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1. Introduction

It is well known that geometric properties of a Banach space X correspond
to analytic properties of the (normalized) duality mapping / : ,X-*2X*. For
instance X is strictly convex if and only if J is strictly monotone; X* is uniformly
convex if and only if J is singlevalued and uniformly continuous on bounded
subsets of X. On the other hand, geometric properties of Banach spaces enter
the theory of accretive operators, since accretiveness is defined via the duality
mapping, and additional properties of J induce better behaviour of accretive
operators.

In this paper we shall prove that a Banach space X is uniformly convex if
and only if its duality mapping is in some sense uniformly strictly monotone.
This result will then be applied to accretive operator theory. It is known that an
accretive operator A is locally bounded at interior points of its domain D(A),
provided X* is uniformly convex. We shall show that this statement is also true
in case X is uniformly convex. Furthermore, we shall extend a criterion for
maximal monotonicity of the sum of two maximal monotone operators on Hilbert
spaces to accretive operators in case X and X* are uniformly convex.

2. A characterization of uniform convexity

Let X be a real Banach space with norm | • |; then X* is the normal dual of
X and (x, x*) denotes the value of x* at x e X. The open ball in X (resp. X*)
with center x (resp. x*) and radius r > 0 is denoted by Br(x) (resp. £*(x*)). Also,
their closures are denoted by 5r(x) and B*(x*), respectively.

Recall that X is said to be uniformly convex if to each ee(0, 2] there exists
d(s)>0 such that

\x + y\ < 2(1 -S) whenever |x| = \y\ = 1 and \x-y\ > e.

The (normalized) duality mapping J: X-*2X* is defined by

It is well known that J is an everywhere defined monotone operator which is
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weakly* upper semicontinuous and, by the Theorem of Bishop and Phelps [4],
has dense range in X*. Moreover, by James' characterization of reflexivity [4],
J is surjective if and only if X is reflexive. J is singlevalued and uniformly con-
tinuous on bounded subsets of X if and only if X* is uniformly convex. X is
strictly convex if and only if J is strictly monotone, i.e. (x — y, x* — y*)>0 for all
x, yeX, x*eJx, y*eJy with x + y. These facts are proved for instance in the
book of Cioranescu [3]; cp. also [10].

We shall use the

DEFINITION. A function co: [0, oo)->[0, oo) belongs to class & if co is non-
decreasing, co(p)>0 for p>0 and co(0) = 0.

Now we are ready to give our characterization of uniformly convex spaces.

THEOREM 1. A Banach space X is uniformly convex if and only if to each
R>0 there is a function coR of class %> such that

(1) (x-y, x*-y*) > coR(\x-y\)\x-y\

for all x9 yeBR(0), x*e Jx, y*e Jy.

PROOF. Let X be uniformly convex and R>0. Let co(0)=0,

co(p) = inf{\x-y\-1-(x-y, x*-y*):

x, yeBR(0), \x-y\ > p, x*e Jx, y*eJy}

for pe(0, 2JR], and co(p) = co(2R) for p>2R. Obviously, a> is nondecreasing
and so it remains to prove co(p)>0 for p>0. Assume on the contrary that
co(p) = 0 for some 0 < p < 2 # . Then there are sequences (xrt), (yn)(=BR(0), x*e
Jxn,y*eJyn such that |xn->;J>p and (\xn\-\yn\)

2<(xn-yn, x*-y*)-»0.
Hence we may assume \imtt->o0\xn\=limn-+o0\yn\ = a>0. Then

f^oo | I x J - ^ - l y J " 1 ^ ! = fl-Uiminf^oo \xn-yn\ > p/a,

and therefore, by the uniform convexity of X,

limsup^oo \xH + yH\ = flUmsup,,^ | IxJ"^,, + ^ J " 1 ^ ! < 2a(l-d)

for some d > 0. On the other hand,

I*J2 + \yn\2-(x» yt)-(yn^t) = ̂ n-yn^t-yt)-^o as n->oo,

hence lim^̂ oo (xn + yn, x*) = 2a2, which leads to the contradiction

2a2 = limn^oo(x/l + 3;n, x*) < a l i m s u p , ^ \xn + yn\ < 2a2(l-d).

To prove sufficiency, we first show that the range of J is closed. Let x* e Jxn
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and xj->x*. Then (xn) is bounded, say \xn\<R9 and by hypotheses we find
coR e ^ such that

<oR(\xn-xm\)\xn-xm\ < (xn-xm9 x*-x*) < \xn-xm\'\x*-x*\.

Hence (xn) is a Cauchy-sequence and therefore xn->x for some x e l , x*e Jx,
and so J has closed range. Thus J is surjective since R(J) is also dense in X*,
which in turn implies that X is reflexive. In this case we have x* e Jx if and only
if x e J*x*, where J* denotes the duality mapping of X*, and so J* = J~X. Now
a>R(\x-y\)<\x*-y*\ for x*9 y*eE%(0)9 xeJ*x*9 yeJ*y*9 hence J* is single-
valued and uniformly continuous on bounded subsets of X*. Therefore, X =
(X*)* is uniformly convex and the proof is complete. q. e. d.

3. Local boundedness of accretive operators

Let A be a (possibly multivalued) operator in X, i.e. a mapping A: X->2X.
The sets D(A) = {xeX: ^4x=#0} and R(A) = \JxeXAx are called the domain and
the range of A, respectively. If M e X we let A(M) = \JxeM Ax. A is said to be
locally bounded at xeX, if there is a ball 5f(x) such that A(Br(x)) is a bounded
subset of X. Recall that an operator A is accretive if for every x, yeD(A),
u e Ax, veAy there is x* e J(x — }>) such that (u — *;, x*) > 0 holds.

Fitzpatrick, Hess and Kato [5] proved that an accretive operator A is already
locally bounded on int D(A), the interior of D(A), provided X* is uniformly con-
vex. Kenmochi [7] obtained this result in case X, X* are reflexive and strictly
convex and J, J"1 continuous.

As an application of Theorem 1 we shall prove

THEOREM 2. Let X be uniformly convex and A an accretive operator on X.
Then A is locally bounded on int D(A).

PROOF. It is sufficient to assume 0 e int D(A) and to prove that A(B3(0)) is
bounded for some ball S /0)c in tD(^) , <5>0. So let Br(0)c:mtD(A) for some
r > 0 and define Sn = {xe 5r(0): Ax n Bn(0) 4= 0} . Then we have 5r(0) = \jn Sn

and from Baire's Category Theorem we get xoeD(A), p > 0 , noeiV such that
Bp(x0)c:Br(0)n5no. Let <5 = p/4 and choose x eBd(Q), u e Ax. Then accretive-
ness of A implies

(«, y*) < (v, j*) < |t>| \y-x\ < no(r+S)

for all yeBp(x0) n Sno and some y* e J(y — x)9 where veAy had been chosen in
such a manner that |i;|<n0. But since J is weakly* upper semicontinuous, even
to each y e BJx0) we find y* e J(y — x) such that
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(2) (u,y*)<no(r

holds. We also choose u0 eA( — x0) to obtain

(3) -( i i , xj) < - ( i / 0 , *o*) < \uo\(r

for some x$eJ(;c + Xo)- Since X is uniformly convex, by Theorem 1 we may
choose cor e <% such that estimate (1) holds on Br(0). Put y = (x + xo) + 5\u\~1u + x
and let y*e J(y — x) such that (2) holds. Then estimates (1), (2) and (3) imply
\u\ca£d)<(u, y*-x$)<(no + \uo\)(r + 8), hence |w|<C0 for each ueA(Bd(0)\
where Co = cQr($)~1(r + 5)(no + \uo\) is independent of x and u. q.e.d.

4. The sum of m-accretive operators

In this section, A and B always denote m-accretive operators in X, i.e. A, B
are accretive and R(I + A) = R(I + B) = X holds. Recall A + B is defined by

(A + B)(x) = {ueX: u = i; + w where veAx, weBx};

hence we have D(A + JB) = D(^4) n £>(#). In general A + B is not m-accretive, even
in the case of singlevalued and linear operators A, B in Hilbert space. But in
application one has to deal with such sums very often and so it is an important
problem to single out conditions for A and/or B which ensure m-accretiveness of
the sum A + B. Much work has been done concerning this problem; let us men-
tion Brezis [1], [2] in case I is a Hilbert space, and Kato [6], Webb [11],
Kobayashi/Kobayasi [8] for more general spaces.

One method to attack this problem is to consider the following approximate
equation (4) to veAx + Bx + x:

(4) veAxx + Bxxx + xx or ux = v - xx - Bxxx e Axx,

where Bx denotes the Yosida-approximation of J5, i.e.

(5) Bx = X~\I-RX) and Rx = (I + XB)-\ X > 0.

Since Bx is Lipschitz-continuous and accretive it is easy to see that, given veX
and A>0, (4) admits exactly one solution xxeD(A). Now we have

LEMMA 1. Let A, B be m-accretive with D(A) n D(B)=}=0 and let xx be de-
fined by (4) with (5). Then, (i) {xx}x>0 is bounded; (ii) the uniform convexity of
X* and the boundedness of {Bxxx}x>0 imply veR(I + A + B).

Since a simple proof of Lemma 1 is already available, we refer to [9].

In case X is a Hilbert space it is known that (int D{A)) (1 D(B) + 0 implies
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boundedness of {£AxA}A>0 for every veX; cp. [1]. Hence by Lemma 1 we get
R(I + A + B) = x, and so A + B is m-accretive. For more general spaces no such
result has been obtained up to now. As another application of Theorem 1 we
shall prove

THEOREM 3. Let X, X* be uniformly convex, A, B be m-accretive and let

(6) (intD(^)) fl £(£)#= 0 .

Then A + B is m-accretive.

PROOF. We may assume 0 e (int D(A)) n D(B). Then from Theorem 2 we
get M, r > 0 such that Br(0)czD(A) and \w\<M for all we A(Br(0)). Let xeD(A),
u e Ax, z e Br(0), weAz; from accretiveness of A we obtain

(7) (ii, J(z -x)) < (w, J(z - x ) ) < M(\x\ + r).

Let R>2r be fixed; by Theorem 1, there is (DRe<g such that estimate (1) holds.
Put z = r\u\~1u. Then from (1) and (7) we deduce

(8) \u\coR(r) < (fi, J(-x + z) - J(-x)) < (II, Jx) + M(\x\ + r),

provided \x\<R/2. Now, for any fixed veX let xA and uk be defined by (4).
Since {xx}x>0 is bounded, it is possible to choose R>0 such that |XA |<JR/2 also
holds for X >0. The estimate (8) yields

< (MA, Jxk) + M(|xA| + r) < -(BAxA, JxA) + Co

for some constant Co. Since 5A is accretive, too, we obtain

-(£AxA , JxA) < -(BA0, JxA) < (*/2)inf{|ff|: rjeBO}.

Thus {MA}A>0 is bounded and so {5AxA}A>0 is bounded, too. Therefore, Lemma 1
applies and veR(I + A + B); since veX had been chosen arbitrarily, we have
jR(J-\-A + B) = X, i.e. A + B is m-accretive. q.e.d.

In case D(yl) is open, Kenmochi [7] proved that maximal accretiveness of A
on D(A) implies m-accretiveness of A, provided X* is uniformly convex. Es-
pecially, a single valued demicontinuous accretive operator A with open domain
is m-accretive if and only if

(9) xn^>x implies |^4xJ->oo for every x e dD(A), (xn) c D(A),

where dD(A) denotes the boundary of D(A). Hence, by Theorem 3 we obtain:

COROLLARY. Let X, X* be uniformly convex, A be a singlevalued demi-
continuous accretive operator with open domain such that (9) holds, and let B
be m-accretive with domain dense in X, Then A+B is m-accretive.
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