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Introduction

Throughout this paper let K denote a field of characteristic zero and JJ(M)
the enveloping algebra of a Lie algebra M over K. Now let G be a Lie algebra
over K. Let H be a subalgebra of G and W be an if-module. Regarding U(G)
as a right l/(H)-module, we can form the left G-module U(G)®U{H) W. This
module is called the G-module induced by Wand discussed in [1, pp. 169-189].

In this paper we generalize the construction of the induced G-module to
define the generally induced G-module by taking a subalgebra R of U(G)
instead of taking a subalgebra of G. We mainly investigate the generally induced
G-module in the case that U(G) has a good basis, namely a regular basis, as a
right i^-module.

For u G U(G) we say that u is permutable with R if Ru = uR. Then we have
an automorphism p(u) of R such that ru = up(u)(r) for any reR. We call it
the permuting map of R associated with u. The permuting map will play an
important role to investigate the generally induced module.

In § 3 we give several conditions under which every K-endomorphism of an
irreducible .R-module W is algebraic over K. Such conditions enable us to have
a central character of the i^-module W when K is algebraically closed. We then
give criteria of the homogeneity of an K-submodule of U(G)(g)R W by using the
central character and the permuting map of R given in § 2.

In §4 we discuss the structure and the classification of R[ux, wj®* W in the
case that uxuxeR, where uk and ux belong to a regular basis of U(G), uk^\ and

In § 5 and § 6 we apply the results given in §§ 1-4 to the case that G is s/(2, K)
or the Heisenberg algebra. Generally induced modules given in these sections
cannot be constructed as any modules induced by modules over their proper
subalgebras.

§ 1. Definition of generally induced modules

DEFINITION. Let G be a Lie algebra over K and R b e a subalgebra of (7(G).
For an i^-module JFwe can form the left G-module

U(G) ®R W9
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regarding U(G) as a right .R-module. We shall term it the G-module induced
by the R-module W. We shall also call such a G-module a generally induced
G-module.

If R = U(H) for some subalgebra H of G, the G-modules induced by R-
modules coincide with the G-modules induced by if-modules.

EXAMPLE. Let G = <#> be a one-dimensional Lie algebra over K. Take
the subalgebra R of U(G) generated by g2. Let W=Kw be an .R-module with
the action of R on W defined by g2w = 0 and lw = w. Since {1, g} is a basis
for a right .R-module t/(G), the generally induced G-module V is K(l(x)w) +
K(g®w). Therefore Fis two-dimensional. On the other hand let H be a proper
subalgebra of G and W1 be a non-trivial L/(JT)-module. Since H = 0, the induced
module U(G)®K Wx is infinite-dimensional. Hence V cannot be any G-module
induced by a module over a proper subalgebra of G.

§ 2. Pre-regular bases and regular bases

Let G be a Lie algebra over K and i ^bea subalgebra of U(G). If Ru = uR
for w e C/(G), we say that u is permutable with # . We assume that u is permutable
with R. Since l/(G) is integral, for any r e R there exists a unique element r' eR
such that ru = ur'. Therefore we have a map p(u) of .R into itself such that ru =
up(u)(r) for any reR. We call p(u) the permuting map of R associated with w.
p(u) is obviously an automorphism of R. Now we state the following

DEFINITION. Let G be a Lie algebra over K and R be a subalgebra of U(G).
U(G) is said to have a pre-regular basis as a right R-module if £/(G) has a basis
including 1 as a right i^-module such that every member of the basis is permutable
with R. U(G) is said to have a regular basis as a right R-module if U(G) has a
pre-regular basis as a right .R-module such that all permuting maps of R associated
with members of the basis are distinct each other.

EXAMPLE 1. Let G be a Lie algebra over K with a basis {x, y} and with
multiplication [x,y] = y. Let R = K\x], Then JR=L/«x» and U(G) has a
basis {1, y, j 2 , . . .} as a right ^-module. Since xiyJ = yJ'(x+j)i, every member
of this basis is permutable with R. Furthermore since p(yj)(x) = x+j9 p{yj)¥"
p(yl) for i # j . Therefore t/(G) has a regular basis {1, y, y2,...} as a right R-
module.

EXAMPLE 2. Let G be as above. Let R = K[xy, x] . Let w be a non-zero
element of l/(G) and we write w = X?=o/iW) ; i where / ( (x)eX[x] . We claim
that wreK for some non-zero element r of R. If n = 0, our assertion is obvious.
If n ̂  1, by using the formula
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ym(x 4- !)• • -(x + m) = (xy)m

we have

This claim shows that 1 is linearly dependent on any non-zero element of U(G)
over R. Therefore U(G) does not have a pre-regular basis as a right .R-module.

LEMMA 2.1. Let R be a commutative subalgebra of U(G) and ul9...9 un be
non-zero elements of U(G). Assume that each ut is permutable with R. If
^Wj),..., p(un) are distinct, then ul9...,un are linearly independent over R.

PROOF. If n = l, our assertion follows from the fact that U(G) is integral.
Assume true for n and let 2?=i uirt — ̂  f° r some rteR. Since KZ?i i w i r i ) =
(Z^ i 1 utrdp(un+1)(r) = 09 we have

Z " = i ^ W ^ ) W - K w w + i ) W ) ^ = O for any reR.

By induction hypothesis, (p(wj)(r)-p(Mn+i)(r))ri = O f° r anY ^ei?. Since P(MJ)T^

p(wn+1) for i = l,..., n, we conclude that r1 = --- = rn = 0. Therefore wn+irn + 1=0.
Since t/(G) is integral, we have rn+1=0. Q.E. D.

PROPOSITION 2.2. Let R be a commutative subalgebra of U(G) and let
U(G) have a regular basis {1, uk\XeA) as a right R-module. Assume that
p(uj) has an order q. Then u\ e R.

PROOF. Let wl = Z?=i ux(t)ri + ro where X(i)eA and rteR. Since ru\ =
ulp(ux)

q(r) = uq
xr and ru2 = E?=i WA(oP(MA(o)(r)r* + rro> w e h a v e XwA(o)(r)r/ = rr£

for any re i^ . Observing that p(uHi))^l for z = l,..., n9 we have r1 = --- = rn = 0.
Hence w| = roetf. Q.E.D.

Let us denote KA = ZT=o w i ^ - T n e n w e

COROLLARY 2.3. Under the same assumption as in the previous proposition
we have

PROOF. Since 1, p(wA),..., p{u^)q~l are distinct, {1, MA,..., uf"1} is a linearly
independent set over R by Lemma 2.1. On the other hand since u\eR by
Proposition 2.2, {1, uk9...9 ul'1} generates Rx. Q.E.D.

COROLLARY 2.4. Let R be a commutative subalgebra of U(G) and let U(G)
have a regular basis {1, ux: Xe A}. Let X, TEA with A # T . If{p(ux)

n: n = 0,l,...}
n{p(ux)

n: n = 0, !,...} = {!}, thenRxt\Rx = R.
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PROOF. We prove our assertion in the case that p(ux), p(ux) has an order
n, m respectively. The other cases will be done similarly. Now let £ ?= i ^\ri + ro
= Z7»iM/r}H-ro for some rh r'jeR. Since {p(ux)

n: n = 0, 1,...} n {p(ux)
n: rc = 0,

1,...} = {1}, {1, ux,...iu1~1, ux,...,uz
n~1} is a linearly independent set over R by

Lemma 2.1. Therefore we have r1 = '-' = rn_l = r[ = ~- = r'm-.1=0 and ro = r'o.

Q.E.D.

§ 3. Central characters

LEMMA 3.1. Let R be an algebra over K and Wbe a non-trivial irreducible
R-module. If one of the following conditions is satisfied, every R-endomorphism
of W is algebraic over K.

(1) R has an increasing filtration such that the graded algebra of R
associated with this filtration is finitely generated and commutative.

(2) R is finitely generated and R[_R, R~\RW=0.

PROOF. (1) is Lemma 2.6.4 in [1, p. 87].
(2): Let B = R/R[R, R]R and let x be an £-endomorphism of W. Since

R[R, K]RW=0, we can regard W as a B-module and x as a £-endomorphism.
Since B is finitely generated and commutative, x is algebraic over K by the first
assertion. Q. E. D.

If R satisfies one of the conditions (1) and (2) in Lemma 3.1 and if K is
algebraically closed, then every element of Z(R) acts on W as a scalar where Z(R)
is the center of R. Therefore we have the central character % of R on Was

rw = x(r)w for r e Z(R) and weW.

From now to the end of this paper let K be an algebraically closed field of
characteristic zero. We are now ready to investigate the homogeneity of generally
induced modules.

THEOREM 3.2. Let R be a subalgebra of U(G) and W be a non-trivial ir-
reducible R-module such that the condition (1) or (2) in Lemma 3.1 holds. Let
1 be the central character of R on W. Assume that U(G) has a pre-regular basis
{wA: XG A} as a right R-module. Then

(1) If XP(ux) ̂  XP(uz) on Z(R)for any X, re A with A # T , then every R-sub-
module of U(G)®R W is R-homogeneous.

(2) / / every R-submodule of U(G)®R W is R-homogeneous, then p(ux)=fi
p(ut)for any A, re A with k^x.

PROOF. (1): Let M be a non-trivial jR-submodule of U(G)®R W. Take a
non-zero element v= £?=i WA(O®W* °f M with w^O. We show by induction on
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n that wA(0®w feM for i = l,...,n. If n = l, it is trivial. Let n ^ 2 . Since

n)), there exists an element r0 in Z(£) such that
XP(uMn)) (r0). Then we have

and (xp(um)(ro)-xP(uxil))(ro))uX(n)®wn¥:0. By our induction hypothesis,
uA(/j)®wneM. Therefore I ^ i M ^ S ^ e M . By induction hypothesis again
we have uX{i)®wteM for i = l,..., n —1.

(2): For any A, xeA with l ^ i w e consider an i^-submodule M of l/(G)® R W
generated byi/A®w —wT®w where w is a generator of the i^-module W. Since M
is .R-homogeneous, M = uk®W+ux®W. Therefore there exists an element r in
R such that

r(wA®w — MT®W) = uk ® w.

Hence MA®Jp(wA)(r)vv = MA®w and i/T®p(wT)(r)w = 0. So we have p(ux)(r)w = w
and p(MT)(r)w = 0, which implies our assertion. Q. E. D.

COROLLARY 3.3. Let U(G)9 R9 W, x be as in the previous theorem. If R

is commutative, then the following two statements are equivalent:

(1) XP(ud ^ XPiMr) for any Kit A with I # T.
(2) Every R-submodule of U(G) ®R W is R-homogeneous.

PROOF. Assume (2). For any A, T e A with k # T we consider an R-sub-
module M of U(G)®R Wgenerated byuA®w — ux®w where w is a generator of PF.
Since M is ^-homogeneous, M = uA®Pf+wT®Pf. Therefore there exists an ele-
ment r in R such that r(ux®w — ux®w) = uk®w. Hence

XP(ux)(r)ux ®w- XP(ut)(r)ux ® w = uk ® w,

and we have XP(ux)(r)== 1 a n ^ xKwt)( r) = ̂ - Hence (1) holds.
The converse is shown in Theorem 3.2. Q. E. D.

Let R be a subalgebra of U(G) and W be a non-trivial irreducible JR-module
such that the condition (1) or (2) in Lemma 3.1 holds. Let x be the central
character of R on W. Then we can regard U(G)®R W as a Z(.R)-module. The
set of all ZCR)-endomorphisms of U(G)®R W is called the centralizer of the
Z(#)-module U(G)®R W. We give a characterization of the condition (1) in
Theorem 3.2.

PROPOSITION 3.4. Let U(G% R, W, x be as in Theorem 3.2. Then the fol-
lowing two statements are equivalent:

(1) The centralizer of a Z{R)-module U(G)®R W is

{g e Endx (U(G)®R W): #(wA® W) g ux ® W for any
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( 2 ) XPiVx) ^ Z K W T ) on Z(R) for any X , T E A with

PROOF. If XP(UX) = XP(UT)
 o n Z(R) f ° r some X, xeA with X^x, then we can

construct a Z^-endomorphism/of U(G)®R W defined by/(uA®w) = wT®w and
f(uy®w) = 0 for y #X and weW. Then / does not belong to the set given in the
statement (1). Conversely, let g be a Z(jR)-endomorphism of U(G)®R W. Set
#(wA®w) = X?=i wA(0®W; + i/A®w0 where 2(/) G A and uMi)^ux. Since 0(r(MA®w))
= r#(wA®w) for any reZ(.R), we have

XP{ux){r)g{ux®w) = YUi XP(uX(i))(r)um ®wt + XP(ux)(r)ux ® w0.

Therefore we have XP(ux)(r)wi = xp(um)(r)wi for i = l,...,n. Since XPi^x)^
XP(ux(i)) o n ^ ( ^ ) J w e have w1 = --- = w/J = 0. Hence ^(wA®w) = wA®w0. Q . E . D .

We also give a following criterion about the irreducibility of generally induced
modules.

THEOREM 3.5. Let U(G), R, W, x be as in Theorem 3.2. Assume that
XP(uk)^XP(u^) on Z(R) f°r any X, xe A with X^x. Then the following two
statements are equivalent:

(1) U(G)®R Wis an irreducible U(G)-module.

(2) For each ux, ux there exists aXx e U(G) such that

aXxux eux+ Zyeyl uy Ann* (w)

where w is a generator of W.

PROOF. Assume (1). Then there exists aXxeU(G) such that aXx(ux®w) =
ut®w. Therefore aXxux — uxe A n n ^ ^ (1 ®w) = £y6yl uy Ann^ (w). Conversely,
assume (2). Let M be a non-trivial submodule of the L/(G)-module U(G)®R W.
Since XP(ux) ̂  XP(ur) o n Z(R) f° r a n y X, x e A with X ̂  T, M is i^-homogeneous by
Theorem 3.2. Therefore ux®W^M for some XeA. Now for each xeA we
select aXx e U(G) such that aXxux eux + ̂ yeA uy Ann^ (w). Then we have aXx(ux®w)
= ux®w9 and ux®WgM. Hence U(G)®R W=^xeAux®W=M. Q.E.D.

§4. R[ux, ux~\®RW

Let R be a finitely generated commutative subalgebra of U(G) and assume
that U(G) has a pre-regular basis {1, ux: X e A} as a right i^-module. We investi-
gate the structure of R[ux, ux']®R Win the case that uxuxeR. In this section we
use the notation px instead of p(ux) and we denote by Px = {px: n = 0, 1, 2,...}.
Let uxux = seR. Then ux(uxux) — sux = uxpx(s). Therefore uxux = px(s). Further-
more since # is commutative, ruxux = uxuxr and ruxux — uxuxr for any reR. Then
we have pT(pA(/)) = r and px(pT(r)) = r for any rc i^ . Therefore pT = jpJ1. Hence
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px has a finite order if and only if px has a finite order. We remark that PX = PX

if px or px has a finite order.

PROPOSITION 4.1. Let R be a finitely generated commutative subalgebra
of U(G) and let U(G) have a regular basis {1, ux: XeA) as a right R-module.
Let W be a non-trivial irreducible R-module with the central character x-
Hence W is one-dimensional and we write W=Kw. Let X.xeA with X^x.
Assume that uxux = s for some seR and that PAnPT = {l}. Then

(1) R[uXi i i j ®R W= Hf=1 Ku\ (x) w + K(\®w) + £ y = 1 Ku{ ® w

(direct sum of K-vector spaces).

(2) R[ux, wT] ®K PF/ias the following structure',

(3) R[ux, uT~](g)RW is R\_ux, ux~\-irreducible if XPx^XPl for * V j ^ 0 and
any integer n.

PROOF. (1): 1, px, px,..., px, p?,.-- are distinct by the remark above. Then
{1, ux, MA,..., ux, w?,...} is a linearly independent set over R by Lemma 2.1. It
is easy to see by induction on n that w"w? = sPl1(s)*i*/7i~/l(s) a n d w?uJ = pA(s)p|(s)
• • -px(s) for n ̂  1. Then we have

«•«{ =
if j > i> 1.

Therefore {1, wA, wf,..., wT, «?,...} generates the R-module R[ux, wT]. Hence we
have the first assertion.

(2) is immediate from the facts that uxu
n

x =ux
x~1p\~n(s) and uxu

n
x = un

x~
1pn

x(s).

(3): Let JV = X(l®w) + S & i Ku\®w. Then every R-submodule of N is
^-homogeneous by the similar proof to that of Theorem 3.2 (1). Now let M be
a non-zero R[ux, wT]-submodule of R[ux, ux~]®RW. Let t) = Xy=1aJ^'(H)vy + n
where neN. If a m ^0 , then ttyuGflmx(spl1(s)---jpi"III(s))(l®w) + 2 i ^ i Ku\®w.
Therefore u^v # 0 and w f̂ e JV. Hence M n JV ̂  0. Since M ON is IMiomogene-
ous, in M (]N there exists an element ux

n®w for some m ̂  0. If m ̂  1, w^wj® w)
= x(Px(s)'''P!L(S))(1 ®w) 6 M. Therefore 1 ®w e M, which implies R[ux, MT]®^ WT

M t](10w)gM. Q.E.D.

COROLLARY 4.2. Le* t/(G), R, W, x be as in Proposition 4.1. Assume that
every R-submodule of R[ux, wj®^ W is R-homogeneous. Then R[ux, ux"]®R W
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is R[ux, U^-irreducible if and only if XPl(s) ̂  0 for any integer n.

PROOF. Assume that XPnx{s)^ for any integer n. Since every .R-submodule
of R[ux, ux~\®R Wis i^-homogeneous, we can prove the irreducibility of R[ux, wT]
®R W as in the proof of the previous proposition. Conversely, if XP"(S) = 0 for
some n^O, then SS=n^ w i® w is a non-zero proper submodule of R[ux, ux~]®R W.
If/p2(s) = 0 for some n<0, then X ^ i - n ^ T ® ^ is also a non-zero proper sub-
module of R[ux, ux~]®R W. Q. E. D.

We now classify the module R[ux, ux~]®RW.

THEOREM 4.3. Let R be a finitely generated commutative subalgebra of
U(G). Let W, W be irreducible R-modules with the central characters / , x'
and with generators w, wf respectively. Assume that U(G) has a regular basis
{1, ux\ XEA} and Pk fl JPT={1} for A, TEA with X^x. If uxux = s for some seR
and if XPi&^Ofor any integer n, then the following two statements are equiva-
lent:

(1) R\ux, ux~\®R W is isomorphic to R\uk, ux~\®R W as an R\ux, uT]-
module.

(2) x! — XV\for some integer q.

PROOF. Assume that x!^XV\ f° r a n y integer q. Let / be an R[ux, ux~\-
homomorphism of R[ux, ur~]®R W into R[ux, ux~]®R W. Let us write f(l®w')
= S?=i atux®w + b(l®w) + Xj=i CjUJ

x'®w (ai9 b, CJGK). Since /(r(l(g)w')) =
rf(l®w') for any reR,we have

w + &x(r)(l(x)w) + Z7=i CjXPjJ\r)u{ ® w.

Therefore {x\r)-xA(r))a^xXr)-x(r))b = (xW for any reR.
Since x!#XPl f ° r anY integer q9 we have a1 = -~ = an = b = cl = -' = cm = 0. Hence

/=o.
Conversely, assume (2). Then we can construct an R[ux, wj-isomorphism

g of R[ux, uJ®R W onto R[ux, ux~]®R W as follows; if x' = XPl fc>r some g^O,
then g is given by

g(u\®w') = uq
x
+i®w ( i ^ l ) g(l®w') = u

q
x®w,

g{u{®w') = x(Pl(s)pl-\sy..pl-J+\s))u\-J ® w (1

g(u*x®Wf) = X(

If x' = XPxq f ° r some q>0, then f̂ is given by

g(u{®w') = uf^ ® w ( j ^ l ) , flf(l®w') = w? ® w,
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Q.E.D.

Let R be a finitely generated commutative subalgebra of U(G). Then R can
be identified with the quotient of the algebra of polynomials in r indeterminates
Ti,..., Tr by a certain ideal / of X[T1}..., Tr]. Let rf be a canonical image of Tt

in JR. Let X(R) be the set of all characters on R. Then the map r\ of X(R)
into the variety E in Kr vanished by I which is defined by rj(x) = (x(t1),..., z(O) *s

bijective by Hilbert's Nullstellensatz.
Let g be an endomorphism of R, then g induces an endomorphism g# of

X(R) defined by g*(x) = X°9 f° r XeX(R)- Then we have a morphism e(g) =
rjog^orj'1 of E into itself. If g is an automorphism of R, then £(#) is an automor-
phism of the variety E.

Now we assume that U(G) has a pre-regular basis {1, uk\ he A). For A,
t e / l with AT^T, assume that uxux = s for some seR. Since pA is an automor-
phism of R, s(px) is an automorphism of the variety E. Let Xf(R) be the set of
all characters x o n R which satisfy ZPK5)^^ f° r anY integer f̂. Since (pf)* is a
bijective map of Xf(R) into itself, we can define an equivalence relation ~ on
tl(Xf(R)) as follows: For a, beri(X%(R)), a~b if and only if fc = fi(pA)9(a) for
some integer q. Then we have the following

COROLLARY 4.4. Under the same assumption as in Theorem 4.3, for any
X, x' eX*(R) the following two statements are equivalent:

(1) R\ux, wT]®£ W is isomorphic to R[ux, wT](x)K W.

(2)

§5. 5/(2, JC)

Let S be a Lie algebra over K with a basis {x, j , ft} and with multiplication
[x, j ] = ft, [x, ft] = 2x and [y, h]=—2y. The following formulas in (7(5) are
easily seen but useful.

LEMMA 5.1. For any positive integer n we have

hxn = xnh - 2nxn, hyn = ynh + 2nyn,

yxn = xny - nxtl~1h + ^ n - l ) * 7 1 " 1 , xyn = j n x + nyli~1h + n(n —l)^11"1.

Let J? be a subalgebra of U(S) generated by xy and h. Then JR is a finitely
generated commutative subalgebra of U(S), and we have the following

PROPOSITION 5.2. Let B = {1, x \ yj;i,j^l}. Then
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(1) B is a regular basis for a right R-module U(S).
(2) The permuting maps pix1), p(l) and p(yJ) are given as follows:

p(x*)(xy) = xy- ih + i(i-l), p(xO(fe) = h ~ 2i>

p(l)(xy) = xy, pO)(h) = hf

P(yj) (xy) = xy + jh + j(j +1), p(yJ) (h) = h + 2/.

In this section we simply denote p = p(x). Then pi = p(xi) and p~i = p(yi)
for i ^ l .

PROOF OF PROPOSITION 5.2. Let 17" be the subspace of U(S) spanned by the

elements whose degree is less than or equal to n. Let us prove by induction on
i+j that xlyj e^f^x^ + R + ̂ f^ yJ'R.

If i+j=l, the assertion is obvious. We may assume that i, j ^ 1. Then

e Yt=i xlR + # + EJLi y-7^ by assumption.

Therefore 5 generates the right .R-module C/(S). Let

Svkfly^xyy/i* + ZemnKmny
e(xy)mhn + T,«cafcyYht = 0,

where i, e ^ 1. Since (xy)"—x"yn e I/2""1 and ymx"—x")?1" e I/""1"1""1, we have

ye(xy)mhn e xmye+mhn

Therefore by the Poincare-Birkhoff-Witt Theorem we may assume that i + 2j + k
= m + 2e + n = 2s + t and that

Y.tJlfllJkX^yW + HemnKmn^mye+mhn + ^C^yV = 0.

Since i+j> j and m<e + m, we see that xi+J'yJ'hk, xmye+mhn and xsysh* are linearly
independent over X. Then we have aijk = bemn = cst = Q. Hence B is a linearly
independent set over R.

For i, j^.1 we have

= xl(h - 20,

= j,y(fc + 2/) and ( x ^ ^ = ^•''(xj; + jh + j(j +1)) . Q. E. D.

PROPOSITION 5.3. Let R be the subalgebra of U(S) given above and W be
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an irreducible R-module with the central character x and a generator w. Let
X(h) = aand x(xy) = ft. Then

(1) U(S)®RW=Y,f=iKxi®w + K(l®w)+Z7=iKyJ®w, where the right
side is a direct sum of K-vector spaces.

(2) U(S)®R W has the following structure: For n ^ l

x(yn®w) = (n2 + (a— X)n + p — a)yn~1®w,

y(xn®w) = (n2 — (a+l )n + P)xn~1 ® w.

(3) Every Rsubmodule of U(S)®R W is R-homogeneous.
(4) U(S)®RWis U(S)-irreducible if and only if C2-(a+l)C + £ = O has no

integral solution.

PROOF. By Proposition 5.2(2), {pn: n = 0, 1,...} n {p'n: n = 0, 1,...} = {1}.
Since xyeR, the assertion (1) follows from Proposition 4.1 (1). Combining
Proposition 4.1 (2) and Proposition 5.2 (2) we have our assertion (2).

(3): Since (xpn — XPm)(h) = 2(m — n) for any integers m and n, we have our
assertion by Corollary 3.3.

(4): By Corollary 4.2, U(S)®R W is l/(S)-irreducible if and only if xPn(*y)
/ 0 for any integer n. Since XPn(xy) = P ~ n(X + n(n —1)> w e complete the proof.

Q.E.D.

We now classify some irreducible S-modules induced by non-trivial one-
dimensional .R-modules. Let X(R), E and rj be the set of all characters on JR, the
variety corresponding to JR and the bijective map of X(R) onto E defined in § 4
respectively. Let / be a character in X*(R) = {xeX(R): xpKxy)^® f ° r anY
integer n}. Then we can regard K as an .R-module by rz = x(r)z for reR and
zeK. Then we can construct a generally induced S-module U(S)®RK. We
denote this by V(y). It is not hard to see that V(x) is not isomorphic to U(S)
®u(H)W for any proper subalgebra H of S and an H-module W. By Corollary
4.4, V(x) is isomorphic to V(x') if and only if rj(x)~rj(x'). Since R is a tran-
scendental extension of K generated by the transcendental basis {xy, h}, E = K2.
Since X*(R) = {xeX(R): C2 + (xW + l)C + z ( ^ ) = 0 has no integral solution} by
Proposition 5.3 (2), rj(X*(R)) = {((*, P)eK2: C2 + (a + l)£ + j8 = 0 has no integral
solution}. Since xPq(h) = x(h) ~ 2q and XPq(xy) = x(*y) - ^Z(^) + <l(<l ~ 1) f<>r any
integer q, we have

s(p)K«,P) = («-2q9q
2-(a+l)q + p) for (a, j8)erj(X*{R)).

Therefore (a, P)~(oc', ft) in rj(X*(R)) if and only if there exists an integer q such
that a' = a - 2q and 4(p - ft') = (a - a') (a + a' + 2).

Let C(x) be the Casimir operator of F(x). Then $C(x)v = ( - 2xy - 2yx + hh)v
for v e F(x). Since - 2xy - 2yx + hheR and xPq( ~ 2xy - 2yx
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where x(h) = a and x(xy) = P, C(x) acts on V(x) as a scalar (a2 + 2a-4j3)/8. Then
we have the following

COROLLARY 5.5. V(j) is isomorphic to V(x') if and only if a — a' is an even
integer and C(x) = C(xf).

PROOF. Since C(x) = C(x') if and only if 4(p-?) = (<*-a') (<* + *'+ 2% our
assertion follows from Proposition 5.4. Q. E. D.

§ 6. Heisenberg algebra At

Let A be a Lie algebra over K with a basis {x, y, z} and multiplication
[x, )>] = z, [x, z] = [y, z] = 0. Then we have the following

LEMMA 6.1. For any positive integer n we have

xyn = ynx + nzy""1 and yxn = xny — nzx"'1.

Let R be a subalgebra of U(A) generated by xy and z. Then R is a finitely
generated commutative subalgebra of U(A). By the similar proof to that of
Proposition 5.2 we have the following

PROPOSITION 6.2. Let B = {19 x\ yj: i ,; ^ 1}.

(1) 2? is a regular basis for the right R-module U(A).
(2) The permuting maps p(xl), p(l) and p(yJ) are given by

pix^^xy) = xy- iz, p(l)(xy) = xy, p(yj)(xy) = xy + jz,

X*0 (z) = z, Kl) (z) = z, p(yJ) (z) = z.

In this section we simply denote p=p(x). Then pi = p(xi) and p'^
for i

We have the following result which corresponds to Proposition 5.3.

PROPOSITION 6.3. Let K he f/*e subalgebra of U(A) given above and W be
an irreducible R-module with the central character x and a generator w. Let
x(x) = a and x(xy) = P- Then

(1) U(A)®RW=Z?=1Kxi®w + K(l®w) + yZJ=iKyJ<8)w, where the right
side is a direct sum of K-vector spaces.

(2) U(A)® R W has the following structure: For n ̂  1,

x(yn®w) = (P + in-lWy*-1 ® w, y(xn®w) = (jS-na)^"1 (g) w.

(3) Euerj R-submodule of U(A)®R W is R-homogeneous if and only if
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(4) Assume that oc^O. Then U(A)(g)R W is U(A)-irreducible if and only
if<xC+P = O has no integral solution.

PROOF. We can prove (1) and (2) as in the proof of Proposition 5.3.
(3): If a = 0, then xPq(xy) — P f° r a n v integer q. Therefore K(x ® w + 1 ® w)

is a non-homogeneous i^-submodule of U(A)®R W. If a ^ 0 , then (xpn — XPm) (xy)
= m — n for any integers m and n. Therefore applying Corollary 3.3 we have our
assertion (3).

(4): By Corollary 4.2, U(A)®R Wis l/04)-irreducible if and only if xpn(xy)
# 0 for any integer n. Since xPn(xy) = p — na, we complete the proof. Q. E. D.

Let X(R), E and n be the set of all characters on R, the variety correspond-
ing to £ and the bijective map of X(R) onto E denned in § 4 respectively. Let x
be a character in X*(R) = {xeX(R): XPn(xy)^^ f ° r a n v integer n}. Then we
can regard K as an .R-module by rz = x(r)z for reR and zeK. Then we can
construct a generally induced ^-module (not necessarily irreducible) U(A)®RK.
We denote this by A(x)- It is not hard to see that A(x) is not isomorphic to
U(A)®U(H)W for any proper subalgebra H of A and an H-module W. By Cor-
ollary 4.4, A(x) is isomorphic to A(x') if and only if n(x)~n(x')> As in §5 we
have E = K2, X*(R) = {xeX(R): x(z)t + XOJO = 0 has no integral solution} and
n(X*(R)) = {(<*, P)eK2:aC + P = 0 has no integral solution}. Since XPq(xy) =
X(xy)-<ix(z) and xp«(z) = x(z), we have

<&¥(*, P) = (*,P-q*) for (a,/9eij(X*(K)).

Therefore (a, P)~(oc\ fif) if and only if a = a' and fi — fi' is an integral multiple of
a. We have then the following

PROPOSITION 4. A(x) is isomorphic to A(x') if and only if a = a' and P—fif

is an integral multiple of a.
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