}$ ($i \geqq 1$) by Theorem 2.8. We see easily that $\Psi^{k} \rho=\rho^{k}=\rho$ if $k \equiv 1 \bmod 2$ by [1, Th. 5.1] and $\rho^{2}=1([4,(1.4)])$, and so $\left(\Psi^{k}-1\right) \kappa=0$ if $k \equiv 1 \bmod 2$. Therefore Ker J is generated by the elements $\left(\Psi^{k}-1\right) \bar{\sigma}^{i}(i \geqq 1)$. By Lemma 2.12 (iii), we see that $\bar{\sigma}^{i}=r x$ for some $x \in \tilde{K}\left(L^{n}\left(2^{r}\right)\right)$. Since $\Psi^{k} \circ r=r o \Psi_{c}^{k}$ by [3, Lemma A2], we have $\left(\Psi^{k}-1\right) \bar{\sigma}^{i}=\left(\Psi^{k}-1\right) r x=r\left(\Psi_{c}^{k}-1\right) x$. Therefore Ker $J \subset r W$ holds. Also the converse is easily seen by the equality $\Psi^{k}{ }_{\circ} r=r_{\circ} \Psi_{c}^{k}$.
(iii) Consider the elements $r\left(\sigma^{d}(1+\sigma) \sigma(r-1)\right)\left(0 \leqq d<2^{r-1}-1\right)$. Then we have

$$
\begin{aligned}
r\left(\sigma^{d}(1+\sigma) \sigma(r-1)\right)= & r\left(\eta(\eta-1)^{d}\left(\eta^{2 r-1}-1\right)\right) \\
= & r\left\{\sum_{i=1}^{d+1}(-1)^{d-i+1}\binom{d}{i-1}\left(\eta^{2 r-1-i}-\eta^{i}\right)\right\} \\
& \quad \text { by } \eta^{2 r-1}=\eta^{-2 r-1} \text { and Lemma 2.12(i)) } .
\end{aligned}
$$

In the above equalities, we see easily that each element $\eta^{2 r-1-i}-\eta^{i}$ is a linear combination of the elements $\eta^{k 2^{s}}-\eta^{2 s}\left(0 \leqq s<r-2,1 \leqq k<2^{r-s-1},(2, k)=1\right)$ and hence that of the elements $\sigma^{d}(1+\sigma) \sigma(s)\left(0 \leqq s<r-1,0 \leqq d<2^{s}-1\right)$ in the same way as the proof of (i). Thus we have (iii).
(iv) is an immediate consequence of (iii) and (1.1).
(v) follows from (i)-(iv).
q.e.d.

For any non-negative integers a, b, u and v, consider the integers $\theta(a, b ; u, v)$ and $\theta(a ; v)$ defined by

$$
\begin{align*}
& \theta(a, b ; u, v)=\sum_{i \geqq 0}(-1)^{i 2^{v}} \sum_{c=0}^{b}(-1)^{c\left(2^{u+1}\right)}\binom{a}{i 2^{v}-c 2^{u}}\binom{b}{c}, \tag{3.7.1}\\
& \theta(a ; v)=\theta(a, 0 ; u, v)=\sum_{i \geqq 0}(-1)^{i 2^{v}}\binom{a}{i 2^{v}} .
\end{align*}
$$

Then, we have the following
Lbmma 3.8. The equalities (3.4) for $s=r-1$ and (3.5) imply the equalities

$$
\begin{array}{rlrl}
\operatorname{Jr}\left(\sigma^{a} \sigma(u)^{b}\right)=(-1)^{a+b} \sum_{v=0}^{r-1} \theta(a, b ; u, v+1)\left(\alpha_{v+1}-\alpha_{v}\right) & & \left(a+b 2^{u}>0\right), \tag{3.8.1}\\
\operatorname{Jr}\left(\sigma^{a}\right) & =(-1)^{a+1} \alpha_{s}+(-1)^{a} \sum_{v=0}^{s-1} \theta(a ; v+1)\left(\alpha_{v+1}-\alpha_{v}\right) & \left(0<a<2^{s+1}\right) \\
& =(-1)^{a} \sum_{v=0}^{r r-1} \theta(a ; v+1)\left(\alpha_{v+1}-\alpha_{v}\right),
\end{array}
$$

where $\alpha_{s}=0$ for $s \geqq r$.
To prove this lemma, we prepare two lemmas for the integers in (3.7.1-2).
Lemma 3.9. (i) $\theta(a, b ; u, v)$ is the constant term q_{0} of the right hand side of

$$
(1-x)^{a}\left(1-x^{2 u}\right)^{b} \equiv \sum_{i=0}^{2 v-1} q_{i} x^{i} \bmod 1-x^{2 v} .
$$

(ii) $\theta(a, b ; u, v)=0$ if $b \geqq 1, u \geqq v$.
(iii) $\theta(a, b ; u, v)=1$ if $a+b 2^{u}<2^{v}$.

Proof. (i) follows immediately from the definition (3.7.1). (ii) and (iii) are seen easily by (i).
q.e.d.

Lbmма 3.10. (i) $\sum_{j=1}^{2 u}(-1)^{j}\binom{2^{u}}{j} \theta(a+j, b ; u, v)=-\theta(a, b+1 ; u, v)$.
(ii) $\quad \sum_{j=1}^{2 u}(-1)^{j}\binom{2^{u}}{j} \theta(a+j ; v)=0 \quad$ if $\quad u \geqq v$.

Proof. We notice that $((1+x)-1)^{k}(1+x)^{a}=x^{k}(1+x)^{a}$ shows the equality

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{a+j}{l}=(-1)^{k}\binom{a}{l-k}
$$

(i) By (3.7.1) and the above equality, the left hand side of (i) is equal to

$$
\begin{aligned}
& \sum_{i \geqq 0}(-1)^{i 2^{v}} \sum_{c=0}^{b}(-1)^{c\left(2^{u+1}\right)} \sum_{j=1}^{2^{u}}(-1)^{j}\binom{2^{u}}{j}\binom{a+j}{i 2^{v}-c 2^{u}}\binom{b}{c} \\
& \quad=\sum_{i \geqq 0}(-1)^{i 2^{v}} \sum_{c=0}^{b}(-1)^{c\left(2^{u}+1\right)}\left\{(-1)^{2^{u}}\binom{a}{i 2^{v}-(c+1) 2^{u}}-\binom{a}{i 2^{v}-c 2^{u}}\right\}\binom{b}{c}
\end{aligned}
$$

and the last is equal to the right hand side, since $\binom{b}{c}+\binom{b}{c-1}=\binom{b+1}{c}$.
(ii) The result follows from (i) for $b=0$ and Lemma 3.9 (ii).
q.e.d.

Proof of Lbmma 3.8. By Lemma 3.3(v), it is sufficient to show that (3.6) implies (3.8.1-2).

We show the first equality of (3.8.2) by the induction on a. For $a=1$, the desired equality is the definition (3.4). Let $2^{s} \leqq a<2^{s+1}, s \geqq 1$ and $d=a-2^{s}$. Then we have

$$
\begin{aligned}
& \operatorname{Jr}\left(\sigma^{a}\right)=\operatorname{Jr}\left\{\sigma^{d} \sigma(s)-\left(\sigma^{d} \sigma(s)-\sigma^{a}\right)\right\} \\
& =(-1)^{d} \alpha_{s}-J r\left(\sum_{j=1}^{2_{j}^{s-1}}\binom{2^{s}}{j} \sigma^{d+j}\right) \\
& =(-1)^{d} \alpha_{s}-\sum_{j=1}^{2 s-1}(-1)^{d+j+1}\binom{2^{s}}{j} \alpha_{s} \\
& -\sum_{v=0}^{s-1} \sum_{j=1}^{2 s-1}(-1)^{d+j} \theta(d+j ; v+1)\binom{2^{s}}{j}\left(\alpha_{v+1}-\alpha_{v}\right) \\
& \text { (by (3.6) and (2.2)) } \\
& \text { (by the inductive assumption) } \\
& =(-1)^{d+1} \alpha_{s}+(-1)^{d} \sum_{v=0}^{s-1} \theta\left(d+2^{s} ; v+1\right)\left(\alpha_{v+1}-\alpha_{v}\right) \quad \text { (by Lemma 3.10(ii)). }
\end{aligned}
$$

Thus the first equality of (3.8.2) holds, and so the last one of (3.8.2) by Lemma 3.9 (iii). Since (3.8.1) for $b=0$ is (3.8.2), we show (3.8.1) by the induction on b. Let $b \geqq 1$. Then

$$
\begin{aligned}
& \operatorname{Jr}\left(\sigma^{a} \sigma(u)^{b}\right)=\sum_{i=1}^{2^{u}}\binom{2^{u}}{i} \operatorname{Jr}\left(\sigma^{a+i} \sigma(u)^{b-1}\right) \\
= & \sum_{v=0}^{r-1} \sum_{i=1}^{2^{u}}(-1)^{a+b+i-1}\binom{2^{u}}{i} \theta(a+i, b-1 ; u, v+1)\left(\alpha_{v+1}-\alpha_{v}\right)
\end{aligned}
$$

(by the inductive assumption)

$$
=(-1)^{a+b+1} \sum_{v=0}^{r-1}-\theta(a, b ; u, v+1)\left(\alpha_{v+1}-\alpha_{v}\right)
$$

(by Lemma 3.10(i))

Therefore we have (3.8.1).
q.e.d.

By the above results, we have the following
Proposition 3.11. $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$ is generated by

$$
J \kappa \quad \text { and } \quad \alpha_{s} \quad(0 \leqq s \leqq r-2),
$$

where $J \kappa$ is the J-image of κ in (2.6) and α_{s} is the element of (3.4). Furthermore, $J: \tilde{K O}\left(L^{n}(4)\right) \cong \tilde{J}\left(L^{n}(4)\right)$, and the relations between these generators for $r \geqq 3$ are given by the J-images

$$
\begin{gather*}
J\left(\bar{\sigma}^{i}\right)=0 \text { for } a_{1}+\varepsilon<i<2^{r-1}, \quad \varepsilon= \begin{cases}1 & \text { if } n \equiv 1 \bmod 4, \\
0 & \text { otherwise },\end{cases} \tag{3.11.1}\\
u(i) J\left(\bar{\sigma}_{i}\right)=0 \text { for } 0 \leqq i \leqq N^{\prime}=\min \left\{2^{r-1}-1, a_{1}+\varepsilon\right\}, \tag{3.11.2}
\end{gather*}
$$

of the relations (2.9) for $i<2^{r-1}$ and $u(i) \bar{\sigma}_{i}=0$ of (2.11) in $\tilde{K O}\left(L^{n}\left(2^{r}\right)\right)$. Here, the left hand sides of (3.11.1-2) can be written by $J \kappa$ and $\alpha_{s}(0 \leqq s \leqq r-2)$ by using Lemma 2.12 (ii), (3.8.1-2) and the equality

$$
\begin{equation*}
\alpha_{r-1}=J(\bar{\sigma}(r-1))=2 J \kappa \quad(c f .(2.10) \text { and (3.4)) } . \tag{3.11.3}
\end{equation*}
$$

Proof. By Theorem 2.8 and (2.7), $\tilde{K O}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$ is an abelian group generated by the elements

$$
\bar{\sigma}^{i} \quad\left(1 \leqq i<2^{r-1}\right) \quad \text { and } \quad \kappa
$$

with the relations (2.9) for $a_{1}+\varepsilon<i<2^{r-1}$ and $u(i) \bar{\sigma}_{i}=0$ in (2.11). Furthermore, by Lemma 2.12 (iii) and (2.2), the subgroup generated by $\bar{\sigma}^{i}\left(1 \leqq i<2^{r-1}\right)$ coincides with the one generated by

$$
r\left(\sigma^{d} \sigma(s)\right) \quad\left(0 \leqq s<r-1,0 \leqq d<2^{s}\right) ;
$$

and it contains $\operatorname{Ker} J$, which is generated by

$$
r\left(\sigma^{d} \sigma(s)+\sigma^{d+1} \sigma(s)\right) \quad\left(0 \leqq s \leqq r-2,0 \leqq d<2^{s}-1\right)
$$

and is 0 if $r=2$, by Lemma 3.3 (iii). Thus, we see the proposition for $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ $=\tilde{K O}\left(L^{n}\left(2^{r}\right)\right) / \operatorname{Ker} J$, by Lemmas 3.3 (iv)-(v) and 3.8.
q.e.d.

We notice that there hold the relations

$$
\begin{equation*}
2^{r-s-1+a_{s}} \alpha_{s}=0 \quad(0 \leqq s<r) \quad \text { in } \quad \tilde{J}\left(L^{n}\left(2^{r}\right)\right), \tag{3.12}
\end{equation*}
$$

where a_{s} is the integer in (2.5). In fact, (3.12) is the $J r$-images of the relations (2.4) in $\tilde{K}\left(L^{n}\left(2^{r}\right)\right)$ by (3.6). In $\S 5$, we use these relations to represent the left hand sides of (3.11.1-2) by $J \kappa$ and α_{s}.

§4. Some preliminary lemmas for binomial coefficients

In this section, we prepare some lemmas for the integers $\theta(a, b ; u, v)$ and $\theta(a ; v)$ given by (3.7.1-2).

Lbmma 4.1. Let $0 \leqq v<r$. Then

$$
\begin{align*}
& \sum_{k=0}^{2 r-d}(-1)^{k}\binom{2^{r}-d}{k} \theta(2 d+1+k ; v+1) \tag{4.2}\\
& \quad=(-1)^{d} \sum_{j \in Z}\binom{2 d+1}{d+2^{v+1} j}=(-1)^{d} \sum_{j \in Z}\binom{2 d+1}{d+1+2^{v+1} j} \quad \text { if } d \geqq 0 ;
\end{align*}
$$

$$
\begin{equation*}
\sum_{k=0}^{2 r-2 v-1-d}(-1)^{k}\binom{2^{r}-2^{v-1}-d}{k} \theta(2 d-1+k, 1 ; v, v+1)=0 \tag{4.3}
\end{equation*}
$$

$$
\text { if } 1 \leqq d<2^{v-1}
$$

$$
\begin{align*}
& \sum_{k=0}^{2 r-2 u-d}(-1)^{k}\binom{2^{r}-2^{u}-d}{k} \theta(2 d+k, 2 ; u, v+1) \tag{4.4}\\
& =2(-1)^{d+1} \sum_{j \in Z}\left\{(-1)^{2 u+1}\binom{2 d}{d+2^{u}+2^{v+1} j}+\binom{2 d}{d+2^{v+1} j}\right\} \\
& \text { if } 0 \leqq u \leqq v \text { and } d \geqq 1,
\end{align*}
$$

and the last is equal to $2(-1)^{d+1} X(d, v)$ if $u=v$, where

$$
\begin{equation*}
X(d, v)=\sum_{j \in Z}(-1)^{j\left(2^{v+1)}\right.}\binom{2 d}{d+2^{v} j} \quad(d>0, v \geqq 0) \tag{4.5}
\end{equation*}
$$

is the integer given by (1.4).
Proof. By Lemma 3.9 (i), we see easily that the left hand sides of (4.2-4) are the constant terms of the polynomials of degree less than 2^{v+1} obtained from

$$
\begin{align*}
& (1-(1-x))^{2 r-d}(1-x)^{2 d+1}=x^{2 r-d}(1-x)^{2 d+1} \tag{4.2}\\
& x^{2 r-2^{v-1-d}}(1-x)^{2 d-1}\left(1-x^{2 v}\right) \\
& x^{2 r-2^{u-d}}(1-x)^{2 d}\left(1-x^{2 u}\right)^{2}
\end{align*}
$$

by reducing mod $1-x^{2 v+1}$, respectively.
Thus we see the first equality in (4.2). The second equality in (4.2) is clear.
Since $r>v,(4.3)^{\prime}$ is congruent to

$$
x^{2 \nu+2 v-1-d}(1-x)^{2 d-1}\left(1-x^{2 \nu}\right) \equiv x^{2 \nu-1-d}(1-x)^{2 d-1}\left(x^{2 v}-1\right)
$$

$\bmod 1-x^{2^{v+1}}$. The last is a polynomial in x with degree less than 2^{v+1} by the assumption $1 \leqq d<2^{v+1}$, and its constant term is 0 . Thus we see (4.3).
(4.4)' is equal to

$$
(1-x)^{2 d}\left(x^{2^{r}-2^{u}-d}+x^{2^{r+}+2^{u-d}-2 x^{2 r-d}}\right) .
$$

Thus the left hand side of (4.4) is equal to

$$
\begin{aligned}
\sum_{j \in Z}\left\{(-1)^{d+2 u}\binom{2 d}{d+2^{u}+2^{v+1} j}+(-1)^{d-2^{u}}\binom{2 d}{d-2^{u}+2^{v+1} j}\right. \\
\left.+2(-1)^{d+1}\binom{2 d}{d+2^{v+1} j}\right\}
\end{aligned}
$$

which is clearly the right hand side of (4.4). The desired result for $u=v$ is clear.
q.e.d.

Now, in the rest of this section, we give some lemmas for the integers $X(d, v)$ given in (4.5).

By (4.5), we see immediately the following
Lemma 4.6. $\quad X(d, v)$ is the constant term p_{0} of the right hand side of

$$
(-1)^{d} x^{2 u-2 v-d}(1-x)^{2 d}(y-1) \equiv \sum_{i=0}^{2 v+1-1} p_{i} x^{i} \quad \bmod y^{2}-1 \quad\left(y=x^{2 v}\right),
$$

where u is a sufficiently large integer with $2^{u} \geqq \max \left\{2^{v+1}, 2^{v}+d\right\}$.
From now on, we denote by

$$
v(n)=v_{2}(n) \quad \text { and } \quad \mu(n)=\mu_{2}(n) \quad \text { for any positive integer } \quad n
$$

the exponent of 2 in the prime power decomposition of n and the number of terms in the dyadic expansion of n, respectively. Also, we regard that $\mu(0)=0$.

Lbmma 4.7 (M. Sugawara). (i) $\mu(d)+v(d) \leqq m$ if $d<2^{m}$.
(ii) $\mu(d+c)+\mu(d-c) \geqq 2 \mu(d)+\nu(c)-m \quad$ if $\quad 0<c \leqq d<2^{m}$.

Proof. (i) Let $d=2^{d_{1}}+\cdots+2^{d_{t}}\left(d_{1}>\cdots>d_{t} \geqq 0\right)$. Then $\mu(d)=t$ and $v(d)$ $=d_{t}$ by definition, and we see easily (i).
(ii) Let $c=2^{c_{1}}+\cdots+2^{c_{l}}\left(c_{1}>\cdots>c_{l} \geqq 0\right)$. If $c=d$, then (ii) is seen easily by (i). If $t=1$ and $c<d$, then (ii) holds since the right hand side is equal to $2+c_{l}-m$ which is non-positive. Thus, we assume $c<d$ and prove (ii) by the induction on t.

Suppose $t \geqq 2$ and $d_{1}=c_{1}$. Then

$$
\mu(d+c)=\mu\left(d-2^{d_{1}}+c-2^{c_{1}}\right)+1, \quad \mu(d-c)=\mu\left(d-2^{d_{1}}-\left(c-2^{c_{1}}\right)\right) .
$$

Thus we see (ii) for $l=1$ easily since $c-2^{c_{1}}=0$, and for $l \geqq 2$ by the inductive assumption since $d-2^{d_{1}}<2^{m-1}$.

Suppose $t \geqq 2$ and $d_{1}>c_{1}>\cdots>c_{s} \geqq d_{2}>c_{s+1}$, and put

$$
\begin{gathered}
d^{\prime}=d-2^{d_{1}}=2^{d_{2}}+\cdots+2^{d_{t}}<2^{d_{2}+1} \\
c^{\prime}=2^{c_{s+1}}+\cdots+2^{c_{l}}=c-c^{\prime \prime}<d^{\prime}, \quad c^{\prime \prime}=2^{c_{1}}+\cdots+2^{c_{s}}
\end{gathered}
$$

and consider the non-negative integers α and β such that
(*)

$$
\begin{aligned}
& \mu(d+c)=\mu\left(d^{\prime}+c^{\prime}+2^{d_{1}}+c^{\prime \prime}\right)=\mu\left(d^{\prime}+c^{\prime}\right)+\alpha, \\
& \mu(d-c)=\mu\left(d^{\prime}-c^{\prime}+2^{d_{1}}-c^{\prime \prime}\right)=\mu\left(d^{\prime}-c^{\prime}\right)+\beta .
\end{aligned}
$$

If $s=0$, then $c^{\prime \prime}=0, c^{\prime}=c$ and $\beta=1$, and hence we see (ii) by the inductive assumption. If $s=l$, then $c^{\prime \prime}=c, c^{\prime}=0$ and we see (ii) easily. Let $0<s<l$. Then, (*) and the inductive assumption imply that

$$
\mu(d+c)+\mu(d-c) \geqq 2 t-2+c_{l}-\left(d_{2}+1\right)+\alpha+\beta
$$

If $\alpha+\beta \geqq 1$, then this implies (ii) easily. If $\alpha+\beta=0$, i.e., if $\alpha=0=\beta$, then the definition (*) implies that

$$
2^{d_{2}} \leqq d^{\prime}-c^{\prime}<d^{\prime}+c^{\prime}<2^{d_{2}+1}, \quad\left(d_{1}, c_{1}, \ldots, c_{s}\right)=\left(d_{2}+s, d_{2}+s-1, \ldots, d_{2}\right) .
$$

Thus, we see that $c^{\prime}<2^{d_{2}-1}$ and so $c_{s+1} \leqq d_{2}-2$, and that

$$
\begin{aligned}
& \mu(d+c)=\mu\left(d^{\prime}+2^{c_{s}}+c^{\prime}+2^{d_{1}}+\left(c^{\prime \prime}-2^{c_{s}}\right)\right)=\mu\left(d^{\prime}+2^{c_{s}}+c^{\prime}\right), \\
& \left.\mu(d-c)=\mu\left(d^{\prime}-\left(2^{c_{s}}+c^{\prime}\right)+2^{d_{1}}-\left(c^{\prime \prime}-2^{c_{s}}\right)\right) \geqq \mu\left(d^{\prime}-2^{c_{s}}+c^{\prime}\right)\right)+1 .
\end{aligned}
$$

By the inductive assumption or (ii) for $d=c$, these equalities imply easily (ii).

> q.e.d.

Lemma 4.8. $v(n!)=\sum_{i \geqq 1}\left[n / 2^{i}\right]=n-\mu(n)$.
Proof. The desired equalities follow immediately from the definitions of $v(n!)$ and $\mu(n)$.
q.e.d.

By the above lemmas, we can study the exponent of 2 in the prime power decomposition of $X(d, v)$.

Lemma 4.9. Put

$$
X(d, v)=2^{v(d, v)} \xi(d, v) \quad(\xi(d, v): \text { odd integer })
$$

for the integer $X(d, v)(d>0, v \geqq 0)$ in (4.5). Then,
(i) $\quad v(d, 0)=2 d, \quad \xi(d, 0)=1$;
(ii) $v(d, v)=\left[d / 2^{v-1}\right]+\mu\left(d-2^{v-1}\left[d / 2^{v-1}\right]\right) \quad(v>0)$.

Proof. (i) is obvious by the definition of $X(d, 0)$.
(ii) Put $d=2^{v-1} a+b, 0 \leqq b<2^{v-1}$.

The case $a=0: \quad X(d, v)=\binom{2 b}{b}$ by (4.5), and

$$
\begin{equation*}
v\left(\binom{2 b}{b}\right)=v((2 b)!)-2 v(b!)=2 b-\mu(2 b)-2(b-\mu(b))=\mu(b) \tag{4.10}
\end{equation*}
$$

by Lemma 4.8. Thus the desired equality is obtained.
The case $a>0$: Put $(1-x)^{2 v}=1+y+2 B(x)\left(y=x^{2 v}\right)$. Then

$$
\begin{align*}
(1-x)^{2 d} x^{c}(y-1) & =\left((1-x)^{2 v}\right)^{a}(1-x)^{2 b} x^{c}(y-1) \tag{4.11}\\
& =\sum_{i=0}^{a}\binom{a}{i}(2 B(x))^{a-i}(1+y)^{i}(y-1)(1-x)^{2 b} x^{c} \\
& \equiv 2^{a} B(x)^{a}(y-1)(1-x)^{2 b} x^{c} \bmod 1-y^{2}
\end{align*}
$$

Let $b=0$. Then, since

$$
B(x)^{a}=\sum_{k=a}^{(2 v-1) a} c_{k} x^{k} \quad \text { where } c_{k} \text { is odd if and only if } k=2^{v-1} a
$$

(4.11) for $c=2^{u}-2^{v}-d=2^{u}-2^{v}-2^{v-1} a\left(2^{u} \geqq \max \left\{2^{v+1}, 2^{v}+d\right\}\right)$ implies that

$$
(-1)^{d}(1-x)^{2 d} x^{c}(y-1) \equiv 2^{a}(1-y)+2^{a+1} P(x) \bmod 1-y^{2}
$$

for some polynomial $P(x)$. Thus, we see (ii) by Lemma 4.6.
Let $0<b<2^{v-1}$. Consider the set

$$
\Delta=\left\{(i, j): 1 \leqq i \leqq v, 1 \leqq j \leqq 2^{v-i}\right\}
$$

and the involution $\sigma: \Delta \rightarrow \Delta$ given by $\sigma(i, j)=\left(i, 2^{v-i}-j+1\right)$. Put

$$
\beta(i, j)=2^{i-1}(2 j-1) \quad \text { and } \quad \alpha(i, j)=(-1)^{2^{i-1}} 2^{-(v-i+1)}\binom{2^{v}}{\beta(i, j)}
$$

for $(i, j) \in \Delta$. Then,

$$
\begin{equation*}
\beta(i, j)=2^{v}-\beta \sigma(i, j), \quad \alpha(i, j)=\alpha \sigma(i, j) \equiv 1 \bmod 2 \tag{4.12.1}
\end{equation*}
$$

and $B(x)=\left((1-x)^{2 v}-1-y\right) / 2$ is given by

$$
\begin{equation*}
B(x)=\sum_{(i, j) \in \Delta} A(i, j), \quad A(i, j)=2^{v-i} \alpha(i, j) x^{\beta(i, j)} \tag{4.12.2}
\end{equation*}
$$

To study $B(x)^{a}$, we consider the set

$$
F=\{f:\{1, \ldots, a\} \rightarrow \Delta\}
$$

and the involution $\sigma: F \rightarrow F$ given by $\sigma f=\sigma \circ f$. Then σ has only one fixed point g, the constant map to $(v, 1)$, and

$$
\begin{equation*}
F=\{g\} \cup G \cup \sigma G \quad \text { (disjoint union) } \tag{*}
\end{equation*}
$$

for some $G \subset F$. For any $f \in F$, let $f(i, j)((i, j) \in \Delta)$ be the number of elements in $f^{-1}((i, j))$, which satisfies $\sum_{(i, j) \in \Delta} f(i, j)=a$. Then by (4.12.1-2) and (*), we see easily that

$$
\begin{align*}
B(x)^{a} & =\sum_{f \in F} \prod_{t=1}^{a} A f(t)=A(v, 1)^{a}+\sum_{f \in G}\left(\prod_{t=1}^{a} A f(t)+\prod_{t=1}^{a} A \sigma f(t)\right) \tag{3.13}\\
& =\alpha(v, 1)^{a} x^{2 v-1} a+\sum_{f \in G} 2^{p(f)} \alpha(f)\left(x^{k(f)}+x^{\left.2^{v a-k(f)}\right)},\right.
\end{align*}
$$

where $p(f), \alpha(f)$ and $k(f)$ for $f \in G$ are given by

$$
\begin{aligned}
& p(f)=\sum_{(i, j) \in \Delta}(v-i) f(i, j)=\sum_{i=1}^{v}(v-i) f_{i} \quad\left(f_{i}=\sum_{j=1}^{2 v-1} f(i, j)\right), \\
& \alpha(f)=\prod_{(i, j) \in \Delta} \alpha(i, j)^{f(i, j)} \equiv 1 \bmod 2, \\
& k(f)=\sum_{(i, j) \in \Delta} \beta(i, j) f(i, j)=\sum_{(i, j) \in \Delta} 2^{i-1}(2 j-1) f(i, j) .
\end{aligned}
$$

Now, by Lemma 4.6, (4.11) for $c=2^{u}-2^{v}-d\left(d=2^{v-1} a+b, 2^{u} \geqq \max \left\{2^{v+1}\right.\right.$, $\left.2^{v}+d\right\}$) and (4.13), we obtain easily the equality

$$
\begin{aligned}
(-1)^{d} X(d, v)= & 2^{a}\left\{(-1)^{b} \alpha(v, 1)^{a}\binom{2 b}{b}\right. \\
& \left.+\sum_{f \in G} 2^{p(f)+1} \alpha(f) \sum_{l \in Z}(-1)^{d-k(f)+l}\binom{2 b}{d-k(f)+2^{v} l}\right\} .
\end{aligned}
$$

In this equality, $\alpha(v, 1)$ and $\alpha(f)$ are odd, and $v\left(\binom{2 b}{b}\right)=\mu(b)$ by (4.10). Thus, we see the desired result $v(d, v)=a+\mu(b)$ by showing that

$$
\begin{equation*}
p(f)+1+v\left(\binom{2 b}{b-m}\right)>\mu(b) \quad\left(m=\left|k(f)-2^{v-1} a-2^{v} l\right|\right) \tag{4.14}
\end{equation*}
$$

for any $f \in G$ and l with $m \leqq b$. By Lemma 4.8, this is equivalent to

$$
\begin{equation*}
p(f)+1+\mu(b+m)+\mu(b-m)>2 \mu(b) . \tag{4.14}
\end{equation*}
$$

If $m=0$, then (4.14)' is trivial. Suppose $m>0$. Then by Lemma 4.7,

$$
\mu(b+m)+\mu(b-m) \geqq 2 \mu(b)+v(m)-v+1,
$$

since $0<m \leqq b<2^{v-1}$. On the other hand, by the definitions of $p(f), k(f)$ in (4.13) and m in (4.14), we see easily that

$$
p(f) \geqq v-i_{0}, \quad v(m) \geqq i_{0}-1 \quad\left(i_{0}=\min \left\{i: f_{i} \neq 0,1 \leqq i \leqq v\right\}\right) .
$$

These inequalities imply (4.14)', and we obtain (4.14) as desired.
q.e.d.

Lbmma 4.15. Let $\xi(d, v)$ be the odd integer given in Lemma 4.9. Then

$$
\begin{equation*}
\xi\left(2^{s-1}, v\right)=2^{-1}\binom{2^{s}}{2^{s-1}} \quad \text { for } \quad v \geqq s \tag{i}
\end{equation*}
$$

and $\xi\left(2^{s-1}, s\right)=1$ if $s=1, \equiv 3 \bmod 8$ if $s \geqq 2$.
(ii) $\xi\left(2^{s-1}, s-1\right)=2^{-2}\left\{\binom{2^{s}}{2^{s-1}}-2\right\} \equiv 1 \bmod 4$ for $s \geqq 2$.

Proof. The first equalities in (i) and (ii) follow from the definition (4.5) and Lemma 4.9. For the rest, it is sufficient to show that

$$
\begin{equation*}
2^{-1}\binom{2^{s}}{2^{s-1}} \equiv 3 \bmod 8 \quad \text { if } s \geqq 2 \tag{*}
\end{equation*}
$$

The left hand side of (*) is the product of

$$
\left(2^{s}-2^{s-k} q\right) /\left(2^{s-1}-2^{s-k} q\right)=\left(2^{k}-q\right) /\left(2^{k-1}-q\right)
$$

for $2 \leqq k \leqq s, 1 \leqq q<2^{k-1}$ and $(2, q)=1$. In the group Z_{8}^{*} of reduced residue classes $\bmod 8,\left(2^{k}-q\right) /\left(2^{k-1}-q\right) \equiv 1$ if $k \geqq 4$, and $(7 / 3)(5 / 1)(3 / 1) \equiv 3$. Thus, we see $(*)$.

Lbmma 4.16. Let $0<d<2^{s}$. Then

$$
\sum_{i=0}^{s}(-1)^{2^{i} 2^{-i}} X(d, s-i)=0 .
$$

Proof. Set $X^{\prime}(d, v)=\sum_{j \in Z}\binom{2 d}{d+2^{v} j}$. Then, we can show that

$$
\begin{equation*}
\sum_{i=1}^{v} 2^{-i} X(d, v-i)=X^{\prime}(d, v) \quad(v \geqq 1) \tag{4.17}
\end{equation*}
$$

by the induction on v as follows. The desired equality is (4.17) for $v=s$, since $X^{\prime}(d, v)=\binom{2 d}{d}=X(d, v)$ by the assumption $0<d<2^{s}$.

By the definition, we see that $X(d, 0)=X^{\prime}(d, 0)=2 X^{\prime}(d, 1)$, which is (4.17) for $v=1$. Assume (4.17) for v. Then, we see that

$$
\sum_{i=1}^{v} 2^{-i} X(d, v-i)+X(d, v)=X^{\prime}(d, v)+X(d, v)=2 X^{\prime}(d, v+1)
$$

which is (4.17) for $v+1$. Thus (4.17) holds for $v \geqq 1$.
q.e.d.

§5. Proof of Theorem 1.6

By using (3.8.1-2), Lemma 2.12 (ii) and the results obtained in the previous section, $J\left(\bar{\sigma}^{i}\right)$ in (3.11.1) and $u(i) J\left(\bar{\sigma}_{t}\right)$ in (3.11.2) can be represented by $J \kappa$ and α_{s} as follows.

Lbmma 5.1. If $2^{t} \leqq i<2^{t+1} \leqq 2^{r-1}$, then

$$
(-1)^{i+1} J\left(\bar{\sigma}^{i}\right)=2^{2 i-2} \alpha_{0}-\sum_{v=1}^{t} Y(i, v) \alpha_{v} \quad \text { in } \quad \tilde{J}\left(L^{n}\left(2^{r}\right)\right),
$$

where $Y(i, v)=\sum_{j \in Z}\binom{2 i-1}{i+2^{v}(2 j+1)}$ is the integer given in (1.5).
Proof. By Lemma 2.12 (ii), we see that

$$
\bar{\sigma}^{i}=r\left(\sigma^{2 i-1} /(1+\sigma)^{i-1}\right)=\sum_{k=0}^{2 r=i+1}\binom{2^{r}-i+1}{k} r\left(\sigma^{2 i-1+k}\right),
$$

since $(1+\sigma)^{2 r}=\eta^{2 r}=1$ by (2.1). Therefore

$$
J\left(\bar{\sigma}^{i}\right)=\sum_{v=0}^{r-1} \sum_{k=0}^{2 r-i+1}(-1)^{k+1}\binom{2^{r-i+1}}{k} \theta(2 i-1+k ; v+1)\left(\alpha_{v+1}-\alpha_{v}\right) .
$$

The coefficient of $\alpha_{v+1}-\alpha_{v}$ in the right hand side of this equality is given by (4.2). Thus, we see the desired equality

$$
(-1)^{i+1} J\left(\bar{\sigma}^{i}\right)=\sum_{v=0}^{r-1} \sum_{j \in Z}\binom{2 i-1}{i+2^{v+1} j}\left(\alpha_{v}-\alpha_{v+1}\right)=2^{2 i-2} \alpha_{0}-\sum_{v=1}^{t} Y(i, v) \alpha_{v},
$$

by noticing $\sum_{j \in Z}\binom{2 i-1}{i+2 j}=2^{2 i-2}$ and $Y(i, v)=0$ for $v \geqq t+1$.
q.e.d.

In the following lemmas, we use the relation

$$
\begin{equation*}
2^{r-v-1+a_{v}} \alpha_{v}=0 \quad(0 \leqq v<r) \quad \text { in } \quad \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \quad \text { (cf. (3.12)). } \tag{5.2}
\end{equation*}
$$

Lemma 5.3. Let $0 \leqq s \leqq r-2,1 \leqq d<2^{s}$ and $a_{s+1} \geqq 1$. Then, in $\mathcal{f}\left(L^{n}\left(2^{r}\right)\right)$,

$$
\begin{aligned}
& \sum_{k=0}^{2 r-2 s-d}(-1)^{k}\binom{2^{r}-2^{s}-d}{k} . \\
& \\
& \sum_{v=0}^{r-1} \theta(2 d-1+k, 1 ; s+1, v+1) 2^{r-s-3+a_{s+1}\left(\alpha_{v+1}-\alpha_{v}\right)=0 .} \\
& \text { Proof. } \quad \theta(2 d-1+k, 1 ; s+1, v+1)=0 \quad \text { for } \quad v \leqq s
\end{aligned}
$$

by Lemma 3.9 (ii). Also

$$
2^{r-s-3+a_{s+1}} \alpha_{v}=0=2^{r-s-3+a_{s+1}} \alpha_{v+1} \quad \text { for } \quad v \geqq s+2
$$

by $\alpha_{r}=0$ and (5.2), since $a_{t} \geqq a_{t^{\prime}}$ if $t<t^{\prime}$ by the definition of a_{t} in (2.5).
Furthermore (4.3) shows that

$$
\sum_{k=0}^{2 r-2^{s-d}}(-1)^{k}\binom{2^{r}-2^{s}-d}{k} \theta(2 d-1+k, 1 ; s+1, v+1)=0 \text { for } v=s+1
$$

Thus, we see the lemma.
q.e.d.

Lemma 5.4. $u(i) J\left(\bar{\sigma}_{i}\right)$ in (3.11.2) for $r \geqq 3$ can be written as follows:
(a) The case $n \neq 1 \bmod 4$:
(5.4.1) $u(0) J\left(\bar{\sigma}_{0}\right)= \begin{cases}2^{a_{r-1}} J \kappa+\sum_{v=0}^{r-2} 2^{2 r-1-v\left(a_{r-1}+1\right)-2} \alpha_{v} & \left(a_{1} \geqq 2^{r-2}\right), \\ 2 J \kappa & \left(a_{1}<2^{r-2}\right) .\end{cases}$

For $i=2^{s}+d \leqq a_{1}$ with $0 \leqq s \leqq r-2$ and $0 \leqq d<2^{s}$,

$$
\begin{array}{lll}
u(1) J\left(\bar{\sigma}_{1}\right)=2^{r-1+2 a_{1}} \alpha_{0}, \tag{5.4.2}\\
u(i) J\left(\bar{\sigma}_{i}\right)=2^{r-s-2+a_{s}} \alpha_{s}+\sum_{v=0}^{s-1} 2^{r-s-3+2^{s-v}\left(a_{s}+1\right)} \alpha_{v} & \text { if } & i=2^{s} \geqq 2, \\
u(i) J\left(\bar{\sigma}_{i}\right)=\sum_{v=0}^{s}\left(-12^{s-v+d} 2^{r-s-4+2^{s+1-v} a^{\prime}(i)} X(d, v) \alpha_{v}\right. & \text { if } & i \geqq 3, d \geqq 1 .
\end{array}
$$

(b) The case $n \equiv 1 \bmod 4: u(i) J\left(\bar{\sigma}_{i}\right)$ are the same as (a) if $i \neq a_{1}+1-$ $2^{r-2}\left(a_{r-1}-1\right)$, and
(5.4.5) $u(i) J\left(\bar{\sigma}_{i}\right)=0$

$$
\text { if } i=a_{1}+1-2^{r-2}\left(a_{r-1}-1\right)=2^{r-2}+d, \quad 2 d=b_{s+1}+1 \quad\left(a_{1} \geqq 2^{r-2}\right),
$$

$$
\begin{align*}
& u(i) J\left(\bar{\sigma}_{i}\right)=2^{a_{0}} \alpha_{0}-\sum_{v=1}^{t} 2 Y(i, v) \alpha_{v} \tag{5.4.6}\\
& \quad \text { if } \quad i=a_{1}+1 \quad\left(a_{1}<2^{r-2}, 2^{t} \leqq a_{1}+1<2^{t+1}\right) .
\end{align*}
$$

Here a_{s}, b_{s} and $a^{\prime}(i)$ are the integers in (1.3) and Theorem $2.8(\mathrm{ii})$, and $X(d, v)$ and $Y(d, v)$ are the ones in (1.4-5).

Proof. We see $(5.4 .1-3,6)$ immediately from the definitions of $u(i)$ and $\bar{\sigma}_{i}$ in Theorem 2.8 (ii), by (3.4) and Lemma 5.1.

Consider $u(i)$ and $\bar{\sigma}_{i}$ for the case that

$$
i=2^{s}+d \leqq a_{1}, \quad 1 \leqq s \leqq r-2, \quad 1 \leqq d<2^{s},
$$

in Theorem 2.8 (ii), (a), i.e.,

$$
\begin{gathered}
u(i)=2^{r-s-3+a^{\prime}(i)}, \quad a^{\prime}(i)= \begin{cases}a_{s+1}+1 & \text { for } 2 d \leqq b_{s+1}, \\
a_{s+1} & \text { for } 2 d>b_{s+1},\end{cases} \\
\bar{\sigma}_{i}=\bar{\sigma}^{d-1} \bar{\sigma}(1) \prod_{t=0}^{s-1}(2+\bar{\sigma}(t))+\sum_{t=1}^{s+1}(-1)^{2 t-1} 2^{(2 t-1) a^{\prime}(i)-1} \bar{\sigma}^{d} \bar{\sigma}(s+1-t) .
\end{gathered}
$$

Then, by noticing that the condition $a_{1} \geqq i$ implies $a^{\prime}(i) \geqq 2$, and by using the last two equalities in Lemma 2.12(ii), (2.2) and $(1+\sigma)^{2 r}=1$ in (2.1), we see that

$$
\begin{aligned}
& \bar{\sigma}_{i}=\zeta+\sum_{t=1}^{s+1}(-1)^{2^{t-1}} 2^{\left(2^{t}-1\right) a^{\prime}(i)-2} \zeta_{s+1-t}, \quad \text { where } \\
& \zeta=r\left(\sigma^{2 d-1}(1+\sigma)^{2 r-2^{s-d}} \sigma(s+1)\right), \quad \zeta_{u}=r\left(\sigma^{2 d}(1+\sigma)^{2 r-2 u-d} \sigma(u)^{2}\right) .
\end{aligned}
$$

By expanding $(1+\sigma)^{i}$ and by using (3.8.1), we have

$$
\begin{aligned}
& J(\zeta)=\sum_{k=0}^{2 r-2^{s-d}}(-1)^{k}\binom{2^{r}-2^{s}-d}{k} \sum_{v=0}^{r-1} \theta(2 d-1+k, 1 ; s+1, v+1)\left(\alpha_{v+1}-\alpha_{v}\right), \\
& J\left(\zeta_{u}\right)=\sum_{k=0}^{2 r-2^{u-d}}(-1)^{k}\binom{2^{r}-2^{u}-d}{k} \sum_{v=0}^{r-1} \theta(2 d+k, 2 ; u, v+1)\left(\alpha_{v+1}-\alpha_{v}\right) .
\end{aligned}
$$

Lemma 5.3 means that $u(i) J(\zeta)=0$. These and Lemma 3.9 (ii) imply that

$$
u(i) J\left(\bar{\sigma}_{i}\right)=\sum_{v=0}^{r=1} \sum_{u=0}^{\min \{s, v\}}(-1)^{2 s-u} 2^{r-s-5+2^{s-u+1} a^{\prime}(i)} p_{v, u}\left(\alpha_{v+1}-\alpha_{v}\right),
$$

where the coefficient $p_{v, u}$ is equal to

$$
\begin{aligned}
p_{v, u} & =\sum_{k=0}^{2 r-2^{u-d}}(-1)^{k}\binom{2^{r}-2^{u}-d}{k} \theta(2 d+k, 2 ; u, v+1) \\
& =2(-1)^{d+1} \sum_{j \in Z}\left\{(-1)^{2^{u+1}}\binom{2 d}{d+2^{u}+2^{v+1} j}+\binom{2 d}{d+2^{v+1} j}\right\} \quad \text { (by (4.4)). }
\end{aligned}
$$

If $v-1 \geqq s \geqq u$ or $s \geqq v \geqq u$, then we see easily that

$$
r-s-4+2^{s-u+1} a^{\prime}(i) \geqq r-1-v+a_{v}>r-1-(v+1)+a_{v+1},
$$

by noticing $a^{\prime}(i) \geqq 2, a^{\prime}(i) \geqq a_{s+1}$ and that the definitions of a_{t} and b_{t} imply

$$
\begin{equation*}
a_{v}=2^{t-v} a_{t}+\left[b_{t} / 2^{v}\right] \geqq a_{t} \quad \text { if } \quad t \geqq v . \tag{5.5}
\end{equation*}
$$

Therefore, by (5.2) and the last half in (4.4),
(*) $u(i) J\left(\bar{\sigma}_{i}\right)=\sum_{v=0}^{s}(-1)^{2 s-v+d+1} 2^{r-s-4+2^{s+1-v a^{\prime}(i)}} X(d, v)\left(\alpha_{v+1}-\alpha_{v}\right)$.
Furthermore, we see by (5.5) that

$$
\begin{aligned}
r- & s-4+2^{s+1-v} a^{\prime}(i)+v(d, v) \\
& =r-s-4+a_{v+1}-\left[b_{s+1} / 2^{v+1}\right]+2^{s-v} a_{s+1}+v(d, v)+ \begin{cases}2^{s+1-v} & \text { if } 2 d \leqq b_{s+1} \\
0 & \text { if } 2 d>b_{s+1}\end{cases} \\
& \geqq r-1-(v+1)+a_{v+1}+2^{s+1-v}-(s-v+2) \geqq r-1-(v+1)+a_{v+1},
\end{aligned}
$$

because $a^{\prime}(i)=a_{s+1}+1 \geqq 2$ if $2 d \leqq b_{s+1}$, and

$$
a^{\prime}(i)=a_{s+1} \geqq 2 \text { and } \quad v(d, v) \geqq\left[d / 2^{v-1}\right] \geqq\left[b_{s+1} / 2^{v+1}\right] \quad \text { if } 2 d>b_{s+1}
$$

by Lemma 4.9. Thus, by the definition $X(d, v)=2^{v(d, v)} \xi(d, v)$ in Lemma 4.9, we see that $2^{r-s-4+2^{s+1-v} a^{\prime}(i)} X(d, v) \alpha_{v+1}=0$ in (*), and (5.4.4) is shown.

Finally, (5.4.5) is shown in the above proof of $u(i) J(\zeta)=0$ for $i=2^{r-2}+d$, $2 d=b_{r-1}+1$.
q.e.d.

Now, we are ready to prove Theorem 1.6 in $\S 1$.
Proof of Thborbm 1.6. Based on Proposition 3.11, we complete the proof of Theorem 1.6 by combining (5.2), (3.11.3), Lemmas 5.1 and 5.4.
q.e.d.

§6. Proof of Theorem 1.7

Let $r \geqq 3, n \not \equiv 1 \bmod 4$ and $n \geqq 2^{r}-1$. Then, the relations (1.6.1-4) of $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ in Theorem 1.6 (iii) are written as follows:

$$
\begin{align*}
& 2^{1+a_{r-1}} J \kappa=0, \quad 2^{r-1+a_{0}-b_{1}} \alpha_{0}=0, \quad 2^{r-1-v+a_{v}} \alpha_{v}=0 \quad(1 \leqq v \leqq r-2), \tag{6.1}\\
& 2^{a_{r-1}} J \kappa+\sum_{v=0}^{r-2} 2^{a_{v}-2-\left[b_{r-1} / 2^{v}\right]+2^{r-1-v}} \alpha_{v}=0,
\end{align*}
$$

$$
\begin{array}{lr}
\sum_{v=0}^{s} 2^{r-s-3+a_{v}-\left[b_{s} / 2^{v}\right]+2^{s-v}} \alpha_{v}=0 & (1 \leqq s \leqq r-2), \\
\sum_{v=0}^{s}(-1)^{2 s-v} 2^{r-s-4+a_{v}-\left[b_{s+1} / 2^{v}\right]+2 s+1-v+v(d, v)} \xi(d, v) \alpha_{0}=0 \\
& \left(1 \leqq s \leqq r-2,2 \leqq 2 d \leqq b_{s+1}\right), \\
\sum_{v=0}^{s}(-1)^{2 s-v} 2^{r-s-4+a_{v}-\left[b_{s+1} / 2 v\right]+v(d, v)} \xi(d, v) \alpha_{v}=0 \tag{6.4.2}\\
\left(1 \leqq s \leqq r-2, b_{s+1}<2 d<2^{s+1}\right),
\end{array}
$$

by (5.5) and $X(d, v)=2^{v(d, v)} \xi(d, v)$ in Lemma 4.9.
Lemma 6.5. The relations (6.1), (6.3) and (6.4.1) are equivalent to (6.1), (6.3) and

$$
\begin{equation*}
2^{r-s-3+a_{v}-\left[b_{s+1} / 2^{v}\right]+2^{s+1-v}} \alpha_{v}=0 \quad(1 \leqq s \leqq r-2,0 \leqq v \leqq s) . \tag{6.6}
\end{equation*}
$$

Proof. By Lemma 4.9, we see that $v(d, v) \geqq 1(v \geqq 0, d \geqq 1)$. Thus (6.6) implies (6.4.1). Also we notice that (6.1) implies (6.6) for s with $b_{s+1}<2^{s}$. In fact, if $b_{s+1}<2^{s}$, then

$$
r-s-3+a_{v}-\left[b_{s+1} / 2^{v}\right]+2^{s+1-v} \geqq r-1-v+a_{v} \quad \text { for } \quad v \leqq s,
$$

since $2^{s-v} \geqq 2-v+1$.
Now suppose that (6.1), (6.3) and (6.4.1) hold. Then, we can prove (6.6) by the induction on s as follows:

Let $s=1$. If $b_{2}<2$, then (6.6) for $s=1$ holds by the above notice. Assume $b_{2} \geqq 2$. Then $b_{2}=2+b_{1}$ and $\left[b_{2} / 2\right]=1$, and (6.4.1) for $d=1$ is the following form:

$$
2^{r-3+a_{1}} \alpha_{1}-2^{r-1+a_{0}-b_{1}} \alpha_{0}=0,
$$

because $v(1,1)=1=\xi(1,1)$ and $v(1,0)=2, \xi(1,0)=1$ by $X(1,1)=2$ and $X(1,0)=2^{2}$. On the other hand, (6.3) implies

$$
2^{r-3+a_{1}} \alpha_{1}+2^{r-2+a_{0}-b_{1}} \alpha_{0}=0
$$

Therefore $2^{r-2+a_{0}-b_{1}} \alpha_{0}=0=2^{r-3+a_{1}} \alpha_{1}$, which are (6.6) for $s=1$.
Let $s>1$, and assume inductively (6.6) for $s-1$, i.e.,
(*)

$$
2^{r-s-2+a_{v}-\left[b_{s} / 2^{v}\right]+2^{s-v}} \alpha_{v}=0 \quad(0 \leqq v \leqq s-1) .
$$

If $b_{s+1}<2^{s}$, then (6.6) holds for s by the above notice. Assume $b_{s+1} \geqq 2^{s}$. Then $b_{s+1}=2^{s}+b_{s}$. Consider (6.4.1) for s and $d=2^{k}(0 \leqq k<s)$;

$$
\begin{equation*}
\sum_{v=0}^{s}(-1)^{2^{s-v}} 2^{r-s-4+a_{v}-\left[b_{s+1} / 2^{v}\right]+2^{s+1-v+v\left(2^{k}, v\right)} \xi\left(2^{k}, v\right) \alpha_{v}=0 . ~} \tag{**}
\end{equation*}
$$

Here, $2^{s+1-v}-\left[b_{s+1} / 2^{v}\right]=2^{s-v}-\left[b_{s} / 2^{v}\right]$, and $\xi\left(2^{k}, v\right)$ is odd and

$$
v\left(2^{k}, v\right)=1 \quad \text { if } k<v, \quad=2^{k-v+1} \quad \text { if } \quad k \geqq v,
$$

by Lemma 4.9. Thus, by (6.1) for $v=s$ and (*), (**) is

$$
\sum_{v=k+1}^{s} 2^{r-s-3+a_{v}-\left[b_{s+1} / 2^{v}\right]+2^{s+1-v}} \alpha_{v}=0 \quad(0 \leqq k<s) .
$$

These equalities and (6.3) imply (6.6) for s, as desired.
q.e.d.

Now, we are ready to prove Theorem 1.7 (i).
Proof of Theorem 1.7(i). Let $n=2^{r-1} a-1(r \geqq 3, a \geqq 2)$. Then $b_{s+1}=$ $2^{s+1}-1(0 \leqq s \leqq r-2)$. Thus there is no relation in (6.4.2), and (6.6) for $s=r-2$ is the following form:

$$
\begin{equation*}
2^{a_{v}} \alpha_{v}=0 \quad(0 \leqq v \leqq r-2) . \tag{*}
\end{equation*}
$$

Furthermore, (*) and (6.2) imply

$$
2^{a_{r-1}} J \kappa+\sum_{v=0}^{r-2} 2^{a_{v}-1} \alpha_{v}=0 .
$$

Conversely, it is easily seen that (*) and (**) imply (6.6) for $s<r-2$, (6.1), (6.2) and (6.3).

Thus, Theorem 1.7 (i) is proved by Theorem 1.6 (iii) and the above lemma.

> q.e.d.

To prove Theorem 1.7 (ii), we use the following
Lemma 6.7. Assume $b_{t+1}=0$. Then the relations (6.1), (6.3) for $s=t$ and (6.4.2) for $s=1$ and $2^{t-1} \leqq d<2^{t}$ are equivalent to the relations (6.1) and

$$
\begin{array}{ll}
2^{r-4+a_{1}} \alpha_{1}=2^{r-3+a_{0}} \alpha_{0} & \text { (if } t=1), \\
2^{r-t-3+a_{t}} \alpha_{t}+2^{r-t-2+a_{t-1}} \alpha_{t-1}+2^{r-t+a_{t-2}} \alpha_{t-2}=0 & \text { (if } t \geqq 2) . \tag{6.8}
\end{array}
$$

Proof. Let $t=1$ and assume $b_{2}=b_{1}=0$. Then, the relation (6.8) is (6.4.2) for $s=1=d$, since $v(1,1)=1=\xi(1,1)$ and $v(1,0)=2, \xi(1,0)=1$. Also, (6.3) for $s=1$ follows from (6.8).

Let $t \geqq 2$ and assume $b_{t+1}=0$. Consider (6.4.2) for $s=t$ and $d=2^{t-1}$:

$$
\begin{equation*}
\sum_{v=0}^{t}(-1)^{2 t-v} 2^{r-t-4+a_{v}+v\left(2^{t-1}, v\right)} \xi\left(2^{t-1}, v\right) \alpha_{v}=0 . \tag{*}
\end{equation*}
$$

Here, $\zeta\left(2^{t-1}, v\right)$ is odd and

$$
v\left(2^{t-1}, v\right)=2^{t-v}, \quad \xi\left(2^{t-1}, v\right) \equiv\left\{\begin{aligned}
-1 & \bmod 4 \\
1 & \text { if } \quad v=t \\
1 & \bmod 4
\end{aligned} \text { if } v=t-1,\right.
$$

by Lemmas 4.9 and 4.15. Thus, (6.1) and (*) imply (6.8), since $2^{k}>k+3$ if $k \geqq 3$.
Conversely, assume (6.1) and (6.8). Then (6.3) holds for $s=t$, since

$$
\sum_{v=0}^{t} 2^{r-t-3+a_{v}+2^{t-v}} \alpha_{v}=2^{r-t-2+a_{t}} \alpha_{t}+2^{r-t-1+a_{t-1}} \alpha_{t-1}=0 .
$$

Furthermore, we can show the equality

$$
\begin{equation*}
\sum_{v=0}^{t}(-1)^{2^{t-v}} 2^{r-t-4+a_{v}+v(d, v)} \xi(d, v) \alpha_{v}=0 \quad\left(2^{t-1}<d<2^{t}\right) \tag{**}
\end{equation*}
$$

in (6.4.2) for $s=t$ as follows: Let $d=2^{t-1}+2^{k}(0 \leqq k<t-1)$. Then, $\xi(d, v)$ is odd and

$$
v(d, v)=2^{t-v}+1 \quad \text { if } \quad k<v \leqq t, \quad=2^{t-v}+2^{k-v+1} \quad \text { if } \quad 0 \leqq v \leqq k,
$$

by Lemma 4.9. Thus (**) holds by (6.1) and (6.3), since $2^{t-v} \geqq t-v+2$ if $t-v$ $\geqq 2$. Let $d=2^{t-1}+d^{\prime}$ with $\mu\left(d^{\prime}\right) \geqq 2$. Then,

$$
v(d, v) \geqq 2^{t-v}+2 \quad \text { (by Lemma 4.9), }
$$

and we see (**) by (6.1).
q.e.d.

Lbmma 6.9. Assume $b_{t+1}=0$. Then, the relations (6.1), (6.3) for $1 \leqq s \leqq t$ and (6.4.1-2) for $1 \leqq s \leqq t$ are equivalent to the relations (6.1) and

$$
\begin{equation*}
2^{r-t-3+a_{v}} \alpha_{v}=2^{r-t-2+a_{v-1}} \alpha_{v-1} \quad(1 \leqq v \leqq t) . \tag{6.10}
\end{equation*}
$$

Proof. The assumption $b_{t+1}=0$ implies $b_{s+1}=0(1 \leqq s \leqq t)$. Therefore, there is no relation in (6.4.1).

Now, suppose that (6.1) and (6.3), (6.4.2) for $1 \leqq s \leqq t$ hold. Then, by the above lemma, there hold the relations

$$
\begin{align*}
& 2^{r-4+a_{1}} \alpha_{1}=2^{r-3+a_{0}} \alpha_{0}, \\
& 2^{r-s-3+a_{s}} \alpha_{s}+2^{r-s-2+a_{s-1}} \alpha_{s-1}+2^{r-s+a_{s-2}} \alpha_{s-2}=0 \quad(1<s \leqq t) . \tag{6.8}
\end{align*}
$$

Thus (6.10) for $t=1$ is the first equality in (6.8)'.
Assume inductively that (6.10) holds for $t-1(\geqq 1)$, i.e., that

$$
\begin{equation*}
2^{r-t-2+a_{v}} \alpha_{v}=2^{r-t-1+a_{v-1}} \alpha_{v-1} \quad(1 \leqq v<t) . \tag{6.10}
\end{equation*}
$$

Then, (6.10) for $v=t$ follows easily from (6.8)' for $s=t$, (6.10)' for $v=t-1$ and (6.1) for $v=t-1$. Let $1 \leqq s<t$ and assume inductively that (6.10) holds for $s<v$ $\leqq t$. Consider the equality

$$
\begin{equation*}
\sum_{v=0}^{t}(-1)^{2 t-v} 2^{r-t-4+a_{v}+v(d, v)} \xi(d, v) \alpha_{v}=0 \quad \text { for } \quad 2^{s-1} \leqq d<2^{s} \tag{*}
\end{equation*}
$$

in (6.4.2). Then, by (4.5), Lemma 4.9 and the condition $2^{s-1} \leqq d<2^{s}$, we see that $v(d, v)=v(d, s)$ and $\xi(d, v)=\xi(d, s)$ for $s \leqq v \leqq t$, since $X(d, v)=\binom{2 d}{d}=X(d, s)$. Therefore
(a) $\sum_{v=s}^{t}$ in (*) is equal to
$-2^{r-t-4+a_{s}+v(d, s)} \xi(d, s) \alpha_{s} \quad$ (by the inductive assumption (6.10) for $\left.s<v \leqq t\right)$.
Furthermore, if $v<s$, then $v(d, v) \geqq 2^{s-v}(\geqq s-v+1)$ by Lemma 4.9, and hence $r-t-4+a_{v}+v(d, v) \geqq r-t-3+s-v+a_{v}$. Therefore
(b) $\sum_{v=0}^{s-1}$ in (*) is equal to

$$
\begin{array}{ll}
\sum_{v=0}^{s=1} 2^{r-t-4+a_{s-1}-(s-1-v)+v(d, v)} \xi(d, v) \alpha_{s-1} & \text { (by (6.10)') } \\
\quad=2^{r-t-3+a_{s-1}+v(d, s)} \xi(d, s) \alpha_{s-1} & \text { (by Lemma 4.16) }
\end{array}
$$

Thus, (*) is the following form:

$$
\begin{equation*}
2^{r-t-4+a_{s}+v(d, s)} \alpha_{s}=2^{r-t-3+a_{s-1}+v(d, s)} \alpha_{s-1} \quad \text { for } \quad 2^{s-1} \leqq d<2^{s}, \tag{**}
\end{equation*}
$$

since $\xi(d, s)$ is odd. (**) for $d=2^{s-1}$ is (6.10) for $v=s$, since $v\left(2^{s-1}, s\right)=1$ by Lemma 4.9. Therefore, (6.10) holds for $1 \leqq v \leqq t$ by the induction on v; and hence (6.10) is shown by the induction on t.

Conversely, we see easily that (6.1) and (6.10) imply (6.8)'. Furthermore (**) follows from (6.10), since $v(d, s) \geqq 1$ for $2^{s-1} \leqq d<2^{s}$ by Lemma 4.9. Therefore we see that (6.1) and (6.10) imply (6.3) and (6.4.2) by the above lemma and the above proof.
q.e.d.

Proof of Thborbm 1.7 (ii). Let $n=2^{r-1} a(r \geqq 3, a \geqq 2)$. Then $b_{r-1}=0$. Thus (6.10) for $t=r-2$ is the following form:

$$
\begin{equation*}
2^{a_{v}-1} \alpha_{v}=2^{a_{v-1}} \alpha_{v-1} \quad(1 \leqq v \leqq r-2) . \tag{*}
\end{equation*}
$$

Furthermore, by (6.2) and (6.1), we see that

$$
\begin{equation*}
2^{a_{r-1}} J \kappa+2^{a_{r-2}} \alpha_{r-2}=0 . \tag{**}
\end{equation*}
$$

Conversely, it is easily seen that (*), (**) and $2^{r-1+a_{0}} \alpha_{0}=0$ imply (6.10) for $t<r-2$, (6.1), (6.2) and (6.3).

Thus, Theorem 1.7 (ii) is proved by Theorem 1.6 (iii) and the above lemma.
q.e.d.

Finally, we notice the following
Rbmark 6.11. In $\tilde{J}\left(L^{2 r-1}\left(2^{r}\right)\right)(r \geqq 3)$, there hold the relations

$$
\begin{aligned}
& 2^{a_{v} \alpha_{v}} 2^{a_{v-1}+1} \alpha_{v-1} \quad(1 \leqq v \leqq r-3), \\
& 2^{2} \alpha_{r-2}+2^{5} \alpha_{r-3}=0=2 J \kappa+2^{2} \alpha_{r-2} .
\end{aligned}
$$

In fact, the last two relations are (6.2) and (6.3) for $s=r-2$, respectively, by (6.1). The first one is (6.10) for $t=r-3$, which is valid by Lemma 6.9 since b_{r-2} $=0$ and (6.4.1-2) holds for $s \leqq r-3$ by (1.6.4).

§7. The induced homomorphism on the J-groups of the inclusion $L^{n-1}\left(2^{r}\right) \subset L^{n}\left(2^{r}\right)$

Throughout this section we assume $r \geqq 2$, and we use the following notation:

$$
\begin{equation*}
L_{r}^{2 n+1}=L^{n}\left(2^{r}\right), \quad L_{r}^{2 n}=L_{0}^{n}\left(2^{r}\right) ; \tag{7.1}
\end{equation*}
$$

where $L_{0}^{n}\left(2^{r}\right)=\left\{\left[z_{0}, \ldots, z_{n}\right] \in L^{n}\left(2^{r}\right): z_{n}\right.$ is real $\left.\geqq 0\right\} \subset L^{n}\left(2^{r}\right)$. Then we have

$$
\begin{equation*}
L_{r}^{k} / L_{r}^{k-1}=S^{k} . \tag{7.2}
\end{equation*}
$$

For the induced homomorphism

$$
i_{k}^{*}: \tilde{K O}\left(L_{r}^{k}\right) \longrightarrow \tilde{K O}\left(L_{r}^{k-1}\right) \quad\left(i_{k}: L_{r}^{k-1} \subset L_{r}^{k}\right),
$$

we have the following proposition, where the elements

$$
\begin{equation*}
\bar{\sigma}=r \sigma=r \eta-2 \quad \text { and } \quad \kappa=\rho-1 \quad \text { in } \tilde{K O}\left(L_{r}^{k}\right) \quad(k>0) \tag{7.3}
\end{equation*}
$$

are the ones in (2.6) for $k=2 n+1$, and are defined to be the images $i_{2 n+1}^{*} \bar{\sigma}$ and $i_{2 n+1}^{*} \kappa$ for $k=2 n$.

Proposition 7.4 ([4, Prop. 4.4]). i_{k}^{*} is isomorphic if $k \equiv 7,6,5$ or 3 $\bmod 8$, and epimorphic otherwise. Furthermore,

$$
\operatorname{Ker} i_{k}^{*}= \begin{cases}Z_{2^{r}}\left\langle 2 \bar{\sigma}^{2 m+1}\right\rangle & \text { if } k=8 m+4, \tag{7.5}\\ Z_{2}\left\langle\bar{\sigma}^{2 m+1}\right\rangle & \text { if } k=8 m+2, \\ Z_{2}\left\langle\kappa \bar{\sigma}^{2 m}\right\rangle & \text { if } k=8 m+1, \\ Z_{2^{r}}\left\langle\bar{\sigma}^{2 m}\right\rangle & \text { if } k=8 m>0 .\end{cases}
$$

Lbmma 7.6. The equality $\kappa \bar{\sigma}^{2 m}=2^{r} \bar{\sigma}^{2 m}$ holds in $\tilde{K O}\left(L_{r}^{8 m+1}\right)$.
Proof. Consider the c-images of $2^{r} \bar{\sigma}^{2 m}$ and $\bar{\sigma}^{2 m+1}$ in $\tilde{K O}\left(L_{r}^{8 m+3}\right)$, where c is the complexification. Then $c\left(2^{r} \bar{\sigma}^{2 m}\right)=2^{r} \sigma^{4 m}=-2^{r-1} \sigma^{4 m+1} \neq 0$ and $c\left(\bar{\sigma}^{2 m+1}\right)$ $=\sigma^{4 m+2}=0$ in $\widetilde{K}\left(L_{r}^{8 m+3}\right)$ by [4, Lemmas 4.3 and 2.9 (ii)] and (2.4). Thus $\bar{\sigma}^{2 m+1}$ $\neq 2^{r} \bar{\sigma}^{2 m} \neq 0$ in $\tilde{K O}\left(L_{r}^{8 m+3}\right)$, and so $2^{r} \bar{\sigma}^{2 m} \neq 0$ in $\widetilde{K O}\left(L_{r}^{8 m+1}\right)$ by the above proposition. Therefore by the above proposition, we have $\kappa \bar{\sigma}^{2 m}=2^{r} \bar{\sigma}^{2 m}$ in $\widetilde{K O}\left(L_{r}^{8 m+1}\right)$.
q.e.d.

To study the induced homomorphism $i_{k}^{*}: \tilde{J}\left(L_{r}^{k}\right) \rightarrow \tilde{J}\left(L_{r}^{k-1}\right)$, we use the following
(7.7) ([2, II, (3.12)] and [10]) Let $X \xrightarrow{i} Y \xrightarrow{\pi} Z$ be a cofibering of finite connected $C W$-complexes and assume that the upper sequence in the commutative diagram

is exact. Then, the lower sequence is also exact.
Lemma 7.8. Let Ψ^{3} be the Adams operation on $\tilde{K O}\left(L_{r}^{k}\right)$. Then

$$
\left(\Psi^{3}-1\right) \bar{\sigma}^{i}=\left(3^{2 i}-1\right) \bar{\sigma}^{i}+\sum_{j=1}^{2 i}\binom{2 i}{j} 3^{2 i-j} \bar{\sigma}^{i+j} \quad(i \geqq 1)
$$

and $3^{2 i}-1 \equiv 2^{v+3} \bmod 2^{v+4}$, where $\nu=v_{2}(i)$.
Proof. For the first half, it is sufficient to show $\Psi^{3} \bar{\sigma}=\bar{\sigma}(\bar{\sigma}+3)^{2}$, since Ψ^{3} is a ring homomorphism. By the complexification $c: K O\left(L_{r}^{k}\right) \rightarrow K\left(L_{r}^{k}\right)$, we see that

$$
\begin{aligned}
c \Psi^{3} \bar{\sigma} & =(1+t) \Psi_{c}^{3}(\eta-1)=\eta^{3}-2+\eta^{-3}=\left(\eta-2+\eta^{-1}\right)\left(\eta+1+\eta^{-1}\right)^{2} \\
& =(1+t)(\eta-1)\{(1+t)(\eta-1)+3\}^{2}=c\left(\bar{\sigma}(\bar{\sigma}+3)^{2}\right),
\end{aligned}
$$

since $\bar{\sigma}=r(\eta-1), c r=1+t$ and $t \eta=\eta^{-1}$ (t is the conjugation). By [4, Prop. 5.3], $c: \hat{K O}\left(L_{r}^{k}\right) \rightarrow \tilde{K}\left(L_{r}^{k}\right)$ is monomorphic if $k \equiv 7 \bmod 8$. Thus $\Psi \Psi^{3} \bar{\sigma}=\bar{\sigma}(\bar{\sigma}+3)^{2}$ in $\widetilde{K O}\left(L_{r}^{k}\right)$ for $k \equiv 7 \bmod 8$, and also so for any k by the naturality.

The last half can be shown by the induction on v. If $v=0$ (i is odd), then $3^{2 i}-1=\left(2^{3}+1\right)^{i}-1 \equiv 2^{3} \bmod 2^{4}$. Let $v \geqq 1$ and assume $3^{2^{v u}}-1 \equiv 2^{v+2} \bmod 2^{v+3}$ for any positive odd integer u. Then $3^{2^{v+1} u}-1=\left(3^{2^{v} u}\right)^{2}-1=\left(1+2^{v+2}+\right.$ $\left.2^{v+3} a\right)^{2}-1 \equiv 2^{v+3} \bmod 2^{v+4}$. Therefore we have the desired result.
q.e.d.

By using the above results and Theorem 1.7, we see the following proposition, where (ii) is Theorem 1.10:

Proposition 7.9. (i) The induced homomorphism

$$
i_{k}^{*}: \tilde{J}\left(L_{r}^{k}\right) \longrightarrow \tilde{J}\left(L_{r}^{k-1}\right) \quad\left(i_{k}: L_{r}^{k-1} \subset L_{r}^{k}, r \geqq 2\right)
$$

is isomorphic if $k \equiv 7,6,5$ or $3 \bmod 8$, epimorphic otherwise, and

$$
\operatorname{Ker} i_{k}^{*}= \begin{cases}Z_{4}\left\langle 2 J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } k=8 m+4, \tag{7.10}\\ Z_{2}\left\langle J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } k=8 m+2, \\ Z_{2}\left\langle 2^{r} J\left(\bar{\sigma}^{2 m}\right)\right\rangle & \text { if } k=8 m+1, \quad r<l+2, \\ 0 & \text { if } k=8 m+1, \quad r \geqq l+2, \\ Z_{2^{n}}\left\langle J\left(\bar{\sigma}^{2 m}\right)\right\rangle & \text { if } k=8 m>0,\end{cases}
$$

where $l=v_{2}(4 m)$, i.e., $4 m=2^{l} q$ with odd q, and $h=\min \{r, l+2\}$.
(ii) $\# \tilde{J}\left(L^{n}\left(2^{r}\right)\right)=2^{\varphi(n, r)}$,

$$
\varphi(n, r)=(r+1) a_{r-1}+\sum_{s=1}^{r-2}(s+2)\left[\left(a_{s}+1\right) / 2\right]+1+\varepsilon,
$$

where \#G is the order of a group G, a_{s} and ε are the integers in (1.3) and (1.11), respectively.

Proof. Consider (7.7) for the cofibering $L_{r}^{k-1} \subset L_{r}^{k} \rightarrow S^{k}$ in (7.2). Then, the first half of (i) is obvious by the first half of Proposition 7.4.

Furthermore, by (7.5) and Lemma 7.6, it is easy to see that $\operatorname{Ker} i_{k}^{*}$ is a cyclic group generated by the generator of the group given in the right hand side of (7.10).

Now, we can show that
(*) \#Ker $i_{k}^{*} \leqq \begin{cases}4 & \text { if } k=8 m+4, \\ 2 & \text { if } k=8 m+2, \text { or } k=8 m+1 \text { and } r<l+2, \\ 1 & \text { if } k=8 m+1 \text { and } r \geqq l+2, \\ 2^{h} & \text { if } k=8 m>0 .\end{cases}$
In fact, $\operatorname{Ker} i_{8 m+4}^{*}$ is generated by $2 J\left(\bar{\sigma}^{2 m+1}\right)$. On the other hand, $\left(\Psi^{3}-1\right)\left(\bar{\sigma}^{2 m+1}\right)$ $=\left(3^{4 m+2}-1\right) \bar{\sigma}^{2 m+1}=2^{3} a \bar{\sigma}^{2 m+1}\left(a\right.$: odd) in $\widetilde{K O}\left(L_{r}^{8 m+5}\right)$ by Lemma 7.8 and (2.9). Therefore $2^{3} J\left(\bar{\sigma}^{2 m+1}\right)=0$ in $\tilde{J}\left(L_{r}^{8 m+5}\right)=\tilde{J}\left(L_{r}^{8 m+4}\right)$ by (1.1), since $\# \tilde{J}\left(L_{r}^{k}\right)$ is a power of 2 by Theorem 2.8 and (1.1). Thus, (*) for $k=8 m+4$ holds. (*) for the second case is easily seen by (7.5) and (7.7) for the cofibering $L_{r}^{k-1} \subset L_{r}^{k} \rightarrow S^{k}$. Now, the generator of $\operatorname{Ker} i_{8 m+1}^{*}$ is $2^{r} J\left(\bar{\sigma}^{2 m}\right)$. On the other hand, by Lemma 7.8 and (2.9), $\left(\Psi^{3}-1\right) \bar{\sigma}^{2 m}=\left(3^{4 m}-1\right) \bar{\sigma}^{2 m}=2^{l+2} b \bar{\sigma}^{2 m}(b:$ odd $)$ in $\widetilde{K O}\left(L_{r}^{8 m+1}\right)$. Thus $2^{l+2} J\left(\bar{\sigma}^{2 m}\right)$ $=0$ in $\tilde{J}\left(L_{r}^{8 m+1}\right)$ by (1.1), and (*) for the third case is valid. Finally, Ker $i_{8 m}^{*}$ is generated by $J\left(\bar{\sigma}^{2 m}\right)$ and $2^{r} J\left(\bar{\sigma}^{2 m}\right)=0=2^{l+2} J\left(\bar{\sigma}^{2 m}\right)$ in $\tilde{J}\left(L_{r}^{8 m}\right)$ by the above proof. Thus (*) holds for $k=8 m$.

Now, (*) implies that
$\prod_{m=1}^{[n / 4]} \# \operatorname{Ker} i_{8 m}^{*} \leqq 2^{\psi(n, r)}, \quad \psi(n, r)=\sum_{l=2}^{r=1}(l+2)\left[\left(a_{l}+1\right) / 2\right]+r a_{r-1}$,
$\prod_{m=0}^{[n / 4]} \# \operatorname{Ker}_{8 m+1}^{*} \leqq 2^{a_{r-1}+1}, \quad \prod_{m=0}^{[(n-1) / 4]} \# \operatorname{Ker} i_{8 m+2}^{*} \leqq 2^{[(n-1) / 4]+1}$,
$\prod_{m=0}^{[(n-2) / 4]} \# \operatorname{Ker} i_{8 m+4}^{*} \leqq 2^{2[(n-2) / 4]+2} ;$
and hence we see by the routine calculations that
(**) (*) implies $\# \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \leqq 2^{\varphi(n, r)}$ and the equality holds if and only if the equality holds in (*) for any $k \leqq 2 n+1$.

On the other hand, by Theorems 1.6 (ii), 2.8 (i) and 1.7 (ii), we see easily that

$$
\# \tilde{J}\left(L^{n}\left(2^{r}\right)\right)=2^{\varphi(n, r)} \quad \text { for } \quad n=2^{r-1} a-1, \quad \mathrm{a} \geqq 2 .
$$

Thus, we see the proposition by (**).

Proposition 7.9 (i) implies immediately the following corollary, which is Proposition 1.9:

Corollary 7.11. For the induced homomorphism

$$
i^{*}: \mathcal{J}\left(L^{n}\left(2^{r}\right)\right) \longrightarrow \tilde{J}\left(L^{n-1}\left(2^{r}\right)\right) \quad\left(i: L^{n-1}\left(2^{r}\right) \subset L^{n}\left(2^{r}\right), r \geqq 2\right),
$$

i^{*} is isomorphic if $n \equiv 3 \bmod 4$, epimorphic otherwise, and

$$
\operatorname{Ker} i^{*}= \begin{cases}Z_{4}\left\langle 2 J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } n=4 m+2, \tag{7.12}\\ Z_{2}\left\langle J\left(\bar{\sigma}^{2 m+1}\right)\right\rangle & \text { if } n=4 m+1, \\ Z_{u}\left\langle J\left(\bar{\sigma}^{2 m}\right)\right\rangle & \text { if } n=4 m>0,\end{cases}
$$

where $u=2^{\min \{r+1, l+2\}}\left(l=v_{2}(4 m)\right)$.

§8. Proof of Theorem 1.2

To prove Theorem 1.2, we prepare some lemmas.
Lemma 8.1. The following equality holds in $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 2)$:

$$
\operatorname{Jr}\left(\eta^{i}-1\right)=\operatorname{Jr} \sigma(v)=\alpha_{v} \quad \text { for } \quad i \geqq 1,
$$

where $\nu=v_{2}(i)$ is the exponent of 2 in the prime power decomposition of i.
Proof. By the proof of Lemma 3.3, we notice that the kernel of J : $\widetilde{K O}\left(L^{n}\left(2^{r}\right)\right) \rightarrow \tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is generated additively by the elements

$$
r\left(\eta^{j} \sigma(s)\right) \quad\left(0 \leqq s<r, 1 \leqq j<2^{s}\right)
$$

If $2^{s} \leqq i<2^{s+1}$, then $\eta^{i}-1=\eta^{j} \sigma(s)+\eta^{j}-1$ where $j=i-2^{s}$ by (2.2). If $j>0$ in addition, then $\operatorname{Jr}\left(\eta^{i}-1\right)=\operatorname{Jr}\left(\eta^{j}-1\right)$ by the above notice and $\sigma(s)=0(s \geqq r)$. By continuing this process, we have the desired equality by the definitions of $v_{2}(i)$ and α_{s} in (3.4).
q.e.d.

Now, let $f(n, r ; v)$ be the non-negative integer such that

$$
\begin{equation*}
\# \operatorname{Jr} \sigma(v)=\# \alpha_{v}=2^{f(n, r ; v)} \quad \text { in } \quad \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \quad(n \geqq 0, r \geqq 2) \tag{8.2}
\end{equation*}
$$

by Proposition 7.9 (ii), where $\# \alpha$ denotes the order of α. Then by the definition of α_{v} in (3.4) and (2.9),

$$
\begin{equation*}
f(n, r ; v)=0 \quad \text { if } \quad n=0 \quad \text { or } \quad v \geqq r . \tag{8.3}
\end{equation*}
$$

Lbmma 8.4. If $n=2^{r-1} a$ and $r \geqq 3$, then

$$
f(n, r ; v)=r-1-v+2^{r-1-v} a \quad \text { for } \quad n>0, \quad 0 \leqq v<r .
$$

Proof. The equality for $a \geqq 2$ is easily seen from Theorem 1.7 (ii) and α_{r-1} $=2 J \kappa$ of (3.11.3).

Consider the case $n=2^{r-1}$. Then, by Corollary 7.11,

$$
\# J\left(\bar{\sigma}^{2 m}\right)=2^{r+1} \quad \text { in } \quad \tilde{J}\left(L^{2^{r-1}}\left(2^{r}\right)\right) \quad\left(4 m=2^{r-1}\right) .
$$

On the other hand, $2^{r} \bar{\sigma}^{2 m}=2^{r+4 m-2} \bar{\sigma}$ in $\tilde{K O}\left(L^{2^{r-1}}\left(2^{r}\right)\right)$ by [8, Lemma 2.3]. Thus, we obtain

$$
\# \alpha_{0}=\# J(\bar{\sigma})=2^{r-1+2^{r-1}} .
$$

Furthermore, this relation, the ones in $\tilde{J}\left(L^{2^{r-1}}\left(2^{r}\right)\right)$ given in Remark 6.11 and $\alpha_{r-1}=2 \kappa$ imply immediately

$$
\# \alpha_{v}=r-1-v+2^{r-1-v} \quad(0 \leqq v<r),
$$

which is the equality for $a=1$.
Consider the commutative diagram ($r \geqq 3$)

of the induced homomorphisms, where i and i^{\prime} are the inclusions and π and π^{\prime} are the natural projections induced by the inclusion $Z_{2^{r-1}} \subset Z_{2^{r}}$. Then we have the following

Lemma 8.6. If $n \neq 0 \bmod 2^{r-1}(r \geqq 3)$, then

$$
\pi^{*} \mid \operatorname{Ker} i^{*}: \operatorname{Ker} i^{*} \longrightarrow \operatorname{Ker} i^{\prime *}
$$

is isomorphic.
Proof. If $n=4 m=2^{l} q$ (q : odd), then the assumption $n \neq 0 \bmod 2^{r-1}$ implies $r-1>l$ and so $\min \{r+1, l+2\}=l+2=\min \{r, l+2\}$. Thus, we see immediately the lemma by Corollary 7.11, by noticing that $\pi^{*} r \eta=r \pi^{*} \eta=r \eta$ and hence $\pi^{*} J\left(\bar{\sigma}^{i}\right)=J\left(\bar{\sigma}^{i}\right)$. q.e.d.

Lbmma 8.7. If $n \neq 0 \bmod 2^{r-1}(r \geqq 3)$, then

$$
f(n, r ; v)=\max \{f(n-1, r ; v), f(n, r-1 ; v)\} .
$$

Proof. Consider the diagram (8.5). Then the definition (8.2) implies that

$$
f(n, r ; v) \geqq \max \{f(n-1, r ; v), f(n, r-1 ; v)\},
$$

since $i^{*} \alpha_{v}=\alpha_{v}$ and $\pi^{*} \alpha_{v}=\alpha_{v}$. Moreover, if $f(n, r ; v)>\max \{f(n-1, r ; v), f(n, r-1$; $v)\}$, then the non-zero element $2^{f(n, r ; v)-1} \alpha_{v}$ in $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is mapped to 0 by i^{*} and π^{*}. This contradicts Lemma 8.6. Thus we have the lemma. q.e.d.

Proof of Thborbm 1.2. By (8.3), it is sufficient to show that

$$
\begin{equation*}
f(n, r ; v)=\max \left\{s-v+\left[n / 2^{s}\right] 2^{s-v}: v \leqq s<r \text { and } 2^{s} \leqq n\right\} \quad(0 \leqq v<r) . \tag{8.8}
\end{equation*}
$$

(8.8) for $r=2$ is an easy consequence of Theorems 1.6 (ii), 2.8 (i), (3.11.3) and (3.4). By Lemma 8.4, (8.8) holds if $r \geqq 3$ and $n \equiv 0 \bmod 2^{r-1}$.

For the case $r \geqq 3$ and $2^{r-1} a<n<2^{r-1}(a+1)$, assume inductively that (8.8) holds for $(n-1, r ; v)$ and $(n, r-1 ; v)$ instead of $(n, r ; v)$. Then, we see easily that the right hand side of the equality in Lemma 8.7 is equal to

$$
\begin{cases}f(n, r-1 ; v) & \text { if } \quad a=0, \\ \max \left\{f(n, r-1 ; v), r-1-v+\left[(n-1) / 2^{r-1}\right] 2^{r-1-v}\right\} & \text { if } \quad a>0,\end{cases}
$$

and hence to the right hand side of (8.8). Thus Lemma 8.7 implies (8.8) by the induction on n and r.

These complete the proof of Theorem 1.2.
q.e.d.
§9. $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ for $r \leqq 5$
$\tilde{J}\left(L^{n}(4)\right)$ is given by Theorems 1.6 (ii) and $2.8(\mathrm{i})$.
In this section, we present the direct sum decomposition of $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ for $r=3,4$ or 5 explicitly in Proposition 9.3 without proof, which is obtained from Theorem 1.6 by the direct computations of the integers $X(d, v)$ and $Y(d, v)$ for $v \leqq 3$ and the routine calculations.

Before we state the result, we notice the following
Proposition 9.1. (i) In Theorem 1.6, $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)(r \geqq 3)$ is the direct sum of the subgroup $Z_{m(r-1)}\langle J \kappa+\alpha(r-1)\rangle$ and the one generated by $\alpha_{s}(0 \leqq s \leqq r-2)$, where

$$
\begin{array}{lll}
m(r-1)=2, & \alpha(r-1)=0 & \text { if } n<2^{r-1}, \\
m(r-1)=2^{a_{r-1}}, & \alpha(r-1)=\sum_{s=0}^{r-2} 2^{\left(2^{r-1-s-1)\left(1+a_{r-1}\right)-1} \alpha_{s}\right.} & \text { if } n \geqq 2^{r-1} .
\end{array}
$$

(ii) Let $n<2^{r}$. Then there exists an isomorphism

$$
f: \tilde{J}\left(L^{n}\left(2^{r+1}\right)\right) \cong \tilde{J}\left(L^{n}\left(2^{r}\right)\right) \quad(r \geqq 3),
$$

which is given by

$$
\begin{equation*}
f(J \kappa)=J \kappa+\alpha(r-1), \quad f\left(\alpha_{s}\right)=\alpha_{s} \quad(0 \leqq s<r) . \tag{9.2}
\end{equation*}
$$

Proof. In the relations (1.6.1-6) of Theorem $1.6, J \kappa$ appears only in the first one of (1.6.1) and (1.6.2). Thus (i) follows immediately from Theorem 1.6.
(ii) The assumption $n<2^{r}$ implies that $m(r-1)=2=m(r)$ in (i) and that $\# \tilde{J}\left(L^{n}\left(2^{r+1}\right)\right)=\# \tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ by Proposition $7.9(i i)$. On the other hand, $\pi^{*}\left(\alpha_{s}\right)=\alpha_{s}$ and $\pi^{*}(J \kappa)=0$ for the homomorphism $\pi^{*}: \tilde{J}\left(L^{n}\left(2^{r+1}\right)\right) \rightarrow \tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ induced by the natural projection $\pi: L^{n}\left(2^{r}\right) \rightarrow L^{n}\left(2^{r+1}\right)$. Thus, we obtain the desired isomorphism f by (9.2).
q.e.d.

Proposition 9.3.*) Let $r=3,4$ or 5. Then $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ is the direct sum

$$
Z_{m(0)}\left\langle\alpha_{0}\right\rangle \oplus \oplus_{i=1}^{r-2} Z_{m(i)}\left\langle\alpha_{i}+\alpha(i)\right\rangle \oplus Z_{m(r-1)}\langle J \kappa+\alpha(r-1)\rangle,
$$

and the last summand is the one given in (i) of the above proposition, and the order $m(i)(0 \leqq i \leqq r-2)$ and the element $\alpha(i)(1 \leqq i \leqq r-2)$ are given in Table 1, 2 or 3 for $r=3$, 4 or 5 , respectively, where $\tilde{J}\left(L^{n}\left(2^{r}\right)\right)$ for $n<2^{r-1}(r=4$ or 5$)$ is isomorphic to $\tilde{J}\left(L^{n}\left(2^{r-1}\right)\right)$ by (ii) of the above proposition.

Table 1 ($r=3$)

$n(t \geqq 1)$	$m(0)$	$m(1)$	$\alpha(1)$
0	1		
1	2	1	
2,3	2^{3}		
$4 t$	$2^{4 t+2}$	$2^{2 t-1}$	$2^{3} \alpha_{0}(t=1),-2^{2 t+1} \alpha_{0}(t>1)$
$4 t+1$	$2^{2 t}$	$2^{2 t+1} \alpha_{0}$	
$4 t+2,3$	$2^{4 t+3}$	$2^{2 t+1}$	0

Table $2 \quad(r=4)$

$n(t \geqq 1)$	$m(0)$	$m(1)$	$\alpha(1)$	$m(2)$	$\alpha(2)$
$8 t$		$2^{4 t-1}$	$2^{5} 3 \alpha_{0}(t=1)$, $-2^{4 t+1} \alpha_{0}(t>1)$		
$8 t+1$	$2^{8 t+3}$	$2^{4 t}$	$-2^{2 t+1} \alpha_{0}$	$2^{2 t-1}$	$-2^{3} \alpha_{1}-2^{9} \alpha_{0} \quad(t=1)$, $2^{2 t+1} \alpha_{1}+2^{6 t+3} \alpha_{0}(t>1)$
$8 t+2,3$					
$8 t+4$	$2^{8 t+6}$	$2^{4 t+2}$	$2^{4 t+3} \alpha_{0}$	$2^{2 t}$	$2^{2 t+1} \alpha_{1}+2^{6 t+4} \alpha_{0}$
$8 t+5$			$2^{2 t+1}$	0	
$8 t+6,7$	$2^{8 t+7}$	$2^{4 t+3}$	0	0	

*) In [7, Prop. 5.3], T. Kobayashi and M. Sugawara have already computed $\tilde{J}\left(L^{n}(8)\right)$, and $\tilde{J}\left(L^{n}(16)\right)$ has been computed by T. Kobayashi.

Table 3 ($r=5$)

$n(t \geqq 1)$	$m(0)$	$m(1)$	$\alpha(1)$	$m(2)$	$\alpha(2)$
$16 t$	$2^{16 t+4}$	$2^{8 t-1}$	$-2^{8 t+1} \alpha_{0}$	$2^{4 t-1}$	$\begin{array}{r} 2^{5} \alpha_{1}+2^{15} \alpha_{0} \quad(t=1) \\ -2^{4 t+1} 3 \alpha_{1}+2^{12 t+3} \alpha_{0}(t>1) \end{array}$
$16 t+1$		$2^{8 t}$	$-2^{8 t+1} \alpha_{0}$		
$16 t+2,3$		$2^{8 t+2}$	$2^{8 t+1} \alpha_{0}$		
$16 t+4$	$2^{16 t+6}$	$2^{8 t+3}$	$-2^{8 t+5} \alpha_{0}$	$2^{4 t}$	$-2^{4 t+1} \alpha_{1}-2^{12 t+4} \alpha_{0}$
$16 t+5$				$2^{4 t+1}$	$2^{4 t+1} \alpha_{1}+2^{12 t+4} \alpha_{0}$
$16 t+6,7$	$2^{16 t+7}$			$2^{4 t+2}$	$2^{4 t+3} \alpha_{1}+2^{12 t+10} \alpha_{0}$
$16 t+8$	$2^{16 t+11}$				
$16 t+9$		$2^{8 t+4}$	$-2^{8 t+5} \alpha_{0}$		
$16 t+10,11$		$2^{8 t+6}$	$2^{8 t+7} \alpha_{0}$		
$16 t+12$	$2^{16 t+14}$				
$16 t+13$				$2^{4 t+3}$	0
$16 t+14,15$	$2^{16 t+15}$	$2^{8 t+7}$	0		

$n(t \geqq 1)$	$m(3)$	$\alpha(3)$
$16 t \leqq n \leqq 16 t+7$	$2^{2 t-1}$	$\left.\begin{array}{cc}-2^{3} \alpha_{2}-2^{9} \alpha_{1}-2^{21} \alpha_{0} \\ 2^{2 t+1} \alpha_{2}+2^{6 t+3} \alpha_{1}+2^{14 t+7} \alpha_{0} & (t=1), \\ \hline 16 t+8,9,10,11 & -2^{2 t+1} \alpha_{2}+2^{6 t+4} \alpha_{1}+2^{14 t+10} \alpha_{0} \\ \hline 16 t+12,13,14,15 & 2^{2 t+1}\end{array}\right] 0$

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1963), 603-632.
[2] -, On the groups $J(X)$, I, II, Topology, 2 (1963), 181-195, 3 (1965), 137-171.
[3] and G. Walker, On the complex Stiefel manifolds, Proc. Camb. Phil. Soc., 61 (1965), 81-103.
[4] K. Fujii, T. Kobayashi, K. Shimomura and M. Sugawara, KO-groups of lens spaces modulo powers of two, Hiroshima Math. J., 8 (1978), 469-489.
[5] and M. Sugawara, The order of the canonical element in the J-group of the lens space, Hiroshima Math. J., 10 (1980), 369-374.
[6] T. Kobayashi and M. Sugawara, On stable homotopy type of stunted lens spaces, Hiroshima Math. J., 1 (1971), 287-304.
[7] -, On the stable homotopy type of stunted lens spaces, II, Hiroshima Math. J., 7 (1977), 689-705.
[8] -, Note on KO-rings of lens spaces mod 2^{r}, Hiroshima Math. J., 8 (1978), 85-90.
[9] N. Mahammed, A propos de la K-théorie des espace lenticulaires, C. R. Acad. Sci. Paris, Sér. A 271 (1970), 639-642.
[10] D. Quillen, The Adams conjecture, Topology, 10 (1971), 67-80.
[11] M. Yasuo, r-dimensions and products of lens spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Math., 31 (1977), 113-126.

Department of Mathematics,

Faculty of Science, Hiroshima University

