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§ 1. Introduction

In [7], Kaplansky introduced the notion of the radical for a field F as the
subgroup R(F) = {aeF; DF<1, -a}=F} of the multiplicative group F=F-{0}9

where DF<1, — a} is the subgroup of all elements of F which are represented by
a 1-fold Pfister form <1, — a}. An interesting result concerning the radical R(F)
was given in [2] as follows: Let (p = (al9..., «„>, n^2, be a quadratic form over
a field F and let r l v . . , rn be elements of R{F), Then DF((p) = DF(ria1,..., rnany.
This fact suggests us that the radical would play a role of the group F2 to some
extent.

On the other hand, in case when K is a quadratic extension field of F9 Hilbert
Theorem 90 says that AT-1(F2) = F -K2

9 where N: X->F is the norm map. Re-
placing groups of squares F2 and K2 by radicals R(F) and R(K)9 we can set up a
conjecture: N-1(R(F)) = F-R(K). This conjecture is valid if F is a pre-Hilbert
field and \F/R(F)\<oo ([5]). In case when \F/R(F)\ = co9 we shall introduce
topologies on the groups F/F2, K/K2 so that the norm map N: F/F2->KIK2 is
continuous and R(F) is closed. Therefore the conjecture, which we call 'if-
conjecture\ must be of the form: N~1(R(F)) = (F• R(K))~, where the bar means
the topological closure of F • R(K). In case when F/R(F) is finite, the topology
can be neglected.

The main purpose of this paper is to show that if F is a pre-Hilbert field and
K = F(y/f)9 a£R(F), then iV1(^(F)) = (F -R(K))-.

In the forthcoming paper, part II, we shall discuss the case of a quadratic
extension K = F(yJa), aeR{F)9 where F is not necessarily assumed to be a pre-
Hilbert field.

§ 2. Definitions and preliminaries

In this section, we set up the definitions and notations to be used in this paper,
and state some basic facts about quadratic forms.

By a field F, we shall always mean a field of characteristic different from two.
Let F denote the multiplicative group of F. Diagonalized quadratic forms over
F are denoted by (pF = <x l5..., xn}9 and we define DF((p) = {a eF \ cpF represents a}.
If DF((p) = F9 cp is called universal. To simplify the notation, we denote DF((xl9
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. . . , x n » by DF(xl9...,xny. A subgroup of central importance throughout will
be the radical R(F) = {xeF\DF(l, - x > = F}. Another formulation is R(F) =
r\xep^F^9 ~~*)• The fields with a unique nonsplit quaternion algebra were
called pre-Hilbert fields by L. Berman [1], instead of generalized Hilbert fields.
We also use the term pre-Hilbert.

The following propositions are stated in [2], [3] respectively.

PROPOSITION 2.1. Let cp be a quadratic form over afield F with diagonali-
zation {al,...9 «„>, n^2. And let r l5..., rneR(F). Then D((p) = {r1a1,...9 rnany.

PROPOSITION 2.2. Let F be a pre-Hilbert field. For a9 b e F,

DF(1, -a} = DF(19 -b} if and only if abeR{F).

REMARK. The if part is valid for any field from Proposition 2.1.

In [2], Proposition 2.1 is stated under the assumption that F is a non-formally
real field, and in [3] Proposition 2.2 is stated under the assumption that F is a
non-formally real field with |F/F2 |<oo. However, Proposition 2.1 is valid for
any field, and Proposition 2.2 is valid for any pre-Hilbert field.

PROPOSITION 2.3. Afield F is a pre-Hilbert field if and only if DF<1, — 6>
has index 1 or 2for every beF and has 2for at least one bet.

The if part of this well known result was first observed by Kaplansky [7].
The following three lemmas will be used frequently in this paper.

LEMMA 2.4 ([4], Lemma in § 2). Let F be a field. Then for any a, beF,

DF(U -ay n DF<I, - J > C B F < I , -aby.

LEMMA 2.5 ([1], Lemma 3.5). Let F be a field, and K = F(Ja), aeF-F2.
IfxeF, then

DK<\, - x > n F = Z)F<1, -x>-D F <l , -axy.

LEMMA 2.6 ([6], Norm Principle 2.13). Let cp be a form over F, and K =
F(^/a)9 aeF — F2. Let N = NKjF denote the norm map from K to F9 and xeK.
Then, N(x) e DF(cp) • DF(cp) if and only ifxeF- DK(<p).

In particular, if cp is a 1-fold Pfister form <1, — b>, DF{cp) is a subgroup of F.
Then Norm Principle says that N(x) e Z)F<1, — by if and only if x e F • DK(\, — by,
i.e. N-i(DF(l, - b » = F./>x<l, -by.

Let A be a set. Then we denote the cardinality of A by \A\. Let Ah iel,
be a family of subsets in A. We say that the intersection r\ieT At, is irredundant if
Ai^C\j^iAj for every i eI. Let G be a group and A be a subset of G. Then we
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denote by (A} the subgroup of G generated by the set A.

§3. Properties of a pre-Hilbert field

In this section, we investigate some characterizations and properties of a
pre-Hilbert field.

LEMMA 3.1. Let V be an n-dimensional vector space over Z2=Z/2Z.
Then the number of (n — l)-dimensional subspaces of Vis 2n — 1.

The proof is elementary and omitted.

DEFINITION 3.2. We put UF = F/R(F). A subgroup A of UF is called a
P-group if there exists an aeF~R(F) such that A = DF(1, -ay/R(F).

PROPOSITION 3.3. Let F be afield with dimZ2 UF = n< ao. Then the follow-
ing statements are equivalent:

(1) F is a pre-Hilbert field.
(2) n^l and any (n— l)-dimensional subspace of UF is a P-group.

PROOF. (1)=>(2): Let L be the set of P-groups in UF, and let / b e the map

from F-R(F) to L, defined by f(a) = DF(l, -a}IR(F). Then, using Propo-
sition 2.2, we have the induced map/from the set UF — {1} to L; namely,/(fl) =
/(a) , where a means a mod R(F). The m a p / i s injective. The surjectivity of/
is clear, and so |L|=2W —1. Now Lemma 3.1 and Proposition 2.3 show that
any (n — l)-dimensional subspace of UF is a P-groups.

(2)=>(1): In this case, / is well-defined and surjective from Remark of
Proposition 2.2. So | L | ^ 2 W - 1 . The statement (2) and Lemma 3.1 imply that
any P-group has index 2 in UF. Now apply Proposition 2.3. q. e. d.

In order to analyse some conditions which characterize a pre-Hilbert field F
with \UF\< oo, we need some lemmas on a vector space over Z2 .

LEMMA 3.4. Let V be a vector space over Z2, and Wt (i = l,..., i) be sub-
spaces of index 2 in V. If n ^ ^ , ^ is irredundant, then Vj n Wt is a t-dimen-
sional vector space.

PROOF. We use induction on t. By the induction hypothesis, we can see
that Vlr\1^i^t-1Wh is (t— l)-dimensional. Since ^ $ r \ i g ^ t - i ^ , we have
Wt + n^i^-iW^V. So VIWt^r\1£i£t-1WJr\1zjztWj is a 1-dimensional
vector space. q. e. d.

LEMMA 3.5. Let V be an n-dimensional vector space over Z2, and Wt

(i = l,..., t) be subspaces of V such that for any j = 2,...91, A i i , ^ -
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If dim V/W^l, then t<n.

LEMMA 3.6. Let V be a vector space over Z2, and Wt (7 = 1,..., t) be sub-
spaces of V such that A i ^ ^ J ^ is irredundant. If dim V/r^i^^t W~t9 then
for any i, dim

The proofs of these two lemmas are easy and omitted.

From now on, for a subset B of F, P\heBDF(\, —b} will be sometimes
denoted by IF(B), or simply by I(B) if there is no fear of confusion. For a subset
C of UF, we also write I(C) = IF(C) = r\deDDF(l, - d> where D is the inverse
image of C by the canonical homomorphism (p: F-*UF = F/R(F). If C = {x},
I(x) stands for I({x}). By Remark of Proposition 2.2, for any a e (p~\x), I(x) =

DF<U -a}.

PROPOSITION 3.7. For any field F and xe UF, B^UF9 the following state-
ments hold:

(1) Ifxe <E>, then I(x) => I(B).
(2) •// <B> = £7, rt«i I(B) = R(F).
(3) If r\xeBI(x) is irredundant, then B is linearly independent in UF.

PROOF. (1) Since xe<5) , there exist y1,..., yneB such that x = y^^ yn.
Then by Lemma 2.4,1(x)^n^^n I(yt) 2/(#).

(2) Using (1), we have I(B) = I(UF) = R(F).
(3) If B is linearly dependent, then there exist x, yu..., yneB such that x =

yx yn and x^y{ for any i. The assertion (1) implies that / ( x ) 2 A i ^ g n / ( ^ )
which contradicts the assumption of (3). q. e. d.

We now consider the following three conditions which are the converse of the
statements (1), (2) and (3) in Proposition 3.7.

04-1) / / I(x) => I(B), then x e ( B ) .
04-2) / / I(B) = R(F), then <£> = U.
04-3) If B is linearly independent in UF, then r\xeBI(x) is irredundant.

PROPOSITION 3.8. Let F be a pre-Hilbert field, and B be a finite subset of
UF. Then for xeU9 (A-l) holds.

PROOF. There exists a subset B'^B such that I(B) = I{B') = r\yeBI(y) is
irredundant. Let B' = {yu..., yn}. By (3) of Proposition 3.7, {yj,...,^} is
linearly independent. Since Ujl(yi) is a 1-dimensional vector space, it follows
from Lemma 3.4 that U/r\yeB> I(y) is an n-dimensional vector space. Let K be
the set of P-groups I(x), xe<jB'>. Let L be the set of P-groups which contain
I(.B)9 and M be the set of subspaces of index 2, containing I(B), in U. Then

The first inclusion is clear and the second one follows from Pxopo-
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sition2.3. Using Proposition 2.2, we see that \K\=2n-l and | M | = 2 W - 1 ,
because UF/I(B) is an n-dimensional vector space by Lemma 3.4. Hence K = L
and the proof is completed. q. e. d.

COROLLARY 3.9. Let F be a pre-Hilbert field with \UF\<co. Then the
following statements are satisfied.

(1) For any xeU and any B^U, (A-l) holds.
(2) For any B^U, (A-2) holds.
(3) For any B^U, (A-3) holds.

PROOF. The assertion (1) follows immediately from Proposition 3.8. More-
over we can readily see that (1) implies (2) and that (1) implies (3). q.e.d.

Conversely, if \UF\<oo, then the statements (1), (2) and (3) of Corollary 3.9
characterize a pre-Hilbert field.

PROPOSITION 3.10. Let F be a field with l # | l / F | < o o . / / any one of the
statements in Corollary 3.9 holds, then F is a pre-Hilbert field.

PROOF. It is enough to show that (2) or (3) characterizes F being a pre-
Hilbert field.

(2): For B^UF, I(B) = R(F) implies <£> = £/. Suppose F is not a pre-
Hilbert field. Then we can find a^eU such that dim (7/<a1>^2. We can con-
struct a sequence {al9 a 2 , . . . , a j inductively, such that I(au..., aj)^I(aj+i) for
any 7 = 1,..., f—1, and I(al9..., at) = R(F). By Lemma 3.5, t<dimU. Hence
<a!,..., aty 7̂  U. But this contradicts the hypothesis of (2).

(3): For B^U, if B is linearly independent, then r\xeBI(x) is irredundant.
Let {aj,..., at} be a free base of U over Z 2 ; then by (3), n i ^ ^ / ( f l j ) is irredundant.
Since dim t / / / (a f)^l for any f, dim Vjr\i^i^tI{a^'^.ti and hence is equal to t.
By Lemma 3.6, dim l///(af) = 1 for any i. Now any non-unit element can be
chosen as a member of a free base, and therefore for any x e U9 dim UII(x)^l.
Apply Proposition 2.3. q.e.d.

We end this section with the following proposition.

PROPOSITION 3.11. Let F be a pre-Hilbert field, and B be a subspace of U
such that dim (7/5 = 1. If B contains a finite intersection of F-groups, then B
is a P-group.

PROOF. We can assume that B contains an irredundant intersection
r\i^isnKai)' Then {alv...,an} is linearly independent in U. By Proposition
2.2, the number of P-groups which contain r \ 1 ^ ^ n / ( a f ) is at least 2"~ 1. Since
any P-group has index 2 in U, Lemma 3.1 yields that B is a P-group. q.e.d.
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§ 4. Applications of I(A)

By abuse of notation, we also denote I{A)jR(F) by I(A), where A is a subset
of 17.

LEMMA 4.1. Let F be afield. Let x and y be elements of U. Then, x e I(y)
if and only if yel(x).

PROOF. Let xr and y' be representatives of x and y in F, respectively. Then
xel(y) if and only if ;x;'eDF<l, — / > , a n d similarly, yel(x) if and only if y'e
DF<1, — x'y. The assertion follows immediately from these observations.

q.e.d.

PROPOSITION 4.2. Let F be afield. For a subset A of U, we have

I(A) = {x e UIA c J(x)} .

PROOF. The assertion x e I(A) is equivalent to saying that x e I(a) for every
a e A, and the latter statement is equivalent to the fact aeI(x) for every aeA
by Lemma 4.1. This observation implies that xeI(A) if and only if A^I(x).

q.e.d.

For a subset A of U, we put E(A)=I(I(A)).

PROPOSITION 4.3. Let F be afield. Then for subsets A, B^U, the following
statements hold:

(1) IfA^B, then E(A) c= E(B).
(2) Ac:E(A).
(3) E(E(A)) = E(A).

PROOF. Suppose that xeE(A). Then, by Proposition 4.2, we have
I(x), and therefore I(B)^I(x). Again by Proposition 4.2, we see that xeE(B).
Thus the assertion (1) is settled.

The assertion (2) follows immediately from the definition.
As for the assertion (3), we first show that I(E(A)) = I(A). In fact, if x e E(A),

then I(A)^I(x) and so I(A)^I(E(A)); conversely, since A^E(A), I(E(A))^I(A).
Suppose now that xeE(E(A)). Then I(E(A))^I(x) and so I(A)^I(x), which
implies that x e E(A). Conversely, if x e E(A), then we can show that x e E(E{A))
similarly. q.e.d.

COROLLARY 4.4. For a subset A of U, E(A) is the intersection of all P-
groups which contain A.

PROOF. From (2) of Proposition 4.3, it is clear that E(A) is an intersection
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of some jP-groups which contain A. So it is enough to show that any P-group
which contains A also contains E(A). If I(x)^A, then xeI(A)=I(E(A)) and
hence I(x) 2 E(A). q. e. d.

PROPOSITION 4.5. Let F be afield. The following statements are equiva-
lent:

(1) For any xeU,E(x) = (x).
(2) If for a, beU, I(a) = I(b)9 then ab = leU. Moreover any two P-

groups are incomparable.

PROOF. (1)=>(2): We assume that I(a) = I(b). Then aeE(b) by Propo-
sition 4.2. So ae<ft>, and so ab — \. We now assume that I(a) and I(b) are
P-groups (i.e. a^l, fc^l) and I(a)^I(b). Then we have b — a by the fact b e
£(a) = <a>. But this contradicts the assumption I(a)^I(b).

The implication: (2)=>(1) is similar and the proof is omitted. q. e. d.

COROLLARY 4.6. Let F be a pre-Hilbert field. Then for any xeU, £(x) =
<x>.

PROOF. It follows from Proposition 2.3 that F satisfies the statement (2) in
Proposition 4.5. q.e.d.

Let F be a field, and K = F(yJa~)9 aeF-F2. Then there is an interesting
characterization of R(K) n F.

PROPOSITION 4.7. Let F be a field and K=F(ja\ aeF-F2. For beF,
the following statements are equivalent:

(1) beR(K).
(2) IF(b) 3 IF(a) and IF(b) • IF{ab) = F.

PROOF. (1)=>(2): By Lemma 2.6 (Norm Principle), N(DK(1, - b » £
DF<1, -b}. Let b be an element of R(K). Then DK<1, -b) = K. Hence,
DF<1, _fl> = jV(K) = JV(DK<l, -fo»<=£F<l, -b}, hence JF(fc) =>/F(a). By Lem-
ma 2.5, DF<1, -by-DF(l, -aby=DK(l, -bynf = F,i.e.IF(b)-IF(ab) = F.

(2)=>(1): We must show that DK<\, - by is universal. The fact IF(b) • IF(ab)
= F shows that DK<1, - f c ) 2 F . Hence DK(19 - fc>=F-D x <l , -by. By the
corollary to Lemma 2.6, N-X(DF(19 - b » = F-i)K<l, - b > . The another as-
sumption IF(b)^IF(a) shows that N(K)c/)F<l , -fo>. So X = iV-1(I>F<l, ~ b »
= F-DX<1, -by = DK(U -by. q.e.d.

COROLLARY 4.8. Let F be a field and K=F(^)9 aeF-F2. Let a be the
image of a in U. If E(a) = <a>, then R(K) f» F = <#(F), a>.

PROOF. The fact that N-^D^l, -by) = F-DK(l, -by implies R(F)<=:
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R(K). Thus it is obvious that R(K) n F 2 <£(F), a}. Conversely, it follows from
Proposition 4.7 that IF(a)^IF(b) for any beR(K)0F. Let b be the canonical
image of b in U. Then 5 eI(I(a)) = E(a) = (a}. Hence 5 = 1 or 5; hence R(K)

)9 a}. q.e.d.

LEMMA. Let V be a finite dimensional vector space over Z2 . Then any
subspace of V can be expressed as a finite intersection fl Wt of subspaces of Wt's
such that dim V/W—l for any i.

The proof of this lemma is easy and omitted.

PROPOSITION 4.9. Let F be a pre-Hilbert field, and X be a subspace of UF

containing a finite intersection of F'-groups. Then E(X) = X.

PROOF. By Proposition 3.11, any subspace of index 2 in UF, which contains
a finite intersection of P-groups, is a P-group. By the above lemma, X can be
expressed as an intersection of P-groups. Apply Corollary 4.4. q. e. d.

§ 5. The relation between UF and UK

Throughout this section, we let F be a field, and X = F( x /a) be a quadratic
extension of F.

LEMMA 5.1. N-\R(F))^f'R(K)'

PROOF. From Norm Principle, N-x(DF(l, -by) = F>DK(l, -by for any
beF. Let / a be an element of F • R(K), where fe F and a e R(K). Since foe e
F-DK(\, -b} for any beF, N(f<x)eDF(l, -by for any beF. Hence N(foc)
eR(F). q.e.d.

LEMMA 5.2 ([2], Corollary to Proposition 3). R(K) n F ^ (R(F)9 ay.

By Hilbert Theorem 90, there is an exact sequence (A);

(A) 1 > FKF2, ay -L> K/K2 -*U F/F2.

From (A), we get a sequence (B);

(B) 1 —> UFKa> -L> Uk^-+ UF

where, x (resp. y) being a representative of 3c in F/<F2, a> (resp. y in K/K2),
s(x) = e(x) mod R(K) and N(y) = N(y) modjR(F). Here note that e and iV are
well-defined by Lemma 5.1 and Lemma 5.2.

PROPOSITION 5.3. The following statements hold:
(1) (B) is exact at UFKay if and only if R(K) 0 F = (R(F), ay.
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(2) (B) is exact at UK if and only if N-^RiF)) = F • R(K).

PROOF. We consider the following commutative diagram, where e and N
are the restriction maps of e and N respectively. It is clear that the sequences (2),
(4), (5) and (6) are exact.

1 1 1

1 _ > <a, R(F)>l<a> - ^ R(K)-*L R(F) (1)
4 4 „ 4

1 > F/<a, F2>——>K/K2 JL> FjF2 (2) = (A)
4 4 ^ 4

1 > UFKa> e- > UK ^L_+ uF (3) = (B)
4 4 4
1 l l

(4) (5) (6)

Then, (B) is exact at L/F/<a><^>8 is injection

oR(K) n

(o( l ) is exact at R(K)).

(B) is exact at UKoN'i(R(F)) = {R(K)i F/<a, F2»oAT-1(^(i7)) = F-i?(X) (<>N
is onto). q.e.d.

COROLLARY 5.4. Let F be a pre-Hilbert field. Then e is an injection.

PROOF. The assertion follows immediately from Corollary 4.6, Corollary
4.8 and Proposition 5.3. q. e. d.

Let K = F(yJJ), aef-F2, be a quadratic extension of F. We say that K
is a radical extension if a e R(F), and a non-radical extension otherwise.

COROLLARY 5.5. Let K be a radical extension of F. Suppose that dim UF

= n<oo. Then, N~1(R(F)) = F >D(K) if and only if dim UK = 2n.

PROOF. By Proposition 5.3, it is enough to show that R(K) nF=R(F).
By Lemma 2.5, DX<1, — x} n F = DF<l, —x> for any xeF9 and the assertion
follows from Lemma 5.2. q. e. d.

COROLLARY 5.6. / / dim UF/IF(a) = 1 (K must be a non-radical extension)
and diml/F = n<oo, then AT-1(K(F)) = F-JD(X) if and only if dim l/K = 2(n- l ) .

PROOF. It is easy to show that £ « a » = <a>, where <a> is considered as a
subgroup of UF. Hence e is injective, and the assertion is obvious. q.e.d.
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§6. i/-conjecture when \UF\<oo

Throughout this section we assume that F is.a pre-Hilbert field and K =
) is a non-radical quadratic extension, i.e. a£R(F), unless otherwise stated.

We need several results in [5], and so we borrow them here. We shall give a
proof of one of them, Proposition 6.5, which is based on a different idea from that
in [5], as a preliminary step to § 7, the main part of this paper.

LEMMA 6.1 ([5], Proposition 2.6). For x eK-N^WF)), we have F• DX<1,

Lemma 6.1 does not need the assumption that a

LEMMA 6.2 ([5], Corollary 3.4). / / xeK, then F n DK(1, -x} = DF(l,

LEMMA 6.3. For xeN^RiF)), we have DK{\, -xy^N-

Lemma 6.3 is given in the proof of [5], Proposition 3.7, by using a transfer
method.

LEMMA 6.4 ([5], Theorem 3.8). If F is non-formally real, then K is a pre-
Hilbert field.

PROPOSITION 6.5 ([5], Proposition 3.9). / / \UF\<oo, then N"1(JR(F)) =

F-R(K).

PROOF. By Lemma 5.1, N-1(R(F))^F'R(K). Conversely we take an
element x e N - ^ F ) ) - # ( £ ) . Then by Lemma 6.3 and Lemma 6.4, iV(Dx<l,
-x})/R(F) has index 2 in N(K)/R(F) = IF(a). By Proposition 4.9 and Corollary
4.4, N(DK(1, -x})IR(F) = IF(a)nIF(b) for some bsF-{a9 R(F)}. Then DK(1,
~x> = iV-1(DF<l» ~b}) = DK{\, -by, and hence bxeD(K) by Proposition 2.2.

q.e.d.

The following Lemma 6.6 is valid for any field F and any quadratic extension
K.

LEMMA 6.6. N-1(R(F)) = nbeFF-IK(b).

PROOF. Let x be an element of K. Then x e N-^RiF)) if and only if N(x) e
IF(b) for any bet, and the latter statement is equivalent to the fact that x e F • IK(b)
for any bet (Norm Principle). q.e.d.

In particular, by Lemma 6.2, IK(b)^F for any beF; therefore N-
= r\beFlK(b).
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We can generalize Proposition 6.5 as follows.

LEMMA. Let V and V be vector spaces over Z2 , and f: V-+V be a linear
map. Let Wh i= l , . . . , n, be subspaces of Vsuch that dim V/W—l for any i and
K e r / c n Wt. If fl Wt and n f(Wt) are both irredundant, thenf( 0 Wt)= fl f(Wt).

PROOF. It is clear tha t / ( n WJ)£ fl f(Wt). It follows from Lemma 3.4 that
dim VI n ^ = n. So dim/(F) / / ( (]Wt) = n by the assumption that K e r / c n W{.
Since d i m / ( F ) / / ( ^ ) = l for any i, dim f(V)l n /(FFf) = n, again by Lemma 3.4.
This implies that / ( n W0 = n /(*F,). q. e. d.

PROPOSITION 6.7. Suppose that, for any xeN~1(R(F)), there exists a finite
subset B off such that IK(x)=>IK(B). Then N~1(R(F)) = F -D(K).

PROOF. We may assume that lK(E) = r\y£BIK(y) is irredundant. Then B is
linearly independent in UK by Proposition 3.7 (2). Hence B is linearly inde-
pendent in UF/(a, R(F)}. By Proposition 3.8, for a finite subset B^UF, (A-3)
holds. This shows that r\yeB IF(y) fl IF(a) is irredundant, because B[){a} is
linearly independent in UF. On the other hand, N(IK(y))=IF(y) fl IF(a) for any
yet by Norm Principle. Then the above lemma says that N(IK(B)) = IF(B) fl
IF(a). Hence N(DK(1, -x})=>IF(B) fl IF(a), and by Proposition 4.9, £(N(DX<1,
-x})IR(F)) = N(DK(l, -x})IR(F). By Corollary 4.4, there exists bet-(a9

R(F)} such that N(DK(1, -x»/R(F) = IF(a) n JF(fo). Then DK<1, - x > =
N~1(DF{1, — 2>» = DX<1, — fe>, which implies that bxeR(K) by Proposition 2.2.

q.e.d.

§ 7. Topologies on f/ induced by P-groups

In what follows, we let K be a non-radical quadratic extension of a pre-

Hilbert field F, namely K = F{ysj'a~) with a£R(F).
Let G be an abelian group and {PJ t e / be a non-empty family of subgroups

of G. Let {Rj}jej be the set of all finite intersections of P,.'s. We first state the
following two propositions based on the theory of topological groups.

PROPOSITION 7.1. There exists a unique topology S of G so that G becomes
a topological group under S and {Rj}jej is a complete neighbourhood system of
the unity of G.

PROPOSITION 7.2. Let M be a subset of G. Then we have M={xeG\
xRj fl M^(j) for any j eJ}, where the bar means the topological closure.

DEFINITION 7.3. We consider the following three kind of topologies Sl9 S2

and S3 on K:
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(1) Sl is defined by {Pt} = {IK(x)\xeK}.
(2) S2 is defined by {Pf} = {IK(x) \ x e N-*(R(F))}.
(3) S3 is defined by {Pt} = {IK(x)\xeF}.

PROPOSITION 7.4. The following statements are equivalent:
(1) N~\R(F)) = F-R(K).
(2) The topology S2 coincides with the topology S3.

PROOF. We first assume the equality (1). Since /K(X)=/K(XJ;) for any
x e i t a n d any y eR(F), we have {IK(x)\xeAT^(F))} = {/XW|xeF}.

Conversely, suppose that the assertion (2) holds. Then, for any xe
N-X(R(F))9 we can find a finite subset B of F such that IK(x)^IK(B). Apply
Proposition 6.7. q. e. d.

LEMMA 7.5. Let G be an abelian group with the unity e. Assume that for
any xeG, x2 = e. Let {Pi}ieI be a family of subgroups of G and S be the to-
pology defined by {PJ,e/. Then for a subset M ofG, M= 0 RjM. In particular
{e} = r\ieIPi.

The assertion follows immediately from Proposition 7.2.

PROPOSITION 7.6. If F is not formally real, then the topologies Sx and S2

are different to each other.

PROOF. Suppose, on the contrary, that the topologies St and S2 coincide.
Then for any x eK-N-^RiF)), we have IK(x)^IK(B) for some finite subset B of
N-^RiF)). Since K is a pre-Hilbert field by Lemma 6.4, it follows from Propo-
sition 3.8 that x e <£, R(K)} cN-^RiF)). This is a contradiction. q. e. d.

We define the topology on F by {Pl} = {/F(x)|xeF}. By Lemma 7.5, we
see that R(F)= n Pf = {e} is a closed subgroup.

LEMMA 7.7. For any topology Sh l ^ i ^ 3 , on K, the norm map N: K-+F
is continuous.

PROOF. We have only to show that N is continuous at the unity 1 of K.
Let V be a neighbourhood of the unity 1 of F9 namely V= r\xeB IF(X) f° r some
finite subset B of F. Since N(IK(x)) s IF(X) by Norm Principle ([8], VII, Theorem
4.3), we see that N(IK(B))^IF(B)=V. We can readily see that IK(B) is a neigh-
bourhood of 1 6 K for any topology St. Thus the assertion is settled. q. e. d.

In order to prove our main theorem (Theorem 7.9), we need the following

LEMMA 7.8. Let V be a vector space over Z2 , and Wi(i = l9...9n) be sub-
spaces of V such that dimF/PT f=l for any i. Suppose that r\\^i^nWi is ir-
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redundant and let I be a subset o/{l,..., n}. Then we can find an element xofV
so that xe Wifor iel and x<£Wj

PROOF. We see that | F / n ^ ^ n Wt\ =2n by Lemma 3.4. Let L be the set of
all subsets of {1,..., n). We define a map cp: V\ n Wt->L by (p(x) = {i\xe FTJ,
where x is a representative of x in V. We can readily see that the following two
statements concerning elements x and y of V are equivalent: (1) x + ye fl Wi9

(2) For any f, x e FFJ if and only if y e FFJ. This equivalence implies that cp is well-
defined and that (p is injective. Since \V\ n FF̂ | = |Z-| =2", (p is surjective. Thus
the proof is completed.

THEOREM 7.9. Let K be a non-radical quadratic extension of a pre-Hilbert
field F. Then we have N~1(R(F)) = (F • R(K))'9 where the bar means the topo-
logical closure with respect to the topology St.

PROOF. Since N'^RiF)) 3 F • R(K), R(F) is closed in F and N is continuous,
it is clear that N " 1 ^ ^ ) ) ^ ^ -R(K))'. Conversely, we take an element a of
iV~1(i?(F)). By virtue of Lemma 7.5, we have to show that for any finite subset
XofK9aeIK(X)>F.

Step 1. First we show that we may assume X n N"\R(F)) = 4>. Let X =
X1 u X2 be the partition of X such that Xx n N-1(R(F)) = (I) and X ^ j V " ^ ^ ) ) .
Then, since F^/X(X2) by Lemma 6.2, we see that IK(X) -F = (IK(X1) fl /K(X2)) • F
= /K(Z1)-F fl /K(^2)- Lemma 6.3 implies that N-1(R(F))^IK(X2). Therefore,
to show that a e IK(X) • F, we have only to prove that a e I^X^ - F.

5fep 2. In this step we prove our theorem under the additional assumption
that IF(N(X)) = r\xeXDF^l, —N(x)} is irredundant. What we have to do is to
find an element fe F such that fee e IK(x) for any xeX. Note first that IK(x) n F
= IF(N(x)) by Lemma 6.2 and IK(x) has index 2 in K by Lemma 6.4 for any xeX.
It follows from these observations that, x being an element of X, if a e /K(x), then
/ a e IK(x) for any/e IF(N(x)) and if cc^IK(x), then/a e /K(x) for any f^IF(N(x)).
Therefore it is sufficient to show that there exists feF such that for any xeX,
a e IK(x) if and only if fe IF(N(x)). Let / be the subset of X such that / = {x e X |
a e IK(x)}. Apply now Lemma 7.8.

Step 3. Finally we consider the general case. Let Y be a subset of X such
that IF(N(x)) = r\yeYlF(N(y)) is irredundant. Then, by Step 2, we can find an
element fe F such that / a e /^(T)- We then show that fa e IK(x) for any xeX.
It follows from Proposition 3.8 that N(x) e (N(Y), R(F)} because of the fact
IF(N(x))=> OIF(N(Y)). Therefore x = g-y1 yn9 where geN-\R(F)) and
yl9...9 y»eY. Then,/a is an element of IK(g) D ( n i ^ n i K ( y i ) ) , which is contained
in IK(x) by Lemma 2.4. Thus we see t h a t / a e JX(X) and the proof is completed.
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