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§ 1. Introduction

Let G be a connected compact Lie group and K be a closed subgroup of G.

Let τ and σ be finite-dimensional unitary representations of K. We denote by

Eτ the homogeneous hermitian vector bundle associated with τ. Let @(Eτ) be

the space of all C°° sections of Eτ with usual topology and '̂(£τ) be its dual

space. A homogeneous differential operator of @(Eσ) to @(Eτ) is a left invariant

differential operator on @(GJK) when τ = σ = the identity representation of K.

Let & be @(G) or @(G/K). In [1] Cerezo and Rouviere have determined when

an invariant differential operator on Qs has an elementary solution, by using the

Fourier transforms of ̂  and &'. On the other hand, N. R. Wallach has defined

the Fourier transform on Eτ and determined the images of ^(£τ) and ^'(£T) in

[2].
The main purpose of the present paper is to generalize the notion of ele-

mentary solutions to vector bundle case and to characterize homogeneous differ-

ential operators which have elementary solutions. For this purpose we adopt

a different definition from [2] of the Fourier transform as a direct generalization

of[l].
Let Vτ be the representation space of τ. Sections of Eτ can be identified with

Kτ-valued functions / which satisfy f(xk) = τ(k~1)f(x) for all xeG and keK.

We first define the Fourier transforms of vector valued functions in § 2. In § 4

we study the images of &(Eτ) and &'(Eτ) by the Fourier transform which is the

restriction of the above Fourier transform. In § 3 and § 5 we characterize homo-

geneous differential operators which have elementary solutions.

In [2] Wallach has determined which homogeneous differential operator is

globally hypoelliptic. In § 6 we show when a globally hypoelliptic operator has
an elementary solution.

§ 2. Fourier transforms of vector valued functions

2.1. Let G be a connected compact Lie group and let dx be the normalized

Haar measure on G so that the total measure is one. For a finite-dimensional
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complex Hilbert space W we denote by ( , \v and || \\w the inner product and
the norm, respectively. Let C(G; W) be the set of all continuous W-valued
functions on G and C°°(G; W) be the set of all infinitely diίferentiable Jf-valued
functions on G. And we denote by L2(G; W) the set of all measurable VF-valued
functions / which satisfy

\ l / 2

||/(x)||fcrrfx) < +00.

We put

(/, 9) = ί (/(*),JG

Let G be the set of all equivalence classes of irreducible unitary represen-
tations of G. Let πy be a fixed representative of γ E G and Vy the representation
space of πr We put d(γ) = dimcVr Let W(γ)~End (V^)®W and

W(y) (disjoint union).

DEFINITION. For any/eC(G; W) we define a JF(G)-valued function / on
G b y

/(y) = ( π/x)-1 ®f(x)dx.
JG

We call /the Fourier transform of/.

Let e !,..., em (ra = dimc W) be an orthonormal basis of W. For any two

elements A = Σj=ί ^j®ej anc* B^Σj^i ^'j®ej °f ^00 we Put

where the asterisk denotes the adjoint of the matrix. Then it is not difficult to
see that ( , )7tW is independent of the choice of the orthonormal basis of W and
it defines an inner product of W(y). We put ||^4||yjίκ = (y4, A)\ifa and we put
(A, B\ = (A, B\tW and \\A\\ γ= \\A\\ VtW in the case when W=C. For any W(G)~
valued function a on G such that a(y) e W(γ), we put

Let L2(G; W) be the set of all M^(y)-valued functions a on G such that a(y) e W(y)
for all y e G and | |α| |<+oo. Then L2(G; VF) is a Hilbert space with the norm
|| || and the inner product

The following lemma is well known.
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LEMMA 1. When dimc W=l, i.e., W=C9 we have the following assertions:
(1) (ParsevaΓs equality) If /e C(G; C), then

11/112 = 11/11;

(2) (Inversion formula) If /e C°°(G; C), then

(3) The mapping /•->/ can be extended to an isometry of L2(G; C) onto
; C).

For any element A = Σ™=ι ^j®ej e ̂ (?) we Put

Then we can easily see that tr is independent of the choice of the basis of W and
that it is a linear mapping of W (y) to W.

Let TV be the identity operator on W. If we apply the above lemma to each
coordinate, we have immediately the following lemma.

LEMMA 2. (1) // /e C(G; W), then

11/112 = 11/11;

(2) IffeC«(G;W)9then

(3) The mapping />->/ can be extended to an isometry of L2(G; PF) onίo
; W).

2.2. Let g be the Lie algebra of G and (S the universal enveloping algebra
of the complexification of 9. We identify (5 with the algebra of all left invariant
differential operators on G. Let V be another finite-dimensional complex
Hubert space. Then any element D = Σjζj®Lj of (5®Homc(F, W) defines a
linear mapping of C°°(G; V) to C°°(G; JF) by

Σ;((£; ® Lj)f)(x) = ΣjLj((ξj

Let dπy be the differential representation of πr For any y e G and ξ e (5
we put |(y) = dπy(ξ). Let X l v..,XM (n = dimG) be a basis of g. For a multi-
index α = (α1,..., αp), α^-eiV, I<a7-<n, of length p we put XΛ=XΛl XΛp and

(X«)* = (-l^βp.. ̂ βl. If ξ = Σ*cβX (cαGC), we put £* = Σ« c«(*α)* ^hen
ξ* is the ίΛadjoint of ξ, i.e., for any f,ge C°°(G; C), (ξ/, g) = (f, ξ*g). It is
easy to see that
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(£*rω = (i(y))*.
For any γ e G and D = Σj £/Θ L/ e (5® Homc (V, W) we put

D(y) = Σjξj(y)®Lj.

Then %) is an element of End (Fy)®Homc (F, W ). We put

D* = Σ j ί7®LJ

Then we have (D*/, <?) = (/, Dg) for all/6C°°(G; »0 and #eC°°(G; F). As is
easily seen, we have

(u*T(y) = (%))*•
If X E g and L 6 Homc (F, W), then we have

for any /e C°°(G; F). Hence we have the following lemma.

LEMMA 3. Let D e ©®Homc (F, W). Then

(D/Γ(y) = %)/(y), (/e C°°(G F), 7 e 0) .

The following two lemmas are analogies of Proposition 4 of [1].

LEMMA 4. Lei De(5®Homc(F, W). Then the following statements (1)
and (2) are equivalent:

(1) 77ze mapping D 0/C°°(G; F) to C°°(G; JΓ) is injective;
(2) For a// 7 e G ί/iere exίsίs a /e/ί inverse of D(y).

LEMMAS. Let De(S®Homc(F, Pf). T/ien the following statements (1)
and (2) are equivalent:

(1) T/iβ ima#e o/C°°(G; F) by D is dense in C^G; Pf);
(2) .For all y e G ί/zere exists a right inverse of D(y).

PROOF OF LEMMA 4. (2)«=>(1). Let /eC°°(G; F) and assume that D/=0.
Then, for all y e G , %)/(y) = (/VΓ(y) = 0 by Lemma 3. Let D(y)^ be a left
inverse of Z)(y), i.e. D(y)!1 eEnd(Fy)®Homc(W, F) = Homc(PF, V)(γ) and
^(7)E1%) = ίκy®ίκ- Then /(y) = %)E1D(y)/(y) = 0 for all y e G . Therefore,
we have/=0 by Lemma 2.

(1) =>(2). Let us assume that D(γ)A = Q for Aε F(y). We define a function
/eC°°(G;F)by

Then /(y) = yl and /(/) = 0 for y V y, y r e G. Hence we have (/>/)"(/) = 0 for all
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/e<3. Therefore, Df=Q and hence /=0 by the assumption. By the irreduci-
bility of πγ we have ^4 = 0. Thus we see that D(y) is injective. Q. E. D.

PROOF OF LEMMA 5. (2)c>(l). We assume AeW(y) and put /(x) =
tr ((π/x)®/F)D(y)RU) 6 C°°(G; V\ where D(y)ϊl is a right inverse of D(y). Then

f(γ) = ΰ(γ)^AId(γ) and /(/) = 0 for yVy, y 'eG. Hence we have (D/Γ(y) =
A/d(γ) and (/>/)"(/) = 0 for yVy. Therefore, we have (Df)(x) = tτ((πγ(x)®Iw)A).
Since the set of linear combinations of tr((πy(x)®Iw)A)9 Ae W(γ) and y e 6, is
dense in C°°(G; W\ the image of D is dense in C°°(G; W).

(1) =>(2). By the denseness of the image of D in C°°(G; W) we can see that
D* is injective. Hence there exists a left inverse (D*)^)^1 of (D*Γ(y) for all

7 e (5 by Lemma 4. As D(y) = ((D*Γ(y))*, ((DTftOE1)* is a right inverse of %).
Q.E.D.

Let us fix a positive definite inner product on g which is invariant under

Ad(G). Let Xl9...9 Xn be an orthonormal basis of g with respect to this inner
product. Let p be a positive integer. For a multi-index α of length p we put
|α| =p. For any £ e N we define a differential operator Z)£ by

where XΛ = XΛί XΛp. The following two lemmas are due to Cerezo and
Rouviere [1, p. 564]. '

LEMMA 6. Let A = - Σ?=ι %i2 be the Laplacian of G. Then DΆ = Σ j=0 Λj.

Hence D^ is an element of the center of (5. Therefore, DΆ(y) is a scalar
operator of Vy for all y e G. We put DSί(y) = dSί(y)IVv.

LEMMA 7. For any yεό,

And for any 6 e N and α such that |α| < £9

\\(X*T(y)v\\vv < dW2\\v\\Vy for all vεVr

2.3. If we identify (X"T(y) with (X*)*(y)®IW9 we have

For /e C°°(G; Pf) we set μJ(/)= ||Xα/ll2 and μ?(/)= ||D,/||2. Then we get
the following lemma.
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LEMMA 8. The topology on C°°(G; W) defined by the system of seminorms

{/4}α coincides with the topology on it defined by the system of seminorms

We topologize C°°(G; W) by the above seminorms and denote it by ^(G; W).
Let/eL2(G; W). Then, by Sobolev's lemma, /is infinitely diίferentiable if and
only if Xα/eL2(G; W) for all multi-indices α. Hence we have the following.

LEMMA 9. Letfe L2(G; W). Thenfe ®(G\ W) if and only if

|| (X*T(y)KyWy,w < + «> for all multi-indices α.

Let T:/ι-><T,/> be a linear mapping of ®(G\ W) to C. Then T is con-
tinuous if and only if there exist a constant C > 0 and an integer £ > 0 such that

|<T,/>|<C||D,/||2 for all/e^(G; W). We denote by #'(G; WO the set of all
continuous linear functionals on @(G\ W). Let jί^be the dual space of W and
we denote by <ψ, w>^ the value of φ e FF at w e FF. Let el5..., βm be an ortho-
normal basis of PFand φl9...9 φm be its dual basis of W. Let aγ

pq(x), p, q = l,...9

d(γ), be the matrix entries of ny(x) with respect to a fixed orthonormal basis in

Vr If Ey

pq are matrix units/then πy(»®w = Σ^=ι ^®α^(x)w, w e W. The
functions xn^a^(x)w are members of ^(G; PF). For Te &'(G; W) we put

f(y)j =
and

f GO = Σ7-ι

Then f(y) and T(y*) are elements of
With any f̂ e ^(G; ίl") we associate an element 0(0) of ^'(G; Ψ) by

W) (2.1)
G

Then we have the following immediately.

LEMMA 10. Let g e 2>(G\ W). Then θ(g)\y) = Q(y)for all y e G.

For A = Σ7=ι Lj®^. e W(y) and B = Σ"=ι Lj®φj e W(y) we put

; W) and / (x) = Σ 7= i //(*>;, then

which converges in the sense of the topology of ^(G; W). Hence we have, for
(G; W),



Fourier transforms on homogeneous vector bundles 149

Then there exist a constant C > 0 and an £ e N such that

C\\DJ\\2

By Lemmas 7 and 5, D^(G\ W) is dense in ^(G; VF) and hence so is in
L2(G; if). Therefore, the mapping /n->Φ(/ι) defined by

is a continuous linear functional on L2(G; FT). Then by Riesz's theorem and
Lemma 2 there exists a function a e L2(<S; if) such that

(ί, α) = Φ(/ι) and H| < C.

If we put h(x) = Dsl(tΐ(πy(x)L)\v) for LeEnd(Fy) and w e W, then we see that

and %') = 0 for yVy, / e G. Hence

where ^4* for -4 = Σ7=ι Lj®ejG W(y) is defined by v4* = Σ7=ι £*®Φ/ Then
we have α(y)* = dΛ(γ)- [ f (7*). Then

Pr = l l ^ l l 2 < c2. (2.2)

Let Jf0 = Σ7=ι fte/ be the real form of W generated by eί9..., em. Then
W=W0 + (—l)ί/2W0. We denote by conj the conjugation of W with respect to
W0 : conj(w1+(— I)1/2w2) = w 1 — (— I)1/2w2 (w1? w 2 e W0). The conjugation / of

; Tf) is defined by /(x) = conj (/(x)). Then the conjugation T of Γ

e^r(G; if) is defined by <Γ,/> = <Γ, />. Then we can easily see that

= f(γ)J for all ; = !,..., m. Hence by (2.2) we have

Σyeβ Φ)^ω-2H ΓωH2,^ < C2. (2.3)

Since T and T are simultaneously members of ^'(G; W), T satisfies the same
type of inequality as (2.3). That is, there are a C>0 and an £ e N such that

Conversely, we assume that a ff(G)-valued function b on Q satisfies; (1)

b(y) e 1%) for all γ e ό and (2) the sum
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has a finite value, say C2 (C>0), for some £eN. Let fe(y)==Σ7=ι b(y)j®φj.
We put

<τb, /> = Σyee d(y) Σ7=ι (

for /e 0(G; if). By taking f(x) = {a7

qp(x)}~ - ep we can see that fb(y) = b(y).

DEFINITION. We call the Jf (G)-valued function f on G the Fourier trans-
form of Te ®'(G; W).

Then we have already proved the following.

PROPOSITION 1. A W(&)-valued function b on & is the Fourier transform of
some Te@'(G', W) if and only if it satisfies the following conditions (1) and (2):

(1) b(y)eW(y)forall ye<3;
(2) There exists an £ e N such that

*< +00.

In particular, if W=C and T=δ (Dirac's delta), then δ(y) = IVy and \\δ(y)\\2

y

= d(y). Hence we have the following corollary.

COROLLARY (Cerezo and Rouviere [1, p. 567]). There is an integer £0eN
such that

For each/e C°°(G; W} and α we set μϋ(/) = sup^ \\X*f(x)\\w.

LEMMA 11. The topology of C°°(G; W) defined by the system of seminorms

x coincides with that of 2(G; W).

PROOF. Let/e C°°(G; W). Then for any multi-index α

lltr (n/x) ® /

Hence if 6>260 + \v\, then there exists a constant C>0 such that

for all/6C°°(G; W) and for all x e G by the corollary of Proposition 1. Con-
versely,
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\\DJ\\l = \ \\DJ(x)\\2

wdx < suPjteC \\DJ(xWw. Q.E.D.
JG

Hence we can call any element of ^'(G; W) a distribution on G. The
following lemma is due to Cerezo and Rouriere [1, Lemma 3].

LEMMA 12. For any j1,...JpeN there exists a constant C>0 such that

for all £>2(j^'"+jp} and for ally eG.

From Proposition 1 and Lemma 12 we have the following.

LEMMA 13. A W(G)-valued function b on G such that b(y) e W(y) for all
y e G is the Fourier transform of a distribution on G if and only if there exist
a C>0 and an & eN such that

||&ωily.* < Cd,(y)ld(yY'2 for all y e G.

PROOF. The necessity can be seen easily. So we prove the sufficiency. By
Lemma 12 there is a C'>0 such that di(y)dio(y)<Cfd2(Si + &o)(y) for every yeό.
Then

ccd^r1. (2.5)
Hence

Σyeo d(y)d2(ί + Άo)(yΓ2\\b(y)\\l* < C2C'2 ΣyeG d(y)2d&o(yT2 < + α>. (2.6)

Therefore, by Proposition 1 there exists a distribution T such that T=b.
Q.E.D.

To obtain (2.6) from (2.5) it is sufficient to use the inequality ||^(7)||yj^<
Cd!ί(y)d(yY12. Hence we have the following corollary.

COROLLARY. The following statements (1), (2) and (3) are equivalent:
(1) There exist an όeN and a C>0 such that \\b(y)\\y^<CdSL(y)jd(yyi2

for all y e G;
(2) There exist an ΰeN and a C>0 such that \\b(γ)\\yt^^CdΛ(γ) for all

y e G ;
(3) There exist an ΰeN and a C>0 such that ||K7)lly,^<^(7M7)1/2

for all yεό.

LEMMA 14. Let a be a W(G)-valued function on ό such that a(y)e W(y)for
all yeό. Then a is the Fourier transform of a function of Q>(G\ W) if and only
if for any ΰeN there is a constant C£>0 such that ||α(
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for all ye 6.

PROOF. The necessity is easy to see by Lemma 9. To prove the sufficiency

we choose a constant C\ so that d£Jy)J£(y)<Cίd2(je + ̂ )(}0 If there exists a
constant CΆ which satisfies the inequality in the lemma, then for any £ e N

In particular, if we put ^=0, we then have aeL2(Q; W). Hence we obtain the
sufficiency from Lemmas 7 and 9. Q. E. D.

By Lemma 9, if/e#(G; W), then \\f(y)\\y>w<C(d,(y)d(yy/2Γ^

COROLLARY. The following statements (1), (2) and (3) are equivalent:
(1) For any £ e N there exists a C>0 such that \\a(y)\\79W^Cd(y)~1/2d^(y)'1

for all yeό;
(2) For any A e JV there exists a C>0 such that \\a(y)\\y>w<Cd&(yrl for all

y e ό ;
(3) For any £ eN there exists a C>0 such that \\a(y)\\y>w<Cd(y)^2dSL(y)~i

forallyeό.

Let ^(G; W) be the set of all Pf(G)-valued functions a on G such that a(γ)
belong to W(y) and satisfy a condition in the above corollary. For a e &(ό W)
we set

ta) = supyeό Ά y y ay7tW.

We topologize ^((3; W) by the system of seminorms {μ£}jE>eJv Let '̂(6; W) be
the set of all ^(G)-valued functions b on & such that fc(y) e W(y) and that there
exist an A eN and a C>0 satisfying ^(γ^γ^^Cd^d^y)"1 for all y e G.

Let/e^(G; W). For any ΰεN we choose ΰ'eN so that ^/>2(^ + ̂ 0).
Then by Lemma 12 there is a constant C x >0 such that d^d^J^^C^d^y) for
all y e (j. Then we have

PJΊIi = Σyeθd(y)d&(yY\\f(y)\\2

>w

If we put C = CΛΣjeβ (Φ)/^£0(7))2)1/2, then we have

\\DJ\\2 < C supye6 (

Conversely, we can easily see that
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sup^(djE(y)/d(y)1/2)||/(7)||7ffr < \\DJ\\2.

Because of this bijectiveness of the Fourier transform we have thus proved that
the Fourier transform gives a topological isomorphism between @>(G\ W) and
^((?; W).

For any bε$'(G\ W) we defined T f te^'(G; W) in (2.4), which is the in-
verse Fourier transform of b. Let/α 6 Q>(G\ W) be the inverse Fourier transform
of 0e^(G; W). We put <fe, α> = <Tb,/α>. Then the mapping a^>(b, a) is
a continuous linear functional on Q>(G\ W). Conversely, if cn-*Φ(a) is a continu-
ous linear functional on Qι(Q\ HP), then the mapping /ι-»Φ(/) is a continuous
linear functional on ^(G; FT). Therefore, there is a distribution Te^'(G; FT)
such that <T,/> = Φ(/). Then, for any αe^(G; W), Φ(α) = <Γ,/β> = <f, α>.
Hence Φ = fe^f(G; W). Therefore, ^'(G; if) is the space of all continuous
linear functionals on ^(G; W). We endow 0'(G; W) and &(G\ W) with the
weak topologies as the conjugate spaces of ^(G; W) and ^(G; PF), respectively.
We have now obtained the following theorem.

THEOREM 1. The Fourier transform gives topological isomorphisms of
®(G\ W) onto ®(G\ W) and also of ®'(G\ W) onto @'(G\ W).

§ 3. Differential equations on G

3.1. We use the following identifications of linear spaces. Let W, Wί9 W2

and W3 be finite-dimensional complex Hubert spaces.

(a) Wί®W2 = Homc(Wί,W2).

For W i G ^ , w2eW2 and φeWl9 (

(b) Homc (W^ W2) = (Homc (Wl9 W2)T.

For LeHomc(^, W2) and M6Homc(^, W2\
trCLM).

(c) ^(G; WJ ® W2 =

Let e^V - j βmV an(i e(ι2)> > ̂  t>e orthonormal bases of Wl and W^* re~
spectively. If/e^(G; I^®»F2) and /(x) = Σι.y/ιX^ί1)®^2) C/i/x)eC), then

(d) ^'(G; PfO ® PF2 = ̂ r(G; ̂  ® ϊ^2).

Let φ(f\...,φ™ be the dual basis of e(2\...9e™. Let

(Te&φiWJ) and f=Σf®(2)
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Let &(@(G\ Wi), W2) be the set of all continuous linear mappings of

W,) to W2.

(e) y(β(fj\ WJ, W2) = 9\G\ W,} ® W2.

Let Te&(&(Gι W^\ W2) and/e^(G; W,) Then

We put <Tjjy = ̂ φγ\T(f)y^2. Then 7}e#'(G; W,) and Γ=

(f) 2>(G\ )̂ c <T(G; W).

Here we identify /e^(G; VK) with 0(/)e^'(G; VF) (see (2.1)).

(g) Homc (^2, ^3) c Homc (Homc (W^ W2\ Homc (Wί9 W3γ> .

Let LeHomc(W2ί ^s) We identify L with the mapping MWLM of
, W2) to Homcί^, FΓ3).

The convolutions S*T of two distributions S and T of ^'(G; C) and T*/
of Te^'(G; C) and a function /e^(G; C) are defined as follows. For any

; C) we put QF) ( v) = F(x y), x, yeG, and F(x) = F(x~1) The function
<5, XF> is an element of ^(G; C). Then <S*T, F> = <T, F5>. On

the other hand (Γ*/)(x) = <Γ, J>. Then we have (S*Γ)"(y) = S(y)f(y) and
(Γ*/Γ(y) =%)/(y) for a l l y e G.

Now let us define the convolutions of distributions on vector valued func-
tions. Let

We put

<5

; C) ® ̂  = ^(G; ^0, we put

Then it is not difficult to see that S*Γe^(G; Homc(^1? ί̂ 3)) and
and that

(S*my) = S(y)f(y) and (Γ*/Ky) = f (y)/(y) for all 7eG.

3.2. For any ξ = Σα cα^αe© we put f ξ = Σ«cβ(Xβ)* (here the notation is
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the same as in §2). Let D = Σj ,ξJ®LJe®®Homc(Wl, W2). We define

For any Te^'(G; W^) and Se^'(G; W2) we define DTe^'(G; W2) and
'(G; WJ by

Clearly, the mapping D: 0'(G; ^)- '̂(G; W2) and Φ: <T(G; FF2)->0'(G; M^)
are continuous.

Let DeΦOHom^H^, M^). By the identification (g), Z) can be considered
as an element of ©®Homc(Homc(ί^1, W3), Homc(Wl9 W)) and hence as a
mapping of ^'(G; Uomc(W1, W3}) to ^'(G; HomcC^, W)). On the other
hand, if we regard De($®Homc(Homc(VF2, Pf3), Homc(PΓ2, W)), then D is a
mapping of ̂ '(G; Homc ( 2̂, 3̂)) to ^'(G; Homc ( 2̂, if)). Let

( , ϊ 2 ) ) a n d

Then we have

DSe <T(G; Homc(^2, )̂),

(DSr(y)f(7) = %)(S*Γr(y) for all y e G.

Therefore, we have

Let /e ^(G; WJ and Te ^'(G; Homc (Wl9 W2)). If D e (5®Homc

then D(T*/)e^(G; Pf), DTe®'(G\ Homc(^, P )̂) and (DT)*/
Since (DTγ(γ)f(γ) = β(γ)(T*fr(γ) for all y e β, we have

D(T*/) - (DT)*/

3.3. Let δw be a continuous linear mapping of ^(G; W^) to W so that
M/) =/(!), /e^(G; W). Regarding that δ^ is an element of &(G\ W®W)
by the identifications (d) and (e), let us calculate the Fourier transform δw of δw.

LEMMA 15. As an element ofEnd(Vy®W),

MlO - Ivv®w for all γ e G.

PROOF.

Mv) = Σij ΣP,q <<V, ayίx-ifa ® ψjyεit ® φi ® βj.
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We put f ( x ) = Σsfs(x)®Φs

 and f&) = δsj
aypq(χ~l)eι> where δsj is Kronecker's

delta. Then

Hence we have

Therefore,

<V(?) = Ivγ ® ΛΓ = Ivv®w Q E D

3.4. Let D e 05(χ)Homc (F, W). Let us consider the differential equation

0/=n, (3.1)

where w

PROPOSITION 2. If for any γ e 6 ί/zere exists a right inverse D(y)^1 of D(y)

and if for any & eTV ί/zere is α constant C^ >0 swc/i ί/iαί

/or αt>er^ y e G , ί/zen the function f(x) defined by

/(*) = Σye^ Φ) tr (πy(x)ύ(i)^ύ(y)) (3.2)

is a function of @(G\ V) and is a solution o/(3.1).

PROOF. By Lemma 14 we know that /e^(G; F). And

Hence β(γ)f(γ) = ύ(γ) for all y e 6. Therefore, D/= w. Q. E. D.

3.5. Let D E (5®Homc (V9 W).

DEFINITION. If a distribution £e^'(G; Homc(^, f)) satisfies DE = δw,

we call it an elementary solution of D.

LEMMA 16. If D has an elementary solution, then D is a surjectiυe mapping

of 2>(G\ V)to ®(G\ W).

PROOF. Let E be an elementary solution of D. For any we^(G; W) we

put/=£*w. Then we have/e^(G; V) and Df=DE*u = δw*u = u from §§3.1,
3.2 and 3.3. Q.E.D.

THEOREM 2. Lei De(5®Homc(F, W). Then the following conditions are
equivalent:

(1) D has an elementary solution',
(2) The mapping D of @'(G\ Homc(l^, F)) to ®'(G\ Homc(^, W)) is
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surjectίve;
(3) For any y e G, D(y) has a right inverse D(y)^ which satisfies that there

exist a constant C>0 and an ΰeN such that

H%)-1lly.Homc(fF,κ) < Cd,(y)ld(yY/2 for all y e G.

PROOF. Let E be an elementary solution of D. For any distribution Γe

®\G\ Homc(W, W}\ we put S = E*T. Then Se<T(G; Homc(W, Ϋ)) and
DS=T. Implication from (2) to (1) is trivial.

On the other hand, £(y) is a right inverse of D(γ) for all yeό. As Ee
@'(G\ Homc(W, P)), we have the inequalities in (3). Conversely, we assume
that D(γ) has a right inverse as in (3). Then the mapping y^>D(y)^ί is clearly
in ^'(G; Homc(Jίζ Ϋ)) and hence it is the Fourier transform of a distribution
E e ®'(G\ Homc (W, Ϋ)). E is obviously an elementary solution of D. Q. E. D.

The operation of D on &'(G\ Homc(W, F)) is as follows. By our identi-
fications, ^'(G;Homc(W; Ϋ)) = @'(G\C}®W®V and <T(G; Homc(W, W)}

= @'(G\C)®W®W. From § 3.2 D maps ^'(G; f) = ̂ '(G; C)®V to &'(G;W)
= ®'(G;C)®W. If D = Σ</®A /e©®Hom c(7, )̂ and T®t?e^'(G; C)®K,
Then D(T®v)=ΣξjT®LjV and, as a mapping of ^'(G; Homc(FF, VJ) to

^'(G; Homc(tf; 1̂ )), D(T®φ®v) = ΣζjT®φ®LjV. Thus we have the follow-
ing lemma.

LEMMA 17. Let D e @®Homc (K, Pf). // /) maps <T(G; F) onίo ^r(G; W),
then D has an elementary solution. Similarly, if the transpose *D of D maps
@'(G\ W) onto @'(G; F), then *D has an elementary solution.

3.6. In this number we assume that dimc K=dimc W.

LEMMA 18. Let D e (S®Homc (V9 W). Then D has an elementary solution
if and only if so does *D.

PROOF. Let E be an elementary solution of D. Then E(y) is a right inverse

of D(y) and is also a left inverse of Z)(y), i.e. E(y)D(y) = IV ®v By Lemma 4, D is
an injective mapping of ^(G; V) to ^(G; W). Hence D is a continuous bijective
mapping between two Frechet spaces. Thus D is a topological isomorphism
between ^(G; V) and ^(G; W). For any Sε@'(G\ V) the linear functional
0H-»<S, D'^y on ^(G; JΓ) is continuous. Then there exists Γe^'(G; PΓ) such
that <Γ, βf> = <S, D-1^). Hence <Γ, D/> = <S,/> for all/e^(G; F), therefore,
S = fDT. Then by Lemma 17, *D has an elementary solution. Conversely, if
*D has an elementary solution, D has clearly an elementary solution since '('D)
= D. Q.E.D.

THEOREM 3. Hfe assume that dimc F=dimc W. Let De(5(χ)Homc(F, Pf)
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be an invariant differential operator of @(G\ V) to &>(G\ W). Then the fol-
lowing conditions are equivalent:

(1) D has an elementary solution',
(2) Φ has an elementary solution',
(3) D(®(G\ F)) = ̂ (G; W)\
(4) D is a topological isomorphism of @(G\ V) onto @(G\ W)\
(5) D maps Q\G\ Romc(W, Ϋ)) onto &(G\ Homc(W, #));
(6) Ό(β\G\ Homc(W, P)))z>#(G; Homc(W, W))\
(7) For any y e G, D(y) is invertible. And there exist a constant C>0 and

an tt eN such that

\\D(yΓl\\y,Hθmc(w,v) < CdΛ(y)ld(yyt2 for all y e G.

PROOF. The equivalence of (1) and (2) is given in Lemma 18. The equiva-
lences between (1), (5) and (7) are in Theorem 2. Lemma 16 gives the implica-
tion from (1) to (3).

If (3) holds, the surjectivity implies the injectivity from Lemmas 4 and 5.
Then as in the proof of Lemma 18, D is a topological isomorphism of ^(G; V)
onto ^(G; W). By the duality, 1D is a topological isomorphism of ®'(G\ W)
onto ^'(G; V). Hence by Lemma 17, *D has an elementary solution.

The implication from (5) to (6) is a matter of course. Conversely, let us
assume that D(β>\G\ Homc(W, V)}^$(G\ Homc(^, 1̂ )). We put gy(x) =
d(γ)tr(πv(x))IW9 yeG. Then there is T^e^^G; Homc(^, f)) with /m = 0r

Hence we have D(y)(T^T(y) = gy(y) = IVv®Iw. Thus D(y) is invertible. Let us

consider the bilinear form C^/^ — <#(/)> ^> defined on the product space of
^(G; Homc(^, W)) with ^(G; Homc(W, W)), where the former is a metrizable
space with seminorms h*-*\\Dί

tDh\\2 (# eJV) and the latter is a Frechet space.
If </ι,/> is separately continuous, it is continuous. It is trivial that it is con-
tinuous with respect to / for any fixed h. By our assumption, there is an 5 e
^'(G;Homc(tf; 9)) such that DS=f. Hence <h,/» = <DS, /ι> = <S, Φ/i).
Thus this is continuous with respect to h for any fixed /. Hence there exist a
constant C and £9 &' e]V such that

^ C\\DJ\\2\\D^Dh\\2.

= ΣtjMx)Φι®*j> we Put f*(x) = ΣiMx)*i®Φj Let A be an element
of End(Fy)(g)Homc(^, W) and put f(x) = d(y)ti((πy(x)®lw)A) and A=/*.
Then we have

\\DJ\\l = ^(r)2Φ) \\A\\2

yίHomc(W}W)
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and

Pr'β/Ίli = ll

-1. Then

By Lemma 12 there is a constant C such that

for all γ e G. Thus we have completed the proof. Q. E.D.

§ 4. Fourier transforms on homogeneous vector bundles

4.1. Let K be a closed subgroup of G. Let τ be a finite-dimensional unitary
representation of K. Let Eτ = GxτVτ be the homogeneous vector bundle as-
sociated with τ. We identify the spaces of (continuous) sections, smooth sections
and ZΛsections with C(G; τ), C°°(G; τ) and L2(G; τ), respectively, which are the
set of all functions / of C(G; Ft), C°°(G; Fτ) and L2(G; Fτ) such that /(x/c) =
τ(/c)~1/(x) for x e G and /c e K, respectively. Since C°°(G; τ) is a closed subspace
of ^(G; Fτ), it is also a Frechet space and we denote it by ^(G; τ).

We define the Fourier transform of sections on Eτ by the restriction of the
Fourier transform of C(G; Fτ) to C(G; τ).

Let <5t be the continuous linear mapping of ^(G; Fτ) to FT defined by

<U/) = ( τ(k)-lf(k)dk, (/6^(G; Fτ)).
Jx

Regarding <5τ as an element of 2>'(G\ Vτ® Ϋτ) = @'(G\ Homc(fτ, fr)), let us
calculate (5τ.

LEMMA 19. Sτ(y) - ( π,(fe) ® τ(fc)dfe.
JK

PROOF.

= Σij ΣP,q Σ^ϊ <φs, δsj Σ&> alq(k)τti(k)etdkyVτElq ®φ,® ej

= Σij ΣP,q ,̂(/c)̂ , ® τ^fc)^ ® ̂  = πy(/c) ® <fc)dfc. Q. E. D.

By the invariance and the normalization of the measure we have

3T(y) = %) (π/fc) ® τ(fc)) = S&) (4.1)
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for every k e K and hence

Hence δτ(γ) is a projection. Moreover, we can see that δτ(y) is self-adjoint with
respect to the inner product ( , \tVτ. Hence δτ(y) is an orthogonal projection of

Fτ(y) = End(Ty)®Ft onto /(y, τ) = Im <5τ(y), the image of <5τ(y), with kernel N(γ9 τ)
= ker<5τ(y). The space Vτ(γ) is the orthogonal direct sum:

Let ^(6; τ) = {αe^(<3; J/τ) | α(y) e /(y, τ) for all yeG}. Then ®(G\ τ) is a

closed subspace of ^(G; Fτ).

THEOREM 4. 77zβ Fourier transform gives a topological isomorphism of
\ τ) onto ®(Q\ τ).

PROOF. Let /e ^(G τ). Then

dx = (πy(k) ®

for every y e G . Therefore, /(y) e /(y, τ) and hence /e ^(G; τ).
Conversely, let a e &(G\ τ). Then by (4.1) we have

%)α(y) = (πy(fe) ® τ(/c))α(y) .

Hence

(πy(/c) ® /Fτ)α(y) = (/Ky ® τ(/c)-

If we put

/(*) = Σ vβo d(v) tr ((πy(x) ® /Fτ)

then/e ̂ (G; Fτ), and by the above relation we have

Hence /e^(G; τ). Q.E.D.

Let L2(G; τ) be the set of all a e L2(G; Fτ) such that a(y) e /(y, τ) for all y e G .
Then L2(G; τ) is a closed subspace of L2(G; Fτ) and is the completion of ^(G; τ)
in L2((S; Fτ). Hence we have the following.

COROLLARY. The Fourier transform extended to L2(G; Ft) gives an isome-
try 0/L2(G; τ) onto L2(G; τ).

From the definition of the convolution in § 3,
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Because of the uniform convergence of the series, we can show that

&*/)(*)=( τ(k)f(*k)dk.
)κ

Thus we have the following.

LEMMA 20. A Vτ-valued function /e^(G; Vτ) is a section which belongs to

®(G\ τ) if and only if δτ*f=f.

4.2. We denote by @'(G\ τ) the set of all continuous linear functionals on
^(G; τ). For Te 3>'(G\ Vτ) we denote by Φ(T) the restriction of T to Q>(G\ τ).
Then it is clear that Φ(T) e ^'(G; τ). Conversely, if S e 0'(G; τ), we can define
a distribution on ^(G; Vτ) by/ι-><S, <5τ*/>. For any Te^'(G; Vτ) let us define

Weput ;̂ = {Te<T(G; 7t) | 7>T}.

LEMMA 21. 77ze mapping Φ gives a linear isomorphism of &'τ onto Q>'(G\ τ).

PROOF. For any Se^'(G τ) we put T=Sτe^r(G; Fτ). Then Tτ = (St)τ

= Sτ = T. Hence Tτe^; and from Lemma 20 we have Φ(T) = S. We next as-
sume that Φ(T) = Φ(T'), T, Γr e ̂  . Then for any/e ^(G; Ft),

Thus we have proved that Φ is an isomorphism. Q. E. D.

Remark that if we endow &'(G\ τ) with the weak topology, then Φ is a

topological isomorphism of ,̂ which is a closed subspace of &'(G\ Vτ)9 onto
®'(G\ τ). We thus identify ^'(G; τ) with ̂  hereafter.

Let τ be the contragredient representation of τ on Vτ.

LEMMA 22. For αny Te ^'(G; Fτ) we

PROOF. Let/(x) = fl^(χ-1>ye^(G; Fτ). Then

5τ*/(x) = ί alq(k-iχ-i)τ(k)ejdk = Σί^ Σ
J K

Then

r,β Σ, π
K.

Q.E.D.
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Thus we can characterize the Fourier image of &'(G\ τ). Let

for all ye

THEOREM 5. The Fourier transform gives a topological isomorphism of
'(G\ τ) onto ®'(G\ τ).

4.3. Let θ be the injection of ^(G; Fτ) into 2>'(G\ Ϋτ} defined by (2.1).

LEMMA 23. Q(β(G\ τ))c0'(G; τ).

PROOF. Let/e ^(G; τ). For any g e 3>(G\ Ϋτ) we have

, (
J

G JK

<f(
JG

Therefore, θ(f)^ = θ(f) and hence θ(f) E @'(G; τ). Q. E. D.

§ 5. Differential equations on homogeneous vector bundles

5.1. Let σ and τ be finite-dimensional unitary representations of K. The
adjoint action of K on 9 can be lifted to an action on (5. We denote it by k ξ,
ξe&andkeK. Then K acts on (5® Homc (7σ, Fτ) by

for D = Σ </® LJ9 ξj e © and L, e Homc (Fσ, Fτ). We put

HDκ(σ,τ) = {De<5 ® Homc(Fσ, Fτ) | k D =D /or α// /ceX}.

We know that any DeHDκ(σ, τ) maps ^(G; σ) to ^(G; τ) (see N. R. Wallach
[2, § 5.4.7]). And we know that any homogeneous differential operator of Eσ

to Eτ corresponds to an element of HDκ(σ, τ) (see N. R. Wallach [2, §5.4.11]).

Since

dπγ(λά(k)X) = π/

for any k e K and for any X e 9, we have

(fc DΓ(y) = (πy(/c) (g)

for each D 6 ©®Homc (Fσ, Fτ). Hence if D e HDκ(σ, τ), then we have
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= (πy(/c) ® τ(/c))%) (5.1)

for all ke K. Therefore, we have

for all y e G. Hence we have D(γ)I(y9 σ)c:/(y, τ) and D(y)N(y, σ)cJV(y, τ).

5.2. We denote by σ and τ the contragredient representations of σ and τ
on ~Pσ and Ϋτ, respectively, as before. Then K acts on Homc(Ϋτ9 Ϋσ) by L
^>σ(k)Lτ(k)~l, and we denote it by l(/c)L. For F e ®(G\ Homc (Pτ, tζ)) we put

Fk(x) = F(k~1xk)9 (keK).

Let Γ6^'(G; Homc(fτ, )̂). We define λ(k)Tand Γfe, which are members of
), by

and <Tfc, F> = <Γ, F^1) ,

where I^-1)^7 is a function defined by (i(/c-1)F)(x) = I(/c~1)(F(x)). Let
^XG; Homc ( fτ, fσ))0 be the set of all Te &'(G; Homc ( ft, fσ)) such that

Tk=λ(k~i)T for all fceJC.

LEMMA 24. Lei be^ ;(G; Homc( fζ, fσ)). T/iβn Z? zs the Fourier trans-
form of some Te@'(G\ Homc(Pτ, Fσ))0 z/αnd on/y if

(πy(/c) ® σ(/c))fo(y) = fo(y) (πy(/c) ® τ(/c)) /or all

PROOF. Let Te^r(G; Homc(Ft, Vσ))0. Let el5..., ed(t) and *?;,..., ̂ (σ) be
orthonormal bases of Vτ and Fσ, respectively. And let φi9...9 φd(τ} and φ'l9...9

φ'd(σ) be their dual bases. Then

= (π/fc) ® I

On the other hand, by the identification Homc (Pt, ί̂ σ) with Fτ® ̂ σ we have

for ^ e Fτ. Hence

(λ(/r om?) = Σ/ Σ, ΣPΛ

Thus we have
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(πy(k) ® σ(k))f(y) = f(y) (πy(k) ® τ(fc)) for all k e K.

Conversely, let b be an element of &'(G\ Homc ( Fτ, Ϋσ)) such that

(πy(/c) ® σ(/c))fc(y) = b(y) (πy(/c) ® τ(/c)) for all k e K.

Then by Theorem 1 there is a unique Te^'(G; Homc(Fτ, Fσ)) such that f=fo.
Hence for any y e ό

= (πy(/c) ® /O&ωίπyίfc)-1 ® /Kτ)
ίπ/fc)-1 ® JKτ)

Therefore, Tk = λ(k~1)T. Hence Te ^'(G; Homc ( fτ, fσ))0. Q. E. D.

COROLLARY. // Te&'(G; Homc(fτ, Fσ))0 and we^(G τ), ί/i^n Γ*M
; σ).

PROOF. We know that Γ*w e ̂ (G; Fσ). From Lemma 24

Hence T*w e ^(G; σ) by Theorem 4. Q. E. D.

5.3. DEFINITION. Let D e HDκ(σ, τ). When there exists a distribution
E e & '(G Homc ( V τ, Fσ))0 such that

we call £ an elementary solution of D.

We assume that D has an elementary solution E. Let we^(G; τ). Then
from the corollary of Lemma 24,/ = E*w is in ^(G; σ). And

%)/()>) = %)%)%) - toK?) = β(7) for all y e G.

Therefore, / is a solution of the differential equation Df=u. Thus we have the
following lemma.

LEMMA 25. Let DeHDκ(σ, τ). If D has an elementary solution, then D
is a surjective mapping of ^(G; σ) to &(G\ τ).

We assume again that E is an elementary solution of D. By Lemma 24 we

have
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Hence £(y)I(γ, τ)c/(y, σ) and £(γ)N(γ, τ)^N(γ, σ). We put β(γ, σ) = %)|/(y.σ)

and£(7, τ) = £(7)|/(y>τ). Then

, τ) = J/(yιT),

where 7/(yjT) is the identity operator on /(y, τ). Hence £(7, τ) is a right inverse of

Taking σ = τ we define ^'(G; Homc(fτ, Pτ))β as before. Then by Lemma

24, 0'(G; Homc(Fτ, fτ)0 is the subspace of Te^'(G; Homc(Pt, Fτ)) such that

(π/fc) ® τ(/c))f (7) = f (7) (πy(fc) ® τ(k)) for all keK.

We put

(fτ, FT))* - {Te^'(G; Homc(fτ, Fτ))0|ότ*T= T},

(^τ, fσ))* = {Te®'(G; Homc(fτ, Ϋσ)\\δσ*T= T} .

Then Te^'(G; Homc(ft, Fτ)) belongs to <T(G; Homc(fτ, F,))* if and only if

δτ(y)f (y) = f(y)δτ(y) = f (7) for all 7 e 6.

And Te^'(G; Homc(Fτ, Fσ)) belongs to ^'(G; Homc(fτ, fj)^ if and only if

$MT(y) = f(y)δτ(y) = f (7) for all 7 e 0.

Clearly, 5t e #'(G; Ήomc (>t, f,))*.
Let E be an elementary solution of D. Then if we put Eί=δσ*E, we have

(7) = D(y)δσ(y)£(y) = D(y)E(y)δτ(y) = δτ(y)2 =

for all 7 e G. Hence E{ is also an elementary solution of D. And E{ is a member
of <r(G;Homc(Fτ, ?„)),.

Let L e Homc (7(7, τ), 7(7, σ)). If we denote by HL||y>τ>σ the Hubert-Schmidt
norm of L, then

where O is the null operator of N(γ, τ) to N(γ, σ).

THEOREM 6. Lei DeHDκ(σ, τ). T/ien the following conditions are equiva-

lent:
(1) D /ίαs an elementary solution',

(2) 77ιe mappinflf D of 9'(G\ Homc(fτ, Ϋ^ to 9\G\ Homc(fτ, τ̂))φ

is smjectivei

(3) For anv 7eό, D(y, σ) /zas a ri^r/iί inverse D(y, σ)^1 w/»'c/ι satisfies that
there exist a constant C>0 and an 6 eN such that

/^ Λ« 7 e G.
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PROOF. We have shown the implication (l)c>(3).

). Since for S e 2>'(G\ Homc ( Ϋτ, Pσ))* we have

= D(y)S(y)

by (5.1)' and

we see that D is a mapping of 3>\G\ Homc (Fτ, ί̂ ))* to @\G\ Homc (Fτί Pt))*.
Let E be an elementary solution of D. For Te&'(G; Homc(Ft, ί̂ ))* we put
S = Eί*T. Then S e <T(G; Homc ( fτ, fσ)). And we have

and

Hence Se®'(G\ Homc ( f τ, f ,))* . Moreover,

= f(y).

Hence D5= T. Thus D is surjective.
The implication (2)c>(l) is trivial.
(3)^0(1). We put b(y) = D(γ, σ)R100, where O is the null operator of

N(y, τ) to JV(y, σ). Then ό(y) e Homc (Fτ, Fσ)(y) = End(Fy)®Homc(Fτ, Vσ) for
all y e 6 and there are a C > 0 and an £ e N such that

Hence by Lemma 13 fce^'(G; Honicί^, Kσ)) and we then have that there is
'(G; Homc(ft, Ϋσ)) such that f=b. We put E=δσ*T*δτ. Then £e

ί̂ , σ̂)), and

y, σ) 0 %)|N(y,ff))(%, σ)? ® O)δτ(y)

= ίτ(y)%, σ)%, σ)515τ(y) = ^τ(y)3 = δτ(y).

Hence DE = δτ. Q.E.D.

LEMMA 26. // D e /f/)x(σ, τ), ί/i^π φ e .ίίDx(τ, σ).

PROOF. Let /c e X and Jί, 7e g. Then

<(fc X 7) = '((Ad (fc)Z) (Ad (fc) 7) = (Ad (fc) 7) (Ad (k)X)

= fc.'(XY)....
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Hence for any ξ e (5

Thus we have, for D= Σ; £/®L/ e ©®Homc (Vσ, Vτ),

<(k .D) = Σjk <ξj ® <σ(/r O'L/τC/r1)-1 = k - tD.

Therefore, D e HDκ(σ, τ) if and only if φ e HDκ(τ, σ). Q. E. D.

LEMMA 27. Let DeHDκ(σ, τ). 7/D maps ^'(G; σ) onto ^'(G; τ), then D

has an elementary solution. Similarly, if *D maps <&'(G\ τ) onto @'(G\ σ),

then *D has an elementary solution.

PROOF. By Lemma 26, D maps ^'(G; σ) into ^'(G; τ). By Theorem 6 it

is enough to prove the surjectivity of the map D of @'(G\ Homc(Fτ, fiσ))* to

^'(G; Homc(^τ, ί̂ τ))*. We choose bases as in the proof of Lemma 24. Let

'(G; Homc(fτ, ?τ))*. Under the identification ^'(G; Homc(Fr, Fτ)) =

τ, we can write

S= ΣIJ Sy ® ̂  ® ej9 StJ G Q\G\ C) .

Then

where Sij(y)eC(γ) = End (Fy). We put

Then Sje^'CG COΘK^^XG; tt). Let %) = Σs^s®Ms, L seEnd(Fy) and
Ms e Homc ( Fτ, Fr). We have

On the other hand,

Hence (̂7)̂ (7) = ̂ (y) for all y e G . This shows that SiE^f(G\ τ). From our

assumption it follows that there are TιE&'(G',σ) such that DT^Si. If

(F(T, Vτ) and Ti = ΣPTip®e'pε&r(G 9 C)®Fσ, then

We put

T = Σι,P Tip ® Φi ® β; e 0'(G; Homc

Then
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DT = Σ Σ ζt^ip ® Φi ® Ate'p = Σ $ij ® 0i ® ej — S.

We put T = 7*<5τ. Since T4 e ^'(G; σ), we can see that δff(y)fj(y) = f)(y). Hence

i.e. r e #'(G; Homc (fτ, ?„))„. And

DT' - (/>7>5τ = S*(5τ = 5. Q. E. D.

By the injection Θ, &(G\ Homc(Fτ, Fτ)) can be regarded to be a subset of

<T(G; Homc(fτ, fτ)). We define ^(G; Homc(Fτ, 7τ))* as the subspace of all

/G0(G; Homc(Fτ, Fτ)) which satisfy 5τ(y)/(y) =/(y)5τ(y) =/(?) for all y e G , that

is, /=δτ*/=/*δt.

5.4. THEOREM 7. We suppose that rank ^σ(y) = rank <5τ(y) /or α// y e G .

Lei DeHDκ(σ, τ). T/ien the following conditions are equivalent:

(1) D /ίtfs an elementary solution',

(2) fD /zαs an elementary solution',

(3) D(^(G;σ)) = ̂ (G;τ);

(4) D is a topological isomorphism of &(G; σ) onto @(G\ τ);

(5) D maps 9\G\ Homc(Ft) t̂ ))» onίo #'(G; Homc(Ft, t̂))*;
(6) D(^'(G; Homc (?„ Ϋ$+ c= ̂ (G; Homc (Kt, F,))̂
(7) For any y e 6, jβ(y, σ) is invertible. And there exist a constant C>0

flttd an 6 e ΛΓ SMC/I f f ta f

ll^σrMly.τ.σ^Cd^My)1/2 /OΓ fl// 7 6 G.

PROOF. The implication from (1) to (3) is given in Lemma 25.

(3)cφ(4). If D is a surjection from ^(G; σ) to Q>(G\ τ), then D(y9 σ) is a

surjection from /(y, σ) to J(y, τ) for all y e G. Then /3(y, σ) is regular, for

dimc/(y, σ) = dimc/(y, τ). If D/=0 for fe®(G',σ), then D(y, σ)/(y) = 0.

Hence /(y) = 0 for all y e ό. Therefore, D is a continuous bijective mapping of

^(G; σ) to 3>(G\ τ) and is a topological isomorphism.

(4)cφ(2). We put Dί=D\^(G;σy Then the inverse mapping Dr1 of Dl is

a continuous mapping of ^(G; τ) onto ^(G; σ). For any Se^(G σ) the

linear functional T: ̂ ^<S, DΓ1^) is continuous on ^(G; τ), i.e. Te^'(G; τ).

Regarding 5 and Tas elements of @'(G\ Vσ) and Q>'(G\ Fτ), respectively, we get

Sσ = S and Tτ = T. Then for any /e ̂ (G 7,)

<s,/> = <sσ,/> = <s, δσ*fy = <

= <r, MAO> = <Γτ, /)/>

Hence S = ΦΓ. Thus we have proved that Φ is a surjective mapping of



Fourier transfroms on homogeneous vector bundles 169

^'(G; τ) to ^'(G; σ). Then Φ has an elementary solution from Lemma 27.
If Φ has an elementary solution, then combining the fact D = *(*D) with the

implications proved above, we have (1).

(2)ι=>(5). If Φ has an elementary solution, Φ is a topological isomorphism

of ^(G; τ) onto ^(G; σ) as mentioned above. Then by the duality D is a
topological isomorphism of &'(G\ σ) onto ^'(G; τ) in the sense of the weak
topology. Then, as we have proved in the proof of Lemma 27, D is a surjection

from Q>'(G\ Homc(fτ, Pσ))* to ®\G\ Homc(fτ,
The implication from (5) to (6) is trivial.

By Theorem 6, (1) is equivalent to (7).
Now let us assume (6). We put

tr(πr(x/c))τ(/cX/c.
K

Then hγ E &(G; Homc (Kτ, Vτ)). We set

gγ(x) = d(y)tr(π7(x))IVτ.

Then hγ = δτ*g. As we have seen in the proof of Theorem 3,

07(y) = ιVv ® ιVτ

Hence

Therefore, hγ e^(G; Homc(Fτ, VτJ)* and by our assumption there is a Ty

e^(G; Homc(Fτ, FJ)^ such that DT? = hr Then (ΓyΠ7)|/(y>τ) is the inverse
of D(y, σ). If we replace A by D(y, σ)*"1©^}, where O is the null operator of

N(γ, τ) to N(γ9 σ), the rest of the proof is the same as that of Theorem 3. Then
we can prove that D(y, σ)"1 satisfies the condition in (7). Q. E. D.

§ 6. Global hypoellipticity and elementary solutions

Let σ and τ be finite-dimensional unitary representations of a closed sub-
group K of G. By Lemma 23 we can consider that ^(G; σ) is a subspace of

<T(G; σ).

DEFINITION. Let DeHDκ(σ, τ). Then, D is called globally hypoellίptic if

whenever DTe 2>(G\ τ) for TE ̂ '(G; σ) then Te @(G\ σ).

We set G(σ) = {y e G | δσ(y) Φ 0} . For ^ e Homc (7(y, σ), /(y, τ)) we put

m°(A) = inf [\\Av\\7tVτ | ||ι;||yfKα = 1, ι>e/(y, σ)} .

For DeHDκ(σ, τ) we put m^(D) = m^(D(y, σ)). The following theorem, which
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characterizes globally hypoelliptic operators, is due to N. R. Wallach [2, Theo-
rem 5.8.3].

THEOREM 8 (Wallach). Let D e HDκ(σ, τ). Then the following conditions
(1) and (2) are equivalent:

(1) D is globally hypoelliptic;
(2) There are an & eΛΓ, a C>0 and a finite subset F of G(σ) such that

mσ

γ(D) > Cd^yΓ1 for all y e 6(σ)\F.

For B E Homc (/(y, τ), /(y, σ)) we put

M'y(B) = sup {\\Bw\\γ,Vσ I ||w||y,Kτ = 1, we/(y, τ)} .

For a homogeneous differential operator DeHDκ(σ,τ) we put M^(Z)~1) =
Mτ

y(β(y, σ)-1) if %, σ) is invertible.

COROLLARY. Let DeHDκ(σ,τ). If rank <5σ(y) = rank <5τ(y) for all yeG,
then the following conditions are equivalent:

(1) D is globally hypoelliptic;
(2) There exist an ^eΛΓ, a C>0 and a finite subset F of <3(σ) such that,

for y e <3(σ)\F, D(y, σ) is invertible and

PROOF. (l)cί>(2). By Theorem 8 there are an £ e N9 a C'>0 and a finite
subset F of ό(σ) such that m^D^Cd^γ)"1 for yeG(σ)\F. Hence, for γ
6 ό(σ)\F, D(y, σ) is invertible. Remark that if A e Homc (/(y, σ), /(y, τ)) is
invertible, then Mτ

y(A~l) = m°(A)~l. Therefore, if we put C = C/~1, we have

(2).
(2)=4>(1). Let yeG(σ)\F. Let vel(γ, σ) be ||ι;||yfΓ<r = l. Then β(γ,

and \\β(γ, σ)t;||yfKτ^O. Hence

1 = \\v\\JtVσ = ||%, σ)-lΦ(y, σ)vl\\β(γ9

< M^D-OH^y, σ)t7||y§rτ < CJ,(

Therefore,

m5(D) > C-M^y)-1 for all y e G(σ)\F.

Hence by Theorem 8, D is globally hypoelliptic. Q. E. D.

THEOREM 9. We assume that rank (5σ(y) = rank (5τ(y) for all y e G . Let
DeHDκ(σ, τ). Then D has an elementary solution if and only if it is globally
hypoelliptic and is an injective mapping of @(G\ σ) to @(G\ τ).
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PROOF. Suppose that D has an elementary solution. Then by Theorem 7,
D(γ, σ) is invertible for every γ e G and there exist a constant C > 0 and an £ e N

such that

||%, σ)-1!!^ < Cd&(y) for every y e G.

Hence if w e/(y, τ) and ||w||y Fτ = 1, then

11%, σΓ^\\7.v9 < CdΛ(γ) ||w||y)Fτ = Cd^γ) for every y e G .

Therefore,

M'/D-1) < 0/,(y)

and then D is globally hypoelliptic by the corollary of Theorem 8.
Conversely, suppose that D is globally hypoelliptic and injective. We first

show that D(y, σ) is invertible for all y e G . Let us assume that D(y, σ)v = Q for
υ e I(γ, σ). We set f ( x ) = d(γ) tr ((πy(x)® IVτ)υ). Then /(y) = v and /(y') = 0 for
y'^y, y ' e G and hence 3σ(/)/(/) =/(/) for all y ' eG. Then /e^(G; σ) and
Df=Q. Hence /=0. By the irreducibility of πy, t; = 0. Thus we have proved
that D(y, σ) is injective and hence invertible. By the corollary of Theorem 8
there are an 6 e TV, a C>0 and a finite subset F of G(σ) such that

M^/r1) < Cdι(y) for every y e <S(σ)\F.

If w e /(y, τ), we then have

11%, σΓ1*!!^ ̂  Cdάγ) || w||y§Fτ for any y e G(σ)\F.

We put C' = max{C, ̂ (y)'1!̂ , σ)"1^^ (yeF)}. Let g be any function in
; τ). Then for any j e TV we can find C7>0 so that

(Lemma 14 and its corollary). For any teN we choose j so that j
Then we know that there is a constant C" > 0 such that dΆ(y)dt(y) < C'd/y) for
any y e G . We define a F^Gj-valued function a on G by

Then it is easy to see that α(y) e /(y, σ) for all y e G . Since we have

l|fl(y)ll,.K. < C'CjC'dj^Γ1 for any yeG,

a is the Fourier transform of a function /e 3>(G; σ). Since

(ί)/Tω = D(y)D(y, σ)-^(y) = ^(y),

we have £>/=#. Therefore, D(S>(G\ σ)) = 2>(G; τ). Hence by Theorem 7, D has
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an elementary solution. Q. E. D.
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