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1. Introduction

The principal objective of this work is to make a systematic study of a gener-
alization of the Griffith theory in three dimensional fracture mechanics from
mathematical viewpoint. We consider the situation where an elastic body
containing a crack, in its non-deformed state, occupies a domain in R3 of the
form Ω = G — Σ. Here we consider the crack as a discontinuity in the material
in the form of a surface Σ9 and we assume that G is a domain in R3 with local
Lipschitz property and Σ is a two dimensional manifold with boundary contained
in G. This body is in a state of equilibrium under the influence of a load 3?
consisting of a body force in Ω and a surface force on the boundary dG of G. By

I(j£? Σ) we denote the potential energy of the elastic body containing the crack
Σ under the load 3f. The generalization of the Griffith theory can be expressed
in terms of the concept of energy release rate as follows (cf. Palamiswamy and

Knauss [19]). The crack extension process is considered to occur in a quasi-
static manner, so that when we refer to time we use it as a parameter which indi-
cates the sequence of events. We denote by Σ(t) the surface obtained from Σ by
extending it in the length of time ί(^0). Of course Σ(t)aΣ(tf) if t<tf, and
Σ = Σ(0) = Γ\t^0Σ(i). During crack extension let the load & be independent of
t. If the crack extends from Σ to Z(ί), the potential energy released by the incre-
ment Σ(f) — Σ is given by

Now we consider the limit

(1.1)

where \Σ(t)— Σ\ denotes the surface measure of Σ(f) — Σ. If it exists, we call
G(j£? (Σ(t)}) the energy release rate of the crack extension (Σ(t)} under the load
3? . This is expected to be a function of the "infinitesimal displacement" d{Σ(i)}
of the edge of the crack (see [19]). Then we may rewrite G(«S?; (Σ(t)}) as

G(&;d{Σ(t)}).
Now the generalization of Griffith's energy balance can be expressed as
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follows (see [19]): of all crack extensions, there should be one {Σ(t)} which makes
) an absolute maximum

Crack propagation in a brittle solid becomes possible when the energy release
rate Gm a x reaches a critical value which depends on the material considered, and
the crack will propagate in the direction determined by d{Σ(t)}.

Here the following questions arise :

(Q.I) How to describe and measure the force which causes the crack extension!
(Q.2) How to define the infinitesimal displacement d{Σ(t)}Ί
(Q.3) /s there an absolute maximum Gm a x?

To our knowledge systematic studies of these questions have not appeared
in the literature. The following result will be of great help in attacking these
questions.

For a homogeneous elastic plate containing a crack which lies on the line
x2 = 0, it has been shown in Rice [21] that if the crack extends in the xrdirection
and the body force is zero, then the energy release rate is expressed as a path-
independent integral

(1.2) = (
j

which is called the /-integral in fracture mechanics. Here u is the displacement
vector, Wthε strain energy density, s the traction vector, C a closed curve surround-
ing the crack tip as illustrated in Figure 1, d£ the line element of C and v, the

components of the unit outward normal to C. The work in [21] is intimately
related to earlier investigations by Sanders [22] and Cherepanov [6].

crack

Figure 1
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This representation of energy release rate indicates the following interesting
fact: If the elastic field of the above plate under an arbitrary load is "regular"
at the crack tip, then we see that J = 0 by means of the divergence theorem (see
Proposition 3.9) and hence the energy release rates are zero for all loads, which
is contradictory to our experience. Hence there should exist a load <£ such that
the elastic field of the above plate under 3? is "singular" at the crack tip. The
meaning of the terms "regular" and "singular" will be clarified later (see Defi-
nition 3.1). A detailed mathematical investigation for the J-integral (1.2) is
described in Ohtsuka [20].

The above considerations suggest that the crack extension force is described
by the singularity of the elastic field at the crack tip and measurements of crack
extension force can be made in terms of the J-integral. Thus our question (Q.I)
can be reduced to the following problems:

(P.I) Find a representation analogous to the J-ίntegral of the energy release
rate for three dimensional bodies under arbitrary loads.
(P.2) Show that this representation depends only on the singularity of elastic
fields at the edge of the crack.

It is difficult to calculate the energy release rate in general case. Hence, as
a first step, we calculate it in the case of a linear elastic body containing a smooth
crack which advances smoothly (see Definition 4.1).

The main result in this paper is the expression of energy release rate as a

generalized J-integral (see section 3), which is an answer to (P.I) (see Theorem
4.5). Partial answer to (P.2) and (Q.2) are given in Corollary 4.6 and Theorem
5.5, respectively. Further discussions of these questions as well as (Q.3) will be
given in a forthcoming paper.

Throughout this paper we use the following notations: For a domain A, dA
is the boundary of A and \A\ the volume of A. For a surface S, dS is the boundary
of S if S is a manifold with boundary, dS the surface element of S, \S\ the surface
measure of 5, and v = (vl9 v2, v3) the unit outward normal to S if S is the boundary
of a domain with local Lipschitz property or a two dimensional oriented smooth
manifold. For an arbitrary open set Q, we denote the set Q Π Ω by Qf.

2. Elastic bodies and energy release rate

In this section we shall discuss a linear elastic body containing a crack (not
necessarily smooth) and a quasi-static problem which arises from consideration
of a crack extension process.

First we define Ω — G — Σ more precisely. A domain Q is said to have local
Lipschitz property if it is a bounded domain in R* such that, in a neighborhood of
any point xedQ, ΘQ admits a representation as a surface y3 = α(yl5 y2), where α
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is a Lipschitzian function and (3 ,̂ y2, J3) is a Cartesian coordinate in R3, and Q
is locally located on one side of dQ. G is a domain in R3 with local Lipschitz
property and Σ a two dimensional manifold with boundary dΣ in G which lies on
the boundary dΞ of a domain Ξ with local Lipschitz property such that Ξ c G.

The linear theory of an elastic body containing a crack is expressed as follows :
Let u = (Ui)9 ε = (εij), σ — foij) denote the displacement vector, the strain tensor
and the stress tensor, respectively. Then the strain-displacement and stress-strain

relations of this elastic body are given by

<fy(x) = l>i/w)] (*) = «i./fci(x)e*i(x) (Hooke's law) ,

where aijkl denote the components of Hooke's tensor. We assume that aijkl

belong to C°°(Ω) and satisfy the following property of symmetry

(2.1) aijkl = am =

and of ellipticity

(2.2) Ww£y

with some positive constant α0 independent of ξ^.
We consider the following circumstances: the elastic body cannot move

along Γ0 (c=dG), a surface force F is given on Γl = dG — Γ0, a body force /is given
in Ω and the stress is free on Σ (see Figure 2). Then the displacement vector u
satisfies the boundary value problem

(2.3)

f-DJσij=fi in Ω,

u = 0 on Γ0,

ff.jVj = pi on Γί9

σ v = σϊv = ^ on

where /( and Ff are the components of /and F, respectively. Here we assume that
Γ0 is measurable with respect to the surface element of dG and has positive
measure, and that the stress tensor σ^ has finite limits

for any x e Σ, as y and z approach to x from G — Ξ and Ξ, respectively.
In order to give variational formulation of the problem (2.3), we consider the

Sobolev space Wm>p(Q) for an open set Q of #3, l^p<oo and non-negative

integer m. All functions considered in this paper are real valued. By LP(Q) we
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The edge of
the crack dΣ The crack Σ

FdS

Figure 2

denote the classical Banach space consisting of /?-integrable functions on Q with

the norm

Wm>P(Q) is the space of all functions υ e LP(Q) such that

Ϊ
C Ί i/p

Σ\,\*m\Q\DΛv\pdx\ <oo,

where D*=DliD%2D$* for α = (αj, α2, α3), |α|=α 1+α 2-hα 3 and D*v mean dis-
tributional derivatives. Wm>p(Q) is a Banach space equipped with the norm

|ι?L,pfQ. Here we note that W°>P(Q) = LP(Q). The case p = 2 is special, since the
space Wm'2(Q) is a Hubert space with respect to the scalar product

We set Mm fQ
 = Nm,2 fQ and Hm(Q)=Wm>2(Q). For a surface S, L*(S) can be
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defined in terms of the surface element dS of S. For our later purposes we
present the trace theorem, the density theorem and fundamental Green's formula.
If a domain Q has local Lipschitz property, then C°°(Q) is dense in Hl(Q). For
veCco(Q)9 we define

γQv = "trace of υ on dQ" = the restriction of v to 80.

Then we have

TRACE THEOREM. If Q has local Lipschitz property, then the mapping yQ

is extended to a continuous linear operator from H1(Q) into L2(dQ).

When there is no fear of confusion, we simply write v for γQv. Although
C°°(Ω) is not dense in Hί(Ω) for our domain Ω we can define the trace of v e Hί(Ω)
on dΩ — dG U Σ as follows: Since Ξ and B = G — Ξ have local Lipschitz property,
and v I Ξ e H1(Ξ) and v \ B e Hl(B) for all υ e H1(Ω), we obtain a trace operator

(2.4) v-*(υ+, V9 v) e {L2(Σ}}2 x L2(dG) ,

where v+ is the restriction of yB(υ \ B) to Σ, v~ the restriction of γΞ(v \Ξ)toΣ and v

the restriction of yB(v \ β) to dG.
The density theorem is the following (see e.g. Adams [1]):

DENSITY THEOREM. The subspace C°°(Ω) n Wm p(Ω) is dense in Wm p(Ω) for

We now give well-known fundamental Green's formula, which is closely
related to J-integrals. Let Q be a domain with local Lipschitz property. For
any υ, vve/ί^Q), we have

(2.5) ( v(Diw)dx=-( (Div)wdx+( vwvtdS
)Q JQ JdQ

for each i= 1, 2, 3 (see e.g. Necas [17]). Since

) — (aw)Dp -f vD^aw) — (D^vw

for any t?, weH^Q), a e C^Q), (2.5) implies

LEMMA 2.1. Let Q be a domain with local Lipschitz property. Then , for

any v,we Hl(Q)9 a e C\Q\

(2.6) \ aDt(vw}dx — — \ (D^vwdx + \ avwvtdS for each i = 1, 2, 3.
JQ JQ JδQ

In general, Green's formulae (2.5) and (2.6) do not hold for Ω. We call
Q (c G) "regular relative to Ω" if Q is a domain with local Lipschitz property and

the formula
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(2.7) (D^wdx = - v(Diw)dx + vwvtdS
JQ' JQ' JdQ

hold for all υ, WEH1(Ω), ί = l, 2, 3, where Q' = Qr\Ω and [iw] represents the
discontinuity of υw across Σ, i.e.,

Ivwl = y+w+ — ιτw~~ (see (2.4)).

If both Q Π Ξ and Q n (G-Ξ) have local Lipschitz property, then by (2.5), it is
easy to prove that Q is regular relative to Ω. If Q is regular relative to Ω, then, by
an argument similar to Lemma 2.1,

Γ Γ Γ Γ
(2.8) \ aD£υw)dx = - \ (Dta)vwdx + \ avwvtdx + \ α

JQ' Jβ' JaQ JIΠQ

for ι;, we/f1^). ί/
We shall now give the variational formulation of the problem (2.3). In what

follows we shall use the notations

and (̂ρ)

which are equipped with the product norms

We define the space

V(Ω) = {ϋ;ι?e HKΩ), » = 0 on Γ0} ,

which is a Hubert space as a closed subspace of Hl(Ω\ and we consider the bi-
linear form

(2.9) φ, w ) = f σij^ε^dx for t;, weF(Ω),

which is symmetric by (2.1). Then the problem to find a displacement vector u
satisfying (2.3) under a load Jδf = (/, F) ejL2(ί2)xL2(Γ!) can be reformulated as
follows :

(2.10) Find u e V(Ω) such that

a(u, υ) = f-vdx + F vdS for all υ e V(Ω) .
JΩ JΓι

If the bilinear form a(v, w) is coercive and bounded on V(Ω\ then we can
immediately conclude the unique solvability of the problem (2.10) by use of the
Lax-Milgram lemma (see e.g. [17]). Related to the coercivity of a(υ9 w) is
Korn's inequality, that is, there exists a constant c(Ω)>0 such that

(2.11)
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for all υeH^Ω). To obtain Korn's inequality, it is sufficient by Gobert [11]

to show that Ω has cone property, that is, there exists a finite cone C such that

each point x of Ω is the vertex of a cone Cx contained in Ω and congruent to C.

It is easy to prove the following lemma (cf. Chenais [5]):

LEMMA 2.2. Ω has cone property.

Then we obtain the following compactness result.

LEMMA 2.3. The imbedding H\Ω)~>L2(Ω) is compact.

The proof of this lemma is found e.g. in [1].

By virtue of (2.2), (2.11) and Lemma 2.3, we can conclude the coercivity of

a(v, w) by an argument similar to that in Duvaut-Lions [7], Chapter 3, Theorem

3.3.

LEMMA 2.4. There exists a positive constant α(Ω) such that

(2.12) a(υ, υ) ^ α(Ω) | |ι>|| l ϊ f l for all υeV(Ω).

We then have

THEOREM 2.5. For each load & = (f, F)ei2(Ω)xIr2(Γ1), there exists a
unique solution u e V(Ω) of the problem (2.10). Furthermore Green's operator

(2.13) T:& = (f,F)-*u

is a bounded linear operator of L2(Ω) xL2(Γ1) into V(Ω).

We now state the quasi-static problem which arises from a consideration of

crack extension process. Let {I"(0}ίe[o,i] be a family of closed subsets of dΞ.
Then the problem we now consider is the following:

(2.14) For a given load <£ = (/, F)e£»2(Ω)xL2(Γ1), we seek displacement

vectors v(t}ε V(Ω(t)), t e [0, 1], such that

at(v(t\ w) = ( f wdx +( F'\vdS
J Ω ( t ) JΓι

for all w e V(Ω(t)\ where Ω(t) = G-Σ(t),

V(Ω(t)) = {υ 9veHi(Ω(t)),υ = 0 on Γ0},

αf(w, w') = f σί/w)εf/(w/)c/x for w, w' e 7(Ω(ί)) -
Jθ(f)

By virtue of Theorem 2.5 there exists a solution υ(i) of the problem (2.14)

for each time t under an arbitrary load &.

We shall compare the two potential energies
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', Σ) = a0(u, ιι)/2 - f udx - F udS,
Ω

- F - υ(i)dS
β(f) JΓ,

of the elastic bodies each containing the crack Σ and Σ(t), respectively, under the
same load « .̂ Here v(t) is the displacement vectors given above under the load
J? and M = ϋ(0). For simplicity, we put α(w) = α(w, w) and Λf(w) = αf(w, w).

LEMMA 2.6. I(jδ? Z) - I(jδf 1(0) = at(u-v(t))/2.

PROOF. First we note that u e K(Ω(ί)) since Ω(ί)c=Ω, and that the Lebesgue
measure of Ω — Ω(t) is zero. It follows from the symmetricity of the bilinear
forms a0(w, w') and ^(w, w') that

\ Σ) - I(2>; Σ(t)) = at(u-υ(i))!2 + at(υ(t\ u-υ(t))

f'(u- v(t))dx -( F (ιι - v(t))dS.
JΩ(t)

Since u-v(t)eV(Ω(t))9 we obtain

at(υ(t\ u - υ(t)) = f (u- v(t))dx + F - (ιι -
Jβ(f) JΓι

Thus Lemma 2.6 follows.

REMARK 2.7. The strict inequality I(jgf Z1) > I(jίf I"(i)) indicates that the
elastic body containing the crack Σ(t) is more stable than that containing the
crack Σ. On the other hand, since

by Lemma 2.4, the equality I(^f Σ) = I(&; Σ(t)) implies that v(t) = u in Ω(t).
Therefore the equality shows that the elastic body has no discontinuity across
Σ(i) — Σ, which means that the crack does not actually propagate.

3. Generalized J-integral

Before we calculate the energy release rate, let us give a brief summary of
surface integrals of J-integral type. Earlier works which provide a three-dimen-
sional version of the J-integral (1.2) are found in Eshelby [8] and Giinther [12].
Eshelby [8], in a paper devoted to the continuum theory of lattice defects, deduced
a surface integral representation

(3.1) Jk(u) = {Wvk-s.(Dku)}dS (/c=l,2,3)
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for the force on elastic singularity or inhomogeneity of the portion enclosed by a
surface 5. Here W is the strain energy density, s = (sί) the traction vector, i.e.,
si = ffijvj> and M the displacement vector as before. Gunther [12], using Noether's
theorem [18] on variational principles, obtained conservation laws for regular
elastostatic fields appropriate to homogeneous solids. Here a linear elastic body
is called homogeneous if all components of Hooke's tensor are constants. The
meaning of the term the "elastic singularity" will be made precise later in terms
of Sobolev spaces (see Definition 3.1). Let us consider a linear homogeneous
elastic body whose elastic fields are regular and assume that the body force vanishes
identically. Then the following conservation laws hold:

(3.2) Jk(u) = 0 for k = 1, 2, 3.

(3.3) M(ιι) = ( {Wxivi-sJ(DiUj)xi-(s u)/2}dS = 0.
j s

If, moreover, the elastic body is isotropic, then also

(3.4) LΛ(u) = εalk{ Wxkvt - stuk - sp(DlUp)xk}dS = 0,

where εΛlk are the components of the antisymmetric third order tensor such that
ε123= +1. Knowles and Sternberg [14] have shown that the conservation law
(3.2) holds for more general class of materials, called hyperelastic materials, for
which a strain energy density W is defined .so that the stress tensor σ^ is given by
σij. = SW/dεij. A hyperelastic material is homogeneous since Wdoes not depend
on x explicitly. They have also shown that the conservation law (3.4) holds if
the material is isotropic and hyperelastic. Moreover the completeness of these
three conservation laws for linear elasticity has been established in [14]. There
have been many applications of two-dimensional versions of conservation laws
to fracture mechanics (cf. Budiansky and Rice [2], Eshelby [9]). Here it should
be noticed that, in general, the conservation laws do not hold for an elastic body
containing a crack, because the elastic field is in general singular at the edge of

the crack (cf. [20], [21]).
For linear (not necessarily homogeneous) elasticity, we consider a gener-

alization of the surface integrals given in (3.1), (3.3), (3.4) (see Definition 3.3).
As described later, we use this generalization to express the energy release rates

for a class of smooth crack extensions (see Theorem 4.5).
We now turn our attention to the linear elastic body considered in section 2.

First we define regular points and singular points of the elastic field.

DEFINITION 3.1. Let u be the displacement vector of the elastic body under

a load &, i.e., u = T(&)9 and let β be a point of Ω. We call β a regular point of

the elastic field under «£? if there exists an open neighborhood Vβ of β such that
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u \V'β eH2(V'β). We call β a singular point of the elastic field under & if β is not
a regular point.

We shall now show that singular points of the elastic field under an arbitrary
load must belong to dG U dΣ9 if the crack Σ is smooth, i.e., Σ is a 2-dimensional
oriented C^-submanifold of R3 with boundary. Since Σ is oriented, the unit
outward normal to Σ is determined by the orientations of Σ and ,R3. Moreover
we can construct easily a domain Ξ with local Lipschitz property such that ΣadΞ
and the unit outward normal to dΞ equals that to Σ on Σ.

We may rewrite Z)7σ/7(w) in the form

(3.5) Djσ^u) = DfajklDtuk) with cίjkleC*(Ω)

(cf. Fichera [10]). By Lemma 2.4 the differential operator (3.5) satisfies the
uniform ellipticity, that is, there exists a positive constant c such that

Cijkiξjξflflk ^ c\ξ\2\η\2

for any non-zero real vectors ξ, η (see e.g. [10]). Therefore a well-known regu-
larity result for the elliptic partial differential system (see [10]) derives the follow-
ing

PROPOSITION 3.2. Let B be an open neighborhood of Σ in R3 such that
BciG, and N an arbitrary open neighborhood of dΣ in R3 such that NaB. If
Σ is smooth, then the operator

(f,F) >T(f,F)\(B-Nγ

is a bounded linear operator from L2(Ω)xL2(Γ1) into H2((B — N)').

From now on, we assume that Σ is smooth. For a domain A regular relative
to ί2, we give a generalization JA(u μ) of the expressions Jk(u), M(u) and Lα(w)
as a functional on the space D(Q) of all displacement vectors u and the set X(A)
of all smooth vector fields defined on open neighborhoods of Ά.

DEFINITION 3.3. Let A be a domain regular relative to Ω such that A<^G

and dist (dA, dΣ)>0. For each u = T(f, F) and μeX(A)9 we define

(3.6) JA(u μ) = PA(u μ) + RA(u μ)

with

PΛ(u μ) = ί {W(μ v)-s Xμ(u)}dS,
J S

RA(u; μ) = - {(Xβ(atJtύl2)euβlj-f Xlt(u)}dx

{σiJ(DJ μ>')(Dhuί)-W(divμ)}dX,
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where W=σίjεij/2 (the strain energy density), s = o-.^Vj, S — dA, Xμ = μhDh (μh the
components of μ) and div μ = Dhμ

h. We call JA(u\ μ) the generalized J -integral.

First we shall show

PROPOSITION 3.4. For any & = (f, F) eL2(Ω) x L2(Γ v ) and μ e X(A)9

(3.7) \JA(T(&)\ μ)\ ^ C(A) \\μ\\A\\&\\2,

where

PROOF. Using the Schwarz inequality, we obtain

(3.8) \RA(U; μ)\ ^ C\\μ\\A\\u\\lAf

with some positive constant C, independent of A. Since AaG and dist (dA, 3Σ)
>0, we can take an open neighborhood N of dA such that Nc:G and N Γ) dΣ = 0.
Using the Schwarz inequality and the trace theorem, we obtain

Thus, by virtue of Theorem 2.5 and Proposition 3.2, (3.7) follows.

The connection between surface integrals in (3.1), (3.3), (3.4) and the gener-
alized /-integral is given in the following.

THEOREM 3.5. // all components aίjkl of Hooke's tensor are constants and
the body force f is zero, then for any domain A regular relative to Ω such that

A n Σ = 0, and for S = dA9 we have

(3.9) JA(u;ek) = Jk(ύ) for k = 1, 2, 3,

(3.10) JA(u;x) = M(u);

if, in addition, the elastic body is isotropic, then

(3.11) JA(u',qa) = LΛ(u) for α = 1, 2, 3.

Here ek is the unit base vector in the xk-dίrection, ^fα(x) = (εαlfcxk, εα2/Λ> εa3kxk)

and x = (xl9 x2, ^3).

PROOF. First we note that the first term of RA(u\ μ) in (3.6) vanishes, since
aijkl are constants and /=0. Since Ac:G and AΓ\Σ — 0, u\ AeH2(A) by Propo-

sition 3.2.
(i) Proof of (3.9). By the fact that x-+ek is a constant vector field and ek -

v = vfc, (3.9) is clear.
(ii) Proof of (3.10). Since ^(D^x^D^ = σ^D^ and divx = 3, it follows

that
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RA(u;x)= -\ σ^DjU
J A.

Hence by (2.5)

RA(u;x) = - (s u)/2dS,
Js

which leads to (3.10).
(iii) Proof of (3.11). By a simple calculation

(see [14]) .

Therefore, by (2.5)

RA(V> 4«) =\ £*hk<*ihDiUkdx = εahk \ shukdS,
JA JS

which leads to (3.11).

The following proposition and Theorem 3.4 yield the conservation laws

PROPOSITION 3.6. If Ar\Σ = 0, then

JA(U μ) = 0 for all u e D(Ω) and μ e X(A) .

PROOF. By Proposition 3.2, u \AeH2(A). Hence, applying Lemma 2.1, we
have

X»(W)dx = - W(divμ)dx + W(μ-v)dS.
A JA JS

But

Xμ(W)dx =

From (2.5) it follows that

( σ^u)D^Xμ(uύ)dx=-( Dfa£u))Xμ(uϊ)dx+( s Xμ(u)dS.
J A J A J S

Collecting terms, we thus have

JA(u μ) = 0 for all u e D(Ω) and μ e X(A) .

Proposition 3.6 indicates that the generalized ./-integral must vanish if the

elastic field on A has no defects, i.e., A n Σ = 0. But, in general, J A(u\ μ) does not
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vanish and depends on the choice of A if A n Σ ̂ 0. Next we show that JA(u μ)
is independent of the choice of A for some class of vector fields μ even if A n Σ

Ϊ0

PROPOSITION 3.7. // the vector field μ is tangent to Σ9 JA(u\ μ) takes the
same value for all domains A regular relative to Ω such that dΣciA and μ e X(A).

PROOF. Assume that μ is defined on an neighborhood U of dΣ. Let Aί and
A2 be two domains regular relative to Ω such that 3ΣcAl9 Άί<=:A2 and Ά2aU.
Letting Q = A2-Άίy we have by (2.8),

(3.12) ( Xμ(W)dx = ( W(μ v)dS+{ lσlfiίl(μ - v) dS - (
JQ JQ' JIHQ J J JQ'

x.

Here we used the fact that the elastic field is regular in Q' by Proposition 3.2,
which also implies the applicability of (2.8). Since μ is tangent to Σ, the second
term in the right-hand side of (3.12) vanishes. On the other hand, by symmetricity
of the strain and stress tensors, we have

(3.13) 2 Q/ Xμ(W)dx =

+ 2 σiJDj(Xμ(uJ)dX - 2 σij(Djμ^(Dhuί)dx.

Applying (2.7), we obtain

(3.14) JQ/ σMXμ(u$dx

+ ( σtjVjX^uddS + IσtjVjX^uύl dS.
J dQ JΣftQ

Since σj)vj = σjf j vι/ = 0 on Σ9 the last term in the right-hand side of (3.14) vanishes.
Hence, noting that

-Dj°ij=fi in Ω»

we obtain

(3.15) Q/ Xμ(W)dx = {(Xμ(aijkί)l2)εkl^ 4- /. Xμ(u)}dx

+ ί s Xμ(u)dS-( σ^Djμ^(Dhuύdx.
JdQ JQ'

Combining (3.12) and (3.15), we obtain the equation JAl(u; μ) — «/^2(w; μ)=0.
This completes the proof of Proposition 3.7.

By the proposition, we may omit the subscript A of JA(u μ) if the vector
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field μ, defined on a neighborhood U of dΣ, is tangent to Γ, dΣcA and ΆcU.
The following proposition shows that we can neglect the volume integral part

RA(u; μ) if \A\ is sufficiently small.

PROPOSITION 3.8. If a vector field μ is tangent to Σ, then

J(ιι; μ) = HmM |_»o { {W(μ v)-s Xμ(u)}dS.
J 8 A

PROOF. By virtue of Theorem 2.5, ueHl(Ω). Hence ||t*|| l fX->0 as |A|->0.

Since feL2(Ω\ \\f\\0,A-+Q as \A\-+Q. Hence by (3.8)

RA(u; μ)-*Q as |4|-»0.

Thus we complete the proof of Proposition 3.8.

By an argument similar to the proof of Proposition 3.7, we can prove the

following

PROPOSITION 3.9. // the elastic field is regular at the edge dΣ of the crack,
then J(u\ μ) = 0/br all μ tangent to Σ.

4. Calculation of energy release rate

Next we shall show that the energy release rates are expressed as the gener-
alized J-integral for the following class of crack extensions (Σ(t)}.

DEFINITION 4.1. A family {£(0}te[o,i] of 2-dimensional C°°-submamfolds
of R3 with boundary is called a smooth crack extension of Σ if it satisfies the
following conditions (4.1-4):

(4.1) There exists a 2-dimensional oriented C°°-submanifold Π of R3 with
boundary such that Π c G and

Σ(t) c= 77° (= Π-dΠ) for all t e [0, 1] .

(4.2) Γ(0) = Σ c Σ(f) c Σ(t') if 0 < ί < t'.

(4.3) For each t e [0, 1], there exists a C°°-diffeomorphism

φt: dΣ >dΣ(i)

such that the map φt: dΣx [0, l]-»/7 is of class C°°.

(4.4) The limit limf_»0 t~1\Σ(i) — Σ\ exists and is non zero.

We now introduce a curvilinear coordinate system (17, p) in a region U near
the edge dΣ of the crack.

LEMMA 4.2. There exists a C^-diffeomorphism p from dΣ x I2 onto an
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open neighborhood U of dΣ in R3 such that

(4.5) p(x, 0, 0) = x whenever x is in dΣ.

(4.6) U Π Π = p(dΣ x I x {0}), U n Γ = p(dΣ x Γ x {0}) ,

where I = (-l, 1) and Γ = (-l, 0].

We shall call the pair (17, p) a product neighborhood of dΣ.

PROOF. Since we assumed that dΣc:770, there exists a neighborhood V of
dΣ in 77, Fez 77°, and a C°°-diffeomorphism p0 from dΣ x I onto V such that

po(dΣ xI')=U Γ\Σ and jp0(x5 0) = x whenever x is in dΣ. Here we used the well-
known result on the existence of the product neighborhood (see e.g. Munkres
[16]). Since Π is oriented and VaΠ°9 there exists a diffeomorphism pί from
Fx I onto an open neighborhood U of dΣ in R3 such that p^(x, 0) = x whenever
x is in F(see [16]). Let us now set

p(ξ, η, λ) = P1(p0(ξ, η\ λ) for (ξ, η, λ) e dΣ x I2.

Then it is clear that p: dΣx I2-*U satisfies the assertions in Lemma 4.2.

In terms of a product neighborhood of dΣ, each edge dΣ(i) of newly created
crack is represented by the graph of a smooth function ht defined on dΣ.

LEMMA 4.3. Let {Σ(0}re[o,i] be a smooth crack extension and (U, p) a
product neighborhood of dΣ. Then there exist a positive number t0 and a

family {Mίe[o,ί0] of smooth functions defined on dΣ such that

(4.7) 0 ̂  ht £ 1 for all te [0, ί0] and ft0(x) = 0 for allxε dΣ,

(4.8) the map ht: dΣ x [0, to]-+[Q, 1) is of class C°°,

(4.9) dΣ(ί) n U = {x; x = p(ξ, ht(ξ), 0), ξ e dΣ} ,

Σ(t) n 17 = {x; x = Xί, ι/, 0),

Before proving this lemma, we prepare some geometrical concepts. Let M
be an m-dimensional C°°-submanifold (with boundary) of #3, and consider the
Riemannian metric on M induced by the imbedding into #3. We denote the
tangent space to M at x by TXM and the tangent bundle \JX TXM (disjoint union)
by TM; for each x e M, TXM is identified with the m-dimensional subspace of R3.
Let M and N be two C°°-submanifolds of R3 and /: M-> JV a C^map. By dfx

we denote the differential of/ at x, which is a linear map from TXM to Tf(x)N.
Let us denote the space of all C1-maps of M to N by F1(M, N), which is

topologized as follows: Given a C1-map /: M-+N and a positive continuous
function δ on M, let W(f, δ) be the set of all CJ-maps g: M-+N such that



Generalized /-integral and three dimensional fracture mechanics I 37

\f(x)-g(x)\ g δ(x), \dfx(υ)-dgx(v)\ ^ δ(x) \v\

for each x e M and each v e TXM , where | | stands for the Euclidian distance in
R2. The sets W(f, <5) form a basis for what is called the fine C1 -topology on

, N). Then one can prove (see e.g. [16]):

PROPOSITION 4.4. Let M and N be two manifolds and f: M->N a Cl-map.
If f is an imbedding, there exists a fine C1 -neighborhood of f consisting only of
imbeddings. Iff is a Cl-dijfeomorphism, there exists a fine C1 -neighborhood
of f such that if g is in this neighborhood and carries dM into dN, then g is a
diffeomorphism.

PROOF OF LEMMA 4.3. By assumption (4.3) there exists a positive number
τ0 ̂  1 such that dΣ(t) c U for all t :g τ0. Now we put

(4.10) ((θ\(ξ), 0?«), 0) = p-i φjίξ); ξedl, f e[0, τ0] .

Then from (4.2), (4.3) and Lemma 4.2 it follows that

(4.1 1) 0 g 0? < 1 for all t e [0, τ0], 0§(ξ) = 0 for all ξ e dΣ,

(4.12) the maps 0J: dΣ x [0, τQ~\-*dΣ and 0?: d£ x [0, τ0]->[0, 1)

are of class C°°.

Applying Proposition 4.4, we can take a positive number τ such that there exists

an inverse (0})-1 of 0} for each f e[0, τ]. Here we used the fact that 00(£) = £
for all ξ e dΣ and the boundary of dΣ is empty. Next we shall show that

(4.13) the map (0/)"1: dΣ x [0, t^-^dΣ is of class C°° for some positive
number ί0 (^ τ).

Let {(αf, Vi)}^!^,...^ ^e a l°cal coordinate system of dΣ. Choose a positive
number ί0 and a refinement {FPJ of the covering {FJ of 31" such that 0X£)e Vi

for all ί^ί0 whenever ξ is in W^. Setting ι/ ί̂ί(ω) = αίo(0J)-1oα: 1(ω), ωeα^^),
and using the implicit function theorem, we obtain the following ordinary differ-
ential equations depending on the parameter f,

(4.14) - W ω ) = Λ ( ω ) ,

where /ίf(ω)=('^-(αίo0ί

1oα^1)(ω)") \ ωeα^). Since the maps Ar

[0, ίo]-^1 are of class C°°, the assertion (4.13) follows from (4.14) and the well-
known result on ordinary differential equations (see e.g. Hartman [13]).

Let us now put

ht(ξ) = 0?((θ1,rl(£» for ξεdΣ, ίe[0,ί0].
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Then (4.7) follows from (4.11), (4.8) follows from (4.12) and (4.13), and (4.9) is
clear from (4.3), (4.5) and (4.10).

Lemma 4.3 gives a smooth vector field τ(x) on U as follows: For each
x 6 U, there exists a positive number cx such that

belongs to U if t e [0, cx), where (£(x), ?f(x), λ(x)) = p~1(x). By virtue of Lemma
4.2 and Lemma 4.3, the parametrized path t-+κt(x), t e [0, cj, is of class C°° and
KO(X) = X for all xeU. The vector field τ on U is defined by

(4.15)
\ αr =o

The main result in this paper is the following theorem.

THEOREM 4.5. For a given load J? and a given smooth crack extension
{Σ(t)}, the energy release rate

given in (1.1), is expressed in the form

(4.16) G(<?; {Σ(t)}) = fc-iJ(TCSO; τ)

where k = ]imt^0t~
ί\Σ(t) — Σ\ and τ is the vector field given in (4.15) obtained

from (Σ(t)}.

From Proposition 3.9 the following result follows.

COROLLARY 4.6. If, for a given load 3?, the elastic field is regular at the
edge dΣ of the crack (see Definition 3.1), then G(&\ {Γ(f)}) = 0 for any smooth

crack extension

REMARK 4.7. Although τ may depend on the choice of a product neighbor-
hood (17, p) of dΣ, J(w; τ) is independent of the choice of (U, p), because G(&

(Σ(i)}) depends only on {1(0} .

Before proving Theorem 4.5 we prepare some auxiliary results. Hereafter
we fix a smooth crack extension {Σ(t)} and assume that (Σ(t)} is expressed as in

Lemma 4.3.
The following maps pt play basic roles in our calculation. For the con-

struction of pf, we take a function β e C^CR3) such that

(4.17) suppβ c U and β = 1 on β,

where Q is an open neighborhood of dΣ in R3 such that
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(4.18) dΣ(t) c β for any t e [0, ί0] and Q c U.

We now put

p(ξ(x\η(x)-β(x)hKξ(x))9λ(xy), for xεU,

x, for x e R3 - C7,

where (£(x), f?(x), A(x)) = p~1(x).
Our construction of pf yields the following

LEMMA 4.8. There exists a positive number Θ^t0 such that the family

{pf}ί6[o,β] of maps satisfies the following:

(4.19) The map pt: R3-*R3 is a C^-diffeomorphism for each f ε [0, 0].

(4.20) pt(Σ(t)) = Σ for any t e [0, 0].

(4.21) The map pt: R3 x [0, 0]-»£3 is of class C°°.

PROOF. First we note that ρt(x) = x for all xe.R3 — suppβ and suppβcit/.
Hence, from Lemma 4.2 and Lemma 4.3, it follows that the map pt: R3 x [0, ί0]
-+R3 is of class C°°. Moreover p0(χ) = χ for all xeR3 by (4.7) and each pt

reduces to the identity except on the bounded set suppβ. Therefore, using
Proposition 4.4, we can take a positive number 0 such that pf, fe[0, 0], are
diffeomorphisms from R3 onto R3. By (4.9) and the construction of p,, the set
(p~1opt)(Σ(t) n U) is expressed as

{«, ly, 0); ξeai, -1-fcχξ, ly) g 17 ^ Wί)-^, ιy)},

where fe^ξ, η) = β(p(ξ, η, 0))Λt(ξ) From this it follows that (p-l°ρύ(Σ(i) Π 17) =
p"1^ Π I/) if ί e [0, 0]. This completes the proof of Lemma 4.8.

For a function υ defined on Ω, we define a function vf on Ω(t) by

ι??(x) = t<pί(x)).

For simplicity we put

Dm>P(Ω) = ^™^(Ω) n C°°(Ω) and /)W(Ω) = Hm(Ω) n C°°(Ω),

which are dense in Pfm>p(Ω) and Hm(Ω), respectively, by the density theorem.
Since the mappings pt reduce to the identity except on the bounded set supp β,
Lemma 4.8 leads to the estimates

(4.22) C^\v\m>ptΩ ^ \v*\m,piΩ(t, ^ C\v\
mspiΩ

for all v e Dm'^(Ω), m^O and 1 ̂ p< oo, where C is a positive constant independent
of t. In what follows we denote by C various constants independent of t. The
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density theorem implies the following

LEMMA 4.9. The pull-backs υ-+v* are extended by continuity to linear
homeomorphisms from Wm'p(Ω) onto Wm>p(Ω(t)) for any m^O and l^p<oo,
and also from V(Ω) onto V(Ω(t)). Furthermore vf satisfy the estimates (4.22).

Let v(t) be the solution of the quasi-static problem (2.14) under a load 3?
and let u = υ(0). Then uf gives a fairly good approximation of v(f) as the follow-
ing lemma shows.

LEMMA 4.10. There exists a positive constant tί such that

(4.23) \\uf-v(t)\\lιΩ(t^Ct\\^\\ for all ίe[0, ίj.

PROOF. 1) Let us denote the components of the matrix Dρt(x) — I by

bijt(x)'9 ι,7 = l, 2, 3, where Dρt(x) is the Jacobian matrix of pt at x. For w e

(4.24) ε/y(w*) = feXw)]* + ϋvί(w) with

Hence, for any t;, w e {

dx + lt(v, w) ,
θ β(θ

where

foXwHfCl - |det (Dpt)|)dx

By the change of variables j = pt(x\

We thus have for v, w e {Dl(Ω)}3 the formula

(4.25) a&*9 wf) = fl0(ι;, w) + /,(t;, w) ,

where It(v9 w) satisfies the estimate

(4.26) ltow)|^Cί||!;| | l f 0 | |w|| l f f l

by virtue of Lemma 4.9, the Schwarz inequality, the fact that aijkl e C°°(i3) and
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the following inequalities:

(4.27) supxeR3 \pt(x)-x\ ^ Cί, max,,; supxeR3 \bijt(x)\ ^ Cί.

The inequalities (4.27) follow from Lemma 4.8 and the fact that pt reduce to the
identity except on a bounded set. According to the density theorem, (4.25) and
(4.26) hold for all υ9 weH*(Ω).

2) Next we shall show that there exist positive constants α (independent of
ί) and t1 such that

(4.28) at(υ9 v) £ <φ||?ilϊw

for all ve V(Ω(f)) ana t e [0, ίj. From Lemma 2.4, (4.25) and (4.26) it follows
that

αfυf, vf) ^ αQ(v9 v) - Ct\\v\\2

lt0 ^ α(O) \\υ\\2

ltΩ - Ct\\υ\\2

lttt

for all veV(Ω) and ίe[0, 0]. We now take a number t1 to satisfy Ct^
and then we obtain

for all t e V(Ω) and t e [0, f j . The desired estimate (4.28) follows from Lemma

4.9.
3) For ψ e F(Ω), by (4.25),

αt(υ*9 ψf) = αt(u, )̂ + ίf(n, ^r) = /• ψ dx + F ψdS + /f(ιι,
JΩ

( F ψ*dS+(
Γi JΩ(t) J Γ i JΩ(t)

since u is the solution of the problem (2.10), ψ = \l/* on Γ, and the Lebesgue

measure of Ω — Ω(t) is zero. Then we have

αt(u* - v(t\ ψ*) = f.(ψ- ψ*)dx + It(u9
Jβ(r)

Hence by virtue of (4.26), we have

(4.29) \αt(uf-v(t\ ιA*)| ^ {||/||of0ll^-^f U

for all ψ E V(Ω). We shall now prove

(4.30) ll^-^?llo.o(o ^ Cf|M| l f 0 for all

It is sufficient to prove our assertion for ^E{D1(Ω)}3. For each ίe[0, ίj and
x e Ω(f), the path Q = (ps(x); s e [0, t]} is contained in Ω, whence s-+ψ(ps(x)) is a
CJ-map from [0, ί] to R2. Using the chain rule, the Schwarz inequality, FubinΓs
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theorem and Lemma 4.9, we then have

β ( r ) θ
Γ
Jθ

which leads to (4.30). By virtue of Theorem 2.5, (4.29) and (4.30), it follows that

(4.31) M«ι* -φ), Ψϊ)\ ^ Ct\\3>\\ ||̂ ?||1Λf).

Taking for ψf in (4.31) the function uf — v(t) and using (4.28), we now have

Hence

This completes the proof of Lemma 4.10.

LEMMA 4.11. Iffe Wl l(Ω), ί/ien

(4.32) lim^oΠί {f*-f}dx=-( X£f)βdx,
Jβ(f) Jβ

where τ and β are those given in (4.15) and (4.17), respectively.

PROOF. Since D1>1(Ω) is dense in W1>1(Ω)9 there exists a sequence {/,-} of
functions in Dίtl(Ω) such that //-»/ in Wltl(Ω) as 7-^00. By the same argument
as in the proof of Lemma 4.10 we obtain

{ ( f j ) t - f j } - { f ΐ - f } d χ

)Ω(t) Jo dζ

from which it follows that

uniformly with respect to ί as j-^oo. Hence

where Q(f) stands for the left-hand side of (4.32). Therefore it is sufficient to
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prove (4.32) for fe Dltί(Ω). For some fixed number 0>0, we have

{ff-f}dx,

43

since Ω(t)=>Ω(θ) by (4.2) and the Lebesgue measures of Ω(t) — Ω(θ) are zero for

all ίe[0, 0]. For an arbitrary domain Ω0 strictly contained in Ω(0), we obtain

by the Lebesgue dominated convergence theorem

i n W o f f {ff-f}dx=\ \imt^
JΩ0 JΩ0

for all /€/> l f l(Ω), since fe C°°(Ω0). By an argument analogous to the above

we obtain for t e [0, 0]

Uf-f}dχ
JΩ(Θ)-Ω0

= Γ' Ω(Θ)-Ω0 JO

where M(Ω0) = Wie[0,0] ptfXβ) ~ Ωo)- We can see that |M(Ω0)I -*0 if Ω0-*Ω(Θ).
Thus we can deduce that

(4.33)

Setting

Q(f) = lim^o r i(/f -
«(β)

> we nave

r rat

Since /eD^^Ω), we obtain

= (-4r
ί=0 \ «* r=0

ί=0

Therefore (4.32) follows from (4.33).

In the same way we can prove

LEMMA 4.12. Let τ and β be as in Lemma 4.10.

(a) IffeΉl(Ω)andgeL2(Ω)9then
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(4.34) liro^o Π ( g(f* -f)dx = - \ gXτ(f)βdx.
JΩ(t) JΩJΩ(t)

(b) // fe C°°(D) an d g e L\Ω\ then

(4.35) liπwri g?(ff-f)dx = - gXτ(f)βdx.
JΩ(t) )Ω

We are now in a position to prove Theorem 4.5.

PROOF OF THEOREM 4.5. 1) By virtue of Lemma 2.6 and the symmetricity
of at(υ9 w), we have

2{l(&; !)-!(-£?; 1(0)} = at(u-v(t)) = at(u-u* + u*-v(t))

= α,(ιO - at(uf) + 2at(υ(t\ u*-u) + at(u*-v(i)}

= at(u) - at(uf) + at(uf - v(t)) + 2 ( f (uf - u)dx,
jΩ(t)

since t (ί) is the solution of the problem (2.14), uf — ue V(Ω(i)) and uf — w = 0 on
Γ. Hence

(4.36) kG(<e {1(0}) = lim^0 r Hί^) ~ aj

+ lim f_o r1 ( f (u*-u)dx
Jβ(r)

By Lemma 4.10,

^ C||ιι*-ι<0llf.fl(r) ̂

Hence the last term in the right-hand side of (4.36) vanishes. Thus from Lemma
4.12 we can deduce that

(4.37)

where 2It = at(u) — at(uf). By symmetricity of aίjkl, [ε0 (w)]f and υijt(v) (see
(2.1) and (4.24)), Tf is written in the form

(4.38) 21, = I l f + I2f + I3ί + I4ί,

where

2ί β r
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I4f = - aijklΌkn(u)Όijt(u)dx.

Since, by (4.22) and (4.27),

\»ijt(u)\i,Ω(t) ^ C*\\U\\l,Ω f°Γ a11

we have

(4.39) limf^0r
1I4r = 0,

and by Lemma 4.12, (b), we obtain

(4.40) lίm^o r ̂ 3, = - X&ijMufo

2) Singularity at the edge dΣ of the crack gives rise to difficulties in calcu-
lating the limits lim^o ί~1Ilf and lim^o ί~1I2r So we introduce cut-off functions
ζ, φ e C$(R3) such that

(4.41) 0 ̂  C, Φ ̂  1, β = 1 on supp (1 - ζ), C = 1 near dβ, ζ = 0 near dΣ\

φ = 1 on supp ζ and φ = 0 near 3I1.

We put

Then, by the change of variables y = pt(x), we may rewrite it as

where J^ldetCDp,)!"1. Since the map Jt: R3 x [0, ίJ-^R1 is of class C°° by
(4.21) and FKeLHO), we obtain

(4.42) liiϊW^iM = -\ (l-ζ)WJ'dx9JΩ

where J'= —jτJt\t=o Since ζWeWltl(Ω) by Proposition 3.2, we obtain by

Lemma 4.11

lim^o*'1! {ζW-(ζW*)}dx=( Xτ(ζW)βdx.
jΩ(t) JΩ

Thus we have

(4.43) lim f^0ί~
1(Iif/2) = ( X&W)βdx-( (l-QFK/'dx.

JΩ JΩ
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From the symmetricity of aijkl and [βy(u)]f, it follows that

Hence

= ( σώDjftXJμύdx + f σ^D
J Ω J Ω

Since Djβ—0 on supp(l — Q and <jo = l on suppζ, we have

ί σίχDJ.Jβ)(Xt(ui))dx = ί φσ^Djβ^X^ζu^dx.
JΩ JΩ

Thus, since φσίp βX^ζu^e H^Ω) by Proposition 3.2, (2.8) implies

(4.44) \.σij(Djβ)(XJμ$dx=-\ Djlφσ.jX^ζu^βdx + ( Iφσ
J Ω J Ω J Σ

The last term of (4.44) vanishes by the assumption that σ/}Vy = σ7}vy = 0 on Σ.

Thus we have

(4.45) lim^o r HW2) = - Djlφσ^X^ζu^β dx - atj(D^h) (DhUi)β dx.

3) Without loss of generality we may assume that the set Q given in (4.18)

is a domain regular relative to Ω. Let us take a sequence {βj} of functions C^(R3)

such that β/ = l on β for all j and βj->%Q a.e. as j-^oo, where χβ is the character-

istic function of β; namely, χβ(x) = l for xeQ and 7Q(x) = 0 for x^Q. We
replace ^ in the integrals (4.37), (4.40), (4.43) and (4.45) by βj and let j'->oo.

Here we notice that βj—l on supp(l— ζ) for ally, whence the integral (4.42) is

independent of j. The passage to the limit in the integrals (4.37), (4.40), (4.43)

and (4.45) is easily done using the Lebesgue dominated convergence theorem.

Hence we find in the limit

(4.46) kG(3>'9 {1(0}) =

~ Q, σij(DJτ^(Dhuί)dx - Q (1-QWJ'dx.

Since ζW=(φσίj)(ζεij)/2 and φσfj, ζεij9 Xτ(Ui) e Hl(Q')9 we can apply (2.8) and

obtain
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(4.47) Xτ(ζ W)dx = W(τ v)dS + [ς W(τ v)J dS - ζ W(άiv τ)dx
JQ JSQ -

= W(τ - v) dS - W(άiv τ)dx + (1 - ζ) JF(div τ)dx,
JδQ JQ' JQ'

dQ

Here we used the fact that τ v = 0 on Σ and σ^/vj = σ^v7 = 0 on Σ. Therefore
(4.46) is written in the form

(4.49) /cG(J2>; {Σ(t)}) = JQ(u\ τ) + (l-0{^(divτ)- WJ'}dx.
JQ'

Let us now take a sequence {ζ,-} of functions of C$(R3) such that ζ
a.e. in Q. Replacing £ in (4.49) by £,- and letting y'->oo, we conclude that

This completes the proof of Theorem 4.5 in view of Proposition 3.7.

5. Infinitesimal crack extension

Using Theorem 4.5, we wish to investigate the infinitesimal crack extension
(see Introduction, (Q.2)) for a smooth crack extension. By Λ(Σ\ Π) we denote
the set of all smooth crack extensions which are located on a 2-dimensional
oriented C°°-submanifold Π as in (4.1). Let (x, y)~^expjc(y) denote the expo-
nential map from TΠ into Π (see e.g. Milnor [15]), which has the following

properties :

(5.1) expx(0) = x and JJL expx(ίy)|ί=0 = γ

and the path

is the geodesic on Π starting from x in the y direction for xeΠ° for someg'>0.
By ζ(x) E TXΠ, x e dΣ9 we denote the unit outward normal to dΣ at x relative to Π.

LEMMA 5.1 (see [15]). There exists a positive number q0 and an open

neighborhood V of dΣ in Π such that the map (x, i)->e\px(tζ(x)) is a diffeo-
morphism from dΣx( — q0, q0) onto V. Moreover we have
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V Π Σ = {exP;c(ίC(x)); xedΣ, -

Expx (rv(x» = x + tv(x) for x e V,

where v is the outward normal to 77 which is determined by the orientations of
77 and R3. Hereafter we denote expx(tζ(x)) and Expy(tv(y)) simply by exp(x, t)
and Exp(y,t), respectively. A result analogous to Lemma 5.1 holds for the

map (x, t)^>Exp(x, f) from dΣx( — ql9 q±) into R3 with some <h>0. Thus we
can derive the following

LEMMA 5.2. There exist a positive number q and an open neighborhood U

of dΣ in R2 such that (I/, p) is a product neighborhood of dΣ (see Lemma 4.2),
where

p(ξ, η, λ) = Exp (exp (ξ, qη), qλ) for (ξ, η, λ) e dΣ x I2.

If {Σ(t)} e Λ(Σ\ 77), then there exists a family {φί}ίe[0,i] of smooth maps from
dΣ into 77, which satisfy (4.3).

LEMMA 5.3. Let {/ιf}fe[o,ίo] be the family of smooth functions on dΣ which
is defined as in the proof of Lemma 4.3 in terms of {0f}ίe[o,i] and the product
neighborhood (U, p) given in Lemma 5.2. Then

(5.2) 1
ί=0

_
dt

φt(x) , ζ(x)
f=0

for all x e dΣ, where < , > denotes the inner product in R3.

PROOF. We denote by pr the projection from dΣ x I2 onto dΣ. Set kt(x) =

pr°p~ίoφt(x) for x e dl1. Since fer(x) e dΣ and fc0(x) = x for all x e 31",

r* = ~Λ(x)l,=o

By (4.10) we may rewrite φt(x) as

Using the fact that /z0(χ) = 0 for all x e dΣ, we then have by (5.1)

d * ,^ / d , / λ \ d

Since rx e Tx(dΣ), we then have



Generalized /-integral and three dimensional fracture mechanics I

= « (4- A.O\ at

49

This completes the proof of Lemma 5.3.

Furthermore we have

LEMMA 5.4.

(5.3) lim,_0 f

where dΰ is the line element on dΣ.

PROOF. Let Θ be a positive number such that

3Γ(0 c U if 0 ̂  ί ̂

We set

> ζ ( ξ ) d £ ( ξ ) ,
/

Let {(Vi9 αi)}ί=ι,2,...,m be a l°cal coordinate system on dΣ, L^—J^x!2 and {yj
a partition of unity subordinate to the covering (p(Ui)} of K. To simplify the
notation, we put

), ^/, 0),

y. = y.0p. and Φ(x]

Then we have (cf. Cesari [3])

\Σ(t)-Σ\ = ΣT=ι

Here

ί=0

ί(ω, if) -

where p?(ω, ^/) are the components of p^ω, η). For each ί, we consider the
function

Cphti(ω)
9ti(ώ) = \

Jo

with the parameter ί. We then have

, ιy)J|(ω, ιy)dιy

= q - hti (ω)
ί=o

, 0)J,(ω, 0) .
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Hence using the Lebesgue dominated convergence theorem and Lemma 5.3, we
deduce that

~ Σ\ = ΣΓ=ι 7i(ω, OXΦίαfKώ)), CίαΓKω)))^, 0)A».

From (5.1) it follows that

so that we obtain

•/?(*, 0) = Σί-i {-^Γ^Cω, 0)|2.

Hence

( /«)dί(ξ) = ΣΓ=ι ί ?M OVίαΓKωWJ^ω, 0)dω
Jai J^i

holds for any function / defined on dΣ (see [3]). This completes the proof of
Lemma 5.4.

We can now assert the following theorem as a consequence of Theorem 4.5,
Lemma 5.3 and Lemma 5.4.

THEOREM 5.5. For each (&, {Σ(t)}) e [L2(Ω) x L2^)] x Λ(Σ; 77),

(5.4) G(3> {Σ(0}) = {J ̂  5 {Γ(ί)} (ξ)d£(ξ) }"' J(T(^f), τ) ,

vv/ierβ

(5.5)

(5.6) τ(x) = 5{Γ(ί)} (ίW) — -

i/ {Γ(0} is given as in Definition 4.1.

REMARK 5.6. From Lemma 5.3, the quantity δ{Σ(t)} is independent of the
choice of the representation {φt} of the smooth crack extension (Σ(t)}.
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