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§1. Introduction

Let M be a closed manifold, and let wt and vt be the ith Stiefel- Whitney
class and the ith Wu class of M, respectively. Then, the Wu formula means that
they are related by the equality

(1.1) ^=Σϊ.ιβ-" fW|

(cf. Proposition 3.2), where θl = c(Sql)ej&(2) is the conjugation of Sql given in
[7, II, § 4] and is defined inductively by

t = Sql + ΣljΆO

The main purpose of this paper is to study the Wu classes by using (1.1).
To do this, we study the element θl in §2, and prove the following basic

formula (Theorem 2.4), where we use always the notation

t' = 2ί~1 for any positive integer t:

(1.2) Ifn=2k-I9then

and i/n = 2k-l-*i ----- 1\ with fc^ft> — >f|S>l, then

where /(pl5..., Pί)=θΊ>.. 5 ik) is given by

ip, = (k-ps+iγ-t'5 (s = l,..., 0, ip«( fc

and SqV* ..... ί^ = Sς[ίl S^ίk wiί/i S °̂ = l and Sql=Qfor i<0.

As an application of this formula, we see the well known formula

02n+l = Q2nSql

(Corollary 2.14) and the one given by D. M. Davis [2, Th. 2] (Corollary 2.16).
By using the former, we can reduce the equality (1.1) to the form given in Theo-

rem 3.9, and we obtain the equality
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(Theorem 3.10). We notice that this equality implies immediately the well known
result that the odd dimensional Wu class v2n+ι of an oriented manifold M
vanishes.

In § 4, we are concerned with a closed manifold M whose total Stiefel- Whitney

class wM satisfies the condition

(1.3) w M = l + Σ^ιHV (ί>' = 2&-1).

For such a manifold, by noticing that wfc/wc, = 0 if c^b + 2 (Proposition 4.2) and

by using (1.2), we can reduce (1.1) to the following explicit form (Theorem 4.3):

(1.4) Όi = Σί5ιΣji..a + ι (^(i-nib'(^2^(j-bγ if i = a[ + a2 with

Vi = Q otherwise.

Some examples of manifolds satisfying (1.3) are given at the end of §4.
These equalities are applied in §5 to study some sufficient conditions that

the unoriented bordism class of M with (1.3) vanishes. In fact, under (1.3) and
the condition that dim M is not equal to a power of 2, we can show that almost
all the Stiefel- Whitney numbers of M vanish by using (1.4) and the fact that
t;.=0 for i>dimM/2; and we obtain the following results (Theorems 5.1 and
5.4):

THEOREM. Let M be a closed manifold. Then, the unoriented bordism
class [M] of M is 0, if one of the following three conditions holds:

(1) The total Stiefel-Whitney class wM satisfies (1.3), and

dimM = pί + +pί + l wiίft Pι> >p*>l and

(2) wM=l + wb, + wc>for some b and c with ob^.1 in (1.3), and dimM is
not a power of 2.

(3) wM=l + wt for some ί^l.

The author wishes to express his hearty thanks to Professor M. Sugawara
for his valuable suggestions and discussions.

§ 2. Some relations in the mod 2 Steenrod algebra

Let cθ/(2) be the mod 2 Steenrod algebra. For any sequence /=(il5..., ifc)
of positive integers, put

Sq1 = Sqi* Sqi*ej*(2), \I\ = lΊ + + ί*;
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and define the element θn e <sf(2) by

(2.1) θ° = l, θ **Σ\ι\-*Sq'. (n£l).

Then, we have clearly the relations

(2.1)' 0" = Sqn + Σϊ-ί Sί'β"-1 = Sqn + Σj=ι 0"-'S«' (n^O),

which give the inductive definition of 0". Thus, it is easily seen that θn is equal
to c(Sqn) in [7, p. 26] or χ(S^fπ) in [2].

To study 0", we use the following notation:
Let /=(!*!, ..., ik) and Γ=(ί1,..., tt) be sequences of positive integers. Put

(2.2) S«' - (Γ) = Σι*,1<...<ΛS»S« ™< ->'">

where I-T(pl9...9 pί)=(Λ,...,Λ) is given by

JP. = 'PS-'* (s = 1>" > 0» 7p= ίp (jp^Pi,.-, Pi),

and Sq(jί"~tjk) = SqJί Sqjk under the convention that

(*) Sq° = l and Sq* = 0 if ;<0.

Then, Sq1 — (T) can be defined inductively on the lengths fe of / and / of Tby

Sβ'-(D = SβJ if ϊ=0, S^-(T) = 0 if ί>fc;

(2.2)' S^ - (T) = SβΊ-Ί{Sβ'i - (TO) + Sβ iίS^ - (T)}

under the convention (*), where Ja=(jl,...JB-l9ja+l9...,jJ for J = OΊ> , jj-
Furthermore, put Sήf f - (ί) = Sgr - (J(ί)) and

for n, ί^O,

where J(0=(2i"1, 2ί~2,..., 1). Then we see the following

0 for n<2'-l,
PROPOSITION ~ " - —2 3 θ"-« = {,— /or n^2'-1^0.

PROOF. The equality forn <2' — 1 or t=0 is seen immediately by definition.
We prove the equality for n^2'-l^l by the induction on n. By (2.1)',

(2.2)' and the above definition, we see that

0" - (0 = Σϊ-i Sg«-''(0--' - 0-D) + Σ?=ϊ s^θ"-' - (0) (t^a'-1).
By the equality for n<2ί —1, the inductive assumption and (2.1)', this is equal to

Σί^f'''*1 Sqi-t'β*-1-''*1 4- Σί=ι2ί/
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as desired. q. e. d.

Now, the main purpose in this section is to prove the following theorem,
where we use always the notation

t' = 2t"1 for any positive integer t.

THEOREM 2 A (i) Lefn=2*-l. Then

θn = SqW (J(fc) = (fcv (fc-iy,..., i)) ;

(ii) Let

n = 2 f c- 1 - f i -...-*; = 2*- 1- \T\

for Γ=(*ί,..., f j) with fc^ί^ — >ί^l and l^ί. Then,

θn = Sqjm _ (Γ) (J(fc) = (̂  (fc-i)',..., i)),

f/te π'^ftί Aαnd side is given by (2.2).

By this theorem and (2.2)', we have the following

COROLLARY 2.5. For n in (ii) of the above theorem with k>tί9

θn = Sqaθn~a + Sqk'θn~k" where a = k'-t[.

PROOF. By the above theorem and (2.2)', θn is equal to

^1) - (T)}

which is equal to the right hand side of the desired equality. q.e.d.

To prove Theorem 2.4, we prepare several results.
Let P(=RP°°) be the oo -dimensional real projective space and Pm be the

m-fold Cartesian product of P. Let u be the generator of H\P\ Z2)=Z25
 and

consider the cohomology class

uίx xumeH>»(Pm;Z2) (Uί = . = um=u).

Furthermore for any sequence A=(ai9...,am) of positive integers, we consider
the cohomology class

t/04) = W l(Λ l)x ̂  x um(am)eH*(P>»; Z2)

Then, we have the following proposition, where ε=(ε1,..., εw) is a sequence with
e.=0or 1 and A+ε=(ai+εί,..*, α^+β^and \\A\\=a[ + "+a/

1tί{oΐA='(aίf.^9 am):

PROPOSITION 2.6. In H*(Ptn;Z2), there hold the equalities
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(i) Sq u(A) =

(U) 0n(u1X -X

PROOF. Let x be any 1-dimensional eohomology class. Then, the equality

Sqlxk = (f)**+ί of [7, 1, Lemma 2.4] implies

(2.7) S«'(x(α)) = { X(α

Q

H
x(α+e) if i = eα', e=0or l ,

otherwise,

where x(b)—xb' (b'=2b~1\ Thus, we see by definition that

if J=J(/-1),
(2.7)' __ z .. ,

I 0 otherwise;

(2.8) θnx = I
if n = /'-

0 otherwise.

(i) follows immediately from (2.7) and the Cartan formula.
(ii) By the Cartan formula and (2.7)', we see easily that

(2.9) S (̂

Therefore, by (2.1) and Proposition 2.3,

where a=(a'ί-ϊ)-{ ----- Kαίn-!-!). Hence, we see the equality (ii) by (2.8)
q.e.d.

For the case m = n in (ii) of the above proposition, we have the following
lemma, where A and B are sequences of n positive integers and ε and p are se-
quences of n integers consisting of 0 or 1 :

LEMMA 2.10. (i) // n = 2k - 1 ̂  1, then

(ii) Ifn=2k-t'-swith k>f£l and l^s^ί', then

PROOF, (ii) Let C=(clv.,, cn) be a sequence of positive integers with
||C|| =2n, and assume that w(C) appears a and b times in the first and the second
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summations in the right hand side of the equality in (ii), respectively. Then, by
(ii) of the above proposition, it is sufficient to prove that

a + b = odd.

Assume that a positive integer / appears α/ times in C. Then

(2.11) α,£0, Σ i δ i α i - n and Σι*ι /'«ι = 2π.

Furthermore, in the first summation in the right hand side of the equality in (ii),
the equality A+ε=C holds if and only if ε=(εl5..., επ) satisfies the condition that

where pt is the number of elements of {ί | cf = /, εt = 1}. Thus

which is equal to the coefficient of **'"•'' in the polynomial

By (2.11), this polynomial is congruent to (1 +x)rt~αι/2 mod 2. Hence

mod 2.

By the same way, since 2n — (fc' — t' — s + n) = k'9 we see that

AS("7,'/2) mod 2.

On the other hand, by using the well known formula

(2.12) (£) = Πι(*ί) mod2 for α = Σί«|2', 0 = Σ*

we see easily that

X-ai/2^ j1 mod2

mod 2

mod 2

mod 2 (k'<n — α

since n = 2fc'-ί/-5^α1^0 with fc'>ί;^5^1. Thus α + fr = lmod2, and (ii)
is proved.
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(i) can be proved similarly by noticing 2tt-(fc' + n-l) = /c' and (n~fc* )

ΞΞ 1 mod 2 forn = 2k' - 1 ̂  o^ ̂ 0. q. e. d.

By using the above results, we can prove Theorem 2.4.

PROOF OF THEOREM 2.4. (i) Since Θ1 = Sq1, we see (i) for fc=l. Assume
inductively that (i) holds for k- 1. Then

Sqk'θk'-1.

On the other hand, by Proposition 2.6 and Lemma 2.10(i), we see that

SqX'ΘX'-^Ui x -. xun) = Sqk' Σ|μi||-*'-ι+,XΛ)

Therefore Sqktθk'~1 = θn by the following fundamental result in [7, 1, Cor. 3.3]:

(2.13) The homomorphism rf(2)-+H*(Pm'9 Z2) ^ίt en by
xum) is a monomorphism in degree ^m.

Thus, we obtain θn = SqJW as desired.
(ii) We prove (ii) by the induction on fc. If fc=l, then (ii) is clear, since

0o = l = Sq°. Assume inductively that (ii) holds for fc-1. Then, by (2.2)',
(i) and the inductive assumption, we see that

- (T) = Sqa{SqJ(k~V - (T^} + Sqk'{SqJ(k~V -

where the second terms do not appear if k=tί by the convention (*) in (2.2)'.
If fc=fl5 then α=0 and we have the desired equality.
Let k>tit Then, by Proposition 2.6 and Lemma 2.10(ii), we see that

(Sqaθn~a + Sqk'θn'k')(uί x ••• x wn)

= S«- Σ|M]|=2n-α"C4) + ̂ Λ' Σ ||B|| -2.-*' «(*)

+ Σ ||5|| =2n-Λ' Σ \\B+p\\ =2n

= θn(ulx~ xun), (n=2fc/~ίi~5, 5 = ίi + .- +

Therefore Sqaθn'a + Sqk'θn'k' = θn by (2.13).

Thus S# J(*> - (T) = 0", and the theorem is proved completely. q. e. d.

As applications of Theorem 2.4, we have the following known results:

COROLLARY 2.14. θ2n+1=Θ2nSql.

PROOF. We notice that
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(2.15) Sq

by the Adam relation [7, p. 2].
If n=0, then the equality holds since 01— Sg1.
Let 2n=2*-l-|Γ|>0 for T=(t'l9...9 ίj) with k^f^v ^^l. Then

t\ = 1. Thus, in the summation of the equality

Sq*W - (T) = Σ^Pί<...<Pt^SqJ^τ^'"^

of (2.2), the term for pl = k-a<k contains Sq2a'~lSqa' and is 0 by (2.15).
Therefore, the above sum is equal to

- (Tj) (J(fc)fc=(fc', (fc-1)',..., 2), 7ϊ=(fί,..., ίί^)).

On the other hand, 2n + 1 = 2k - 1 - 1 Tz| and

by definition, since tΊ-^2 or /— 1=0. Thus, we see the desired equality by
Theorem 2.4. q.e.d.

(ii) and (iii) of the following corollary are due to Davis [2, Th. 2].

COROLLARY 2.16. (i) θ2*' = Sq2k' + Sqk'θk'.

(ii) Θ2k~l = SqJ«' lW1'-1 for fc = /=l,

where J(k;l)=(k',(k-iy,.. .,/').

(iii) 02fc-*-ι = Sqk'θk'~k-ι + Sβί*'-1^*-1)'-1--1) /or fc^2.

PROOF* By using (2.9) and (2.13), we see easily that

(2.17) Σ/S<z' = Σ,S4' implies Σι(Sq' - (0) = Σ/(S«J - (0)

( i ) By Proposition 2.3, Theorem 2.4, (2.2)' and (2.17), we see that

02*' = 04*'-l _ (fc) = S^J(fc+l) _ (fc)

- (k)) = 5^k'0fc/ + Sq2k> .

(ii) We prove the equality by the induction on /. (ii) for /= 1 is in Theorem
2.4(i). Assume (ii) for /. Then, by Proposition 2.3, (2.15) and (2.17), we see (ii)
for /+1(^ fc) as follows:

02*'-l-l = Q2k'-l _ (1) = (5βJ(*;l+l)5βl'βl'-l)-. (1)

l'θ1'-1 - (1)) = SqJ(k'>l+ί\θ21'-1 - (1)) =
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(iii) By(ii), θ2l'~l = Sql'θ1'-1 for any teL Thus,

02Γ-/-1 = 02/--J _ (1) = Sqι>θι>-ι-ι + Sgi'-ifli'-i

for any /^l in the same way. By using this equality for /=fe, fc-1,..., 1 and
(2.15), we see immediately (iii). q. e. d.

The following Cartan formula for 0, which may be well-known, is used in
the next section.

PROPOSITION 2.18. For any cohomology classes x and y,

PROOF. We can prove easily the formula by the induction on n, by using
(2.1)' and the Cartan formula for Sq q.e.d.

REMARK 2.19. We remark that Proposition 2.6 (ii) can be proved by (2.8)
and the Cartan formula

§ 3. Odd dimensional Wu classes

Let Md be a closed d-manifold, and let

be the ith Wu class of Md, which is defined to be the element with

<ιvc, μ> = <S4% μ> for every x e H*-\M* Z2) .

Here μ e Hd(Md Z2) is the fundamental homology class and < , > is the
Kronecker index. Then, the fcth Stiefel- Whitney class

of Md is represented by the Wu classes as the following Wu formula:

(3.1) ([6, Th. 11. 14]) wfc = ΣΪ-oSβVι

Conversely, the Wu class is represented by the Stiefel- Whitney classes as

follows :

PROPOSITION 3.2. vn = Σϊ-i β*"1^

where θ^eji/Q) is the element given by (2.1).

PROOF. By (3.1), w1 = t;14-S^1ι?0 = t;1. Suppose inductively that the
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equality holds for n<k. Then, by (3.1) and (2.1)', we see that

vk = w, + ΣΉSβ Vi = wfc + ΣM sβ'(Σ5=ί e*-'-Λv,)
= wk + Σ5=i (Σtί sqw-J-*)wj = Σ5-ι β*-<V

as desired. q. e. d.

To prove Theorems 3.9 and 3.10 which are the main results in this section,

we prepare several lemmas, where we use the notations t'=2t~1 for any positive
integer t, and /(/) = / and ||/|| = / ί H ----- μ ΐ j for any sequence I = (il5..., it) of
positive integers.

LEMMA3.3. (i) // / = /; + • .. + Γk = \\L\\ for L = (lί9.. ., lk) with /!>•••

>/k^l, then

κ/)»ι

(ii)

(iii)

(s; /c, ί) =

PROOF, (i) In the left hand side of the equality, the sum of the terms for

7 = (j1) /2 j ΐ3,..., ij) and /' = (ι25 ^'ij Ϊ35 5 h) with ϊΊ^i^ is 0, and the term for

f = OΊ» h5 bv, ii) is equal to

W2||ΓII0»-2H/ΊIW|| with Γ = (^ + 1, i3,...,iz).

Let fc=l, i.e., / = /i. Then, by using these facts repeatedly, we see easily that

the left hand side of the equality is equal to

and hence to Σ ^i w(

1

ί'Hl)'0m~(ί+/l)'w,l, which is the right hand side of the equality.
In the same way, we can prove (i) for k> 1.

(ii) The equality is proved in the above proof.

(iii) Since / = 2S-1 = ||5|| where S = (s, s-1,..., 1), (i) implies that the left
hand side of the equality in (iii) is equal to

In this summation, let σk (Irgfc^s) be the partial sum on
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J = OΊ> ,Λ) with jk^2 and jk+1 = ••• = j, = 1.

Then, (*) is equal to

since the term in (*) for J = (!,..., 1) is equal to the first term.
Now, by the same consideration as in the proof of (i), σs is equal to the

partial sum on J with>/ s_1 + l=js^2, and hence to that on J withj s _2 + 2=j s_1

+ 2=7's+ 1 ̂ 3, and so on. Hence, σs is equal to the partial sum on J with j { =j2

= -Λ-ι=jβ-l^l, which is clearly equal to Σi^2 w(

1

ί+s)'0m-<ί+5>'wll.
Similarly, we see that

* - wπ.

Thus we have proved (iii). q. e. d.

LEMMA 3.4. (i) For t'^?-1^,

ΣΪΆ ΣKD-, wjil'lifl"-2"'" wn = w2t'-2Θm+2-2t' WB-

(ϋ) Σf ii Σκi)-f wf II^IΘ^HIH ̂  = Σ^3 ̂ -2^+2^ w--

PROOF, (i) For ί = 2, the above lemma implies the desired equality as
follows:

We prove (i) by the induction on t. In the left hand side of the equality, we
see easily by (i) of the above lemma that the sum on q = t' + p with 1 ̂  p ̂  t' — 2 is
equal to

By the inductive assumption, this is equal to

On the other hand, the terms for q = ί' — 1 and ί' are given by (iii) and (ii) of the
above lemma for s = ί— 1, respectively. Thus we see (i).

(ii) (ii) follows immediately from (i). q. e. d.

LEMMA 3.5.

(i)
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(ii) 02'(wlW2m+1) = Σtίa Wriβal+2-''

PROOF. We notice that the equalities

(3.6) SqlW2m = WιW2m + W2m+l> SqlW2m+l = W1W2m+1

hold as special cases of Wu's formula

(3.7) ([10], [3]) Sβ^ l-Σ/-o /" / " ί " 1 w y - f w f ^ for J£i.

By Proposition 2.18, (2.8), Corollary 2.14 and the first equality in (3.6), we
see that

(3.8.ί) 02'(w1w2m) = Σ^

Consider the equality (3.8. J), and substitute (3.8.Z— i'/2) for its last term
θ2'-i'(w1w2m) (i'=2ί~1 ̂ 2) if 2/-i'^0, and so on. Then, we see easily that

Thus, (i) is seen by (ii) of the above lemma.
We can prove (ii) similarly by using the second equality in (3.6). q.e.d.

By the above lemmas, we have the following results.

THEOREM 3.9. The equality in Proposition 3.2 can be rewritten as follows,
where α^l and ί' = 2ί~1 for any positive integer t:

(i) v2a = Σp*ι 02

(ϋ) ^α+^Σ^u^-1^2-2*-^

PROOF. By Proposition 3.2, Corollary 2.14 and the first equality in (3.6),
we see that

- Σ f tι {^'-"(WiWa, + w2p+1)

Thus, we have (ii) by (i) of the above lemma.
(i) is shown in the same way. q. e. d.
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THEOREM 3.10. The odd dimensional Wu class v2a+ι of a closed manifold
can be represented by the lower and even dimensional Wu classes and the first
Stiefel-Whitney class wί by the equality

PROOF. The equality for α = 0 is clear.
Let a be positive. Then, by the above theorem,

0

Here, in the same way as in the proof of Lemma 3.3(ii), we see that the second
term is equal to

whose first sum is equal to

wf'*1 (α=2'-l), 0

by (2.8). Thus we obtain the desired equality by (ii) of the above theorem.
q.e.d.

As an application of the above theorem, we obtain the following known
result:

COROLLARY 3.11 ([5, Lemma 3]). // a closed manifold M is orientable9

then the odd-dimensional Wu classes of M vanish.

PROOF. By [4, p. 244, Th. 12.1], the assumption is equivalent to w1=0.
Thus the corollary follows immediately from the above theorem. q. e. d.

§ 4. Wα classes of certain manifolds

In the rest of this paper, we only consider a closed manifold M whose ίth
Stiefel-Whitney class Wj satisfies

(4.1) Wj = 0 if i is not a power of 2;

i.e., we assume that the total Stiefel-Whitney class wM-is given by

(4.1)'
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where we use at all times the notation

V = 2b~l for any positive integer b.

Under the above assumption, we have the following

PROPOSITION 4.2. Ifc^b + 2, then, wb,wc, = 0.

PROOF. wc._ί,/ = 0 by the assumption and (4.1). Therefore

0 = Sq»'v,. = Σ?

by (3.7), and the last sum is equal to wb,wc, by (2.12) and (4.1). q.e.d.

By Proposition 3.2, (3.7) and this proposition, we see that the Wu class υt

can be written as a sum of cohomology classes (wb>)J(w2b')
k. More precisely,

the purpose of this section is to prove the following

THEOREM 4.3. The ith Wu class vt of a closed manifold M satisfying the
condition (4.1) can be represented by the Stiefel-Whitney classes wb, of M as
follows, where

(i) I f k = l , i.e., ifi = af with a^ί, then

*ι=Σf-ι("V) (-*

(ii) Ifk = 2, i.e., if i = a[ + a2 with a^a^l, then

(iii) // k ̂  3, then vt = Q.

To prove this theorem, we prepare several lemmas.

LEMMA 4.4. For any cohomology class y and f'=2r-1, -

ί (Sql/t'yY if i is a multiple of tf,

I 0 otherwise.

PROOF. We see easily by the Cartan formula that

Sql'z2 = (Sq*z)2, . Sq2a+ίz2 = 0.

These imply immediately the lemma. q. e. d.

LEMMA 4.5. (i) For ί>Λ=2Zr~1^l, tf = 2t"ί'^ί and i^l,
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t (WbYfabY if i = b't'9
S<ll(w2b'y = { (W2b')2ί/ if i = 2b't',

^ 0 otherwise.

(ii) S^/w2b,=0 if I/I is not a multiple of V.

PROOF, (i) By (3.7), (4.1) and Proposition 4.2, we see that

if i = fr',

0 otherwise,

for 0 < i < 2br. Thus we see the equality for t' = t = 1.
The lemma for t>l follows immediately from that for ί=l and the above

lemma.
(ii) (ii) is clear by (i), Proposition 4.2 and the Cartan formula. q. e. d.

LEMMA 4.6. For q ̂  p +1 ̂  3,

i/

-* < if p=2.

PROOF. We prove the lemma by the induction on g = p+l, p + 2,....
If q=p +15 then q' — p'=p' and we see that

by the Cartan formula and the above lemma for t = p. Furthermore,

0 if
> ~ "-*. *υ \ , x^ f Λ

by the above lemma for t = 1. Thus we see the equality for q = p +1 ̂  3.
By the Cartan formula, (i) of the above lemma and the dimensional reason

that Sqlx=Q for i>dim x, we see easily that

Thus, we see the equality by the induction on q. q.e.d.

LEMMA 4.7. For q ̂  p +1 ̂  3,
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if p^4,

if J> = 3,

if p=2, q = 3,

PROOF. If q =p+ 1 or p+2, then the left hand side of the equality is equal

to

or

respectively. Thus, we see the equality for q=p+ί or p+2 by the Cartan for-
mula and Lemma 4.5 (i).

If q ̂ p+2, then we see easily that

by a way similar to the inductive proof of the above lemma. Thus, we see the
equality by the induction on q. q. e. d.

LEMMA 4.8. For /^O and b^l*-1^!,

(i) Sq'W»w2b. = Σi^Ov)4''-4''*1^*')21',

(ϋ) Sg<»+l+1>'-»' sg κw «ί»> w2fc. = 0,

where J(k; b)=(k', (fc-1)' ..... &').

PROOF, (i) The equah'ty holds for f =0 by Lemma 4.5 (i).
Assume inductively the equality for /. Then

= ΣU Σ2=o
- + ΣU

as desired, by Lemmas 4.5 (i), 4.6 and Proposition 4.2.
(ii) The equality holds for /=0 by Lemma 4.5 (i). Assume /^l. By (i),

it is sufficient to show that

Σ{=o^*'-v{(wt0
4''-4ί'+1(w2t0

2ί'} = 0

The left hand side is equal to

Σύ Σ?=

+ ΣU {V-' -4*'l'(M'» )4''-4< +1}(*'a» )41' = 0,



Wu classes and unoriented bordism classes of certain manifolds 583

as desired, by Lemmas 4.5 (i), 4.6, Proposition 4.2 and Lemma 4.7. q.e.d.

Now, by using the above results and Theorem 2.4, we can prove the following
lemma which implies (i) and (ii) of Theorem 4.3.

LEMMA 4.9. (i) For a ̂  b ̂  1,

(ii) Ifi = a'ί + a2fo

£'=«2 +1 (Wb')(i~j'"b'(w2b'Yj~bY tf b ̂  α2,

0 otherwise.

PROOF, (i) If fc = l, then the equality is clear by (2.8). Also, the equality
for a = b is trivial.

Let a>b>l. Then a'-bf = a'-l-(b'-l) = a'-l-\J(b-ϊ)\9 where J(b
-1)=((b -1)', (b - 2)',..., 1), and Theorem 2.4 (ii) shows that

- 1))} wd, =

where J**(Jι9...Ja-ι) is Siven bY

for Igp1< <jp6_1^α-l. Since S^wfr,=0 for ^<j<b'β by Lemma 4.5(i),

Sβ^wy = 0 if (p2f...i

and hence we see that

This is equal to (wf,0
(β~6+ιr by Lemmas 4.5 (i) and 4.8 (ii), and (i) is proved.

(ii) Letα 2>b^l. Then, i-26'=2αί-l-(αi-αi)-(26'-l) and

by Corollary 2.5. Therefore, by the dimensional reason that Sqjx=Q if j > dim x,

0i-26'W2i), = sg(-t-i)'fl(-i-i)'+ i

By repeating this process, we see that

0«-a*'W2b. = 1S
f^β^1i^>02βi-2

By (i) and Lemma 4.4, the last is equal to
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which is equal to the right hand side of the equality in (ii) by Lemma 4.8 (i).

Let a2 = b. Then, ί - 2b' = a[ - 1 - (br - 1) and we see that

0ί-2*'w2ft, = {S^(-ι-D - (J(b-l))}w2b, = Sq J< i-Mw2r

in the same way as in the proof of (i). Thus, we see (ii) for a2 = b by Lemma
4.8 (i).

Let b>a2. Then i-2b' = a'ί + a2-2b' is not a multiple of b'. Thus
Θί~2f''w2^ = 0 by Lemma 4.5 (ii) and (2.1). q.e.d.

PROOF OF (i) AND (ii) OF THEOREM 4.3. The desired results follow im-
mediately from Proposition 3.2, the assumption (4.1), (2.8) and the above lemma.

q.e.d.

To prove Theorem 4.3 (iii), we use the following two lemmas which are valid
without assuming (4.1).

LEMMA 4.10. Let i = a(-\ ----- \-a'k with al> ~>ak^.l and k^.3. Ifb<ak9

then

.-Kα.^-lW^

PROOF. Set is = a's + j + + a'k for 1 ̂  s ̂  k. Then, we can prove that

(4.11) e«-2*'wM. = SqA*...SqA*θ**-2b'w2b, (φM = (

by the induction on s (2^s^k) as follows.

If α 1 =fl 2 + l» th611 (4.11) for s = 2 is trivial. If aί>a2 + !9 then

i-2V = fli + ̂ -26' = 2a;-l-(a'1-i1)-(2&'-l) with ^-1^(^-1)',

and we see in the same way as in the first part of the proof of Lemma 4.9 (ii) that

by using Corollary 2.5. Thus we see (4.11) for 5 = 2.

Assume inductively (4.11) for s(<fc). If as = aa+1-+l9 then φs+ί = φs and
(4. 1 1) for s + 1 is trivial. Let αs > αs + ± 4- 1 . Then

φs-2b' = (αs + Sy-α; + l>2b/= 2(αs + 5-iy-l-K-fs)-(2ί>'-l)

with α's — is^(αs — I)7, and in the same way, we see (4.11) for t = s + l by

Qφs-2b'W2bf.-.Sq(αs+s-ir-(αs-iyg(αs+s-iy-(αs-ίy+is-2b'w
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Thus, we see (4.11). Furthermore, since φk-2b'=(ak + ky-a'k-2b'
= 2(ak + fc - 1)' - 1 - 4 - (2bf - 1), we see in the same way that

This equality and (4.11) for s = fc imply the lemma. q.e.d.

LEMMA 4.12. For i in the above lemma and b = ak,

PROOF. We see that (4. 1 1) is also valid in the case b = ak for 2 ̂  s ̂  k - 1 = /.
Furthermore, since

we see in the same way as in the above proof that

Thus, we see the lemma. q. e. d.

Now, we use the assumption (4.1) in the following

LEMMA 4.13. Letq>p>b^l. Then,

Sf«'-'f {ΣW (w»')a(i-*)f-2|f+1(wa»0r} = 0.

PROOF. Put

X. = (Wb,)2(«-6)'-2l' + l for l^i^q-b.

Then, by Lemma 4.5(i) and the Cartan formula, we see that

*!̂ ')1'} = Σi + Σ2 + Σ3,

(4.14) Σ2 = ΣW

Σ3 = Σ?=ί

Thus we can prove the lemma by showing

(4.15) Σi - Σ?=ί (wb.)^-^-

(4.16) Σz = (wi0
4(9'*)'~6(p~6)'+1(M'2i,')2(''~6)'

(4.17) Σs = ΣfΞΪ(w»')4(ί-*)'-2(p-I>)'-4f'M(M'2fc')
2ί'
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Proof of (4.15). If i^p-H-1, then άimx^q' -2p' + bf <q' -p' and so
Sqq'~p'xι = 0. For 1 ̂  ί ̂  p — fc, by the Cartan formula, Lemma 4.5 (i) and Propo-
sition 4.2, we see that

Thus, we see (4.15).

Proof of (4.16). In the same way as in the above proof, we see (4.16) by the
following

^

ίw^ίf-*)' (if issp-

)^-»>'-iw2r (if 1 = 1)

0 (otherwise) .

Proof of (4. 1 7). Let i ̂  p — b — 1 . Then, in a way similar to the above proof,
we see that

= ... = (vv^-ftr-βcp-b)'!^

= K04(€~*r~6(p"ft)/{^/"26/ίXvvfc0
2(p"fr)'"2Γ+1^

Here, by using Lemma 4.6, we see that

Let i=p—b. Then in the same way as above, we see that

(Sqt'-P'-Wxdfayy2*' =(wfc0
4(g-i')/"'6(p-ί'r+1(w2fc')2(

Let p - 6 < i ̂  # - 6. Then, in the same way,
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because Sq2b'l'~p'wb,=Q by the dimensional reason. Thus, we see (4.17); and the
proof of the lemma is complete. q. e. d.

LEMMA 4.18. Let ί=αi + + αί with α1> >α fc^l and fc^3. Then

θl-b'wb, = 0 for l

PROOF. If 6 = 1, then the equality holds by (2.8) and the assumption.
Let 1 ̂  6 < ak. Then, by Lemmas 4.10 and 4.9 (i), we see that

where α=(α f c+fc— ϊ)f~a'k and β=z(ak+k — b — 1)'. Since fc^>3 by the assump-
tion, α is not a multiple of βb' -(ak + k- 2)'. Therefore Sq*(w2b,)

β = 0 by Lemmas

4.4and4.5(i). Thus 0«-

Let 6 = αfc. Then, by Lemma 4.12,

0ί-2*'w2ί), = SqA* SqA*-tSq«'-P'θ*'-b'w2b, (̂ f =

Furthermore, by Lemmas 4.9 (ii) and 4.13, we see that

= 0.

Let ak<b. Then, i — 26' is not a multiple of V by the assumption, and we
see Θi-2b'w2b, =0 by Lemma 4.5 (ii) and (2.1). q. e. d.

PROOF OF (iii) OF THEOREM 4.3. The desired result follows immediately
from Proposition 3.2, the assumption (4.1) and the above lemma. q.e.d.

Thus, we have proved Theorem 4.3 completely. In the rest of this section,
we consider some examples of closed manifolds which satisfy (4.1).

EXAMPLE 4.19. Let RPn be the real projectiυe n-space. Then

wRPn = 1 4- ub' + ua' if n = α' + 6'-l with α>6^1,

where u e H^RP" Z2)=Z2 is the generator.

PROOF. We see the desired result by the fact that

wRPn = (1 + u)n+1

([6, Th. 4.5]) and (2.12). q. e. d.

For a (differentiable real) fc-plane bundle ζ-»Fover a closed d-manifold V9

we denote by
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p:RP(ζ)— *V

the associated projective space bundle with fiber RP*'1. Then, RP(ζ) is a closed

(d + k — l)-manifold.
Let ξn be the canonical line bundle over RPn, and mξn be the m-fold Whitney

sum of ξn. Consider the natural projection

pt: RP" x RPn - — > RPn (i = 1, 2)

of the product manifold RPn x RPn onto the ith factor, the induced bundle
pfmξn of mξn by pt, and the Whitney sum

ξ(n, m) = pfmξn φ pf mίΛ,

which is a 2m-plane bundle over RPn x #P". Then, we have the associated pro-
jective space bundle

p: RP(ξ(n, m)) - > RPn x RPn with fiber

EXAMPLE 4.20. //

n = a' + b' — l and m = a' with

then the total Stiefel-Whitney class of the (2n + 2m-l( = 4af + 2bf-3J)-manifold
RP(ξ(n, m)) is given by

wRP(ξ(n, m)) = 1 + p*{(uY: + u¥) + (u,u2)»' -I-

where u—pfu eH\RPn xRP"; Z2) and ueHl(RPn; Z2) is the generator.

PROOF. For the projective space bundle p: RP(ζ)-*V of a fc-plane bundle
ζ over a closed manifold V9 it is proved in [1, (23.3)] that

(4.21) H *(RP(ζ); Z2) is the free H*(V; Z^-moάule with basis 1, c,..., c*"1,
with the relation

c is the first Stiefel-Whitney class of the canonical line bundle over RP(ζ)
and w£ is the ith Stiefel-Whitney class of ζ. Furthermore, the total Stiefel-
Whitney class of RP(ζ) is given by

Consider the case that ζ is the 2m-plane bundle ξ(n, m) over the 2n-manifold
RPn x RPn in the example. Then,

>vξ(n, m) = [p*(l + u)™} {pί(l + uy*} = (1 + ιιf)(l + ιιj')
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(m = α/), and the first equality in (4.21) is

C2a> = {p*(M?- + wα' ) }cα< + p*^^)-'.

Therefore

= (1 + c)2"' + {p*« + ua

2')}(l + c)a' + p*(uίu2)"' = 1 + /?*« + u f ) .

Thus, by the last equality in (4.21) and Example 4.19, we see that

wRP(ξ(n, m)) =

= p*{(l + u\' + Mf')(l + ub

2' + M?')(l 4- wf

as desired. q. e. d.

Similarly, we have the following

EXAMPLE 4.22. Ifn = b'-l and m = a' with b > a ̂  1, then

wRP(ξ(n9 m)) = 1 + jp*(Mf' + tij').

REMARK 4.23. In Proposition 4.2, the assumption is necessary. In fact,

in Example 4.20, where w^= jp*(uJ'+«2') and w2ί,'=j

Finally, in connection with the condition (4.1), we notice the following

REMARK 4.24. Let M be a closed manifold.
(i) 7/Wy=0/or some fe^l, then wf = 0/or b'<>i<2b'.
(ii) // wM = 1 -h vvx + wf (i > 1) or wM = 1 + wf (i ̂  1), and i is not a power of

2 in addition, then wf = 0.

In fact, we can show (i) by using the equality

-,w/ (V <i<2V)

of (3.7) and by the induction on i. (ii) is an immediate consequence of (i).

§ 5. Unoriented bordism classes of certain manifolds

The purpose in this section is to prove the following

THEOREM 5.1. Assume that a closed manifold M satisfies (4.1), i.e., the
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total Stiefel-Whitney class wM is given by

(5.2) wM = 1 + Σ^i HV» wb,eH»'(M; Z2)

and let

(5.3) dimΛf = pί + .+p; wίί*

(i) If k^4 in (5.3) and

M/*' = 0

then the unoriented bordism class [M] o/M is 0.
(ii) //dimM is odd and k^3 in (5.3), f/ien [M]=0.

THEOREM 5.4. (i) //wM is 0/t en fey

wM = 1 4- HV 4- wc, /or some

k^2 in (5.3), ί/i^n [M]=0.
(ii) // wM=l-f Wj^ + Wf w/iere j>l is noί α power of 2, ί/iβn wf =
= 0.
(iii) // wM = 1 + wf /or some i ̂  1, ίΛen [M] = 0.

To prove these theorems, we study the Stiefel-Whitney numbers of M, which
is assumed throughout this section to satisfy (5.2) and k^.2 in (5.3), as follows.

By the assumption fe^2 in (5.3), we put

(5.3)' dimM = p' + ̂ ' + w with p>q and

and consider the following cohomology classes in H*(M; Z2):

At(b) = Σ5=

(5.5) B(b) = (w50
(

Then, we have the following

LEMMA 5.6. ΣUi Λ(&) = 0

Σξ=:i^(ί>) = 0, ΣJ-i *.(*). = 0

PROOF. By Theorem 4.3(i)-(ii), the ith Wu class υt is equal to

if *=(p-l

and Σ ί= i ^s(fc) if * = P' + s'9 respectively. On the other hand, vt = 0 if 2ί > dim M
by the definition of the Wu classes. Thus we see the lemma. q. e. d.
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LEMMA 5.7. For any b with 2^b^q,

Άt(b) = wb.w2b,At(b) = 0

S(b) = wb,w2b.B(b) + wb,w2b,B(b + l~) = 0,

B,(b) = nvw26,Bs(ί>) = 0

PROOF. Multiply the equalities in Lemma 5.6 by wb w2b.. Then, we see
the lemma by Proposition 4.2. q. e. d.

LEMMA 5.8. Άt = w^^l) = 0

B s wt.B(l) + wtB(2) = 0,

PROOF. In the same way, by multiplying the equalities in Lemma 5.6 by

j, we see the lemma. q. e. d.

LEMMA 5.9. For any b with 2^b^q, the equality

(whΎ(w2b.γ = 0

holds for α and β given as follows:

(1) α = l + G>' + «')/&', β = L

(2) α=l+(p '-<z ' + «')/*>', β = 2 + (q'-s'W

(3) α = 1 + p'/2b', β = l + q'/b'.

(4) α = l + ί'/b', J3 = l + (p'-2ί')/2ί>'

(5) α = l , β = 2 + p'!2b'.

PROOF. (3) By Lemma 5.7 and (5.5), we see that

= 0 if p^

'/2ί>' = Bq(b) = 0 if p = q + 1.

(4) (wb.)"(w2b,y> = (wt0
1+ί'/6'(w

= (w2tO
((p-2)'-'')/d'Λ(6) = 0.

(2) with s - q : (wi.)
1+p'/i>'(w2i(-)2 is equal to

(5) By the above result, we see that

vtv(w260
2+II'/2*' = w26J(ί>) = 0.
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(1) By (3) if p = q + l and by (4) with t = q if p^q + 2, we see that

01+ί'/fc'(w2ft0
1+*''2*' =0. Hence

= 0.

(2) with b<s<q: In the equality

Σ?=ί+ι is equal to

(wb,yp'+2s'-2«'V2b'Άq(b) = 0,

and the term foτj = p multiplied by w2ί,' is equal to (wb>y+5'/b'(w2b')2+p'/2b'> which
is 0 by (5). Therefore

By taking s = # — 1 especially, we see that

Thus, the desired equality is shown as follows :

~q f+sΊ/b'(w2b')2+(q'~s )/fc

= (w2bΎ+(q'-2sΊ/2b'Bs(fy = 0.

These complete the proof of Lemma 5.9. q. e. d.

We notice that the relations in Lemma 5.8 are obtained from those in Lemma

5.7 for b = l by replacing (w1)
α(w2/ by (wι)a(w2)

β~1 Thus, for 6 = 1, Lemma
5.9 turns out the following

LEMMA 5.10. The equality

(wOW*-1 = 0

holds for α and β which are given by the equalities obtained from (l)-(5) of
Lemma 5.9 by setting 6 = 1.

To study the Stiefel- Whitney numbers of M, we consider cohomology classes

(MV)*'*."^)1 eHdimM(M; Z2)

where the integer k(b, /) is given by

(5.11) /c(6,Q6/ + 2/6/ = dimM = p' + q'
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LEMMA 5.12. If(wb,)*(w2b )P=ίQfor some α and β, then

(Wd/)fc(ί>, 0(^^=0 for jS^/^n(α) = (dimM~αί?')/2ί>'.

PROOF. The lemma is clear, since k(b, /)^α for the above / by (5.11).
q.e.d.

By using Lemmas 5.9 and 5.12, we see the following

LEMMA 5.13. In (5.11), assume that

(5.14) m = ar' for r jg l and an odd integer α^3.

Then, for any b with 2^b^r,

(wb.)
k(b>l\w2b>y = 0 tf l^l^(dimM

PROOF. For α and β given in Lemma 5.9, we see easily that β and n(α) in
the above lemma are given as follows, where n0=(m — b')/2ί>':

(1) 0 = 1, n(α) = n0.

(2) β = 2 + (q'-

(3) β=l + q'/b'9
(4) jS = l+G?'-

(5) β = 2 + p'βb', n(α) = (dim M- &0/2i'.

Thus, for these β and n(α),

(5.15) (w*0*(* lKw2»')1 = 0

Here, we notice that n0 = (αr/~ ί?')/2fr/^l by the assumptions (5.14) and b^r.
Therefore, we see immediately that n(α) in (1) (resp. (2) for s = w ^ f e + 2, (2) for
s = fc + l, (3), (4) for t = v>q or (4) for t = q) is not smaller than β-l of β in (2)
for s = q (resp. (2) for s = u-l, (3), (4) for t=p-2, (4) for f = ι?-l or (5)). Thus,
we have the lemma by (5.15). q. e. d.

LEMMA 5.16. In (5.11), assume that

(5.17) m = ar' for r^l and an odd integer a^.1.

Then

(w^d.υ^y = 0 if 0^(dimM

PROOF. By using Lemma 5.10 instead of Lemma 5.9, we see the lemma in
the same way as in the above proof, since we have

= 0 (3
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instead of (5.15), for β and n(α) obtained from the above (l)-(5) by setting 6 = 1,
where n0 = (ar' - 1)/2 ̂  0. q. e. d.

Now, we are ready to prove Theorem 5.1.

PROOF OF THEOREM 5.1. (i) By the assumption that fe^4 in (5.3), we see

(5.14) where r = pk. Therefore, by the above two lemmas and Proposition 4.2,

we see immediately that all the Stiefel- Whitney numbers of M are 0 except for

Thus the desired result is an immediate consequence of the theorem of R. Thorn
(cf. [8, p. 95, Th.]) that

(5.18) [M] = 0 if all the Stίefel-Whitney numbers of M are 0.

(ii) By the assumption that dimM is odd and fc^3, we see (5.17) with
r = 1. Thus we see that all the Stiefel- Whitney numbers of M are 0 by the above
lemma and Proposition 4.2, and that [M]=0 by (5.18). q.e.d.

To prove Theorem 5.4, we notice the following

LEMMA 5.19. Assume that

(*) wM = 1 4- HV + W2b' for some 6^1,

and let k(b, /) be the integer given by (5.11). Then

(Hv)*(M)(w2*')f = ° f°r O^di

PROOF. By the assumption (*), Lemma 5.7. for 6 in (*) holds without

multiplying wί,,w26/. Thus, we see by the same proof as in Lemma 5.9 that

for α and β given by (l)-(5) in Lemma 5.9, and hence we have

W * ( M ) W ' ' = 0 5

instead of (5.15) by Lemma 5.12. Here, n(α — l) = n(α) + l/2 and so n(α — 1) is
given by the equalities obtained from those of w(α) in (l)-(5) in the proof of
Lemma 5.13 by replacing n0 with n0 + l/2 = m/26/^0 and (dimM — b')/2b' with

dim M/2bf. Therefore, we have the lemma in the same way as in the proof of

Lemma 5.13. q.e.d.

PROOF OF THEOREM 5.4. (i) Let c = 6 + 1. Then, the desired result fol-
lows immediately from the above lemma and (5.18).
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Let c> b + 1. Then, by the second equality in Lemma 5.6,

(wb,)(p-W + (wcO
(p~c+1)' = 0.

By Proposition 4.2, this equality implies that

I = 0 and (wO(p~c+1)'+1 = 0.

Hence (wί,0
fc(ft'0) = 0 = (wc0

fc(c'0) and all the Stiefel- Whitney numbers of M are
0. Thus, the desired result for ob + 1 follows immediately from (5.18).

(ii), (iii) By Remark 4.24 (ii), it is sufficient to show that

(*) if wAf = 1 + wft> for some b^l, then [M] = 0.

If k^. 2 in (5.3), then (*) is a special case of (i).
Let fc = l in (5.3), i.e., dimM = p' for some p^l. Then, by the assumption

of (*), Theorem 4.3 (i) and the dimensional reason, we see that

Thus [M] = 0 by (5.18). q.e.d.

EXAMPLE 5.20. The unoriented bordism classes of the (4a' + 2bf — 3)-

manifold RP(ξ(a' + b'-l, a')) given in Example 4.20 and the (2b' + 2α'-3>
manifold RP(ξ(b'-\, a')) given in Example 4.22 are all 0.

Finally, we notice that Theorem 5.4 (i) does not hold if /c = l in (5.3) (i.e.,
dim M is a power of 2), as is seen by the following two examples.

EXAMPLE 5.21. Consider the closed (2n + 2(=2t))-manifold RP(n, n, 0)

= RP(pΐξn®PΪξΛ®PΪξo) (n = ί'-l, ί = 2, 3, 4), given in [9, Lemma 3.4], where
Pi is the projection of RPn x RPn x JRP° onto the ith factor and ξi is the canonical
line bundle over RP*. Then,

n, n, 0)] Φ 0, W RPίn, n, 0) = 0 for z^3.

PROOF. The first assertion is valid, because [RP(n9 n, 0)] is indecomposable
by [9, Lemma 3.4]. The second assertion is shown by using [11, Lemma 2.9]
and [6, p. 39, Prop. 4]. q.e.d.

EXAMPLE 5.22. For RPP' with p>l9 it holds that

[RPP'] Φ 0 and wRPP' = 1 + wx + wp>.

PROOF. This is clear by Example 4.19 and (w^)pf ^0. q. e. d.
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