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1. Introduction

Recently density-dependent diffusion equations have been extensively in-
vestigated. The first interesting equation is a model of gas flow through a
homogeneous porous medium, which is of the form

(1) ut = A(um) ( m > l ) ,

where u describes the denisty of the gas. Because of the degeneracy of the dif-
fusivity at w = 0, there is an attractive phenomenon such as the finite speed of
propagation of disturbances (see, for example, Aronson [2] and its bibliography).
The second model is one species population model similar to (1),

(2) ut = A(φ(u))+f(u)9

where u means the population density, φ(u) is a monotone increasing function for
w>0 with </>(0) = 0. This nonlinearity implies that dispersal is influenced by
local population pressure and f(u) is the population supply such as Fischer's
type (Gurtin and MacCamy [4] and Newman [10]).

For systems of equations as an extension of (2), Shigesada et al. [14] pro-
posed a model of two competing species with self- and cross-population pressures
so as to discuss the problem of spatial segregation

ί ut = A{(dlί + d12v)u} + (R^-a^u-b^u,

[ vt = A{(d22 + d2iu)v} + (R2-a2υ-b2u)v9

where dij9 Rt, at and bi(i,j = l92) are positive constants or zero. When
dij>Q(iτ£j), the population pressure of each species is exerted on the other and
raises its dipersive force. Aronson [2] has also proposed a similar population
model of prey and predator interaction, which is represented by

ut = pu(l — u/K) —

vt = A{ψ(u)v} - μv + γuv,

where ρ9 K, α, μ, y are positive constants and
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0, K < u,

for some p>0. The nonlinear diffusions in (3) and (4) are just derived from
ecological situations where individuals are randomly walking and repulsively
dispersing (Okubo [12]), though such a mechanism is unusual from a chemical
or a physical viewpoint. When di2 = d2l=0 or ψ(u) is constant in (3) or (4),
that is, in the absence of cross-diffusions, these equations are reduced to usual
reaction-diffusion equations so that a priori bounds on solutions can be easily
obtained, which lead to the global existence of solutions (for example, Alikakos
[1]). However, for systems containing cross-diffusions, there has not as yet
been any general theory to obtain their a priori bounds. Therefore, at present,
we must approach each problem one by one (Cosner [3]).

Masuda and Mimura [6] has recently proved the global existence of nonne-
gative solutions for a slightly simplified system of (3) in a finite interval 7 = (0, 1)

ut =

\ vt = d22vxx + (R2-a2v-b2u)v

subject to the initial conditions

(6) w(0, x) = w0(x), u(0, x) = υ0(x), x e /,

and the boundary conditions

(7) ux(t, 0) = ux(t, 1) = vx(t, 0) = υ£9 1) = 0, t > 0.

In the sequel to the result above, the next study is to know asymptotic be-
havior of a solution (u(t, x), v(t, x)) of the problem (5)-(7). From an ecological
viewpoint, it is interesting to investigate whether or not two species (w, ύ) form
spatial segregation eventually. For this purpose, we discuss the stationary
problem of (5)-(7) and study the existence of non constant solutions exhibiting
segregation. Here we note that, in the absence of the cross-diffusion, i.e. d12 = 0,
(5) does not cause diffusion-induced instability, since the competitive interaction
in (5) does not possess an activator-inhibitor mechanism, but, for suitable
d12>0, cross-diffustion-induced instability occurs. It was discussed by the
use of the bifurcation technique that stationary small amplitude solutions of
(5)-(7) exist (Mimura and Kawasaki [7]).

In this paper, we deal with the following stationary problem :

f 0 = {(1 + αiOii},, + β(Rι-au- bv)u,
(8) xe/,

[ 0 = s2vxx + (R2-aυ-bu)υ,

subject to zero flux boundary conditions
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(9) uΛO) = ux(l) = υM = vx(l) = 0.

For the parameters Rί9 R2, a, b and α in (8), we make the following two con-
ditions (A. l)and (A. 2):

(A.I) a/b > RJR2 > b/a,

which indicates that

(δ, v) = ((Ria-R2b)l(a*-b2), (R2a-R,b)l(a2-b2)),

which is a positive constant solution of (8) and (9), is asymptotically stable in
the unsteady kinetic system of (8), i.e.

vt = (R2 — aυ— bu)v

(A.2) α > a/(bu-av) > 0,

which states that the effect of the cross-diffusivity is not so weak. The necessity
of these conditions will be mentioned in the next section. Under (A.I) and (A.2),
we show the existence of large amplitude solutions exhibiting striking segragation
when β and/or ε are sufficiently small. Especially, when ε is zero or sufficiently
small, strong heterogeneity can be found in both arguments u and υ, which shows
a typical segregating phenomenon (see Figures 4 and 5). The results are obtained
as the nice application of perturbation techniques developed by Mimura et al.

[9]andNishίura[ll].

2. Preliminaries

In this section, we consider the bifurcation problem of (8) and (9) with
respect to a trivial solution (u, v). By introducing pertubation variables w^ =
u — u and w2 = u — v, W=(wl9 w2) satisfies the equation

(11) Q = LW+ N(W),

and

(12)

where

L =

and

N(HO = (-

1+αu αι?

0 ε2 dx2

-βau -βbu
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To study the bifurcation problem with respect to W=0, we consider the linear
eigenvalue problem of the form

(13)
λΦ = LΦ, xel,

Φ,(0) = Φx(l) = 0.

It follows from the Fourier series expansion that the eigenvalues of (13) cor-
respond to the ones of the matrix

— ε2y2 — aυ

— (1 + av)y2 — βau — (xuγ2 — βbu

-bv

where y — nπ. The resulting characteristic equation is

(14) λ2 + Pnλ + Qn = 0,

where

Pn = a(βΰ + v) + (l+αt; + ε2)y2

and

Qn = ε2(l+ocv)y4 + {βε2aΰ + av + (xv(av — bΰ)}y2 + β(a2 — b2)ΰv.

Since Pn>0, it is obvious to see that no Hopf bifurcation occur from W=Q, and
that zero is an eigenvalue of (13) if and only if Qπ = 0. Thus, the bifurcation

curves Cn are described by

-ε2(l+αϊ;)y2 + {a(bΰ - aϋ) - a} ϋ (^_Λ 0 Λ
C" ^"~ ε2au + (a2-l

If β and ε are used as bifurcation parameters under (A.I) and (A.2), the bifur-
cation curves Cn between β and ε for fixed α are drawn in Figure 1.

n2A 4Λ A
Figure 1. Schematic bifurcation curve in the (β, e) space;

A =
{a(bu—av)—a}v DB=

{oc(bu-av)-a}v
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Using the Lyapunov-Schmidt method, one can know the existence of small
amplitude solutions of the problem (11), (12) for any (β, ε) in some neighborhood
of each Cn (Mimura and Kawasaki [7]).

We are concerned with non-constant solutions for (/?, ε) far away from the
primary bifurcation curves, where we may expect that large amplitude solutions
exist. In this paper, we study the problem (8) and (9) in the case when β « 1
and/or ε«l.

3. Singular perturbation problem (0^ε« I)

In this section, we look for nonconstant solutions of the problem (8), (9)
when ε is a sufficiently small parameter for fixed β>Q. We transform u into w
through (1 + av)u = w. The resulting problem is

(15) xεl,

2 - av -

subject to

(16) w,(0) = wx(l) = vx(Q) = vx(l) = 0.

Thus, this problem is reduced to a standard two-point boundary value problem
of semilinear type. We deal with (15) and (16) instead of the original problem
(8), (9). First, let us see what are the nonlinearities in (15): Put, for simplicity,

1 1+αt? ""Jl+OLV

and

/ x / r> b\Vg(W,v)=(R2-av-ΎT^

The curves of/=g = 0 under (A.I) and (A.2) are drawn in Figure 2. Here we
note that/=0 has a humped effect from (A.2).
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/=o

- I / a

Figure 2. The zero curves of/and g\ c=(\ +av)ύ.

We first consider the reduced problem (ε = 0) of (15) and (16),

(17)

and

(18)

0 = 0(w, υ),
xe/,

w,(0) = wx(l) = 0.

Once a function v = h(w) can be obtained from the second equation of (17), we
have a scalar equation with respect to w,

From Figure 2, we have three different functions, say ι; = /t0(w)( = 0), v = hί(w)
and v = h2(w) (hQ<h2<ΛJ. Here we define /?(w) by

; s) =
(w), we(5, m),

for any fixed s e (R2/b, m), and then seek nonconstant solutions of the problem
(19), (18). Since F(w; s)=/(w, /z(w; s)) is a discontinuous function (see Figure 3),
we define a weak solution of the problem (19), (18) by

and

s), for all φ
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Figure 3. The nonlinearity of F(w; s) with a point of discontinuity w=s.

PROPOSITION 1. Let s be fixed arbitrarily such that F(w; 5) is monotone
decreasing on (s, ra). Then the problem (19), (18) has a family of periodic
solutions

satisfying R1/a<ws

n(x)<m9 where n is the mode number and n0 is some integer
depending on βF(w, s).

PROOF. The proof is almost the same as that in Mimura and et al. [9;
Theorem 1], so we omit it.

Using this proposition, we have the following existence theorem of the
reduced problem :

(20)

THEOREM 2. Consider the problem

0 = {(1 + αι?)tι}xje + β(Rί-au-bΌ)u9
x e/,

subject to zero flux boundary conditions (9). Under the assumption of Pro-
position 1, there exists n0 depending on βf and g such that a family of periodic
solutions

(see Figure 4).
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0 1

Figure 4. Spatial patterns of («£(x), v*(x)) with n=\ x* is a
point satisfying w (jt*)=j.

PROOF. From the solution wj(x) in Proposition 1, we construct ι J(x) by

S) =
for w£(x) < s,

for wj(x) > s.

This function is discontinuous because of the discontinuity of ft. It is seen that
(wj(x), vs

n(x)) is a solution of the problem (17), (18). Hence, by defining u*n(x)
by wj(x) = wj(x)/(l + αι£(x)), (w£(x), ϋj(x)) becomes a solution of the reduced
problem of (8) and (9). Thus, the proof is completed.

Let us mention the spatial structure of the solution obtained in Theorem 2
which shows segregating pattern. For brevity, we restrict the case when n = l
and that wf(x) is monotone increasing. Then it turns out that the solution of the
reduced problem, say (w(x), v(x)) has only one point of discontinuity x = x*
(0<x*<l) such that

u(x) = wj(x), u(x) = 0 on (0, x*)

and

ιι(x) = wί(jc)/(l + αι1(x)), v(x) = υl(x) on (x*,l).

Thus, we find that in the subregion (0, x*) one species (ύ) is non zero and the
other (v) is zero and that on the other hand, in (x*, 1), w(x) is monotone increasing
but v(x) is monotone decreasing, because ftι(wj(x)) is monotone decreasing in this
subregion (see Figure 4). This structure shows spatial segregation between two
species.

We next consider the case when ε is not zero but sufficiently small. The
discontinuities of (w(x), ι (x)) at x = x* suggest us that internal transition layers
appear in both arguments. Thus, this case is a singular perturbation problem
for two-point boundary value problems of Neumann type.

THEOREM 3. Suppose that s* defined by
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g(s*9 v)dv = 0

satisfies the assumption of Proposition 1. Let (w(x), v(x)) be any solution
of the problem (20), (18) when s = s*. Then there exist some positive constants
BQ and β0 such that for each fixed βe(0, βo)9 a family of nonnegative solutions
(w(x; ε), v(κ\ ε)) of the problem (8), (9) esists for any εe(0, ε0) which satisfies

lim ε i ow(x; ε) = w(x)

limεioφ;; ε) = φc)
almost everywhere in I

(see Figure 5).

0 1

Figure 5. Spatial patterns of (u(x\ ε), v(#; ε)) where ε is sufficiently small.

PROOF. We first discuss the problem (15), (16). Applying Theorem 2 in
Mimura et al. [9] to this problem, we can know the existence of a family of
solutions (vφc; ε), φe; ε)) which satisfies

s) = w(x) uniformly on /,

, s) = φc) almost everywhere in I,

where (w(x), φc)) is a solution of (17) and (18) obtained in Proposition 1 when
s = s*. Thus, using the relation (l-hαt;)w = w, we find a pair of functions (M(X; ε),
φc; ε)) which is a solution of the problem (15), (16). Moreover it turns out that

limεio w(x; ε) = limε;0 w(x; ε)/{l + αι;(x; ε)}

= w(x)/{l-f αt;(x)} = u(x) almost everywhere in /.

Thus, we may only show the nonnegativity of the solution (w(x; ε), v(x; ε)).
It is obvious from w(x ε) > 0 that u(x ε) = w(x ε)/{l + αr(x ε)} is positive. Then
it suffices to show the nonnegativity of φc; ε). We first note that there exists

such that for 0<ε<ε! and some <5>0
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(21) Rja < R2/b - δ < w(x; ε) < m + δ,

since R2/b < w(x)< m. Presuppose that there is a point x e I such that v(x ε) <0.
Then the inequalities (21) lead to g(v(x\ ε), w(3c; ε))<0 for 0<ε<ε1. This shows

vxx(x; ε)<0 which contradicts to v(x\ ε)<0. Thus the proof is completed.

4. Regular perturbation problem (0 ̂  β «I)

In this section, we seek large amplitude solutions of the problem (8), (9) in
the case when β is sufficiently small. In the same manner as that in the previous
section, the simpler system (15) subject to (16) is considered instead of the original
one. This type of problems were discussed by Keener [5] and Nishiura [11].

When β I 0, (15) and (16) are reduced to the following problem for new
variables (c, v) by using the zero flux boundary conditions:

(22)

(23)

and

(24)

0 = ε2vxx -f g(c, v), xel,

= 0,

where w = c is a constant function. The nonlinearity of g with respect to v shows
that there are two critical values c_ and c+ such that 0 = 0 has only one non-
negative solution I;_(C)(Ξ=O) for fixed c satisfying c+<c, three ι;_(c)( = 0), v0(c)
and V+(C)(V-.<VQ<V+) for c_<c<c+ and two u_(c)( = 0) and v+(c) for 0<c<c_

(see Figure 6).

/-\
\

Figure 6. Dependency of c on the nonlinearity of g(c, v).

Our aim in this section is to look for nonconstant solutions (c, v) of the re-
duced problem (22)-(24) for c_ <c<c+. First suppose that one of the variables
c is arbitrarily fixed and then consider the problem (22), (24) with respect to v
only. This simplification makes the problem considerably treatable, because a
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phase-plane analysis can be applied. Energy form of (22) subject to (24) is

(25) (ε2/2)(O2 + G(c, υ) = E,

where potential energy G is given by

(26) G(c9υ)=\ g(c9s)ds
Jvo(c)

and energy £ is a nonnegative constant which parametrizes all nonconstant

solutions v(x\ c). We note that, if strictly monotone increasing solutions are

obtained, other solutions can be constructed from them. Hence, it is sufficient

to consider monotone increasing solutions obtined from the equation

(27) = 8

instead of (25). Putting

f t> + (O
E+(c)=\ g(c,s)ds

Jv0(c)

and

Cυ-(c)
£_(c)=\ g(c,s)ds,

Jvo(c)

we define E*(c) by

Then it is found that (27) has a strictly monotone increasing solution ι?(x; £, c)

for 0<£<£*(c)(c_ <c<c+), by solving the inverse function of

(28)

where ε=ε(£, c) is given by

(29) β-» =
-

and ξ±=ξ±(JE, c) are solutions of E — G(c, t;) = 0 satisfying ι;_(c) <£_(£, c)<

ξ+(£, c)<ϋ+(c). More precisely, the following Lemma is known (see [11, 13],

for instance) :

LEMMA 4. Consider the problem (22), (24) for each fixed ce(c_,c+).

Then strictly monotone increasing solutions v(x; E9 c) are given by an E-

parameter family of solutions (ε(£, c), φc; £, c)) /or 0<£<jE*(c). Moreover,

it holds for ce(c_, c+),
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( i ) lim^io φc; E9 c) = vQ(c) uniformly in /,

(ii) lim£io ε(E, c) = {̂ (c, v0(cW/2/π = ̂ 1/2

(for the definition of A, see Figure 1),

(iii) lim£i£,(c)φc; E, c) =

' u_(c) compact uniformly on [0, 1) for G(c, u_(c)) < G(c, tf+(c)),

v+(c) compact uniformly on (0, l]/0r G(c, u_(c)) > G(c, ι>+(c)),

ί Me), 0 < * < M,
ucW = /or G(c, ι -(c)) = G(c, t;+(c)) ,

[ v+(c)9 M<x < 1,

where m^=m_(c) = |Gt?y(c, ϋ_(c))|, m+ =m+(c) = |Gt;w(c, r+ίc))! and M =

(iv) lim£ ; £.(c) ε(£, c) = 0.

The limit processes (i) and (ii) indicate that (ε, t;) = (A1/2, u0(c)) is a primary
bifurcation point of the trivial solution t;0(c). On the other hand, (iii) and (iv)
result from singular perturbation analysis as the diffusion coefficient ε2 tends to
zero.

The next problem is to consider

(30) F(£, c) ΞE /(c, v(x E, c))dx = 0

by substituting the solution v(x; £, c) into (23). If (30) has a solution c =
then it turns out that (c(E\ φc; £, c(£))) is a solution of (22)-(24).

Define Tin the (E, c) space by

which is the domain of ε=ε(£, c), and denote by Bθ9 B_ and B+ each boundary ot
T, £ = 0, £ = £?(c) for c_ <c<c* and E=Ef(c) for c*<c<c+9 respectively, where
c* is some number defined from Eί(c*) = Eί(c*). The problem is to consider
whether or not the component of solutions (c(E), v(x; £, c(£))) of (22)~(24) in
Γ, say S0 exists globally with respect to E. This problem has investigated by
Mimura and Nishiura [8] and more precisely by Nishiura [11] who argued the
problems for diffusive activator-inhibitor systems without cross-diffusions.
Applying their results to (30), we have

THEOREM 6. The component 50 in Γ, containg (0, c), exists globally with
respect to Ee(09 E*(c*)) or εe(0, Aί/2), in other words,
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where c = (

Thus we can find the existence of solutions (c(E), υ(x\ E9 c(£))) of (22)-(24)
and then obtain a solution (u(x\ E9 c(E))9 v(χ-9 E9 c(£))) of the original problem
(8), (9) in the limit β j 0, by using the relation (l+αι?)w = c. Consequently, we
clearly found that two competing species exhibit spatial segregation, because u
(resp. t;) is strictly monotone decreasing (resp. increasing) (Figure 7). More-
over, we can see a striking segregating phenomenon in (u, v) in the limit E-»E*(c*)
or e->0 (Figure 8).

u(x\E)

0 1

Figure 7. Spatial patterns of (u(x\ E\

0

v(x £*)

u(x £*)

Figure 8. Spatial patterns of (u(x\ E\
v(xι E)) in the limit e j 0.

For the case when 0</?«!, we prefer to avoid the discussion and invoke
the paper by Nishiura [11].

5. Concluding remarks

We have found large amplitude solutions of stationary problems of com-
petitive interaction and self- and cross-diffusions. The appearance of strong
heterogeneity in both arguments is of great interest from mathematical and
ecological viewpoints. This is caused by the quasilinearity involved in the
system. In the case when β I 0, the phenomenon is quite different from ones ap-
pearing in models of semilinear type where one of the components is nearly flat
(Keener [5], Nishiura [11]).

We have not discussed the stability problem of the solutions obtained here.
This problem has been still open. Therefore we only numerically show that a
solution of the unsteady problem of (8) and (9) tends to a non constant steady
state constructed in Section 4 (Figure 9).
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Figure 9. Segregation in the evolutional problem of (8) and (9) where β is sufficiently small.
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