Asymptotic values of meromorphic functions of smooth growth

Hidenobu Yoshida

(Received September 16, 1980)

1. Introduction

In the following, the standard notation of Nevanlinna theory (e.g., see Hayman [7]) will be used.

Hayman [8] gave a striking example of a meromorphic function $f(z)$ in the whole plane such that $\delta(\infty, f)=1$ but ∞ is not an asymptotic value of $f(z)$. To point out that the singular behaviour of this $f(z)$ is essentially associated with the irregular growth of Nevanlinna characteristic $T(r, f)$, he picked up several sorts of smoothly growing conditions of $T(r, f)$, under which certain deficient values are asymptotic values.

In [8, Corollary 2], Hayman proved that, if a meromorphic function $f(z)$ satisfies the smoothness condition

$$
\begin{equation*}
T(2 r, f) \sim T(r, f) \quad(r \rightarrow \infty), \tag{1}
\end{equation*}
$$

then any deficient value of $f(z)$ is an asymptotic value of $f(z)$. Further, extending the result [3, Theorem 4] and answering to the question [2, 2.57], Anderson [1] proved that for $f(z)$ satisfying (1), if w is a deficient value of $f(z)$, we can find a path Γ going to ∞ and satisfying

$$
\begin{equation*}
L(r, \Gamma)=r(1+o(1)) \quad(r \rightarrow \infty) \tag{2}
\end{equation*}
$$

along which

$$
\begin{array}{ll}
\liminf _{|z| \rightarrow \infty}(\log 1 /|f(z)-w|) / T(|z|, f) \geqq \delta(w, f) & (w \neq \infty) \\
\liminf _{|z| \rightarrow \infty}(\log |f(z)|) / T(|z|, f) \geqq \delta(w, f) & (w=\infty)
\end{array}
$$

where $L(r, \Gamma)$ is the length of the arc $\Gamma \cap\{z:|z| \leqq r\}$.
The aim of this paper is mainly to extend this Anderson's result to meromorphic functions of positive order $\rho(\rho<1 / 2)$ satisfying the smoothness condition

$$
\begin{equation*}
\lim \sup _{r \rightarrow \infty} x^{-\rho} T(r, f)^{-1} T(x r, f) \leqq 1 \tag{3}
\end{equation*}
$$

for any $x(x>1)$, because meromorphic functions satisfying (1) have order 0 (see Hayman [8, p. 130]). But, we could not get any result corresponding to (2),
since we did not use the method depending essentially on Boutroux-Cartan's lemma which provides an estimate from below for the modulus of a polynomial. So, Hayman conjectures that it would be possible to take an asymptotic path Γ in our results which has also the property

$$
L(r, \Gamma)=\mathrm{O}(r) \quad(r \rightarrow \infty)
$$

It seems that this (3) is a natural generalization of (1) to higher order $\rho(0 \leqq \rho$ $<1 / 2)$ of $T(r, f)$. In fact, we have Hayman's result [8, Corollary 2] by putting $\rho=0$ in Theorem 3 which says that if (3) and

$$
\delta(w, f)>2 \rho
$$

are satisfied, w is an asymptotic value of $f(z)$.
We introduce another smoothness condition which generalizes the concepts of 'very regular growth' and 'perfectly regular growth' in the sense that $T(r, f)$ is compared not only with $r^{\rho}(0 \leqq \rho<1 / 2)$ but also with $r^{\rho(r)}$: there exist a proximate order $\rho(r)(\rho(r) \rightarrow \rho)$ and two constants c_{1}, c_{2} such that

$$
\begin{equation*}
0<c_{1} \leqq{\lim \inf _{r \rightarrow \infty}} r^{-\rho(r)} T(r, f) \leqq \lim \sup _{r \rightarrow \infty} r^{-\rho(r)} T(r, f) \leqq c_{2}<+\infty . \tag{4}
\end{equation*}
$$

We shall also consider an analogous problem for the functions satisfying (4) instead of (3) to obtain sharper results. As one of them Corollary 5 is a result sharper than Hayman's [8, Corollary 3].

Our results are deeply based on problems of finding a path on which an entire function $g(z)$ having the smooth growth of

$$
B(r, g)=\max _{|z|=r} \log |g(z)|
$$

grows quickly, and the problems also depend on Denjoy integral inequality (Lemma 2) whose proof is completely elementary and which is far-reaching. It should be remarked that we need the value of the constant K as accurate as possible, in obtaining the following type of results: There is a path along which

$$
\liminf _{|z| \rightarrow \infty} B(|z|, g)^{-1} \log |g(z)| \geqq K
$$

The author would like to thank Professor W. K. Hayman and Professor M. Ohtsuka for their help in preparing this paper.

2. Definitions and a lemma

Let $h(r)$ be a positive non-decreasing function defined on the interval (R, ∞), where R is a positive constant. For $\rho \geqq 0$, we put

$$
C(x, r)=x^{-\rho} h(x r) / h(r) .
$$

We say that $h(r)$ satisfies the smoothness condition (A) of type (ρ, c), if $h(r)$ satisfies the condition:

$$
\lim \sup _{r \rightarrow \infty} C(x, r) \leqq c
$$

for any $x(x>1)$. It is easy to see $c \geqq 1$.
Remark 1. Let $h(r)$ satisfy the smoothness condition (A) of type (ρ, c). For any $\mu(\mu>\rho)$, put

$$
x_{0}=(c+1)^{1 /(\mu-\rho)}
$$

and then take r_{0} such that

$$
C\left(x_{0}, r\right) \leqq c+1 \quad\left(r \geqq r_{0}\right) .
$$

Then,

$$
h\left(x_{0} r\right) / h(r) \leqq x_{0}^{\mu} \quad\left(r \geqq r_{0}\right) .
$$

Now, for any $r\left(r \geqq r_{0}\right)$, choose an integer p such that

$$
x_{0}^{p} \leqq r / r_{0}<x_{0}^{p+1} .
$$

We have

$$
h(r) \leqq h\left(x_{0}^{p+1} r_{0}\right) \leqq\left(x_{0}^{p+1}\right)^{\mu} h\left(r_{0}\right) \leqq\left(x_{0} / r_{0}\right)^{\mu} h\left(r_{0}\right) r^{\mu} \quad\left(r \geqq r_{0}\right) .
$$

This shows that

$$
\lim \sup _{r \rightarrow \infty} \log h(r) / \log r \leqq \rho
$$

In the following, we shall consider only the smoothness condition (A) of type (ρ, c), where

$$
\rho=\lim \sup _{r \rightarrow \infty} \log h(r) / \log r .
$$

A differentiable function $\rho(r)$ that satisfies the conditions

$$
\lim _{r \rightarrow \infty} \rho(r)=\rho, \quad \text { where } \quad \rho \geqq 0 \text { is a constant }
$$

and

$$
\lim _{r \rightarrow \infty} r \rho^{\prime}(r) \log r=0
$$

is called a proximate order (see Cartwright [4, p. 54] and Levin [10, p. 32]). In the following, $\rho(r)$ always denotes a proximate order. We remark (see Cartwright [4, p. 55 and p. 58] and Levin [10, pp. 32-35]) that $\rho(r)$ has the following properties:

$$
\begin{equation*}
r^{-\rho(r)}(x r)^{\rho(x r)} \rightarrow x^{\rho} \quad(r \rightarrow \infty) \tag{5}
\end{equation*}
$$

for any fixed $x>1$, and

$$
\begin{equation*}
\int_{r}^{\infty} t^{-(1+\alpha)} t^{\rho(t)} d t \sim(\alpha-\rho)^{-1} r^{-\alpha} r^{\rho(r)} \quad(r \rightarrow \infty) \tag{6}
\end{equation*}
$$

for any constant $\alpha(\alpha>\rho)$.
Let $\rho(\rho \geqq 0)$ be a constant. If there exist a proximate order $\rho(r), \rho(r) \rightarrow \rho$ $(r \rightarrow \infty)$, and a constant $c(c \geqq 1)$, such that

$$
1 \leqq \lim \inf _{r \rightarrow \infty} r^{-\rho(r)} h(r) \leqq \lim \sup _{r \rightarrow \infty} r^{-\rho(r)} h(r) \leqq c<+\infty,
$$

we say that $h(r)$ satisfies the smoothness condition (B) of type (ρ, c).
It is easily seen from (5) that if $h(r)$ satisfies the smoothness condition (B) of type (ρ, c), then $h(r)$ also satisfies the smoothness condition (A) of type (ρ, c).

Remark 2. The case that there exist a $\rho(r), \rho(r) \rightarrow \rho(r \rightarrow \infty)$, and two constants c_{1}, c_{2} satisfying (4) can be reduced to the case that $h(r)$ satisfies the smoothness condition (B) of type ($\rho, c_{2} / c_{1}$) by considering a new proximate order $\rho(r)$ $+\log c_{1} / \log r$.

We give a lemma which will be used in the next section.
Lemma 1. Let c, ρ and α be three constants satisfying $c \geqq 1, \rho \geqq 0$ and $\alpha>\rho$. Let $x(x>1)$ be a number satisfying

$$
\alpha>\log c / \log x+\rho .
$$

If $h(r)$ satisfies

$$
h(x r) / h(r) \leqq c x^{\rho} \quad\left(r \leqq r_{0}\right)
$$

for some r_{0}, then

$$
\int_{r}^{\infty} t^{-(1+\alpha)} h(t) d t \leqq S(x: \rho, \alpha, c) r^{-\alpha} h(r) \quad\left(r \geqq r_{0}\right)
$$

where

$$
S(x: \rho, \alpha, c)=\alpha^{-1} c\left(x^{\alpha}-1\right) /\left(x^{\alpha-\rho}-c\right) .
$$

Proof. Put

$$
\mu=\log c / \log x+\rho
$$

Then, we have

$$
h(x r) / h(r) \leqq x^{\mu} \quad\left(r \geqq r_{0}\right)
$$

Since

$$
h\left(x^{i+1} r\right) \leqq\left(x^{\mu}\right)^{i+1} h(r) \quad\left(r \geqq r_{0}\right) \quad(i=0,1,2,3, \ldots),
$$

we get

$$
\begin{aligned}
\int_{r}^{\infty} t^{-(1+\alpha)} h(t) d t & \leqq \sum_{i=0}^{\infty} h\left(x^{i+1} r\right) \int_{x^{i} r}^{x^{i+1} r} t^{-(1+\alpha)} d t \\
& \leqq \alpha^{-1} x^{\mu}\left(1-x^{-\alpha}\right) r^{-\alpha} h(r) \sum_{i=0}^{\infty}\left(x^{\mu-\alpha}\right)^{i} \\
& =S(x: \rho, \alpha, c) r^{-\alpha} h(r) \quad\left(r \geqq r_{0}\right)
\end{aligned}
$$

Now, consider the function $S(x: \rho, \alpha, c)$ of x for a triple $(\rho, \alpha, c), 0 \leqq \rho<1 / 2$, $c \geqq 1, \alpha>\rho$, and denote the greatest lower bound of $S(x: \rho, \alpha, c)$ on the open interval $\left(c^{1 /(\alpha-\rho)}, \infty\right)$ by $m(\rho, \alpha, c)$. When $c>1$ and $\rho>0, m(\rho, \alpha, c)$ is attained at a unique value $x=X(c)=X(\rho, \alpha, c)$ on $\left(c^{1 /(\alpha-\rho)}, \infty\right)$. When $c=1$ or $\rho=0$, $m(\rho, \alpha, c)=c /(\alpha-\rho)$. Further, put

$$
d(\rho, \alpha, c)=\{c \alpha m(\rho, \alpha, c)\}^{1 /(\alpha-\rho)} .
$$

Since

$$
S(x: \rho, \alpha, c) \geqq \alpha^{-1}\left(x^{\alpha}-1\right) /\left(x^{\alpha-\rho}-1\right) \geqq(\alpha-\rho)^{-1},
$$

it is seen that $d(\rho, \alpha, c) \geqq 1$.

3. Integral functions of order less than $\mathbf{1 / 2}$

Let $g(z)$ be an integral function. We denote

$$
A(r, g)=\min _{|z|=r} \log |g(x)| .
$$

Throughout this section, we shall take $B(r, g)$ as $h(r)$ in section 2.
Lemma 2 (Denjoy [5] and Kjellberg [9, pp. 17-18]). Let g(z) be an integral function of order $\rho(0 \leqq \rho<1 / 2)$ for which $g(0)=1$. Then, for any $\alpha(\rho<\alpha<1 / 2)$,

$$
r^{\alpha} \int_{r}^{\infty}\{A(t, g)-B(t, g) \cos \pi \alpha\} t^{-(1+\alpha)} d t>\alpha^{-1}(1-\cos \pi \alpha) B(r, g) \quad(0<r<\infty) .
$$

Lemma 3. Let $g(z)$ be an integral function of order $\rho(0 \leqq \rho<1 / 2)$ for which $g(0)=1$ and $B(r, g)$ satisfies the smoothness condition (A) of type $(\rho, c)(c \geqq 1)$. If α is any constant satisfying $\rho<\alpha<1 / 2$, then for any k,

$$
\begin{equation*}
k>d(\rho, \alpha, c) \tag{7}
\end{equation*}
$$

we can find $r_{0}>0$ such that

$$
A(t, g)>B(t, g) \cos \pi \alpha
$$

for some t in any interval $(t, k r)\left(r \geqq r_{0}\right)$.
Proof. Suppose that ρ is positive. From (7), we can choose $c_{1}\left(c_{1}>c\right)$, sufficiently close to c, such that

$$
k>c \alpha S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right)^{1 /(\alpha-\rho)} .
$$

Since

$$
\lim \sup _{r \rightarrow \infty} C(k, r) \leqq c
$$

we can also choose r_{1} such that

$$
\begin{equation*}
\alpha^{-1}>C(k, r) S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right) k^{\rho-\alpha} \quad\left(r \geqq r_{1}\right) . \tag{8}
\end{equation*}
$$

Further, choose $r_{0}\left(r_{0} \geqq r_{1}\right)$ such that

$$
B(r, g)^{-1} B\left(X\left(c_{1}\right) r, g\right) \leqq c_{1}\left\{X\left(c_{1}\right)\right\}^{\rho} \quad\left(r \geqq r_{0}\right)
$$

from the fact

$$
\limsup _{r \rightarrow \infty} C\left(X\left(c_{1}\right), r\right) \leqq c
$$

Then, since we have

$$
\alpha>\log c_{1} / \log X\left(c_{1}\right)+\rho
$$

from the fact $X\left(c_{1}\right)>c_{1}^{1 /(\alpha-\rho)}$, we obtain

$$
\int_{r}^{\infty} t^{-(1+\alpha)} B(t, g) d t \leqq S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right) r^{-\alpha} B(r, g) \quad\left(r \geqq r_{0}\right)
$$

by the aid of Lemma 1. Thus, we get

$$
\begin{aligned}
& r^{\alpha} \int_{k r}^{\infty}\{A(t, g)-B(t, g) \cos \pi \alpha\} t^{-(1+\alpha)} d t \\
& \quad \leqq(1-\cos \pi \alpha) r^{\alpha} S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right)(k r)^{-\alpha} B(k r, g) \\
& \quad=(1-\cos \pi \alpha) S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right) C(k, r) k^{\rho-\alpha} B(r, g) \quad\left(r \geqq r_{0}\right)
\end{aligned}
$$

Since $g(z)$ has order ρ, we finally have from Lemma 2 that

$$
\begin{aligned}
& r^{\alpha} \int_{r}^{k r}\{A(t, g)-B(t, g) \cos \pi \alpha\} t^{-(1+\alpha)} d t \\
& \quad \geqq(1-\cos \pi \alpha)\left\{\alpha^{-1}-S\left(X\left(c_{1}\right): \rho, \alpha, c_{1}\right) C(k, r) k^{\rho-\alpha}\right\} B(r, g) \quad\left(r \geqq r_{0}\right)
\end{aligned}
$$

in which the right-hand side is positive from (8) and the left-hand side is also positive. This fact gives the conclusion in the case $0<\rho<1 / 2$.

In the case $\rho=0$, choose $c_{1}\left(c_{1}>c\right)$, sufficiently close to c, and c_{2} satisfying

$$
\alpha>\log c_{1} / \log c_{2} .
$$

If we replace $X\left(c_{1}\right)$ with c_{2} and put $\rho=0$ in all the previous expressions, we also obtain our conclusion in this case.

Lemma 4. Let $g(z)$ be an integral function of order $\rho(0 \leqq \rho<1 / 2)$ for which
$B(r, g)$ satisfies the smoothness condition (A) of type $(\rho, c)(c \geqq 1)$. Then, for any constant $\alpha, \rho<\alpha<1 / 2$, we can find a polygonal path going to ∞ along which

$$
\liminf _{|z| \rightarrow \infty} B(|z|, g)^{-1} \log |g(z)| \geqq c^{-2}\{d(\rho, \alpha, c)\}^{-2 \rho} \cos \pi \alpha
$$

Proof. Since we evidently have the conclusion with $d(0, \alpha, 1)=1$ in the case that $g(z)$ is a polynomial, we can assume that $z=\infty$ is an essential singularity of $g(z)$. Then we may assume $g(0)=1$ from the fact

$$
\lim _{r \rightarrow \infty} B(r, g)^{-1} \log r=0 .
$$

Now, for each

$$
k_{n}=d(\rho, \alpha, c)+n^{-1} \quad(n=1,2,3, \ldots)
$$

take a constant $r_{0}^{(n)}$ and a sequence $\left\{t_{j}^{(n)}\right\}$ such that

$$
k_{n}^{j} r_{0}^{(n)}<t_{j}^{(n)}<k_{n}^{j+1} r_{0}^{(n)} \quad(j=0,1,2,3, \ldots)
$$

and

$$
\log |g(z)| \geqq A\left(t_{j}^{(n)}, g\right)>B\left(t_{j}^{(n)}, g\right) \cos \pi \alpha \quad\left(|z|=t_{j}^{(n)}\right)
$$

by Lemma 3. Then, the set

$$
\left\{z: \log |g(z)|>B\left(t_{j}^{(n)}, g\right) \cos \pi \alpha\right\}
$$

which includes $\left\{z:|z|=t_{j}^{(n)}\right\}$, contains $\left\{z:|z|=t_{j+1}^{(n)}\right\}$. Hence, we can connect both points $z=t_{j}^{(n)}$ and $z=t_{j+1}^{(n)}$ with a polygonal path $\Gamma_{j}^{(n)}$ in $\left\{z: t_{j}^{(n)} \leqq|z| \leqq t_{j+1}^{(n)}\right\}$ on which

$$
\log |g(z)|>B\left(t_{j}^{(n)}, g\right) \cos \pi \alpha
$$

Here, if we choose $r_{1}^{(n)}\left(r_{1}^{(n)} \geqq r_{0}^{(n)}\right)$ such that

$$
k_{n}^{-\rho} B(|z|, g)^{-1} B\left(k_{n}|z|, g\right) \leqq c+n^{-1} \quad\left(|z| \geqq r_{1}^{(n)}\right)
$$

we have

$$
\begin{aligned}
\log |g(z)|>B\left(t_{j}^{(n)}, g\right) \cos \pi \alpha & \geqq B\left(k_{n}^{-2}|z|, g\right) \cos \pi \alpha \\
& \geqq k_{n}^{-2 \rho}(c+1 / n)^{-2} B(|z|, g) \cos \pi \alpha
\end{aligned}
$$

for $z \in \Gamma_{j}^{(n)},|z| \geqq r_{1}^{(n)} k_{n}^{2}$. Thus, we get the polygonal path

$$
\Gamma_{n}=\cup_{j=0}^{\infty} \Gamma_{j}^{(n)} \quad(n=1,2,3, \ldots)
$$

going to ∞ on which

$$
\log |g(z)|>(c+1 / n)^{-2}\{d(\rho, \alpha, c)+1 / n\}^{-2 \rho} B(|z|, g) \cos \pi \alpha \quad\left(|z| \geqq r_{1}^{(n)} k_{n}^{2}\right)
$$

Now, choose a sequence $\left\{j_{n}\right\}$ of integers such that

$$
t_{j_{n}}^{(n)}>r_{1}^{(n)} k_{n}^{2}, \quad t_{j_{n+1}}^{(n+1)}>t_{j_{n}}^{(n)} \quad(n=1,2,3, \ldots)
$$

and make a new path Γ in the following way: As soon as we reach the circle $\left\{z:|z|=t_{j_{n}}^{(n)}\right\}$ along Γ_{n-1}, we move along the circular arc C_{n} until we reach $z=t_{j_{n}}^{(n)}$ and then move along $\Gamma_{n}(n=2,3,4, \ldots)$. It is also possible to replace C_{n} with a polygonal path in

$$
\left\{z: k_{n}^{i_{n} n} r_{0}^{(n)}<|z| \leqq t_{j_{n}}^{(n)}\right\}
$$

on which

$$
\log |g(z)|>B\left(t_{j_{n}}^{(n)}, g\right) \cos \pi \alpha \geqq B(|z|, g) \cos \pi \alpha .
$$

Then, we finally get

$$
\log |g(z)|>\left[c^{-2}\{d(\rho, \alpha, c)\}^{-2 \rho} \cos \pi \alpha-o(1)\right] B(|z|, g) \quad(|z| \rightarrow \infty)
$$

on the path Γ going to ∞.
In the following, we denote by $M(\rho, c)$ the least upper bound of the function

$$
M(\alpha: \rho, c)=c^{-2}\{d(\rho, \alpha, c)\}^{-2 \rho} \cos \pi \alpha
$$

of α on the open interval $(\rho, 1 / 2)$. In the case $\rho>0$, we see from the fact

$$
\lim _{\alpha \rightarrow \rho+0} d(\rho, \alpha, c)=+\infty
$$

that there is an $\alpha_{0}\left(\rho<\alpha_{0}<1 / 2\right)$ such that

$$
M(\rho, c)=M\left(\alpha_{0}: \rho, c\right) .
$$

Also we see that $M(0, c)=1 / c^{2}$.
Theorem 1. Let $g(z)$ be an integral function of order $\rho(0 \leqq \rho<1 / 2)$ for which $B(r, g)$ satisfies the smoothness condition (A) of type $(\rho, c)(c \geqq 1)$. Then, we can find a polygonal path going to ∞ along which

$$
\liminf _{|z| \rightarrow \infty} B(|z|, g)^{-1} \log |g(z)| \geqq M(\rho, c)
$$

Proof. In the case $\rho>0$, this immediately follows from Lemma 4, if only we put $\alpha=\alpha_{0}$ there. Hence, we shall consider the case $\rho=0$.

For each $\alpha=1 / m(m=1,2,3, \ldots)$, we denote the sequence and the number corresponding to $\left\{t_{j}^{(n)}\right\}$ and $r_{0}^{(n)}$ in the proof of Lemma 4 by $\left\{t_{j}^{(n, m)}\right\}$ and $r_{0}^{(n, m)}$, respectively. Now, for each $\alpha=1 / m(m=1,2,3, \ldots)$, make a polygonal path Γ_{m} corresponding to Γ in Lemma 4, on which

$$
\log |g(z)|>\left\{c^{-2} \cos m^{-1} \pi-o(1)\right\} B(|z|, g) \quad(|z| \rightarrow \infty)
$$

Further, choose an $r_{2}^{(m)}$ such that

$$
\log |g(z)|>\left\{c^{-2} \cos m^{-1} \pi-m^{-1}\right\} B(|z|, g) \quad\left(|z| \geqq r_{2}^{(m)}\right)
$$

on Γ_{m}, and choose a sequence $\left\{i_{m}\right\}$ such that

$$
t_{i_{m}^{(m, m)}}^{(m, m}>r_{2}^{(m)}, \quad t_{i_{m+1}}^{(m+1, m+1)}>t_{i_{m}}^{(m, m)} \quad(m=1,2,3, \ldots)
$$

Now, we make a new path Γ from $\left\{\Gamma_{m}\right\}$ in the following way: As soon as we reach the circle $\left\{z:|z|=t_{i_{m}}^{(m, m)}\right\}$ along Γ_{m-1}, we move along the circular arc to a point on Γ_{m} and then move along $\Gamma_{m}(m=2,3,4, \ldots)$. It is also possible to replace the circular arc with a polygonal path in

$$
\left\{z: t_{i_{m}}^{(m, m)} \geqq|z|>h_{m}^{i_{m} m} r_{0}^{(m, m)}\right\}
$$

where $h_{m}=d(0,1 / m, c)+1 / m$, on which

$$
\log |g(z)|>B\left(t_{i_{m}}^{(m, m)}, g\right) \cos m^{-1} \pi \geqq B(|z|, g) \cos m^{-1} \pi
$$

Then, we get

$$
\log |g(z)|>\left\{c^{-2}-\mathrm{o}(1)\right\} B(|z|, g) \quad(|z| \rightarrow \infty)
$$

along Γ.
Remark 3. Suppose that there exists a $\delta(\delta>1)$ such that

$$
\lim \sup _{r \rightarrow \infty} x^{-\rho} B(r, g)^{-1} B(x r, g) \leqq 1
$$

for any $x(1<x<\delta)$. Now, take any $x(x>1)$ and choose an integer p satisfying

$$
\delta^{p} \leqq x<\delta^{p+1}
$$

If we put $y=x^{1 /(p+1)}$, we see that for any $\varepsilon>0$, there is an r_{0} such that

$$
B(r, g)^{-1} B(y r, g) \leqq(1+\varepsilon) y^{\rho} \quad\left(r \geqq r_{0}\right) .
$$

Since

$$
\begin{aligned}
B(r, g)^{-1} B(x r, g) & =B(r, g)^{-1} B\left(y^{p+1} r, g\right) \\
& \leqq(1+\varepsilon)^{p+1}\left(y^{\rho}\right)^{p+1}=(1+\varepsilon)^{p+1} x^{\rho} \quad\left(r \geqq r_{0}\right),
\end{aligned}
$$

we get

$$
\lim \sup _{r \rightarrow \infty} x^{-\rho} B(r, g)^{-1} B(x r, g) \leqq 1
$$

for this x. Thus, it is seen that $B(r, g)$ satisfies the smoothness condition (A) of type $(\rho, 1)$, if and only if there exists a $\delta(\delta>1)$ such that

$$
\lim \sup _{r \rightarrow \infty} x^{-\rho} B(r, g)^{-1} B(x r, g) \leqq 1
$$

for any $x(1<x<\delta)$.
Corollary 1 (Anderson [1, Theorem 2]). If $g(z)$ is an integral function for which

$$
B(2 r, g) \sim B(r, g) \quad(r \rightarrow \infty),
$$

then we can find a polygonal path going to ∞ along which

$$
\liminf _{|z| \rightarrow \infty} B(|z|, g)^{-1} \log |g(z)| \geqq 1 .
$$

Proof. Take $\delta=2$ in Remark 3, since

$$
1 \leqq B(r, g)^{-1} B(x r, g) \leqq B(r, g)^{-1} B(2 r, g) \rightarrow 1 \quad(r \rightarrow \infty)
$$

for $x(1<x<2)$. The required conclusion follows from Theorem 1 because of $M(0,1)=1$.

Let ρ, α and c be the numbers satisfying $0 \leqq \rho<1 / 2, \rho<\alpha$ and $1 \leqq c$. We denote by $M^{*}(\rho, c)$ the least upper bound of the function

$$
M^{*}(\alpha: \rho, c)=(1 / c)^{2 \alpha /(\alpha-\rho)}\left[\alpha^{-1}(\alpha-\rho)\right]^{2 \rho /(\alpha-\rho)} \cos \pi \alpha
$$

of α on the open interval $(\rho, 1 / 2)$. In the case $\rho>0$,

$$
M^{*}(\rho, c)=M^{*}\left(\alpha_{0}: \rho, c\right)
$$

for some $\alpha_{0}\left(\rho<\alpha_{0}<1 / 2\right)$ and further in the case $c>1$

$$
M^{*}(\rho, c)>M(\rho, c)
$$

because of the fact

$$
S(X(c): \rho, \alpha, c) \geqq \alpha^{-1}\left[\{X(c)\}^{\alpha}-1\right] /\left[\{X(c)\}^{\alpha-\rho}-1\right]>(\alpha-\rho)^{-1} .
$$

In the case $\rho=0$ or $c=1$

$$
M^{*}(0, c)=M(0, c)=1 / c^{2} .
$$

The following Theorem 2 shows that we can have a result sharper than Theorem 1, in the case that $B(r, g)$ satisfies the smoothness condition (B) of type (ρ, c) where $0<\rho<1 / 2$ and $c>1$.

Theorem 2. If $g(z)$ is an integral function of order $\rho(0 \leqq \rho<1 / 2)$ for which $B(r, g)$ satisfies the smoothness condition (B) of type $(\rho, c)(c \geqq 1)$, then we can find a polygonal path going to ∞ along which

$$
{\lim \inf _{|z| \rightarrow \infty} B(|z|, g)^{-1} \log |g(z)| \geqq M^{*}(\rho, c) ~}
$$

Proof. We can assume $g(0)=1$. Now, let α be any number satisfying $\rho<\alpha<1 / 2$. Since for $x>1$

$$
\begin{aligned}
& r^{\alpha} \int_{x r}^{\infty}\{A(t, g)-B(t, g) \cos \pi \alpha\} t^{-(1+\alpha)} d t \leqq(1-\cos \pi \alpha) r^{\alpha} \int_{x r}^{\infty} t^{-(1+\alpha)} B(t, g) d t \\
& \quad \leqq(1-\cos \pi \alpha)(c+o(1))(\alpha-\rho)^{-1} r^{\rho(r)} x^{\rho-\alpha} \quad(r \rightarrow \infty)
\end{aligned}
$$

from (5) and (6), we get

$$
\begin{aligned}
& r^{\alpha} \int_{r}^{x r}\{A(t, g)-B(t, g) \cos \pi \alpha\} t^{-(1+\alpha)} d t \\
& \quad>(1-\cos \pi \alpha)\left[\alpha^{-1}\{1-o(1)\}-(\alpha-\rho)^{-1}\{c+o(1)\} x^{\rho-\alpha}\right] r^{\rho(r)} \quad(r \rightarrow \infty)
\end{aligned}
$$

by Lemma 2 . Thus, if we take any x satisfying

$$
x>\left\{(\alpha-\rho)^{-1} c \alpha\right\}^{1 /(\alpha-\rho)}
$$

we can make the right-hand side positive for sufficiently large r. On the other hand, we have for any $x>1$

$$
B(r, g)^{-1} B(x r, g) \leqq\{c+o(1)\} x^{\rho} \quad(r \rightarrow \infty)
$$

from (5), since

$$
\{1-\mathrm{o}(1)\} r^{\rho(r)} \leqq B(r, g) \leqq\{c+\mathrm{o}(1)\} r^{\rho(r)} \quad(r \rightarrow \infty) .
$$

Hence, if we use both these facts, we obtain the conclusion in the same way as in Theorem 1.

4. Meromorphic functions of order less than $\mathbf{1 / 2}$

First of all, we remark that the smoothness of the growth of $T(r, f)$ is compatible with the largeness of the deficiency i.e., for any $\rho(0<\rho<1 / 2)$ and any v $(0 \leqq v \leqq 1)$, there exists a meromorphic function of order ρ for which

$$
\delta(\infty, f)=v \quad \text { and } \quad T(r, f) \sim K r^{\rho} \quad(r \rightarrow \infty),
$$

where K is a constant (see Edrei and Fuchs [6, pp. 247-248] and Hayman [7, pp. 117-118]).

Throughout this section, we shall mainly take $T(r, f)$ as $h(r)$ in section 2. Now, we shall give Theorem 3 which generalizes Hayman [8, Corollary 2].

Lemma 5. Let $g(z)$ be an integral function for which $N(r, 1 / g)$ satisfies the smoothness condition (A) of type ($\rho, 1$). Then,

$$
\lim \sup _{r \rightarrow \infty} N(r, 1 / g)^{-1} n(r, 1 / g) \leqq \rho
$$

Proof. Put

$$
N(r, 1 / g)^{-1} N(x r, 1 / g)=C(x, r) x^{\rho} .
$$

Then, for any $x(x>1)$, we have

$$
\begin{aligned}
n(r, 1 / g) \log x & \leqq \int_{r}^{x r} t^{-1} n(t, 1 / g) d t \\
& =N(x r, 1 / g)-N(r, 1 / g)=\left\{C(x, r) x^{\rho}-1\right\} N(r, 1 / g)
\end{aligned}
$$

which gives

$$
N(r, 1 / g)^{-1} n(r, 1 / g) \leqq\left\{C(x, r) x^{\rho}-1\right\} / \log x \quad(x>1) .
$$

This immediately gives the conclusion, since

$$
\lim _{x \rightarrow 1}\left(x^{\rho}-1\right) / \log x=\rho \quad \text { and } \quad \lim \sup _{r \rightarrow \infty} C(x, r) \leqq 1 \quad(x>1) .
$$

Theorem 3. Let $f(z)$ be a meromorphic function in the whole plane of order $\rho(0 \leqq \rho<1 / 2)$, for which $T(r, f)$ satisfies the smoothness condition (A) of type ($\rho, 1$). Then, if

$$
\delta(w, f)>2 \rho,
$$

w is an asymptotic value of $f(z)$.
Proof. We can assume $w=\infty$ without loss of generality. Since

$$
N(r, 1 /(f-w)) \sim T(r, f) \quad(r \rightarrow \infty)
$$

for all w outside a set of capacity zero (see Nevanlinna [i1, p. 264]), we can choose $w_{0}\left(w_{0} \neq \infty\right)$ such that

$$
\begin{equation*}
N\left(r, 1 /\left(f-w_{0}\right)\right) \sim T(r, f) \quad(r \rightarrow \infty) . \tag{9}
\end{equation*}
$$

Further, we can write

$$
f(z)-w_{0}=g_{1}(z) / g_{2}(z),
$$

where $g_{1}(z)$ and $g_{2}(z)$ are both integral functions of order at most ρ, having no zeros in common. (In fact, $g_{1}(z)$ has order ρ by (9).) Since

$$
T(t, f) \sim N\left(t, 1 / g_{1}\right) \quad(t \rightarrow \infty)
$$

from (9) and

$$
\begin{align*}
\log \left\{N\left(r, 1 / g_{1}\right)^{-1} N\left(t, 1 / g_{1}\right)\right\} & =\int_{r}^{t} u^{-1} N\left(u, 1 / g_{1}\right)^{-1} n\left(u, 1 / g_{1}\right) d u \tag{10}\\
& \leqq\{\rho+\mathrm{o}(1)\} \log r^{-1} t \quad(r \rightarrow \infty)
\end{align*}
$$

from Lemma 5, we obtain

$$
T(t, f) \leqq(1+\varepsilon)\left(r^{-1} t\right)^{\rho+\varepsilon} T(r, f) \quad\left(t \geqq r \geqq r_{0}(\varepsilon)\right)
$$

for any $\varepsilon>0$. This yields

$$
\lim \sup _{r \rightarrow \infty} 2^{-1} T(r, f)^{-1} r^{1 / 2} \int_{r}^{\infty} t^{-3 / 2} T(t, f) d t \leqq(1-2 \rho)^{-1}
$$

since ε is any positive number. Hence, Hayman [8, Corollary 1] gives the conclusion.

Questions. We can also prove from Hayman [8, Corollary 1]: If $f(z)$ is a meromorphic function of order $\rho(0 \leqq \rho<1 / 2)$ for which $T(r, f)$ satisfies the smoothness condition (B) of type $(\rho, c)(c \geqq 1)$ and w is a value such that

$$
\delta(w, f)>1-(1-2 \rho) / c,
$$

w is an asymptotic value of $f(z)$.
This result in the case $c=1$ is the same one as Theorem 3. Hence, we can ask according to Hayman [8, p. 144]: Is the constant 2ρ sharp for the functions satisfying the smoothness condition (A) of type ($\rho, 1$)? We also ask whether all deficient values are necessarily asymptotic values for the functions satisfying the smoothness condition (B) of type ($\rho, 1$). Is the constant $1-1 / c$ also sharp for the functions satisfying the smoothness condition (B) of type ($0, c$) $(c>1)$?

Let Γ be a polygonal path going to ∞. We put

$$
G(w, f)= \begin{cases}\liminf _{|z| \rightarrow \infty, z \in \Gamma}(\log 1 /|f(z)-w|) / T(|z|, f) & (w \neq \infty) \\ \liminf _{|z| \rightarrow \infty, z \in \Gamma}(\log |f(z)|) / T(|z|, f) & (w=\infty)\end{cases}
$$

Theorem 4. Let $f(z)$ be a meromorphic function in the whole plane of order $\rho(0 \leqq \rho<1 / 2)$, for which $T(r, f)$ satisfies the smoothness condition (A) of type $(\rho, 1)$. If

$$
\delta(w, f)>1-P(\rho)
$$

where

$$
P(\rho)=(1-\rho) M\left(\rho,(1-\rho)^{-1}\right),
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq(1-\rho)^{-1}\{\delta(w, f)-(1-P(\rho)\} .
$$

Hence, if $0<\rho<1 / 2$ and

$$
\delta(w, f)>1-S(\rho)
$$

where

$$
S(\rho)=(1-t)(1-\rho)^{(3-t) /(1-t)}\left[\{2 /(1-\rho)\}^{1 /(1-t)}-1\right]^{2 t /(t-1)} \quad\left(t=(2 \rho)^{1 / 2}\right)
$$

we can find a polygonal path going to ∞ on which

$$
G(w, f) \geqq(1-\rho)^{-1}\{P(\rho)-S(\rho)\}
$$

Proof. We can assume $w=\infty$ without loss of generality. In the same way as in Theorem 3, we can choose $w_{0}\left(w_{0} \neq \infty\right)$ such that $f(0) \neq w_{0}$ and

$$
\begin{equation*}
N\left(r, 1 /\left(f-w_{0}\right)\right) \sim T(r, f) \quad(r \rightarrow \infty) . \tag{11}
\end{equation*}
$$

Further, we can write

$$
f(z)-w_{0}=g_{1}(z) / g_{2}(z),
$$

where

$$
g_{2}(z)=z^{\lambda}+\cdots \quad \text { at } \quad z=0 .
$$

Then, we obtain
(12) $T(r, f) \sim N\left(r, 1 / g_{1}\right) \leqq B\left(r, g_{1}\right)+\mathrm{O}(1)$

$$
=\int_{0}^{\infty} \log \left(1+t^{-1} r\right) d n\left(t, 1 / g_{1}\right)+\mathrm{O}(1) \leqq r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{1}\right) d t+\mathrm{O}(1)
$$

$$
(r \rightarrow \infty)
$$

from (11) and

$$
\begin{align*}
r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{1}\right) d t & \leqq N\left(r, 1 / g_{1}\right)\left((1-\rho)^{-1}+\mathrm{o}(1)\right) \tag{13}\\
& =T(r, f)\left((1-\rho)^{-1}+\mathrm{o}(1)\right) \quad(r \rightarrow \infty)
\end{align*}
$$

from (10). These (12) and (13) show that $B\left(r, g_{1}\right)$ also satisfies the smoothness condition (A) of type $(\rho, 1 /(1-\rho))$. Hence, from Theorem 1 and (12), we can find a polygonal path Γ going to ∞ on which

$$
\begin{align*}
\log \left|g_{1}(z)\right| & >\left\{M\left(\rho,(1-\rho)^{-1}\right)-o(1)\right\} B\left(|z|, g_{1}\right) \tag{14}\\
& \geqq\left\{M\left(\rho,(1-\rho)^{-1}\right)-o(1)\right\} T(|z|, f) \quad(|z| \rightarrow \infty) .
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
& \log \left|g_{2}(z)\right| \leqq \int_{0}^{\infty} \log \left(1+t^{-1} r\right) d n\left(t, 1 / g_{2}\right)+n\left(0,1 / g_{2}\right) \log r \\
& \quad \leqq r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{2}\right) d t \leqq\{1-\delta(\infty, f)+o(1)\} r \int_{r}^{\infty} t^{-2} T(t, f) d t \quad(|z|=r \rightarrow \infty)
\end{aligned}
$$

from the fact

$$
N\left(r, 1 / g_{2}\right)=N\left(r, f-w_{0}\right)=N(r, f)<\{1-\delta(\infty, f)+o(1)\} T(r, f) \quad(r \rightarrow \infty) .
$$

Hence, we get

$$
\begin{equation*}
\log \left|g_{2}(z)\right| \leqq\{1-\delta(\infty, f)+o(1)\} T(|z|, f)\left((1-\rho)^{-1}+o(1)\right) \quad(|z| \rightarrow \infty) \tag{15}
\end{equation*}
$$ since

$$
\begin{aligned}
r \int_{r}^{\infty} t^{-2} T(t, f) d t & \leqq\{1+o(1)\} r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{1}\right) d t \\
& \leqq T(r, f)\left((1-\rho)^{-1}+o(1)\right) \quad(r \rightarrow \infty)
\end{aligned}
$$

from (11).
Thus, from (14) and (15), we finally have

$$
\begin{aligned}
& \log |f(z)| \sim \log \left|f(z)-w_{0}\right|=\log \left|g_{1}(z)\right|-\log \left|g_{2}(z)\right| \\
& \quad>(1-\rho)^{-1}\{\delta(\infty, f)-(1-P(\rho))-o(1)\} T(|z|, f)
\end{aligned}
$$

along Γ as $|z| \rightarrow \infty$.
To get the latter part, we have only to put

$$
\alpha=\left(2^{-1} \rho\right)^{1 / 2} \quad \text { and } \quad x=\{2 /(1-\rho)\}^{1 /(\alpha-\rho)}
$$

in $S\left(x: \rho, \alpha,(1-\rho)^{-1}\right)$, to estimate $P(\rho)$.
Remark 4. If there is a w such that

$$
\delta(w, f)>1-P(\rho),
$$

$f(z)$ cannot have any deficient values other than w. For, there exists a sequence $\left\{t_{j}\right\}, t_{j} \rightarrow \infty(j \rightarrow \infty)$, such that

$$
f\left(t_{j} e^{i \theta}\right) \rightarrow w \quad(j \rightarrow \infty)
$$

uniformly for $0 \leqq \theta \leqq 2 \pi$, as we see from both proofs of Theorem 1 and Theorem 4. But, this also follows from the fact

$$
1-P(\rho) \geqq 1-\cos \pi \rho \quad(0 \leqq \rho<1 / 2)
$$

(see Edrei and Fuchs [6, Corollary 1.1] and Valiron [12]).
Corollary 2 (Anderson [1, Theorem 1]). Let $f(z)$ be a moromorphic function for which

$$
T(2 r, f) \sim T(r, f) \quad(r \rightarrow \infty)
$$

Then if

$$
\delta(w, f)>0,
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq \delta(w, f) .
$$

Proof. It is seen in the same way as in Remark 3 and Corollary 1 that the condition with $\rho=0$ of Theorem 4 is satisfied.

Corollary 3. Let ρ be a sufficiently small positive number and $f(z)$ be a meromorphic function of order ρ for which $T(r, f)$ satisfies the smoothness condition (A) of type $(\rho, 1)$. Then, if

$$
\delta(w, f)>10 \rho,
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq 2^{-1}(1-\rho)^{-1} \rho .
$$

Proof. We shall estimate the value $P(\rho)$ for sufficiently small $\rho(\rho>0)$. Let ε be a positive number. Then, we have

$$
m\left(\rho, \alpha,(1-\rho)^{-1}\right) \leqq\left[\{(1+\varepsilon \rho) /(1-\rho)\}^{\alpha /(\alpha-\rho)}-1\right] /(\alpha \varepsilon \rho)
$$

by putting

$$
x=((1+\varepsilon \rho) /(1-\rho))^{1 /(\alpha-\rho)}
$$

in $S\left(x: \rho, \alpha,(1-\rho)^{-1}\right)$. Hence, if we put $\alpha=k \rho^{1 / 2}\left(k=(2 / \pi)^{1 / 2}\right)$ and

$$
\varepsilon=k 2^{-1} \eta \rho^{-1 / 2}\left(1-k 2^{-1} \eta \rho^{1 / 2}\right)
$$

for any $\eta>0$, we get

$$
1-P(\rho) \leqq(3+2 \pi+\eta) \rho+\mathrm{o}(\rho) \quad(\rho \rightarrow 0)
$$

The following Theorem 5 and Theorem 6 contain better constants than the constant in Theorem 4 (see Remark 5).

Theorem 5. Let $f(z)$ be a meromorphic function in the whole plane of order $\rho(0 \leqq \rho<1 / 2)$ for which $T(r, f)$ satisfies the smoothness condition (B) of type $(\rho, c)(c \geqq 1)$. Then, if

$$
\delta(w, f)>1-Q(\rho, c)
$$

where

$$
Q(\rho, c)=c^{-1}(1-\rho) M^{*}\left(\rho, c(1-\rho)^{-1}\right)
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq c(1-\rho)^{-1}[\delta(w, f)-\{1-Q(\rho, c)\}]
$$

Hence, if $0<\rho<1 / 2$ and

$$
\delta(w, f)>1-U(\rho, c)
$$

where

$$
U(\rho, c)=\left\{c^{-1}(1-\rho)\right\}^{(3-t) /(1-t)}(1-t)^{(1+t) /(1-t)} \quad\left(t=(2 \rho)^{1 / 2}\right)
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq c(1-\rho)^{-1}\{Q(\rho, c)-U(\rho, c)\}
$$

Proof. We choose such a $w_{0}\left(w_{0} \neq \infty\right)$ that $f(0) \neq w_{0}$ and

$$
T(r, f) \sim N\left(r, 1 /\left(f-w_{0}\right)\right) \quad(r \rightarrow \infty) .
$$

Further, write

$$
f(z)-w_{0}=g_{1}(z) / g_{2}(z) .
$$

Then, we have

$$
\begin{aligned}
& \{1-\mathrm{o}(1)\} r^{\rho(r)} \leqq T(r, f) \sim N\left(r, 1 / g_{1}\right) \leqq B\left(r, g_{1}\right)+\mathrm{O}(1) \\
& \quad \leqq \int_{0}^{\infty} \log \left(1+t^{-1} r\right) d n\left(t, 1 / g_{1}\right)+\mathrm{O}(1) \leqq r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{1}\right) d t+\mathrm{O}(1) \\
& \leqq\{c+o(1)\} r \int_{r}^{\infty} t^{\rho(t)-2} d t+\mathrm{O}(1)=\{c+o(1)\}(1-\rho)^{-1} r^{\rho(r)}+\mathrm{O}(1) \\
& \quad(r \rightarrow \infty)
\end{aligned}
$$

from (6). Hence, we get

$$
1 \leqq \liminf _{r \rightarrow \infty} r^{-\rho(r)} B\left(r, g_{1}\right) \leqq \limsup _{r \rightarrow \infty} r^{-\rho(r)} B\left(r, g_{1}\right) \leqq c(1-\rho)^{-1}
$$

Thus, using Theorem 2, we obtain the conclusion by the same argument as in Theorem 4, since

$$
\begin{aligned}
r \int_{r}^{\infty} t^{-2} T(t, f) d t & =\{1+o(1)\} r \int_{r}^{\infty} t^{-2} N\left(t, 1 / g_{1}\right) d t \leqq\{c+o(1)\}(1-\rho)^{-1} r^{\rho(r)} \\
& \leqq\{c+o(1)\}(1-\rho)^{-1} T(r, f) \quad(r \rightarrow \infty)
\end{aligned}
$$

To get the latter part, we have only to put $\alpha=(\rho / 2)^{1 / 2}$ in $M^{*}\left(\alpha: \rho, c(1-\rho)^{-1}\right)$.
Corollary 4. Let $f(z)$ be a meromorphic function of order 0 for which $T(r, f)$ satisfies the smoothness condition (B) of type $(0, c)(c \geqq 1)$. Then, if

$$
\delta(w, f)>1-1 / c^{3},
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq c\left[\delta(w, f)-\left(1-1 / c^{3}\right)\right] .
$$

The following Corollary 5 sharpens Hayman [8, Corollary 3] in the sense that there is a path along which $f(z)$ grows quickly.

Corollary 5. Let $f(z)$ have very regular growth of order $\rho(0<\rho<1 / 2)$, i.e., suppose there are two positive constants c_{1}, c_{2} such that

$$
c_{1} r^{\rho}<T(r, f)<c_{2} r^{\rho}
$$

for sufficiently large r. Then, if

$$
\delta(w, f)=1,
$$

we can find a polygonal path going to ∞ along which

$$
\liminf _{|z| \rightarrow \infty} r^{-\rho} \log 1 /|f(z)-w| \geqq C
$$

where C is a positive constant dependent on c_{1}, c_{2}.
Proof. Since $T(r, f)$ satisfies the smoothness condition (B) of type (ρ, c_{2} / c_{1}) (see Remark 2), this follows from Theorem 5.

Lemma 6. Let $g(z)$ be an integral function for which $N(r, 1 / g)$ satisfies the smoothness condition (B) of type ($\rho, 1$). Then

$$
\lim _{r \rightarrow \infty} N(r, 1 / g)^{-1} n(r, 1 / g)=\rho .
$$

Proof. Since we have Lemma 5, we shall show that

$$
\lim _{r \rightarrow \infty} N(r, 1 / g)^{-1} n(r, 1 / g) \geqq \rho .
$$

From the fact

$$
N(r, 1 / g) \sim r^{\rho(r)} \quad(r \rightarrow \infty)
$$

we have

$$
N(r, 1 / g)^{-1} N(x r, 1 / g) \geqq\{1-o(1)\} x^{\rho} \quad(r \rightarrow \infty)
$$

for any $x(x>1)$. Hence, we have

$$
\begin{aligned}
n(x r, 1 / g) \log x & \geqq \int_{r}^{x r} t^{-1} n(t, 1 / g) d t=N(x r, 1 / g)-N(r, 1 / g) \\
& \geqq\left[1-\{1-o(1)\}^{-1} x^{-\rho}\right] N(x r, 1 / g) \quad(r \rightarrow \infty),
\end{aligned}
$$

which is equivalent to

$$
N(r, 1 / g)^{-1} n(r, 1 / g) \geqq\left\{\left(x^{\rho}-1\right)-\mathrm{o}(1) x^{\rho}\right\}\{1-\mathrm{o}(1)\}^{-1} x^{-\rho} / \log x \quad(r \rightarrow \infty)
$$

for any $x(x>1)$. Thus, since

$$
\lim _{x \rightarrow 1}\left(x^{\rho}-1\right) / \log x=\rho,
$$

we get the conclusion.
Theorem 6. Let $f(z)$ be a meromorphic function in the whole plane of order $\rho(0<\rho<1 / 2)$ for which $T(r, f)$ satisfies the smoothness condition (B) of type $(\rho, 1)$. Then, if

$$
\delta(w, f)>1-R(\rho)
$$

where

$$
R(\rho)=(1-\rho) M^{*}(\rho, \pi \rho / \sin \pi \rho),
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq(1-\rho)^{-1}[\delta(w, f)-(1-R(\rho))] .
$$

Hence, if

$$
\delta(w, f)>1-V(\rho)
$$

where

$$
V(\rho)=(1-\rho)\left\{(\pi \rho)^{-1} \sin \pi \rho\right\}^{2 /(1-t)}(1-t)^{(1+t) /(1-t)} \quad\left(t=(2 \rho)^{1 / 2}\right),
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq(1-\rho)^{-1}\{R(\rho)-V(\rho)\} .
$$

Proof. In the usual way, we choose $w_{0}\left(w_{0} \neq \infty\right)$ such that $f(0) \neq w_{0}$ and

$$
T(r, f) \sim N\left(r, 1 /\left(f-w_{0}\right)\right) \quad(r \rightarrow \infty)
$$

Further, write

$$
f(z)-w_{0}=g_{1}(z) / g_{2}(z) .
$$

Then, Lemma 6 applied to $g_{1}(z)$ and a result (see Cartwright [4, p. 59, Theorem 37] and Levin [10, pp. 63-64, Theorem 25]) give

$$
\begin{aligned}
& \{1-o(1)\} r^{\rho(r)} \sim N\left(r, 1 / g_{1}\right) \leqq B\left(r, g_{1}\right) \\
& \quad=\int_{0}^{\infty} \log \left(1+t^{-1} r\right) d n\left(t, 1 / g_{1}\right)=\{\pi \rho / \sin \pi \rho+o(1)\} r^{\rho(r)} \quad(r \rightarrow \infty) .
\end{aligned}
$$

Further, we have

$$
\begin{array}{r}
r \int_{r}^{\infty} t^{-2} T(t, f) d t=\{1+o(1)\}(1-\rho)^{-1} r^{\rho(r)}=\{1+o(1)\}(1-\rho)^{-1} T(r, f) \\
(r \rightarrow \infty) .
\end{array}
$$

Thus, by the same argument as in Theorem 4, we get the conclusion.
To get the latter part, we have only to put $\alpha=(\rho / 2)^{1 / 2}$ in $M^{*}(\alpha: \rho, \pi \rho / \sin \pi \rho)$.
Remark 5. Since

$$
\pi \rho / \sin \pi \rho<(1-\rho)^{-1} \quad \text { and } \quad M^{*}\left(\rho,(1-\rho)^{-1}\right)>M\left(\rho,(1-\rho)^{-1}\right) \quad(\rho>0)
$$

as was observed after Corollary 1, we have

$$
1-R(\rho)<1-Q(\rho, 1)<1-P(\rho) .
$$

Corollary 6. Let ρ be a sufficiently small positive number and $f(z)$ be a meromorphic function of order ρ for which $T(r, f)$ satisfies the smoothness condition (B) of type $(\rho, 1)$ (e.g., let $f(z)$ have perfectly regular growth of order ρ :

$$
\left.\lim _{r \rightarrow \infty} r^{-\rho} T(r, f)=c \quad(0<c<+\infty)\right) .
$$

Then, if

$$
\delta(w, f)>8 \rho,
$$

we can find a polygonal path going to ∞ along which

$$
G(w, f) \geqq 2^{-1} \rho(1-\rho)^{-1} .
$$

Proof. Since

$$
R(\rho) \geqq(1-\rho)\left\{(\pi \rho)^{-1} \sin \pi \rho\right\}^{2 \alpha /(\alpha-\rho)}\left\{\alpha^{-1}(\alpha-\rho)\right\}^{2 \rho /(\alpha-\rho)} \cos \pi \alpha
$$

for any $\alpha(\rho<\alpha<1 / 2)$, we have

$$
R(\rho) \geqq 1-(1+2 \pi) \rho+\mathrm{o}(\rho) \quad(\rho \rightarrow 0)
$$

by putting $\alpha=k \rho^{1 / 2}\left(k=(2 / \pi)^{1 / 2}\right)$. This gives the conclusion.

References

[1] J. M. Anderson, Asymptotic values of meromolphic functions of smooth growth, Glasgow Math. J. 20 (1979), 155-162.
[2] J. M. Anderson, K. F. Barth and D. A. Brannan, Research problems in complex analysis, Bull. London Math. Soc. 9 (1977), 129-162.
[3] J. M. Anderson and J. Clunie, Slowly growing meromorphic functions, Comment. Math. Helv. 40 (1966), 267-280.
[4] M. L. Cartwright, Integral functions, Cambridge University Press, Cambridge, 1956.
[5] A. Denjoy, Sur un théorème de Wiman, C. R. Acad. Sci. Paris 193 (1931), 828-830.
[6] A. Edrei and W. H. J. Fuchs, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233-249.
[7] W. K. Hayman, Meromorphic functions, Oxford Math. Monographs, Clarendon Press, Oxford, 1964.
[8] W. K. Hayman, On Iversen's theorem for meromorphic functions with few poles, Acta Math. 141 (1978), 115-145.
[9] B. Kjellberg, On certain integral and harmonic functions, Uppsala, 1948 (Dissertation).
[10] B. Levin, Distribution of the zeros of entire functions, Transl. Math. Monographs, vol. 5, Amer. Math. Soc., 1964.
[11] R. Nevanlinna, Eindeutige analytische Funktionen, Springer-Verlag, Berlin, 1936.
[12] G. Valiron, Sur les valeurs déficientes des fonctions méromorphes d'ordre nul, C. R. Acad. Sci. Paris 230 (1950), 40-42.

Department of Mathematics, Faculty of Science, Chiba University

