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1. Introduction

The principal objective of this work is to make a systematic study of a gener-
alization of the Griffith theory in three dimensional fracture mechanics from
mathematical viewpoint. We consider the situation where an elastic body
containing a crack, in its non-deformed state, occupies a domain in R3 of the
form Q=G—2X. Here we consider the crack as a discontinuity in the material
in the form of a surface X, and we assume that G is a domain in R3 with local
Lipschitz property and X is a two dimensional manifold with boundary contained
in G. This body is in a state of equilibrium under the influence of a load ¥
consisting of a body force in Q and a surface force on the boundary 0G of G. By
1(&; ) we denote the potential energy of the elastic body containing the crack
2 under the load .. The generalization of the Griffith theory can be expressed
in terms of the concept of energy release rate as follows (cf. Palamiswamy and
Knauss [19]). The crack extension process is considered to occur in a quasi-
static manner, so that when we refer to time we use it as a parameter which indi-
cates the sequence of events. We denote by X(¢) the surface obtained from X by
extending it in the length of time ¢t (=0). Of course Z(f)<X(t') if t<t’, and
Z=2(0)=1\,50 2(t). During crack extension let the load ¢ be independent of
t. If the crack extends from X to X(t), the potential energy released by the incre-
ment Z(t)— X is given by

I(Z;2) - 1(Z; Z1).

Now we consider the limit

(1.1) G {ZO)) = lim,., XL B S WL 2O

where |X(t)—2Z| denotes the surface measure of X(t)—Z2. If it exists, we call
G(Z; {Z(t)}) the energy release rate of the crack extension {Z(t)} under the load
Z. This is expected to be a function of the “infinitesimal displacement’” d{X(¢)}
of the edge of the crack (see [19]). Then we may rewrite G(Z; {Z(f)}) as
G(Z; d{Z(D)}).

Now the generalization of Griffith’s energy balance can be expressed as
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follows (see [19]): of all crack extensions, there should be one {Z(#)} which makes
G(Z; -) an absolute maximum

Gmax = G(Z; A{Z(1)}).

Crack propagation in a brittle solid becomes possible when the energy release
rate G,,,, reaches a critical value which depends on the material considered, and
the crack will propagate in the direction determined by d{X(f)}.

Here the following questions arise:

(Q.1) How to describe and measure the force which causes the crack extension?
(Q.2) How to define the infinitesimal displacement d{Z(t)}?
(Q.3) Is there an absolute maximum G, ?

To our knowledge systematic studies of these questions have not appeared
in the literature. The following result will be of great help in attacking these
questions.

For a homogeneous elastic plate containing a crack which lies on the line
x,=0, it has been shown in Rice [21] that if the crack extends in the x (-direction
and the body force is zero, then the energy release rate is expressed as a path-
independent integral

(1.2) J= SC (W, —s-(Du)}de,

which is called the J-integral in fracture mechanics. Here u is the displacement
vector, Wthe strain energy density, s the traction vector, C a closed curve surround-
ing the crack tip as illustrated in Figure 1, d¢ the line element of C and v, the
components of the unit outward normal to C. The work in [21] is intimately
related to earlier investigations by Sanders [22] and Cherepanov [6].

X2

crack
crack tip

Figure 1
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This representation of energy release rate indicates the following interesting
fact: If the elastic field of the above plate under an arbitrary load is “regular”
at the crack tip, then we see that J=0 by means of the divergence theorem (see
Proposition 3.9) and hence the energy release rates are zero for all loads, which
is contradictory to our experience. Hence there should exist a load % such that
the elastic field of the above plate under % is “‘singular’’ at the crack tip. The
meaning of the terms “regular’” and “singular’® will be clarified later (see Defi-
nition 3.1). A detailed mathematical investigation for the J-integral (1.2) is
described in Ohtsuka [20].

The above considerations suggest that the crack extension force is described
by the singularity of the elastic field at the crack tip and measurements of crack
extension force can be made in terms of the J-integral. Thus our question (Q.1)
can be reduced to the following problems:

(P.1) Find a representation analogous to the J-integral of the energy release
rate for three dimensional bodies under arbitrary loads.

(P.2) Show that this representation depends only on the singularity of elastic
fields at the edge of the crack.

It is difficult to calculate the energy release rate in general case. Hence, as
a first step, we calculate it in the case of a linear elastic body containing a smooth
crack which advances smoothly (see Definition 4.1).

The main result in this paper is the expression of energy release rate as a
generalized J-integral (see section 3), which is an answer to (P.1) (see Theorem
4.5). Partial answer to (P.2) and (Q.2) are given in Corollary 4.6 and Theorem
5.5, respectively. Further discussions of these questions as well as (Q.3) will be
given in a forthcoming paper.

Throughout this paper we use the following notations: For a domain A, 04
is the boundary of 4 and |A4| the volume of 4. For a surface S, 0S is the boundary
of S if S is a manifold with boundary, dS the surface element of S, |S| the surface
measure of S, and v=(v,, v,, v3) the unit outward normal to S if S is the boundary
of a domain with local Lipschitz property or a two dimensional oriented smooth
manifold. For an arbitrary open set Q, we denote the set Q N Q2 by Q'.

2. Elastic bodies and energy release rate

In this section we shall discuss a linear elastic body containing a crack (not
necessarily smooth) and a quasi-static problem which arises from consideration
of a crack extension process.

First we define Q=G —2 more precisely. A domain Q is said to have local
Lipschitz property if it is a bounded domain in R3 such that, in a neighborhood of
any point x € 0Q, 0Q admits a representation as a surface y;=a(y,, y,), where a
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is a Lipschitzian function and (y,, y,, y3) is a Cartesian coordinate in R3, and Q
is locally located on one side of dQ. G is a domain in R3 with local Lipschitz
property and X a two dimensional manifold with boundary 02 in G which lies on
the boundary 0% of a domain E with local Lipschitz property such that = <G.

The linear theory of an elastic body containing a crack is expressed as follows:
Let u=(u;), e=(g;;), 0=(0;;) denote the displacement vector, the strain tensor
and the stress tensor, respectively. Then the strain-displacement and stress-strain
relations of this elastic body are given by

&;;(x) = [&;(w)](x) = (Djux) + Du(x))/2,
0;/(x) = [0,;w)] () = a;u(x)en(x) (Hooke’s law),

where a,;, denote the components of Hooke’s tensor. We assume that a;j,
belong to C*(R) and satisfy the following property of symmetry

(2.1) Aijrr = Qjix = A
and of ellipticity
(2.2) aijklfklfij =4 Ofofijfij for all &ij # 0

with some positive constant a, independent of &;;.

We consider the following circumstances: the elastic body cannot move
along I'y (=dG), a surface force F is given on I'; =0G —TI', a body force fis given
in Q and the stress is free on X (see Figure 2). Then the displacement vector u
satisfies the boundary value problem

—Djo;;=f; in Q,

u=0 on I,
2.3)
ovj=F, on T,

=o0g;;v;=0 on 2ZX,

+
0ijV; ijvi

ij
where f; and F; are the components of f and F, respectively. Here we assume that
I’y is measurable with respect to the surface element of 0G and has positive
measure, and that the stress tensor o;; has finite limits

ofi(x) = lim,,, 6;)(y), o7;(x) = lim,_, 0,(2)

for any xe€ X, as y and z approach to x from G—Z and Z, respectively.

In order to give variational formulation of the problem (2.3), we consider the
Sobolev space W™P(Q) for an open set Q of R3, 1<p<oo and non-negative
integer m. All functions considered in this paper are real valued. - By LP(Q) we
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denote the classical Banach space consisting of p-integrable functions on Q with
the norm

1/p
lur = {{ IoClrax}
Wmr(Q) is the space of all functions v € LP(Q) such that
1/p
o = {Ziatzm ID0ledx}" < co,
where D*=D%$:D32D%* for a=(a,, ®,, ®3), |¢|=0,+a;+a3 and D*v mean dis-
tributional derivatives. Wm™P(Q) is a Banach space equipped with the norm

|0lm,p,0- Here we note that Wo-2(Q)=Lr(Q). The case p=2 is special, since the
space Wm2(Q) is a Hilbert space with respect to the scalar product

(U’ W)m,Q = S Z|z|$m D*vD*w dx
o s

We set [v],,,0=|0l,n2, and H™(Q)=Wm2(Q). For a surface S, L?(S) can be
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defined in terms of the surface element dS of S. For our later purposes we
present the trace theorem, the density theorem and fundamental Green’s formula.
If a domain Q has local Lipschitz property, then C*(Q) is dense in H!(Q). For
ve C*(0), we define

YoU = “trace of v on 0Q’ = the restriction of v to 0Q.

Then we have

TRACE THEOREM. If Q has local Lipschitz property, then the mapping 7o
is extended to a continuous linear operator from H'(Q) into L*(0Q).

When there is no fear of confusion, we simply write v for yov. Although
C*(Q) is not dense in H*(Q) for our domain Q we can define the trace of ve H'(Q)
on 0Q=0G U X as follows: Since Z and B=G— Z have local Lipschitz property,
and v| ;e HY(Z) and v| ge H(B) for all ve H(Q), we obtain a trace operator

2.4) v—(vt, v™, v) e {L*(2)}? x L?(9G),

where v* is the restriction of yg(v| ) to X, v~ the restriction of y=(v|z) to X and v
the restriction of yg(v| ) to 0G.
The density theorem is the following (see e.g. Adams [1]):

DENSITY THEOREM. The subspace C*(Q) n W™»(Q) is dense in Wmr(Q) for
1=p<oo.

We now give well-known fundamental Green’s formula, which is closely
related to J-integrals. Let Q be a domain with local Lipschitz property. For
any v, we H1(Q), we have

(2.5) SQ W(Dw)dx = — SQ (D;v)w dx +SaQ owv; dS

for each i=1, 2, 3 (see e.g. Necas [17]). Since
aD(vw) = (aw)Dv + vD(aw) — (D;a)ow
for any v, we HY(Q), a € C(Q), (2.5) implies
LEMMA 2.1. Let Q be a domain with local Lipschitz property. Then, for
any v, we HY(Q), a e C1(D),

(2.6) S aD(vw)dx = —S (D;a)ow dx + S avwv,dS for each i=1,2,3.
Q Q oQ

In general, Green’s formulae (2.5) and (2.6) do not hold for Q. We call
Q (=G) “regular relative to Q’ if Q is a domain with local Lipschitz property and
the formula
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2.7 S (Dp)wdx = — g v(D;w)dx + g owv,dS + S [ow] v, dS
Q’ Q’ 2Q Ing
hold for all v, we HY(Q), i=1, 2, 3, where Q'=0nQ and [vw] represents the
discontinuity of vw across Z, i.e.,
[ow] = vtwt — v w™  (see (2.4)).

If both QN & and Q N (G—2Z) have local Lipschitz property, then by (2.5), it is
easy to prove that Q is regular relative to Q. If Q is regular relative to Q, then, by
an argument similar to Lemma 2.1,

2.8) S aD(vw)dx = '——S (D;a)owdx + S avwv,dx + S afow] v,dS
Q’ Q' 2Q InQ

for v, we HY(Q), a e C(Q).
We shall now give the variational formulation of the problem (2.3). In what
follows we shall use the notations

H"(Q) = {H™(Q)}* and LXQ) = {L*Q)}* (= H%Q)),
which are equipped with the product norms
1ol = {X 31 0512, /2.
We define the space
V(Q) = {v; ve H(Q), v=0 on TI,},
which is a Hilbert space as a closed subspace of H'(Q), and we consider the bi-
linear form

2.9) a(v, w) =SQ o;i(v)e;(wydx for v, weV(Q),

which is symmetric by (2.1). Then the problem to find a displacement vector u
satisfying (2.3) under a load Z =(f, F) e L3 Q) x L*(I',) can be reformulated as
follows:

(2.10) Find ueV(Q) such that
a(u, v)=g f-vdx+g F-vdS  forall veV(Q).
Q ry

If the bilinear form a(v, w) is coercive and bounded on V(€), then we can
immediately conclude the unique solvability of the problem (2.10) by use of the
Lax-Milgram lemma (see e.g. [17]). Related to the coercivity of a(v, w) is
Korn’s inequality, that is, there exists a constant ¢()>0 such that

2.11) [, eu@edx + | _vwdx 2 (@ 1ol
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for all ve H(Q2). To obtain Korn’s inequality, it is sufficient by Gobert [11]
to show that Q has cone property, that is, there exists a finite cone C such that
each point x of Q is the vertex of a cone C, contained in 2 and congruent to C.
It is easy to prove the following lemma (cf. Chenais [5]):

LEMMA 2.2. Q has cone property.
Then we obtain the following compactness result.
LEMMA 2.3. The imbedding H'(Q)— L*(Q) is compact.

The proof of this lemma is found e.g. in [1].
By virtue of (2.2), (2.11) and Lemma 2.3, we can conclude the coercivity of
a(v, w) by an argument similar to that in Duvaut-Lions [7], Chapter 3, Theorem

3.3.

LEmMMA 2.4. There exists a positive constant a(€2) such that
(2.12) a(v, v) = Q) vl o forall veV(Q).
We then have

THEOREM 2.5. For each load £ =(f, F)e LA(Q)x L*(I',), there exists a
unique solution u e V(Q) of the problem (2.10). Furthermore Green’s operator

(2.13) T: % =(f, F)»u
is a bounded linear operator of L*(Q)x L¥(I',) into V(Q).

We now state the quasi-static problem which arises from a consideration of
crack extension process. Let {Z(t)},qo,1; be a family of closed subsets of 0Z.
Then the problem we now consider is the following:

(2.14) For a given load ¥ =(f, F)e LA(Q)xLXI',), we seek displacement
vectors v(t) € V(Q(1)), te[0, 1], such that

ao(t), w) = SQ(” fowdx + g

for all we V(Q(t)), where Q(t)=G — X(1),
V(Q®) = {v; ve H(Q(t)), v=0 on I},

F-wdS

r

a,(w, w) = S!)(r) o;i(wie;(w)dx  for w, w' e V(Q(1).

By virtue of Theorem 2.5 there exists a solution v(t) of the problem (2.14)
for each time ¢ under an arbitrary load .#.
We shall compare the two potential energies
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I(.?;Z‘):ao(u,u)/Z—S f‘udx-g F-udsS,
2 ry

1(2; 2(0) = a(o(t), o(1))2 — S £ o(tydx — S F-o(1)dS
(1) r,
of the elastic bodies each containing the crack X and X(t), respectively, under the
same load . Here u(?) is the displacement vectors given above under the load
& and u=0v(0). For simplicity, we put a(w)=a(w, w) and a(w)=a,(w, w).

LEMMA 2.6. 1(.Z; Z) — I(Z; 3(1)) = a(u— o(1))/2.

ProOF. First we note that u e V(€Q(t)) since Q(t)=Q, and that the Lebesgue
measure of Q—Q(¢) is zero. It follows from the symmetricity of the bilinear
forms ay(w, w') and a(w, w’) that

I(#; 2) = I(&; 2(0) = a(u—v(1)]2 + au(t), u—v(1))

- S Fe(u—u(f))dx — S F - (u—u(1))ds.
Q(t) Iy
Since u —v(t) € V(€(1)), we obtain
a(o(t), u—o(t)) = ggm Fe(u—r(D)dx + Sr F-(u—u(t))dS.
Thus Lemma 2.6 follows.

ReMARK 2.7. The strict inequality I(.#; X)>1(%; 2(¢)) indicates that the
elastic body containing the crack X(f) is more stable than that containing the
crack X. On the other hand, since

au—ov(t)) 2 a(Q(D) llu — (Ol 00

by Lemma 2.4, the equality I(.Z; 2)=1(%; X(t)) implies that v(t)=u in Q(t).
Therefore the equality shows that the elastic body has no discontinuity across
2(t)—Z, which means that the crack does not actually propagate.

3. Generalized J-integral

Before we calculate the energy release rate, let us give a brief summary of
surface integrals of J-integral type. Earlier works which provide a three-dimen-
sional version of the J-integral (1.2) are found in Eshelby [8] and Giinther [12].
Eshelby [8], in a paper devoted to the continuum theory of lattice defects, deduced
a surface integral representation

G.1) Ju) = SS (Wo—s-(Da)}dS  (k=1,2, 3)
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for the force on elastic singularity or inhomogeneity of the portion enclosed by a
surface S. Here W is the strain energy density, s=(s;) the traction vector, i.e.,
s;=06;;v;, and u the displacement vector as before. Giinther [12], using Noether’s
theorem [18] on variational principles, obtained conservation laws for regular
elastostatic fields appropriate to homogeneous solids. Here a linear elastic body
is called homogeneous if all components of Hooke’s tensor are constants. The
meaning of the term the “elastic singularity’” will be made precise later in terms
of Sobolev spaces (see Definition 3.1). Let us consider a linear homogeneous
elastic body whose elastic fields are regular and assume that the body force vanishes
identically. Then the following conservation laws hold:

(3.2) J(u) =0 for k=1,2,3.

3.3 M(u) = SS{Wx,-v,-—sj(Diuj)xi—(s -u)/2}dS = 0.
If, moreover, the elastic body is isotropic, then also
(3.4) L(u) = Ss ear{ WXy, — sy — s,(Djup)x, }dS = 0,

where ¢, are the components of the antisymmetric third order tensor such that
€123=+1. Knowles and Sternberg [14] have shown that the conservation law
(3.2) holds for more general class of materials, called hyperelastic materials, for
which a strain energy density W is defined so that the stress tensor o;; is given by
0;;=0W|0g;;. A hyperelastic material is homogeneous since W does not depend
on x explicitly. They have also shown that the conservation law (3.4) holds if
the material is isotropic and hyperelastic. Moreover the completeness of these
three conservation laws for linear elasticity has been established in [14]. There
have been many applications of two-dimensional versions of conservation laws
to fracture mechanics (cf. Budiansky and Rice [2], Eshelby [9]). Here it should
be noticed that, in general, the conservation laws do not hold for an elastic body
containing a crack, because the elastic field is in general singular at the edge of
the crack (cf. [20], [21]).

For linear (not necessarily homogeneous) elasticity, we consider a gener-
alization of the surface integrals given in (3.1), (3.3), (3.4) (see Definition 3.3).
As described later, we use this generalization to express the energy release rates
for a class of smooth crack extensions (see Theorem 4.5).

We now turn our attention to the linear elastic body considered in section 2.
First we define regular points and singular points of the elastic field.

DErINITION 3.1.  Let u be the displacement vector of the elastic body under
aload &, ie., u=T(Z), and let B be a point of Q. We call 8 a regular point of
the elastic field under % if there exists an open neighborhood V; of f such that
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uly, e H((Vp). We call B a singular point of the elastic field under & if f is not
a regular point.

We shall now show that singular points of the elastic field under an arbitrary
load must belong to 0G U 0Z, if the crack X is smooth, i.e., 2 is a 2-dimensional
oriented C*-submanifold of R3 with boundary. Since X is oriented, the unit
outward normal to X is determined by the orientations of ¥ and R3. Moreover
we can construct easily a domain = with local Lipschitz property such that ¥ < d=Z
and the unit outward normal to 0= equals that to 2 on Z.

We may rewrite D;o;;(u) in the form

(3.5) DJUU(U) = Dj(Cijle,uk) W]th cijkl € Cw(ﬁ)

(cf. Fichera [10]). By Lemma 2.4 the differential operator (3.5) satisfies the
uniform ellipticity, that is, there exists a positive constant ¢ such that

il i€mime 2 cl&l?nl?

for any non-zero real vectors &, n (see e.g. [10]). Therefore a well-known regu-
larity result for the elliptic partial differential system (see [10]) derives the follow-

ing

PROPOSITION 3.2. Let B be an open neighborhood of X in R3 such that
B<G, and N an arbitrary open neighborhood of 0% in R?® such that NcB. If
Z is smooth, then the operator

(f, F)— T(f, F)I(B—N)’
is a bounded linear operator from L*(Q) x L¥(I',) into H*((B— N)').

From now on, we assume that X' is smooth. For a domain A regular relative
to Q, we give a generalization J ,(u; p) of the expressions Jy(u), M(u) and L, (u)
as a functional on the space D(Q) of all displacement vectors u and the set X(A4)
of all smooth vector fields defined on open neighborhoods of A.

DEeFINITION 3.3. Let 4 be a domain regular relative to Q such that AcG
and dist (04, 02)>0. For each u=T(f, F) and ne X(A4), we define

(3.6) Jaus p) = Py(u; p) + Ry(u; )
with
Paus ) = | (W(n) =5 X,w)}ds,

Ry(u; p) = “SA, {(Xu(aijkt)/z)skteij ~f Xu(u)}dx

+ | @y 0 - widiv s,
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where W=g;;¢;;/2 (the strain energy density), s;=a;;v;, S=04, X,=pu"D, (u" the
components of ) and div u=D,ub. We call J ,(u; u) the generalized J-integral.

First we shall show
PRrOPOSITION 3.4. For any & =(f, F)e LA Q) x L¥(I" ) and pe X(A),

(3.7 JAT(Z); wl = C(A) |ull 41213,
where

121 = {llf 1§+ 1FI3r 372 lula=Zi=1 lutlc2ca)-

Proor. Using the Schwarz inequality, we obtain

(3.8) IR (u; )l = Clullallulf o

with some positive constant C, independent of A. Since A=G and dist (94, 0)
>0, we can take an open neighborhood N of 94 such that NG and N n 0X=g.
Using the Schwarz inequality and the trace theorem, we obtain

[P(u; Wl < C(N, A) pllalluli3, v
Thus, by virtue of Theorem 2.5 and Proposition 3.2, (3.7) follows.

The connection between surface integrals in (3.1), (3.3), (3.4) and the gener-
alized J-integral is given in the following.

_ THEOREM 3.5. If all components a;;, of Hooke’s tensor are constants and
the body force f is zero, then for any domain A regular relative to Q such that
AnZXZ=g, and for S=0A, we have

3.9 Juse)=Ju) for k=1,2,3,
(3.10) Ju(u; x) = M(u);

if, in addition, the elastic body is isotropic, then

(3.11) J(u;q,) =Lu) for a=1,2,3.

Here e, is the unit base vector in the x,-direction, q,(X)=((&,1xXk> €x2kXk> Ex3kXk)
and x=(xq, X5, X3).

Proor. First we note that the first term of R, (u; u) in (3.6) vanishes, since
a;j are constants and f=0. Since AcG and AnZX=g, u|,€ H*A) by Propo-
sition 3.2.

(i) Proof of (3.9). By the fact that x—¢, is a constant vector field and e, -
v=v, (3.9) is clear.

(i) Proof of (3.10). Since o;;(D;x,)Dyu;=0;;D;u; and divx=3, it follows
that
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RA(u; X) = - SA a'ij(Djui)/2 dx.
Hence by (2.5)
Rwi )= = | (s-w)2ds,

which leads to (3.10).
(iii) Proof of (3.11). By a simple calculation

01D j(eamXi)Dytt; = eqmOinDity  (see [14]).
Therefore, by (2.5)
R,(u; q,) =S eankOimDity dx = eahkS Stx dS,
4 s

which leads to (3.11).

The following proposition and Theorem 3.4 yield the conservation laws
(3.2)-(3.4).

PROPOSITION 3.6. If AnZX=g, then
Ju; =0 forall ueD(Q) and peX(A).

PrOOE. By Proposition 3.2, u| , € H?>(4). Hence, applying Lemma 2.1, we
have

g X,(Wydx = — S W(div p)dx + g W(u-v)dS.
A A N
But
[ xaomax = X @udiene, dx
A A
+{ oy@D X, w)dx ={ a0 (Duydx.
A A
From (2.5) it follows that
[ @D X, wdx = = | D)X, udx +{ s X,ayds.
A A S

Collecting terms, we thus have
Ju;u)=0 forall ueD(Q) and peX(A4).

Proposition 3.6 indicates that the generalized J-integral must vanish if the
elastic field on A4 has no defects, i.e., AN Z=g. But, in general, J ((u; u) does not



34 Kohji OHTSUKA

vanish and depends on the choice of 4 if AnX#4@. Next we show that J (u; u)
is independent of the choice of 4 for some class of vector fields u even if ANZ

#9.

PROPOSITION 3.7. If the vector field u is tangent to X, J (u; p) takes the
same value for all domains A regular relative to Q such that 02X = A and pe X(A).

PROOF. Assume that y is defined on an neighborhood U of dX. Let 4, and
A, be two domains regular relative to Q such that X< A,, 4, = A4, and 4,<U.
Letting Q=A,—A4,, we have by (2.8),

(3.12) g X (W)dx =S W(u-v)dS + S o6 (u-v)dS — S W(div wdx.

Q Q’ znQ Q’
Here we used the fact that the elastic field is regular in Q' by Proposition 3.2,
which also implies the applicability of (2.8). Since p is tangent to Z, the second

term in the right-hand side of (3.12) vanishes. On the other hand, by symmetricity
of the strain and stress tensors, we have

G.13) 2 SQ, X (W)dx = SQ,X”(aijk,)sk,s,-jdx
42 SQ, 01D (X (u))dx — 2SQ, 0,,(D,u") (Dyu)dx.
Applying (2.7), we obtain
(3.14) SQ, o, D(X (u))dx = — SQ, Doy, X (udx
+ Sag 0¥, X (u)dS + Sm [y, X (4] dS.

Since o7;v;=07;v;=0 on Z, the last term in the right-hand side of (3.14) vanishes.
Hence, noting that
- Djo"'j =f;' in Q,

we obtain

615§ X = (X, +f X w)dx
+ Saes - X, (wydS — SQ, 0:;(Du") (Dyu;)dx.

Combining (3.12) and (3.15), we obtain the equation J4,(u; u)—J 4,(u; p)=0.
This completes the proof of Proposition 3.7.

By the proposition, we may omit the subscript 4 of J (u; w) if the vector
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field u, defined on a neighborhood U of 9%, is tangent to X, X< A and AcU.
The following proposition shows that we can neglect the volume integral part
R (u; p) if |A] is sufficiently small.

PROPOSITION 3.8. If a vector field u is tangent to X, then

I ) = im0 | (W) =5 X, )dS.
Proor. By virtue of Theorem 2.5, u e HY(Q). Hence [ull; 4—0 as [4]|-0.
Since fe L), || fllo,a—0 as |4]—0. Hence by (3.8)
R, (u; w)—»0 as |A4|—-0.
Thus we complete the proof of Proposition 3.8.

By an argument similar to the proof of Proposition 3.7, we can prove the
following

PROPOSITION 3.9. If the elastic field is regular at the edge 0X of the crack,
then J(u; W)=0 for all u tangent to X.

4, Calculation of energy release rate

Next we shall show that the energy release rates are expressed as the gener-
alized J-integral for the following class of crack extensions {Z(#)}.

DEFINITION 4.1. A family {Z(f)},0,;; Of 2-dimensional C®-submanifolds
of R3 with boundary is called a smooth crack extension of X if it satisfies the
following conditions (4.1-4):

(4.1) There exists a 2-dimensional oriented C®-submanifold IT of R3 with
boundary such that IT<G and

2(t) < II° (= IO -3l for all te€[0, 1].
4.2 Z0O)=2cXZ(c2) if O0<t<t.
(4.3) For each t [0, 1], there exists a C*-diffeomorphism
¢, 02— 0X(2)
such that the map ¢,: 02 x [0, 1]—1I is of class C*.

(4.4) The limit lim,_, 4 t~1|2(¢)— X| exists and is non zero.

We now introduce a curvilinear coordinate system (U, p) in a region U near
the edge 0Z of the crack.

LeEMMA 4.2. There exists a C®-diffeomorphism p from 0XxI?> onto an
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open neighborhood U of 0% in R3 such that

4.5) p(x,0,0)=x whenever x is in 0X.
(4.6) UnlIl=p@XxIx{0}),U n Z=p@ZxI'x{0}),

where I=(—1, 1) and I'=(-1, 0].
We shall call the pair (U, p) a product neighborhood of 0X.

PrROOF. Since we assumed that 0X <II°, there exists a neighborhood V' of
0Z in I, V<lII°, and a C®-diffcomorphism p, from 02 xI onto V such that
Po(0Z x1')=U n 2 and py(x, 0)=x whenever x is in 0. Here we used the well-
known result on the existence of the product neighborhood (see e.g. Munkres
[16]). Since IT is oriented and V <II°, there exists a diffeomorphism p, from
Vx1 onto an open neighborhood U of % in R3 such that p,(x, 0)=x whenever
x isin V (see [16]). Let us now set

p(é3 n, A) = Pl(Po(f, ’7)’ /1) fOI' (é’ y, /‘L)Eaz x I2.

Then it is clear that p: 02 x I2— U satisfies the assertions in Lemma 4.2.

In terms of a product neighborhood of 0%, each edge 0X(t) of newly created
crack is represented by the graph of a smooth function h, defined on 0Z.

LemMMA 4.3, Let {Z(t)},40,17 be a smooth crack extension and (U, p) a
product neighborhood of 0X. Then there exist a positive number t, and a
Sfamily {h} 10,401 Of smooth functions defined on 0X such that

4.7) 0=n=s1l1 Sfor all te[0, ty] and hyo(x) =0 for all x € dZ,
(4.8) the map h,: 0Z x [0, t,]—[0, 1) is of class C*,
4.9) 0Z(1) n U = {x; x=p(¢, h(&), 0), (e o2},

Z() N U ={x; x=p( n,0), {edZ, —1<n=h(d)}.

Before proving this lemma, we prepare some geometrical concepts. Let M
be an m-dimensional C*-submanifold (with boundary) of R3, and consider the
Riemannian metric on M induced by the imbedding into R3. We denote the
tangent space to M at x by T.M and the tangent bundle \U, T, M (disjoint union)
by TM ; for each x € M, T, M is identified with the m-dimensional subspace of R3.
Let M and N be two C®-submanifolds of R3 and f: M—N a C!-map. By df,
we denote the differential of f at x, which is a linear map from T, M to Ty)N.

Let us denote the space of all Cl-maps of M to N by F!(M, N), which is
topologized as follows: Given a Cl-map f: M—N and a positive continuous
function § on M, let W(f, d) be the set of all C'-maps g: M— N such that
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1f()=g()l = 8(x),  |df(v)—dg(v)] = 6(x) [v]

for each xe M and each ve T,M, where |-| stands for the Euclidian distance in
R3. The sets W(f, 6) form a basis for what is called the fine C'-topology on
F(M, N). Then one can prove (see e.g. [16]):

PROPOSITION 4.4. Let M and N be two manifolds and f: M—N a C'-map.
If f is an imbedding, there exists a fine C'-neighborhood of f consisting only of
imbeddings. If f is a C'-diffeomorphism, there exists a fine C'-neighborhood
of f such that if g is in this neighborhood and carries OM into 0N, then g is a
diffeomorphism.

Proor oF LEMMA 4.3. By assumption (4.3) there exists a positive number
7o =1 such that 0X(t)< U for all t<t,. Now we put

(4.10) ((681(8), 62(S), 0) = p~1op(&); € 0Z, te[0, 1o].
Then from (4.2), (4.3) and Lemma 4.2 it follows that
(4.11) 0<62<1 forall te[0,15], 03(6) =0 forall &edX,

(4.12) the maps 6}: 0Z x [0, 1o]—0X and 62: 0 x [0, 74]—[0, 1)
are of class C*.

Applying Proposition 4.4, we can take a positive number 7 such that there exists

an inverse (01)~! of ! for each t€[0, t]. Here we used the fact that 0§(&)=¢&

for all £ € 0Z and the boundary of 0% is empty. Next we shall show that

(4.13) the map (6})71: 0% x [0, t,]—0ZX is of class C* for some positive
number t, (£ 7).

Let {(«; V})}i=1,2,...m b€ @ local coordinate system of 0X. Choose a positive
number ¢, and a refinement {W;} of the covering {V;} of 0Z such that 0}(&)eV;
for all t<t, whenever ¢ is in W,. Setting Y, (w)=0;0(0})"Too; Y(w), w € ay( W),
and using the implicit function theorem, we obtain the following ordinary differ-
ential equations depending on the parameter ¢,

(4.14) L Yl@) = fulw),

where f(w)= <d—‘fo— (a;001007) (w)>_l, wea(W,). Since the maps f,: o (W) x

[0, t,]—R! are of class C*®, the assertion (4.13) follows from (4.14) and the well-
known result on ordinary differential equations (see e.g. Hartman [13]).
Let us now put

h(©) = 07(0D7'(&)  for ¢edz,  te[0,1].
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Then (4.7) follows from (4.11), (4.8) follows from (4.12) and (4.13), and (4.9) is
clear from (4.3), (4.5) and (4.10).

Lemma 4.3 gives a smooth vector field t(x) on U as follows: For each
x € U, there exists a positive number c, such that

k(%) = p(E(x), n(x) + h(&(x)), A(x))

belongs to U if te[0, c,), where (£(x), #(x), A(x))=p~(x). By virtue of Lemma
4.2 and Lemma 4.3, the parametrized path t—x,(x), te [0, c,), is of class C* and
Ko(x)=x for all xe U. The vector field T on U is defined by

(4.15) (%) = (% x,(x)>t=0 eT,R=R%  xel.

The main result in this paper is the following theorem.

THEOREM 4.5. For a given load % and a given smooth crack extension
{Z(1)}, the energy release rate

I(2;2)-1(Z; 2(1)

given in (1.1), is expressed in the form
(4.16) G(Z; {Z(0)}) = kK1I(T(£); 1)

where k=lim,_ o t"1|Z(t)—Z| and t is the vector field given in (4.15) obtained
from {Z(9)}.

From Proposition 3.9 the following result follows.

COROLLARY 4.6. If, for a given load &, the elastic field is regular at the
edge 0X of the crack (see Definition 3.1), then G(Z; {Z(t)})=0 for any smooth
crack extension {Z(t)}.

REMARK 4.7. Although 7 may depend on the choice of a product neighbor-
hood (U, p) of 02, J(u; 1) is independent of the choice of (U, p), because G(.Z;
{Z()}) depends only on {Z(t)}.

Before proving Theorem 4.5 we prepare some auxiliary results. Hereafter
we fix a smooth crack extension {Z(#)} and assume that {Z(¢)} is expressed as in
Lemma 4.3.

The following maps p, play basic roles in our calculation. For the con-
struction of p,, we take a function f e CF(R?) such that

4.17) suppfcU and f=1 on Q,

where @ is an open neighborhood of 0% in R3 such that
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(4.18) 0X(t) = Q forany te[0,t,] and Q < U.
We now put
()= { p(&(x), n(x) — B()h(E(x)), Ax)), for xeU,
pRO= x, for xeR3 - U,

where  (&(x), n(x), A(x))=p~!(x).
Our construction of p, yields the following

LEMMA 4.8. There exists a positive number 6§=<t, such that the family
{Ps}tero,0 of maps satisfies the following:

(4.19) The map p,: R3—>R3 is a C*-diffeomorphism for each t € [0, 6].
(4.20) p(Z(t)=Z  for any te[0, 0].
(4.21) The map p,: R®*x [0, 6]-R3 is of class C*®.

Proor. First we note that p,(x)=x for all xe R3—supp 8 and supp f<=U.
Hence, from Lemma 4.2 and Lemma 4.3, it follows that the map p,: R3x [0, t,]
—R3 is of class C®. Moreover py(x)=x for all xe R® by (4.7) and each p,
reduces to the identity except on the bounded set supp f. Therefore, using
Proposition 4.4, we can take a positive number 6 such that p,, te[0, 8], are
diffeomorphisms from R3 onto R3. By (4.9) and the construction of p,, the set
(p~top,) (Z(t) n U) is expressed as

{(55 n, 0); éE 62’ -1 _kt(£9 rl) é n é ht(&)_kt(és Y])} s

where k&, n)=pB(p(&, n, 0))h(£). From this it follows that (p~lop,)(Z(H) n U)=
p Y (ZnU)ifte[0, 8]. This completes the proof of Lemma 4.8.

For a function v defined on @, we define a function v¥ on Q(¢) by
vF(x) = v(p(x)) .
For simplicity we put
Dmp(Q) = WmP(Q) n C*(Q) and D™(Q) = H"(Q) n C*(Q),

which are dense in W™-P(Q) and H™(Q), respectively, by the density theorem.
Since the mappings p, reduce to the identity except on the bounded set supp f,
Lemma 4.8 leads to the estimates

(422) C_llv!m,p,ﬂ ..S_' Iv;"lm,p,ﬂ(t) é Clvlm,p,ﬂ

for all ve D™?(Q), m=0 and 1< p< oo, where C is a positive constant independent
of t. In what follows we denote by C various constants independent of t. The
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density theorem implies the following

LeEmMMA 4.9. The pull-backs v—v¥ are extended by continuity to linear
homeomorphisms from Wm™P(Q) onto W™P(Q(t)) for any m=0 and 1<p<oo,
and also from V(Q) onto V(€(t)). Furthermore v¥ satisfy the estimates (4.22).

Let v(z) be the solution of the quasi-static problem (2.14) under a load &
and let u=v(0). Then u} gives a fairly good approximation of v(¢) as the follow-
ing lemma shows.

LeEMMA 4.10. There exists a positive constant t, such that
(4.23) luf—o(®)ll1 00 S CHILI forall te[0,1,].

Proor. 1) Let us denote the components of the matrix Dp(x)—I by
bii(x); i, j=1, 2, 3, where Dp/(x) is the Jacobian matrix of p, at x. For we
{D'(Q)},

(4.24)  &,;w¥) = [ey(W)IF +vy;(w) With v,;(W) = {(Dw)¥ bje+ (Dew ) by} 2.
Hence, for any v, we {D1(Q)}3,

Sn(:) 0 (07 (W)dx =§9(z) Laijulf Lew(@)¥ e j(w)IFIdet (Dp)ldx + (v, w),
where

L(v, w) = gs’)(z) a; jkl{[skl(v)];*vi (W) + 0 (0) [&; j(W)];k + g (0)0; jt(w)}dx

+{ o Tt Tou)1 ey (w)1F(L = [det (Dp)dx
+ S (aijkl“ [aijkl];k) [Skl(v)];*[gij(w)]rdx'
Q1)
By the change of variables y=p,(x),
S.Q(t) [aijkl];k[skt(v)]f[Sij(w)]?‘[det (Dp)ldx = ao(v, w).

We thus have for v, we {D1(Q)}3 the formula

(4.25) a,(v¥, w¥) = ag(v, w) + L(v, w),
where [(v, w) satisfies the estimate

(4.26) (v, )| = Ctljvll1,0lWll1,0

by virtue of Lemma 4.9, the Schwarz inequality, the fact that a;;,€ C*(Q2) and
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the following inequalities:
(4.27) SUPyers |PAX) —x| = Ct, max; ; sup,cgs |by;(x)| < Ct.

The inequalities (4.27) follow from Lemma 4.8 and the fact that p, reduce to the
identity except on a bounded set. According to the density theorem, (4.25) and
(4.26) hold for all v, we HY(Q).

2) Next we shall show that there exist positive constants a (independent of
1) and t, such that

(4.28) a (v, v) Z allv]} oq

for all ve V(Q(¢)) and te[0, t;]. From Lemma 2.4, (4.25) and (4.26) it follows
that

afvy, vf) Z ao(v, v) — Ctlvf o 2 (@) [lvll},0 — Ctlvlii g

for all ve V(Q) and t€[0, 8]. We now take a number ¢, to satisfy Ct; Sa(Q)/2
and then we obtain

a(vf, v) Z (@Q)/2) vl ¢

for all ve V(Q) and te[0, t,]. The desired estimate (4.28) follows from Lemma
4.9.

3) For y € V(Q), by (4.25),

a(et, ) = alu, W)+ L, 9) = | fydx+( Fopds + i, )

[ rurax+( Fopras s+ f@—yrdx + w0,
(1) r (t)

1

since u is the solution of the problem (2.10), Yy =y} on I', and the Lebesgue
measure of Q—Q(t) is zero. Then we have

aut—o0, ¥t = | 7-@—uPdx + L, ).
Hence by virtue of (4.26), we have
(429)  laut o0, YN = U ooy =¥l Crlul ol 0}
for all y € V(Q). We shall now prove
(4.30) W =V2loan S Cilyl o forall yeH(@).

It is sufficient to prove our assertion for y € {D1(2)}3. For each te[0, t,] and
x € (1), the path C,={px); se [0, t]} is contained in Q, whence s—y(p(x)) is a
Cl-map from [0, t] to R2." Using the chain rule, the Schwarz inequality, Fubini’s
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theorem and Lemma 4.9, we then have
% 2 t d 2
[ wreo—ywraxsc] |4 @ends | ax
(1) Q) 1 Jo as
scf Lo dsd
< —_— x sdx
= o Jo | ds ps

t
< €t Wt awds S CPRIV IR0

which leads to (4.30). By virtue of Theorem 2.5, (4.29) and (4.30), it follows that

(4.31) la(uf —v(n), Y| = CHIL I Y100 -

Taking for y¥ in (4.31) the function u} —uv(t) and using (4.28), we now have
afluf — vl 00 S aluf —v(®), uf —uv()) £ Ct| 2| |uf —v®1,00) -

Hence
fuF —ov(®)l,00 = Ct L] .

This completes the proof of Lemma 4.10.

LEMMA 4.11. If fe WLY(Q), then
(4.32) timeort | (rr=piax = = | x(n)pdx,
Q1) e]

where t© and B are those given in (4.15) and (4.17), respectively.

PrROOF. Since D!:1(Q) is dense in W1.1(Q), there exists a sequence { fi} of
functions in D*-1(Q) such that f;—fin W!1(Q) as j—»o0o. By the same argument
as in the proof of Lemma 4.10 we obtain

[ 1092 =10 = =10

= SQ(!) g; [”gz[fj—f]?(x)idmx s Cilfi—flii.e,
from which it follows that
o gﬂ(r) {(F—f}dx — t_lgn(:) {f¥—fldx

uniformly with respect to t as j—>oco0. Hence

O(f) = lim;_., Q(f)),
where Q(f) stands for the left-hand side of (4.32). Therefore it is sufficient to
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prove (4.32) for fe D1'1(Q). For some fixed number 6 >0, we have
0(f) = tim ot | {f7—fldx,
Q(0)
since Q(t)> Q(0) by (4.2) and the Lebesgue measures of Q(t)—Q(0) are zero for

all te[0, 6]. For an arbitrary domain Q, strictly contained in Q(6), we obtain
by the Lebesgue dominated convergence theorem

tim,o 1= | {52 =f1dx = im0 {fF~}ax

for all fe D1-1(Q), since fe C*(2,). By an argument analogous to the above
we obtain for ¢t € [0, 0]

-1
7 r-pias|
2(6)-920
-1 ‘d
ser|f (L srdtdx] < CUflcans

where M(20)=\U,0,01 P(2(0)— Q). We can see that [M(Q,)| -0 if Q,—(0).
Thus we can deduce that

(4.33) 0o =, timo (=P
Setting p~1(x) =(&(x), n(x), A(x)), we have
ORIC IO ACORTORIEN
L] = = B (G hE) | VP €, 66, 2.
Since fe D'-1(Q2), we obtain

limeo 1S (N~ () = -5 £p)| = (2 pi®| DS )

— B0 G5 1| )L (), m0), 2D, G0

= B)U(X)D; f(x) = — X(f)(x)B(x).
Therefore (4.32) follows from (4.33).
In the same way we can prove

LEMMA 4.12. Let t and B be as in Lemma 4.10.
(a) If fe H(Q) and ge L*(Q), then
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(4.34) tim,o 7§ g(rr=px = ={_axn)pax
(b) If feC*®(Q) and g e LY(Q), then
(4.39) timo ™ gr(2=dx = = |_gX.(pdx

We are now in a position to prove Theorem 4.5.

PROOF OF THEOREM 4.5. 1) By virtue of Lemma 2.6 and the symmetricity
of a,(v, w), we have

2{1(z; 2)-1(Z; Z())} = au—uv(t)) = au—uf+uf—u(1))
= au) — a(u¥) + 2a,v(t), u¥ —u) + a(u¥ —v(r))

= a(u) — a(u¥) + au¥ —o(t) + 2gﬂ(t)f-(u:“—u)dx,

since v(?) is the solution of the problem (2.14), u} —u € V(€(t)) and u¥ —u=0 on
I'. Hence

(4.36) kG(Z; {Z(D)}) = lim,o t~{(au) — a(u}))/2}
+ lim, o t™! g f-(u¥ —u)dx + lim,_ t~1a,(u* — v(t))/2.
2(t)

By Lemma 4.10,

la(uf —v(®))] = Cluf — v} 00 = CI2%

Hence the last term in the right-hand side of (4.36) vanishes. Thus from Lemma
4.12 we can deduce that

(4.37) KG(L: {5(D)) = lim,_o 1], —ng- X (u)f dx,

where 2I,=a,u)—a uf). By symmetricity of a;;,, [&;u)]¥ and v;;(v) (see
(2.1) and (4.24)), 1, is written in the form

(4.38) 21, = Ilt + Iz, + 13, + I4t7

where

I, = 2g (W= W¥)dx,
2(t)

I, = — 2g a;jal () I (u)dx,
(1)
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I3 = S [(aijkl);* - aijkl] [ekl(u)];k[aij(u)];kdxa
(1)

I,= - S aijkluklt(u)uljr(u)dx-
Q(1)
Since, by (4.22) and (4.27),

[0 1,00y = Ctllully 0 forall i,j=1,2,3,
we have

(4.39) lim, ¢ t~'1,, = 0,

and by Lemma 4.12, (b), we obtain
(4.40) lim,- =Ly, = = | X (audeule () d.

2) Singularity at the edge 02 of the crack gives rise to difficulties in calcu-
lating the limits lim,,, t7!I;, and lim,_ 4 t~1,,. So we introduce cut-off functions
{, ¢ € CT(R3) such that

(4.41) 0=(o=1,B=1o0nsupp(1={), (=1 near 0Q, { = 0 near 0X;
¢=1 on supp { and ¢ = 0 near JX.
We put

Ly = S (A=W = (1=OW)#}dx.
£2(t)

Then, by the change of variables y=p,(x), we may rewrite it as
Lia = | 1-owa-sax,

where J,=|det (Dp,)|™!. Since the map J,: R3x [0, t,]—R! is of class C* by
(4.21) and We LY(R2), we obtain

(4.42) lim, .o 11, , = —S (A —OWi'dx,
Q

P
where J'= P

; Jili=o- Since (We W1:1(Q) by Proposition 3.2, we obtain by

Lemma 4.11

lim, o t-lggm (W= (CWH)}dx =SQ X ((W)Bdx.

Thus we have

(4.43) lim, o t=1(1,,/2) = SQ X(W)Bdx — Sn (= O)WJ'dx.
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From the symmetricity of a;;, and [g;;(u)]¥, it follows that

1f2 = = eyl D(pF =) Dyt
Hence

lim, o t73(1,,/2) =SQ a; () D {(Bt")Dyu, dx

= S 0.(D;B) X (u;)dx + S Jij(DjTh)(Dhut)ﬁ dx.
Q Q2
Since D;f=0 on supp (1—{) and ¢ =1 on supp {, we have
[ ou@p XD dx =00y Dip)(X.Qu)dx.
Thus, since @o;;, X ({u;) e H(2) by Proposition 3.2, (2.8) implies
@4 {000 (Xwdx = = DLoo,X.uplpdx +{ Looym, X Lulds.

The last term of (4.44) vanishes by the assumption that ¢};v;=07;v;=0 on Z.
Thus we have

(4.45) lim, o t71(15/2) = — SQ D;[¢oy; X ({u)]Bdx — SQ o1;(D;7") (Dyu)p dx.

3) Without loss of generality we may assume that the set Q given in (4.18)
is a domain regular relative to .  Let us take a sequence {f;} of functions C§(R?)
such that ;=1 on Q for all j and B;— g a.e. as j—o0, where x, is the character-
istic function of Q; namely, xo(x)=1 for xeQ and xo(x)=0 for x&Q. We
replace § in the integrals (4.37), (4.40), (4.43) and (4.45) by f; and let j—oo.
Here we notice that ;=1 on supp (1—{) for all j, whence the integral (4.42) is
independent of j. The passage to the limit in the integrals (4.37), (4.40), (4.43)
and (4.45) is easily done using the Lebesgue dominated convergence theorem.
Hence we find in the limit

(446) KGL2: (20 = | XW)dx = DilooyX.(Cu)dx
= | X ) eyey+f- X ()}
- S 6,,(Dt) (Dyup)dx — S (= O)WJ'dx.
o’ [

Since (W=(¢0;;)(le;;)/2 and o@ay;, (e, X (u;) e H(Q'), we can apply (2.8) and
obtain
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(4.47) SQ, X ((W)dx = SaQ W(z-v)dS +Sm [CW(z-v)]dS — SQ, (W(div t)dx

=S W(t-v)dS — S W(div 1) dx + S (1= OW(div 1)dx,
oQ Q' Q'

| DigouX@uplax = | o Xupas +{ ooy Xuplds
Q' 20 InQ
= SaQ 0:;v; X (u;)dS.

Here we used the fact that 7-v=0 on X and o};v;=07;v;=0 on X. Therefore
(4.46) is written in the form

(4.49)  kG(Z; {Z(0)}) = Jo(u; 7) +ng (1=0) {W(div 1) — WJ'}dx.

Let us now take a sequence {{;} of functions of C§(R?) such that {;(x)—1
a.e. in Q. Replacing { in (4.49) by {; and letting j— oo, we conclude that

kG(£; {Z(0)}) = Jo(u; 7).

This completes the proof of Theorem 4.5 in view of Proposition 3.7.

5. Infinitesimal crack extension

Using Theorem 4.5, we wish to investigate the infinitesimal crack extension
(see Introduction, (Q.2)) for a smooth crack extension. By A(Z; IT) we denote
the set of all smooth crack extensions which are located on a 2-dimensional
oriented C*-submanifold IT as in (4.1). Let (x, y)—exp,(y) denote the expo-
nential map from TII into II (see e.g. Milnor [15]), which has the following
properties:

5.1) exp.(0) = x and L exp, (1)]=o = 7
and the path
t— expx (t'Y)’ 0 é t < ‘1',

is the geodesic on II starting from x in the y direction for x € I1° for some g’ >0.
By {(x) e T,II, x € 02, we denote the unit outward normal to 0 at x relative to II.

LEMMA 5.1 (see [15]). There exists a positive number q, and an open
neighborhood V of 0X in II such that the map (x, t)—exp, (t{(x)) is a diffeo-
morphism from 0X X (—qq, qo) onto V. Moreover we have
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Vn 2= {exp, (t{(x)); x€dX, —qo<t=0}.
We put
Exp, (tv(x)) = x + tv(x) for xeV,

where v is the outward normal to IT which is determined by the orientations of
IT and R3. Hereafter we denote exp, (t{(x)) and Exp, (tv(y)) simply by exp (x, t)
and Exp(y, t), respectively. A result analogous to Lemma 5.1 holds for the
map (x, t)=Exp (x, t) from 0¥ x(—gq,, q,) into R3® with some gq,>0. Thus we
can derive the following

LEMMA 5.2. There exist a positive number q and an open neighborhood U
of 8% in R3 such that (U, p) is a product neighborhood of 0% (see Lemma 4.2),
where

p(&, n, A) = Exp(exp (&, qn), g4)  for (&, n, A)edl x 12,

If {Z(1)} € A(Z; IT), then there exists a family {},} (0,17 of smooth maps from
0Z into II, which satisfy (4.3).

LEMMA 5.3.  Let {h},q04,) be the family of smooth functions on 0X which
is defined as in the proof of Lemma 4.3 in terms of {,}er0,17 and the product
neighborhood (U, p) given in Lemma 5.2. Then

5.2 (Gh®| )= (Lo @)

for all x € dZ, where (-, -> denotes the inner product in R3.

PrOOF. We denote by p, the projection from 0Z x I? onto 9X. Set k,(x)=
pop Yo (x) for x e 0X. Since k(x) € dY and ky(x)=x for all x e 0Z,

rx———k(x)lt o€ T(02).

By (4.10) we may rewrite ¢(x) as
@{(x) = exp (k(x), gh,(k(x))).

Using the fact that hy(x)=0 for all x e 0%, we then have by (5.1)
L@ | =a(Gh| e | +n
= a(Lh0)| @+

Since r, e T(0%), we then have
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i 40| 20) = a( G, ).

This completes the proof of Lemma 5.3.

Furthermore we have

LEMMA 5.4.

53 dimeorizo-2={ (L 6@| (@),

or

where dé is the line element on 0X.

ProOOF. Let 6 be a positive number such that
XU if 05t=0.
We set
K = \U,0,01902(1).

Let {(V;, 2)}i=1,2,...m b€ a local coordinate system on 90X, U;=V;x1? and {y;}
a partition of unity subordinate to the covering {p(U;)} of K. To simplify the
notation, we put

hti((u) = ht(ai_l(w))’ I7i = ai(Vi)’ pi(w’ ’1) = p(a—i—l(w)a n, 0)9

5 = o -4
Ji=yep; and &(x) = at ¢'(x)‘r=o .
Then we have (cf. Cesari [3])

ghei(w)
20 -2 = 2 | 5@, 0, mdedn,
Here

0
JH@, 1) = Tt {a—np{-‘(w, ) %’—p’i(a), n — T‘Z,—p{-‘(w, ) —a%p‘i(w, 11)},

where p¥(w, n) are the components of p(w, ). For each i, we consider the
function

phei(w)

Gu(®) = S 7w, mIdw, ndn

0

with the parameter t. We then have

lim,-o 179(@) = 4 (-5t ()| _ )T, 0@, 0).
=0
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Hence using the Lebesgue dominated convergence theorem and Lemma 5.3, we
deduce that

lim, o 7 2() — 2] = 21y SV T, 0) <P (o7} (@), {(a7 (w))>J{w, O)dw.

From (5.1) it follows that
0 0 _
( 560 pi(w, n)ty,=0) ' (Wpl(w’ r’)‘q=0> - O’

|5 i@, Mlymo| = 1,

so that we obtain
2

TH@,0) = Tiet {1 ph(o, 0) ]
Hence
[ 7@ = 21, 50, 05Er @) @, 0do
holds for any function f defined on 0% (see [3]). This completes the proof of

Lemma 5.4.

We can now assert the following theorem as a consequence of Theorem 4.5,
Lemma 5.3 and Lemma 5.4.

THEOREM 5.5. For each (&, {Z(t)}) e [L*(Q) x L*(I"))] x A(Z; II),

(54 G Zop = {| | sEmy @} 1@, 0,
where

5.5) 52} = (% 6 Dlimos L))

and

(56) () = S{E0} (E(0) - PECO, 1), Ax),

if {Z(¢)} is given as in Definition 4.1.

REMARK 5.6. From Lemma 5.3, the quantity 6{2(¢)} is independent of the
choice of the representation {¢,} of the smooth crack extension {Z(¢)}.
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