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1. Preliminaries

This article deals with oscillatory and asymptotic properties of the solutions
of differential equations with deviating arguments. The study is concentrated
to differential equations of "fundamental" forms, since, in view of a comparison
principle introduced by Staikos and Sficas [20, 21, 22], the results obtained can
be extended for differential equations of more general forms in such a manner
that is rather technical. More precisely, it is enough to treat here the n-th order
differential equation with deviating arguments

(i) χ(">(0 +

where the functions a, φ, σj (7 = !,..., m) are continuous and

lim^ σ/ί) = 00 (j = 1,,.., m) .

Most of the results here are concerned with the case where the function a is of
constant sign. Then the equation (1) can be written in the form

(1)' *<">(ί)/(a) + \a(t)\φ(Xlσι(ty],..., x[σm(ί)]) = 0, ί ̂  ί0,

where

is the so called sign index of the function a. For technical reasons, it is then
more convenient to work with the differential inequalities

^ 0, ί ̂  f0,

and

(l)i x<-)(ί)/(α) + KOIvώσiW] ..... x[ffjm £ 0, t £ t0,

associated to the equation (1)'.
The function φ, or equivalently, the differential equation (1) and the dif-

ferential inequalities (1)̂  and (1)'̂  are said to be:
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(AJ strongly sublinear to the right if φ is positive and increasing on

R?, R+ =(0, oo), and such that

J+o φ(y,..., y)

(A2) strongly sublinear to the left if φ is negative and increasing on R™,

l_ = (— oo, 0), and such that

-o φOv , >>)
< oo;

(A3) strongly sublinear if it is strongly sublinear to the both right and left,

and similarly,
(Bx) strongly superlinear to the right if φ is positive and increasing on

R? and such that

<p(y,—> y)
< oo;

(B2) strongly superlinear to the left if φ is negative and increasing on R™

and such that

oo;
J φ(y,..., y)

(B3) strongly superlinear if it is strongly superlinear to the both right and

left.
The pattern for the definitions above is the simple ordinary differential

equation

x<n) + a(t)xa = 0,

where the exponent α is the ratio of odd natural numbers. Obviously, it is
strongly sublinear for 0<α<l and strongly superlinear for α>l. This ordinary

V

equation has been treated by Licko and Svec [12] and its oscillatory and asymp-
totic behavior is well established. As far as we know, the terms sublinear and
superlinear differential equations have first been introduced by Coffman and
Wong [1]. Our definitions, though not identical to theirs, essentially follow the
same spirit and justification.

It is noteworthy to list here some consequences of the above definitions :
(a) If the function φ is strongly sublinear to the right, then

9...9 y) = oo.

Indeed, for any y>0 we have
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where obviously

dz
- = 0,

y/2 φ(z,...,z)

(b) If the function φ is strongly sublinear to the left, then

limy->-0y-ίφ(y,...,y) = oo.

Indeed, for any y<Q we have

1 _ y

where obviously

(c) If the function φ is strongly superlinear to the right, then

lim^oo y~lφ(y,..., y) = oo.

This follows from (2), since now we have

lim^ooί* dz = Ό.

(d) If the function φ is strongly superlinear to the left, then

., y) = oo.,

This follows from (3), since we have

τbr-°
THE KIGURADZE FIRST LEMMA. Let u be a positive and k-times differ-

entiable function on an interval \_A, oo) with its k-th derivative M ( f c ) nonpositive
and not identically zero on any interval of the form [β, oo).

Then there exist a tu^.A and an integer ΰ, O^^fc — 1, with k + £ odd and
such that

w < ' * > > 0 on \tu, oo) O' = 0,.,.,^)

and, provided that £<k—l,
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(-l)WιιU>>0 on [ίtt, oo) 0 = ^ + l,...,fc-l).

THE KIGURADZB SECOND LEMMA. Let u be a positive and k-times differ-
entiable function on an interval [A, oo) with itsk-th derivative w(fc) nonnegative
and not identically zero on any interval of the form [B, oo).

Then for some tu^A either (i) or (ii) holds:
(i) For every j=0,..., fc— 1

w ( '>>0 on [*M, oo).

(ii) There exists an integer 4, O^^fc-2, with k+£ even and such that

0 on [fα, oo) U = 0,...,4)

) > 0 on [ίu, oo) ϋ-/ + l,...,fc-l).

THE KIGURADZB THIRD LEMMA. Lei u be a positive and k-times differ-
entiable function on an interval [A, oo) with its k-th derivative w(fc) of constant
sign and not identically zero on any interval of the form [B, oo).

We set

t,<*-υ(f)t,<*>(ί) £ 0 for all large t,

then for every θ, 0<0<1, we have

(4) u(θt) ^ Maί*-1!̂ *"1^)! fa "U Iar9e t

and when, in addition lim^^ u(t)^09 then

(5) w(f) ^ ΘAίi/aί*-1!"^"1^)! /^r «W large t.

Moreover, if u is increasing, the last inequality holds also for 0=1.

REMARK 1.1. The Kiguradze first and second lemmas are versions of
results that appeared in Kiguradze [5, 6]. They are stated here in a form suit-
able for our purposes. The Kiguradze third lemma has also partly appeared in
Kiguradze [5, 6] where the inequality (4) is proved for a certain value of θ. In-
equality (5) appeared in Sficas [16]. The version presented here is due to
Grammatikopoulos, Sficas and Staikos [3].

In the next sections we make use of Theorems 1.1 and 1.2 below which have
been given by Staikos in [19].

THEOREM 1.1. Let the function a be of constant sign and let the differential
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inequality (1)̂  [respectively the inequality (1)̂ ] subject to the conditions:
(Ci) The function φ is defined at least on the set

> 0 or (Vi)3>i < 0}

and has the following sign property:

(Vί = 1,..., ro)tt > 0=><p(j>i,..., yj > 0

and

(Vi = 1,..., m)yi < Q=$φ(yl9..., yj < 0.

(C2) ^ t»-ι\a(t)\dt = oo.

Then for all eventually nonnegative [respectively nonpositive'] and bounded
solutions x of the inequality (1)'̂  [respectively 0/(l)^] we have

(6) lim,^ x(''> = 0 monotonically (j = 0,..., n - 1).

Moreover, nonoscillatory such solutions occur only when a is nonnegative
and n is odd, or a nonpositive and n even.

THEOREM 1.2. Consider the differential equation (1) subject to the con-
m (Ci).
// the function a is of constant sign, then the condition

(C3)

is a necessary and sufficient condition in order that the equation (1) have a
solution x so that the lim^oo x(t) exists in R —{0}.

We need further the following basic asymptotic result. For other related
to it as well as for various generalizations in this line we refer to Philos, Sficas
and Staikos [13].

THEOREM 1.3. Consider the differential equation "(1) subject to the con-
ditions (Cj) and:

(C4) For some constant μ^O,

<..po.

If the function φ is increasing, then there exists a solution x of the equation
(1) so that the lim,-^ x^"1^) exists in R- {0}.
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2. The case of sublinearity

First of all, we are interested in some results concerning the differential
inequalities (1)̂  and (1) .̂ The oscillatory and asymptotic behavior of the
equation (1) follows then easily. For our purposes, we introduce here the func-

tions Ty (7 = !,..., ra) defined by

(7) τ/0 = min {f, σ/ί)} .

THEOREM 2.1. Let the function a be of constant sign and let φ have on R?
the exponential property

(8) φ(yίzί9...9ymzm)^Kφ(yί9...9ym)φ(zί9...9zm)9

where K is a positive constant.
If the differential inequality (1)̂  is strongly sublinear to the right and

(C5) J°° \a(t)\φ(τΓ\t\...9 τn

m~\t))dt = oo,

then:
(i) For nonnegative a9 every eventually nonnegative solution x of the

inequality (l)!g satisfies (6).
(ii) For nonpositive a, every eventually nonnegative solution x of the

inequality (1)'̂  satisfies (6) or

(9) lim^oo xu\f) = oo monotonically (j = 0,..., n — 1).

Moreover, for such nonoscillatory solutions x, (6) occurs only when n is
odd in case (i), while in case (ii) it occurs only when n is even.

PROOF. By (8), for y> Owe have

But, because of the sublinearity of the function φ9

9...9 z) = oo

and consequently for all large y,

Kφ(y9...9 yjg

Therefore, since lim^^ Tj(t) = oo (7 = !,..., m) and φ is increasing on R?, by (7),
we have that for all large t

Kφ(τΓl(i)9...9 τΓKO)
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Thus, condition (C5) implies (C2).
Now, we consider the differential inequality

(10) z(-)(0/(α) + KOI<Kz[σι(0],.. , z\*jm ^ 0,

where

ί <Pθ>ι» r ym)> if 0>ι> > yjedomφ and (V;>,. ̂  0
,3U = |

I -<K-.Vι, , -J>m), if (->Ί, . , -yjedomφ and (Vj>y ^ 0.

Since, under the assumptions of the theorem, condition (C2) is satisfied, we can
apply Theorem 1.1 for the inequality (10) to obtain that every eventually non-
negative and bounded solution x of the differential inequality (1)̂  satisfies the
conclusion of the theorem.

It remains to prove the theorem for the unbounded solutions. To this end,
let us consider an unbounded solution x of the inequality (1)'̂ , which without
loss of generality is supposed nonnegative on the whole interval [f0, oo). More-
over, because of lim^^ τ/0 = oo, let T, T^ί0, be chosen sufficiently large so that
for; = l,..., m

τ/ί) ̂  max {ί0, 0} for every t ̂  T.

From (1)'̂  and the positivity of φ on R!J! we obtain

(11) x^(t)I(a) ^ 0 for every t ̂  T

and therefore all derivatives χU> (j = 0,..., n - 1) are eventually monotone. Thus,
because of the unboundedness of x, lim^^ x(t) = co and hence, without loss of
generality, we suppose that n > 1 and

(12) x(ί) > 0 and x'(i) ^ 0 for every t ̂  T.

Moreover, x(n~l\t) is not identically zero for all large t. Indeed, we obviously
have

,..., *[>m(0]) > 0 for all large t

and consequently, in the opposite case, from (1)'̂  we get

\a(ί)\ = 0 for all large ί,

a contradiction to the condition (C5).
Now, let tx, tx^T9 be assigned to the function x as in the Kiguradze first or

second lemma applied for k=n and let us suppose that limί^00x
(π"1)(ί)=0.

Then, by (11), we must have

(13) x< -»(f)I(ά) > 0 for every t ̂  tx.
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Therefore, we can apply the Kiguradze third lemma for u=x and k=n to obtain

x(0 ^ M1/2F~W-»(t)\ for all large t.

From (11) and (13), we get that l^""1^ is decreasing and hence, by lim^^ τ/ί)
= 00, (7) and (13),

*[τ/0] ̂  Λ^ι/2τ"~1(0χ(w~1)(0^(α) f°r every t Ξ> tl9

where f i ^ f * is sufficiently large and j = l,..., m. Thus, by using (1) ,̂ (7), (12),
the increasing character of φ and its exponential property (8), for t ̂  tl we have

i.e.

1~l(f\ τn~1ffYl < — -—*w'"'9 Ίm (l)) = K φ(M1/2χ(n-»(t)I(a),..., Mί/2x^n-^(ί)I(a)) '

Hence, by integration,

Jίi m ~~ KMί/2 J+o

a contradiction to condition (C5).
We have thus proved that the lim^^ x^n'l\t\ which obviously exists in the

extended real line R*, must be nonzero. Therefore and since x is positive

(14) x<π-1>(ί)>0 for every / ^ tx.

For nonpositive α, by Taylor's formula and (11), we get

(t-tx)

and hence there exists a positive constant μ such that

(15) x(t) ^ μt""1 for all large t.

For nonnegative α, by (11) and (14), we can apply the Kiguradze third lemma for
u=x and fc=n to obtain

x(t) ^ M1/2in"1|^(n""1)(OI for all large t

and consequently (15), since lim^^ fjc(""1>(i)|>0.
Since lim^^ τ/ί) = °o, (15) gives

for every ί ̂  ί2,
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where t2^tx is sufficiently large and 7 = !,..., m. Thus by (7), (12), the increasing
character of φ and (8), from the inequality (1)̂  we obtain that for every f Ξ>f2

< - Kφ(μ9...9 μ)\a(ί)\φ(τΓ\t\...9

Therefore, by integration,

ι>(*2) - Kφ(μ9...9

and hence, by condition (C5),

(16) lim,^ x<»-ι>(0 = - I(α)oo.

But, because of (14), this is the case where a is nonpositive. Hence, (9) is easily
derived from (16).

THEOREM 2.2. Let the function a be of constant sign and let φ have on Rϊϋ
the exponential property

(17) - φC-j^Zj,..;, -ymzm) ^ Kφ(yί9...9 yjφ(zl9...9 zj,

where K is a positive constant.

If the differential inequality (1)'̂  is strongly sublinear to the left and

(C6)

then :
(i) For nonnegative a, every eventually nonpositive solution x of the

inequality (1)'̂  satisfies (6).
(ii) For nonpositive α, every eventually nonpositive solution x of the in-

equality (1)'̂  satisfies (6) or

(18) lirn^oo χU\t) = - oo monotonically (j = 0,..., n - 1).

Moreover, for such nonoscillatory solutions x9 (6) occurs only when n is
odd in case (i), while in case (ii) it occurs only when n is even.

PROOF. The substitution z=-x transforms the inequality (1)̂  into an
inequality of the form (1)̂  satisfying the assumptions of Theorem 2.1. Indeed,
the transformed inequality is
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^ 0,

where φ(yΐ9..., ym) = -<p(-yl9...9 -ym). Thus, since φ is strongly sublinear to

the right, the theorem follows immediately from Theorem 2.1.

Since the solutions of the equation (1) are the solutions common to both

differential inequalities (1)̂  and (1)'̂ , we get immediately the following corollary.

COROLLARY 2.1. Let the function a be of constant sign and let φ have on
Rίf and R™ the exponential properties (8) and (17) respectively.

If the equation (1) is strongly sublinear, then under conditions (C5) and

(C6) we have:
( i ) For a nonnegative and n even, every solution of (I) is oscillatory.
(ii) For a nonnegative and n odd, every solution x o f ( ϊ ) is oscillatory or

satisfies (6).
(iii) For a nonpositive and n even, every solution x of (i) is oscillatory or

satisfies one of (6), (9) and (18).
(iv) For a nonpositive and n odd, every solution x of (1) is oscillatory or

satisfies one of (9) and (18).

We now turn our attention to a particular class of differential equations of
the form (1), which includes the ordinary, retarded equations and some other of
advanced or mixed type. This class is characterized by the condition

(C7) For every ; = !,.. ., m,

limsup^^ Γlσj(t) < oo.

Under this condition and for any strongly sublinear function φ having on R?

and Rϋ! the exponential properties (8) and (17) respectively, one can prove that

conditions (C5) and (C6) are respectively equivalent to the following ones :

(C8) J \a(t)\φ(σΓί(t),...,σ"m-i(ty)dt=co

and

Actually, we have the following "if and only if" corollary.

COROLLARY 2.2. Let the functions a and φ be as in Corollary 2.1 and let
condition (C7) be satisfied.

If the equation (1) is strongly sublinear, then both conditions (C8) and(C9)
constitute a necessary and sufficient condition in order to have the conclusion
of Corollary 2.1.
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PROOF. The necessity follows immediately from Theorem 1.3. For the
sufficiency, as stated above, we have to prove the equivalence of conditions (C5)
and (C6) to (C8) and (C9) respectively. But, because of the exponential properties
(8), (17) and the increasing character of φ, it is enough to prove that there exists
a positive constant M such that for j = l,..., m

(19) Mσ/0 ^ τ/ί) ^ σ/ί) for all large ί.

To this end, we observe that the right part of (19) is obvious by (7). The left one
follows from condition (C7), since, by (7) again, for all large t with τ/O^O we
have

£ώ3_ J1' if σj(t

τX') ( r*σj(t) , if σj(t

The equivalence of conditions (C5) and (C6) to (C8) and (C9), in general,
ceases to hold when condition (C7) fails. So, condition (C7) can not be removed
from the above corollary. This is illustrated by the following four examples of
advanced differential equations. These equations fail to satisfy condition (C7).
However, they satisfy the rest of the assumptions of Corollary 2.2 including
conditions (C8) and (C9).

EXAMPLE 2.1. The equation

x"(0 4- (1/4) r2*1/3^3) = 0, t ̂  1

has the nonoscillatory solution x(i) = tl/2

9 a contradiction to conclusion (i) of
Corollary 2.1.

EXAMPLE 2.2. The equation

x'"(0 + 6(f12 4- f6)-1/3*1/3^6) = 0, t ̂  1

has the solution x(i) = l + Γl for which limί^00x(0 = l, a contradiction to con-
clusion (ii) of Corollary 2.1.

EXAMPLE 2.3. The equation

*""(0 - (9/16) r4*1/3^3) = 0, t ̂  1

has the solution x(i) = ί3/2 for which we have

f oo for j = 0, 1

[ 0 for 7 = 2,3,

a contradiction to conclusion (iii) of Corollary 2.1.
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EXAMPLE 2.4. The equation

*'"(0 - (3/8) Γ3*1/3^3) = 0, ί ̂  1

has the solution x(i) = t1/2 for which we have

I oo for j = 0

0 for j = l,2,

a contradiction to conclusion (iv) of Corollary 2.1.

REMARK 2.1. It would be desirable to study the sublinear case without
the condition of the exponential properties (8) and (17). From the arguments
presented in this section though, it is apparent that the role of these conditions
is essential to our method. Perhaps another method would turn out to be more
successful and the ensuing results would be of significant importance. This is
said in view of the fact that in the superlinear case which follows in the next
section no such condition is imposed. We hasten to add that as far as we know
the sublinear equations that appeared in the bibliography satisfy the above men-
tioned exponential properties. So, one usually encounters sublinear differential
equations of the form (1) with the continuous function φ defined by

at least on the set {j;eRm: (Vϊ)jί>0 or (V0}>ί<0}. The simplest case when
m = l, i.e. φ(y)=\y\* sgn y drew much attention in the bibliography.

REMARK 2.2. The results of this section concerning the sublinear case are
presented in a form which is essentially new. Parts of Theorems 2.1 and 2.2 are
covered by Kusano [8, Theorem 3.2]. Also the results of Kusano and Onose
[9, 10] concerning special cases of higher order differential equations are very
close to ours.

3. The case of sαperlinearity

We treat this case by starting again with the differential inequalities (1)'̂
and (!);>•

THEOREM 3.1. Let the function a be of constant sign and let τ be a con-
tinuously differentiate function on [ί0, oo) with nonnegative defivάtiύέy

lim^α τ(0 = oo and such that

(20) τ(ί)^min{/, σί(t),...,σm(t)} for every t = ί0.

If the differential inequality (1)% is strongly superlinear to the right and
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(C10)

then the conclusion of Theorem 2.1 holds.

PROOF. Obviously, by (20), condition (C10) implies (C2) and hence, as in
the proof of Theorem 2.1, it is enough to prove the theorem for the unbounded
solutions only. So, let us consider an unbounded solution x of the inequality
(l)g, which without loss of generality is supposed nonnegative on the whole
interval [ί0, oo). Also, due to limί_00τ(0 = oo, we choose a sufficiently large T,
T^ί0,sothat

τ(0 ̂  max {t0, 0} for every t ̂  T.

As in the proof of Theorem 2.1, we also derive (11) and (12), i.e.

x<n>(0/(0) ^ 0 for every t ̂  T

and

x(0 > 0 and x'(i) ^ 0 for every t ̂  T.

Finally, x(n""1)(ί) is not identically zero for all large ί, since, because of condition
(C10), the same holds true for α(ί).

Now, let tx, ίjc^T, be assigned to the function x as in the Kiguradze first or
second lemma applied for k=n and let us suppose

(21) jc^-^CO/Cfl) > 0 for every t ̂  tx.

By setting

(22) z(0 = - x^^(tV(a) Γ _τn-2(s)τ'(s) ,
' Jt

we obtain from inequality (!)'<;

But, because of (20), the increasing character of φ and the fact that lim^^ τ(0
= 00, we have

(24)
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for some constant X>0 and for all large t. On the other hand, since lim,^ τ(ί)

= 00, from the Kiguradze third lemma applied for u = x'9.θ^l/2 and /c=n-l,

it follows that

x'[<0/2] ^Mj^τ^COIx^-^WO]! for all large t.

Since, by (11) and (21), Ix^"1^ is decreasing on [ίx, oo) and because of (20) we

have

*ΊXO/2] ^ M1/2τ"-2(f) Ix*"-1^)! for all large t.

Using this inequality, by (21) and the increasing character of φ, we get

(25) Λ("-"(/)y(β)τ"-*(/)τ'(/)/φ(x[τ(/)],..., *[τ(0])

for all large ί. From (23), (24) and (25), it follows that for some ίt ̂  tx and every

z'(f) ^ Kτ^\t)\a(t)\-2

Thus, by integration, we have

ί)/2] .J,,
dy

ft *> Cx[t(ί)/
z(t) ^ z(O + K\ τ -i(s)\a(s)\ds - -^—

Jίi Ml/2 Jx[τ(fι)

where lim^^ x[τ(ί)/2] = 00. Since

3
< 00,

by condition (C10), we obtain lim^^ z(ί)= oo, which contradicts the nonpositivity
of z derived from (12), (21) and (22). This means that (21) fails.

We have thus proved that

(26) x^-^CO/ία) < 0 for every t ^ tx.

By virtue of the Kiguradze first lemma, this is the case where a is nonpositive and
consequently, by (11) and (26) we have

x<">(0 ^ 0 and χi*-»(f) > 0 for every t ^ tx.
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Thus, by Taylor's formula, we obtain

, - fr *

for any ί^ίx and consequently that there exists a constant L>0 with

x(ί) ̂  Li""1 for all large ί.

Hence, because of lim^^ τ(ί) = oo,

x[<0] ̂  Lτ""1^) for all large ί.

But φ is increasing on R? and lim^^ ;"1 <p (>>,..., y) = oo. Therefore, for some
1 2 ̂  ίx and every t ̂  ί2

φ(x[τ(0],..., x[τ(0]) ̂  φίLτ "̂ ),..., Lτ--K0) ̂  ̂ -'HO .

From inequality (1)̂  and because of the increasing character of φ for t^t2 we
obtain

Finally, by integration,

and hence, by condition (C10), lim^^ x(π~1)(ί) = oo. This easily implies that the
solution x satisfies (9).

THEOREM 3.2. Let the functions a and τ be as in Theorem 3.1.
// the differential inequality (1)̂  is strongly superlinear to the left and

satisfies condition (C10), i.e.

then the conclusion of Theorem 2.2 holds.

PROOF. It is enough to verify all assumptions of Theorem 3.1 for the
differential inequality below, obtained from the inequality (1)̂  by the trans-

formation z = — x,

^ 0,

where the function φ is defined by the formula
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The following corollary concerning the equation (1), is immediately obtained
from the above Theorems 3.1 and 3.2.

COROLLARY 3.1. Let the functions a and τ be as in Theorem 3.1.
If the equation (1) is strongly super linear and satisfies condition (C10), i.e.

then:
( i ) For a nonnegatίve and n even, every solution of(Γ) is oscillatory.
(ii) For a nonnegative and n odd, every solution x of (i) is oscillatory or

satisfies (6).
(iii) For a nonpositive and n even, every solution x of (1) is oscillatory or

satisfies one of (6), (9) and (18).
(iv) For a nonpositive and n odd, every solution x of (1) is oscillatory or

satisfies one of (9) and (18).

Differential equations of the form (1) subject to the condition
(Cii) For every j = l,..., m

lim inf^oo Γlσj(t) > 0

include obviously the ordinary, advanced equations and some other ones of
retarded or mixed type. For such differential equations we can take τ(f) = ct,
where

c = min {1, 2"1 lim inf,^ r1 σv(i),..., 2'1 lim inf^*, Γ1σm(ί)}

and therefore, condition (C10) specializes then to the condition (C2), i.e.

tn"l\a(t)\dt = ao.

COROLLARY 3.2. Let the function a be of constant sign and let condition
(Cn) be satisfied.

If the equation (1) is strongly superlinear, then the condition (C2) is a
necessary and sufficient condition in order to have the conclusion of Corollary
3.1.

PROOF. The sufficiency of the condition (C2) is obvious by Corollary 3.1.
Its necessity follows from Theorem 1.2.

Finally, we remark that condition (C2), though necessary to have the con-
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elusion of Corollary 3.1, it is not always sufficient when (C^) fails. This follows
immediately by the examples 3.1-3.4 below, where for each case the conclusion of
Corollary 3.1 fails.

EXAMPLE 3.1. For the retarded differential equation

x""(ί) + (15/16) Γ4*3^1/3) = 0, ί^l

condition (C2) is satisfied while (C^) fails. This equation has the nonoscillatory
solution x(f) = f1/2, a contradiction to conclusion (i) of Corollary 3.1.

EXAMPLE 3.2. For the retarded differential equation

x'"(0 + (10/27) r5/2*7/5^1/2) = 0, t ^ 1

condition (C2) is satisfied while (C^) fails. This equation has the solution
x(ί) = f 5/ 3 for which lim^^ x(0=oo, a contradiction to conclusion (ϋ) of Corol-
lary 3.1.

EXAMPLE 3.3. For the retarded differential equation

x""(ί) - (40/81) Γ7/2*7/5^1/2) = 0, t ̂  1

condition (C2) is satisfied while (Cn) fails. This equation has the solution
x(f) = ί5/3 for which we have

ί oo for j = 0, 1

I 0 for j = 2, 3,

a contradiction to conclusion (iii) of Corollary 3.1.

EXAMPLE 3.4. For the retarded differential equation

x'"(ί) - (3/8) Γ3*3^1/3) = 0, t ̂  1

condition (C2) is also satisfied while (Cn) fails. This equation has the solution
x(t) = t1/2 for which we have

I oo for 7 = 0

0 for j = l,2,

a contradiction to conclusion (iv) of Corollary 3.1.

REMARK 3.1. The results of this section concerning the superlinear case
are of high degree of generality. The version presented here is essentially based
on Grammatikopoulos, Sficas and Staikos [3]. Theorems 3.1, 3.2 and their
Corollary 3.1 are originated in the papers of Kartsatos [4], Ryder and Wend [14]
and Sficas and Staikos [17]. For closely related results we refer to Kusano [8],
Kusano and Onose [11] and Sficas and Staikos [18].
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4. Some applications-The mixed case

The oscillatory and asymptotic results on differential inequalities obtained

previously in sections 2 and 3 permit a further generalization which unify Corol-

laries 2.1 and 3.1, i.e. sublinear and superlinear cases. More precisely, the

differential equation under consideration is of the form

(27) x<">(f) +

where all functions involved are continuous and moreover φί has on R?1 and

R™1 respectively the exponential properties

and

for some positive constant K.

COROLLARY 4.1. Lei the functions al9 a2 be of constant sign with

= /(α2) and let h have the following sign property:

(C12) For every t, yθ9...9 yN_ί9

> 0 =>/(α1)Λ(ί; ̂ -^ JN-I) ̂  0,

< 0 =»/(α1)Λ(ί; Jov, JN-I) ^ 0.

Moreover, let the functions τj (7 = !,..., mj,

τ/0 = min {ί, σιy(ί)}

ί τ be a continuously differentiate function on [ί0, oo) wίί/i nonnegative

derivative, lim^^ τ(ί) = oo and such that

ί, σ21(0,...,σ2»a(0} for every t ̂  t0.

i is strongly sublinear and φ2 strongly superlinear, then, under condition

(C13) °° [|flι(OI \Ψι(^Γ\^..,δτn

m-\f))\ + τ--i(OI*2(OI]Λ = oo, ^ = ±1,

the equation (27) satisfies the following :

( i ) For aί9 a2 nonnegative and n even, every solution is oscillatory.
(ii) For aί9 a2 nonnegative and n odd, every solution x is oscillatory or
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satisfies (6).
(iii) For al9 a2 nonpositive and n even, every solution x is oscillatory or

satisfies one of (6), (9) and (18).

(iv) For al9 a2 nonpositive and n odd, every solution x is oscillatory or
satisfies one of (9) and (18).

PROOF. Because of condition (C12) and the sign properties of the sublinear
function φi and the superlinear one φ2, the nonnegative solutions of the equation
(27) are also solutions of both inequalities

(28) x(">(0/(βι) + |βι(OIΦι(*[σιι(0],. , x[*ιmίm ^ 0

and

(29) x^(t)I(a2) + \a2(t)\φ2(x[σ2l(ty]>..., *l>2«2(0]) ^ °

Similarly, the nonpositive solutions of the equation (27) are also solutions of both

inequalities

(30) x(">(0/(βι) + MOI<Pι(*[>ιι(0],..., x[σlmι(ί)]) ^ 0

and

(31) xM(t)I(a2) + \a2(ί)\φ2(x[σ2l(ty]9. ..9 x[σ2m2(ί)]) ̂  0.

Since condition (C13) implies

= <5oo, 5 = ±

or

we can apply respectively Theorems 2.1 and 2.2 for the sublinear inequalities (28)
and (30), or Theorems 3.1 and 3.2 for the superlinear inequalities (29) and (31)
in order to obtain the conclusion of the corollary.

Now, we confine ourselves to dealing with a typical example of a differential
equation of the form (27), namely the equation

(32) χ(»)(ί) + fll(ί) IxhMO] sgn x[σι(ί)]

+ α2(0 Mα2l>2(0] sgn x[(J2(0] = 0, t ^ ί0,

where 0<o^ < 1 <α2.

COROLLARY 4.2. Let the functions aί9 a2 be of constant sign with /(αx)
= I(a2) and let σ l 5 σ2 be such that
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(C14) limsup^αoΓ ^iCO < oo and Iiminf f^βo/"1σ2(/) > 0.

Then, the condition

(C15) °° [|flι(0kί""1)βl(0 + P-'MOIIΛ = 00

is sufficient in order that the equation (32) satisfy the conclusion of Corollary

4.1. Moreover, condition (C15) is 'also necessary in the extreme cases where
either aί=0 or a2 = 0.

PROOF. Because of the second part of condition (C14), we can apply Corol-
lary 4.1 for the equation (32) by taking τ(f) = cf, where c is an appropriate positive
constant. So, condition (C13) specializes then to

oo,

which in turn, by virtue of the first part of condition (C14), is equivalent to the
condition (C15). Thus the sufficiency of (Cj 5) follows immediately from Corollary
4.1.

In the extreme cases where either a1=Q or a2 = Q9 condition (C15) takes
respectively the form

tn~l\a2(f)\dt = oo or (°° σi""1)βl(0 M*)!̂  = oo.

Hence, by applying Corollary 3.2 or 2.2, we get also the necessity of condition
(C15) for the two considered cases.

REMARK 4.1. As far as we know, it is an open question whether condition
(C15) is also necessary for the strict mixed case. For the particular case where
n=2 and al9 a2 are nonnegative, Gollwitzer [2] claims that the necessity always
holds true. His claim is based on the assertion that, when condition (C15) fails,
then there exists a solution x with lim^^ x(i) = 1. But we can illustrate that this
assertion fails to be true even in the case of ordinary differential equations. In-
deed, for the sublinear differential equation

(33) x"(t) + Γ2*3/5(0 = 0, t ̂  1

condition (C15) fails. On the other hand, we have

(•oo fαo

\ tΓ2dt = \ Γldt = oo

and hence, by Theorem 1.1, equation (33) has no bounded nonoscillatory solution.
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REMARK 4.2. The results of this section are indicative of the significance
of the approach used in the previous sections 2 and 3. The strictly mixed
sublinear-superlinear case is not encountered in the bibliography. The special
case of the equation (32) has been recently studied by Koplatadze and Chanturia
[7]. Also, for the extreme cases of (32) and in connection with higher order

differential equations we mention the work of Sevelo and Vareh [15]. Similarly,
a considerable amount of work has been done for second order equations to which
the so called Emden-Fowler equation can be reduced. For a survey and an
extensive bibliography we refer to the article of Wong [23].
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