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1. Introduction

The aim of this paper is to study the essential self-adjointness of a Schrodinger
operator — A4+ q(x) acting in L2(R™), m =1, with the domain CP(R™\F), where F
is the union of at most countable number of k,-dimensional (0<k,<m—1) affine
subspaces S, (¢ € A) in R™ which satisfy

r = inf {dist (S,, Sp); @, Be 4, axp} > 0.

Here dist (S,, S;) denotes the distance from S, to S,.

This study is motivated by a theorem proved by B. Simon [6], which is a
generalization of the results of H. Kalf and J. Walter [1] and U. W. Schmincke
[5]. In this theorem of Simon, which corresponds to the case of F={0}, it is
assumed that the potential g =g, + g, is a real-valued function with q, € L} .(R™\
{0}) and g, € L*(R™) such that

q:(x) 2 —(1/Hm(m—-4)|x|">  (xeR™\{0}).

We extend this result to the case of the general F as stated above. The fol-
lowing is our theorem.

THEOREM. Set Q=R™\F and let a;eCY(Q) (1=j=<m), g, €L} (Q) and
g, € L°(R™) be real-valued functions. Assume that for some & (0<e<r/[2), q,
satisfies the following conditions:

(C.1) ForeachaecA

9:(x) 2 —(1/4)(m—k,) (m—k,—4) [dist (x, S)]172
whenever 0<dist (x, S,)<e.
(C.2) gq, is bounded from below on
Naea {xER™; g < dist(x, Sp)}.
Let q=q,+q,. Then the symmetric operator T acting in L*(R™) defined by
T= —%7-1(0/0x; — iayx))* + q(x), D(T) = CF(Q),
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is essentially self-adjoint.

For the proof of this theorem, we apply the method given in Simon [6] and
Kalf-Walter [2].

2. Basic lemmas
Let us first recall Kato’s inequality. Set L=3"_, (0/0x;—iaj(x))*>. If
ueL],.(Q) and Lu e L] (RQ), then we have the following distributional inequality
(see [3], [4], [7], [8D):
Alu] = Re [(sgn @1)Lu].

By the aid of this inequality, we obtain the following lemma as in [6] and
[21.

LeMMA 1. Let Q and T be as in the theorem, and suppose that there exist
functions Q, ® and &, (n=1, 2,...) which satisfy the following conditions:

(P.1) QeC%Q), 2eC*(Q) n LA(Q), (—4+Q)PeL*Q2) and P,eC3(Q)
(n=1,2,.).

(P.2) @&,»P weakly in L¥(Q) and (—4+Q)®,—(—A4+Q)P weakly in
L?(Q) as n— 0.

P3) g,=2QonQ,&,=200n Q(n=1,2,...) and (—4+Q+6)®>0 on Q2
for some 6 eR.

Then the assertion of the theorem holds.
Before stating Lemma 2 we introduce some functions.
Let a(t) be a non-increasing function in C*°(R) such that

at)y=1 for t<0, ut)=0 for t=1,
2.1) O<a(f)<1l for O<t<l,

SUPo<r<1 Ia’(t)l <3 and SUPo<r<1 ]“”(t)l <.

Let f and f, (n=1, 2,...) be functions which satisfy the following conditions
(H~(@4):

(1) fe#R™ and f,e CF(R™) (n=1, 2,...), where #(R™) is the Schwartz
space of C®-functions of rapid decrease.

) f(x)>0and 0= f,(X)=< f,+1(x)= f(x) for any xeR™ and n=1, 2,....

(3) If we set D,={xeRm™; f,(x)=f(x)} (n=1,2,...), then D,cIntD,,,
(n=1, 2,...) and U®., D,=R™, where Int D, , is the interior of D, ;.

(4) Forany r>0, x,y, o, 7eR™ with |[x—y|<r and |o|=]|7| =1, the follow-
ing estimates hold:
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22  ID S| =f(x) = ef(y), DD f(x)] =3f(x),
D fuX)l £4f(x) and [DD.f(x)|=20f(x) (n=12,..),
where D, denotes the directional derivative in the direction o.

An example of a set of f and f, is given by (cf. [2])
Jx) =exp(=(1 + [x])'2), f(x) = a((Ix]/n) — 1)-exp (—(1 + [x]?)V/?).

Let f and f, satisfy (1)~(4), P be an orthogonal transformation acting in
R™, and aeR™. If we define f and f, (n=1, 2,...) by f(x)=f(Px+a) and f,(x)=
f.(Px+a), then f and f, also satisfy (1)~(4). We use this fact in the proof of
Lemma 2.

LEMMA 2. Let v be an arbitrary positive constant, S be a k-dimensional
affine subspace in R® (0=k=<m-1), and f, f, (n=1, 2,...) be functions which
satisfy (1)~ (4) stated above. Set V={xeR™; 0<dist(x, S)<v}.

Then there exist functions ¥ and Y, (n=1, 2,...) which satisfy the following
conditions (i) ~(v):

(i) YyeC?R™S) and Y,e CY(R™\S) (n=1, 2,...).

(i) Y(x)>0 and 0=y, (x) S+ 1(x) SY(x) for all xeR™ and n=1, 2,....

(iii) If we set E,={xeV;y,(x)=y¥(x)} (n=1,2,..), then E,SIntE, ,,
(n=1,2,..)and \UX, E,=V.

@iv) Y(x)=f(x) and Y,(x)=f,(x) (n=1, 2,...) for xe R™\S\V.

(v) There is a constant ¢>0 depending only on v and m such that the
following estimates (v-a), (v—b) and (v—c) hold:

v-a) | wiraxse| ipax

(v-b) (=4 = 1/4)(m—k)(m—k—4)[dist (x, S)]I2W(x)| < c(x)
forany xeV.

(v—0) SV I(— 4 — 1/ (m—k)(m—k—4) [dist (x, S)]~2)Y,|*dx

§cg |fI?dx  forany n=1,2,...
v

Proor. We prove this lemma only for k#0; our proof is valid for k=0
under some modification.

By a coordinate transformation remarked just before Lemma 2, we may
assume that S=R¥x {0} from the beginning. Then dist(x, S)=|x,| for any
x=(x;, X,) eR"=Rkx R" ¥,

Set B(x,)=a(2—(2/v)|x,]), x, eR™ ¥ and define Y and ¢, (n=1, 2,...) by
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Y(x) = f()B(xa) + X2 ™02 f(xy, 0) (1 — B(x2)),
Yu(x) = Fi()B(x2) + [x2] 47 B2 f (x4, 0)B(nx;) (1 — B(x,))

for x=(x,, x,) eR"=R¥xR"* and n=1, 2,....

Let us verify that Y and y, defined as above satisfy the conditions (i) ~ (V).
Since by definition (i), (ii), (iii) and (iv) hold evidently, we have only to prove (V).
In what follows we use c; (j=1, 2, 3, 4) to denote constants depending only on

v and m.
First we remark that for any integer s> —m+k

2.3) SV 1o lolf (x,, 0)f2dx = (m—k)(m—-k+s)'1vsgy 1f Gx1, O))2dx
< myse?” SV f|2dx.
By this inequality we have
[, widx < 2§ 172ax + 2§ potomii e, 0
< 2(1 + myd-mrhe2v) SV' fl2dx,

which implies (v-a).
We proceed to prove (v—b). Let us set

I(x) = (= 4 — (1/4) (m— k) (m—k—4) |x2|2)(x),
4, =Yk ,0%/0x? and 4, =4 — 4,.
We first note that
(2.4) (42 + (1/H) (m— k) (m—k—4) |x,]|2) |x,| ¢~m+0/2 = 0.
If 0<|x,]| < v/2, then Y(x)=|x,|“ m*+*)/2f(x,, 0), so that
HE) = [x,]@m 07214, f) (x4, O
+ (42 + (1/4) (m— k) (m — k—4) |x,]72) [x,| ¢~™+072] - f (x4, 0)
= [xo| 47 O2](4, f) (x4, )]
by (2.4). Since
I(410) (x1, O) = 3kf (x4, 0) < 3mf(xy, 0),

in view of condition (2.2), it follows that |I(x)]<3my(x) for 0<|x,|<v/2.

next consider the case v/2<|x,|<v. Noting that

(2:5) 1(0B/ox) (x2)| < 6/v and  |(8*B/0x})(x2)| < 44/v?

We
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for k+1<i<m and using (2.2) we can see that there is a constant ¢; such that
[I(x)|<c,f(x). Combining this with the fact that

JX) = f(X)B(x2) + f(X) (1 = B(x5)) = (1 + €” sup, 3 <o, (" *D/D(x),

we obtain [I(x)| < c,P(x) for v/2<|x,|<v. Thus (v-b) is satisfied.
Finally we show (v—c). For simplicity we prove (v—c) only for n=3, 4,....
Let us set y,(x,)=B(nx,) (1 —B(x,)) for x, e R™*, Then by (2.5) we have

(6/v)n if v/(2n) < |x,| < v/n
(2.6) [(0yal0x) (x2)] = { 6/v if v2<|x| <v

0 elsewhere,

(44/v*)n? if v/(2n) < |x,] < v/n
@7 [(027,/0x7) (x2)] < { 44/v? if v2<|x,| <v

0 elsewhere

for i=k+1,..., m. Thus we have
{1, 1= 4= W=t k=) oD lax
={{, 1o raxt”
+ (1 m—lm—k =4l {{ Ll #(eopeeo)
I e (YO (CIATEN T
{12 + W m =10 (m— k=) ;72 (60123, (e )

1/2
x (f(xi, O)dx}
=11+12+I3+I4’

where I; (j=1, 2, 3, 4) denotes the j-th term respectively.
By virtue of (2.2), (2.3) and (2.5), we can easily check that there is a constant
¢3 such that

1/2
(2.8) L+1,+15 <c {gv | f|2dx} .

Now we estimate I,. By virtue of (2.4), (2.6) and (2.7),

To={{ 12 Stas s 0f0llalsm012). @p,f0x) (x)
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1/2
+ Il A ,) (3PS, O)2dx}
< (m=Rld—m+k|{{ el emn 2, 0
+, Il 62, s}

# = {[ | Ixalemeraantivs(sx,, 0

1/2

+{ bl @apr(sx, opaxt,
Vi

where we set V,={x=(x,, x,) e R"=R¥xR"*; y/(2n) <|x,|<v/n} (n=1, 2,...).
Since

n{ o (f G, Odx = { xalms(f Gy, 024,

ne{ %ol (f G, O)dx = | xalemit(f G, 02
n Vi

for any n=1, 2,..., it follows from (2.3) that
1/2
Lo < 6pm> {2 prapmrs(fx,, 0)2dx}
1/2
+ @ o ol (e, 0)dx)

1/2
< e 1r1ax ™
|4
Combining this with (2.8), we obtain
1/2
L+L+ 15+ 1, < (cs+ c4){SV |f|2dx} ,

which completes the proof of (v—c). q.e.d.

3. Proof of the theorem
Now we fix a set of f and f, (n=1, 2,...) satisfying (1)~(4). For each a€ A
we apply Lemma 2 with S=S, and v=¢/2, and put
Ve=y, ¥i=v, and Ej=E, n=12..

Let Q be a real-valued function in C%(Q) which satisfies the following con-
ditions (a), (b) and (c):
@) q.x) =0 for any xeQ.
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(b) ForeachaeA
0(x) = —(1/4) (m—k,)(m—k,—4) [dist (x, S,)]72,
whenever 0 < dist(x, S,) < &/2.

(¢) Qisbounded on N, {xeR™; g2 < dist(x, S,)}.
Define ® and @, (n=1, 2,...) by

Yi(x) if 0<dist(x, S,) <¢f2 for some o
&(x) = {
f(x) elsewhere,
Ye(x) if O0<dist(x, S,) <¢/2 for some «o
fix) elsewhere.

2,9 = {

We now prove that the conditions (P.1), (P.2) and (P.3) in Lemma 1 are
satisfied with these Q, @ and @,. Let us set V(x)={x e R™; 0<dist (x, S,)<&/2}
for each a e A, W=\U,4 V(a) and E=Q\W.

To verify (P.1) we have only to examine that ® € L2(Q) and (—4+Q)®Pe€
L?(Q) since the other conditions in (P.1) are obvious. Using (v-a) and (v-b) in
Lemma 2, we have

[ ordx = | 1fPdx + Suea |, Wepar < ifiax +cf i7pdx < +oo
) a) g

and

[ 1-a+opax = _(—a+0)spax
¥ Saea |, 1= A= (118 (m—Ic) (m— = 4) [dist (5, ST 22

<[+ Pdx + @ Bk, Woldx < +o0.

We proceed to verify (P.2). Since 08, on Q(n=1,2,..) and
lim,_, , @,(x)=®(x) (x € Q), it follows from Lebesgue’s covergence theorem that
&,—® strongly in L?>(Q). Let u be an arbitrary element of L?(Q). Then we have

G.1) ]gga-(—A+Q)(d>,,—d>)dx[

S (], s} ] -4+ 000,

where we set IT(n)={x € Q; (— 4+ Q(x))(P,(x)) = (— A4+ QX)) (X))} (n=1, 2,...).
Since, from the condition (3) imposed on fand f, and (iii) in Lemma 2, II(n+1)<
(R™D,) U {\Ugea(V(2)\E,)} for any n=1, 2,..., we obtain
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(.2) lim,,_,wg |ul2dx = 0.
I (n)
On the other hand, by (v—c) and (2.2), we see that

[ (-4+0@,~opaxs o | i7pdx
Q (2]

for some constant ¢’ which is independent of n. Applying this fact and (3.2) to
(3.1), we conclude that

lim, . , S 7 -(—4+0)(®,—B)dx = 0.
Q
Finally let us verify (P.3). We define 6 by

8 = 20m + ¢ + sup {|Q(x)|; x€E},

where c is the constant given in Lemma 2 for v=¢/2. If xe E, then

(=44 90(x)+0)P(x) = — (4f)(x) + Q(x)f(x) + 6f(x)
2 — 20mf(x) — sup {|Q(x)|; x e E}-f(x) + of (x) > O.
If x € V(«) for some a € A, then by (v-b) in Lemma 2

(—4+0(x)+0)P(x)
= (—=4—(1/4)(m—k,) (m—k,—4) [dist (x, S,)]72 + O)Y*(x)
Z (—cp*(x) + 6y*(x)) > 0.
This completes the proof of (P.3). g.e.d.
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