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1. Introduction

From numerical aspects, difference schemes for solving initial value problems
have been extensively investigated for a long time. In linear initial value prob-
lems, Lax obtained the remarkable result which states that the stability of a
consistent difference scheme is a necessary and sufficient condition for the con-
vergence if the problem is well posed [22]. This has become well known as
Lax’s Equivalence Theorem. The stability used there means conceptually the
boundedness of numerical solutions given by the difference scheme. For numeri-
cal studies of engineering and physical problems, many authors have constructed
several difference schemes. In particular, Peetre and Thomée [21] investigated
these in the Sobolev spaces and gave several estimates for the rate of convergence,
assuming that they are stable. For linear hyperbolic systems the theory of the
Sobolev spaces of L,-type has played an important role in establishing the ex-
istence and uniqueness of solution. Along such lines the L,-stability of difference
schemes has also been studied. Such a stability can be obtained in terms of the
amplification matrix defined by the Fourier transform of the difference operator.
Lax [13], Lax and Wendroff [14, 15], Kreiss [11], Yamaguti and Nogi [31],
Lax and Nirenberg [16], Vaillancourt [28, 29, 30], Koshiba [10] and so on [20,
25, 26, 27] are relevant here.

Though a considerable portion of the progress in difference schemes for
hyperbolic systems is confined to the linear theory, we must mention some results
related to nonlinear theory of initial value problems. Strang [24] contributed
to the establishment of convergence of difference approximations to smooth
solutions in nonlinear problems. This will be briefly stated below. Modifying
Lax’s Equivalence Theorem, Kreth [12], von Dein [3] and Ansorge [1] dis-
cussed the convergence of difference approximations in an abstract setting and so,
to our knowledge, their results seem less applicable.

Concerning weak solutions of quasi-linear hyperbolic equations of con-
servation laws, Le Roux [17] studied problems of the convergence for difference
approximations.

In nonlinear initial value problems, Lax’s Equivalence Theorem is not valid
in general, so the convergence must be proved without the help of the stability
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of the nonlinear scheme. From this requirement, Strang [24] discussed the
convergence of difference approximations for the following quasi-linear hyperbolic
system:

(11) %%“(ts X) = Z?:l Aj(t, X, u(t’ X)) "gx_uj’ (t9 X) + B(ta x, u(ta x))
(xeR*;0=<t=T),
(L2) w0, x) = ug(x),

where At x, -)(j=1,...,n) are NxN matrices, B(t, x, -) and u(t, x) are
N-vectors. From analytical point of views the existence and uniqueness of smooth
solution of (1.1), (1.2) are proved by Fischer and Marsden [4, 5] and Kato [8, 9].
The approximating difference scheme for the above system is written in the
following form:

(1.3) viti(x) = S,(jk)vi(x) (J=0,1,.,v—1;0=vk = T),
(1.4) vO(x) = ug(x),

where k and h denote the time step and the space mesh width, respectively, and
S,(?) is a difference operator derived from the discretization of (1.1). Strang
obtained the following result: Let & be

¢(]k9 X, Uj, k, h) = Sh(.]k)vj(x)‘

Suppose that A; (j=1,...,n), B, ® and a solution u of (1.1) have continuous
derivatives up to order m+[(n+1)/2]+r+2Y for some positive integer r and
that the difference scheme (1.3) approximates (1.1) with accuracy of order m.
Then if the first variation of ® is l,-stable, it holds that

(1.5) v¥(x) = u(t, x) + O(k™) (xeR"; t =vke[0, T]),
where k|h is kept constant as h varies.

His method of proof is as follows: He first constructed the expansion
(1.6) w(t, x, k) = u(t, x) + 39, kiwl(t, x), qg=m+ [(n+1)/2],

so that (1.6) satisfies (1.3) with an error o(k4*!). He found the fact that w(vk, x, k)
—v*(x) is governed by the I,-stability of the first variation of @. Then, estimating
two quantities w(vk, x, k)—v*(x) and w(vk, x, k) —u(vk, x), he obtained the rate
of convergence (1.5). This method is simple, but the calculations are too com-
plicated for us. R

1) [a] denotes the greatest integer not exceeding a.
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Thus, in the same framework as Strang’s we shall give a different method
from his, so that we obtain improved results. Our method is to directly estimate
u(vk, x)—v"(x) in the maximum norm by using the Sobolev-type theorem. The
discussion is carried out in the way almost similar to the one used in [12], [3] and
[1]. We assume that S,(f)v/(x) is a function of vi(x +hp"V),..., vi(x+hp®), t, x
and h, where p(’s are multi-indices of integers. Then we can divide the function
S,(H)vi(x) into two parts by the mean-value theorem, i.e.,

(1.7 Sy(jkwi(x) = Ly(jk, v/; h)vI(x) + hG(jk; hyi(x),

where L,(jk, v/; h) is the first variation with respect to v/(x) and G(jk; h)v/(x)
is the remainder. Using the stability of L,, we estimate u(vk, x) —v*(x) in the
Sobolev spaces of L,-type, and then, obtain a convergence theorem (Theorem
3.1),ie.,

lu(vk, -) —v*(-)|, = Ch™,

where u is assumed to be differentiable up to order m+[n/2]+r+2, and |-|,
denotes the norm in the space C% consisting of all functions which, together with
all their derivatives up to order r, are continuous and bounded. We note that
when r=0, this result leads to Strang's result (1.5).

We next show the stability of L, by Lax-Nirenberg Theorem for difference
operators, imposing some conditions on the amplification matrix [ of L,, and
obtain a convergence theorem (Theorem 5.1), which states as follows: The
difference approximations converge to the exact solution in the C3-norm by the
Sobolev-type theorem, if I —I1*1=0.

Since the original system (1.1) does not contain the second-order derivatives
of u, it should seem needless to derive the C%-convergence, but reasonable to
derive the Cj-convergence. In order to prove such a convergence we prepare an
inequality (Theorem 4.2) excluding the second-order derivatives of the amplifi-
cation matrix. This inequality corresponds to the one in Lax-Nirenberg Theorem
which serves to establish the energy inequality of linear difference scheme. Using
it, we arrive at the Ch-convergence theorem (Theorem 5.2), where it is assumed
that there exist two matrix functions a (=0) and b satisfying I — [*/=b*ab.

2. Preliminaries

We denote by C¥ the complex N-dimensional space. We abbreviate C1=C
and denote the norm of z in CV by [z|. We define the norm of an N x N matrix
by its operator norm in C¥, writing as |a]. Unless otherwise stated, we denote by
u, v, w, f, @, etc. N-vector functions. For a multi-index a=(ay,..., &,) of non-
negative integers we use the notations
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_ 0
1T Ox

0%=0%.--0%n, 0, (G=1..,n), lo =0y +-+a,.

J

For any nonnegative integer m let C% be the space consisting of all functions

which, together with all their partial derivatives up to order m, are continuous

and bounded on R*. Then C7% is a Banach space with the norm |-|,, given by
I(plm = ZIalém sup, |a:¢(x)| .

The space W™ stands for the Sobolev space of L,-type with the scalar product
(, )n and the norm | -|,. For simplicity we write ( , ) and | -| instead of
(5 )o and | - [o, respectively. In this paper we use the following Sobolev-type
theorem [18, 19]:

THEOREM 2.1. (i) Let m>n/2+m’ (m'=20). Then WmcCy, i.e.,
(2'1) |flm' é Kl(m,’ n, N) ”f”m for a” f(x)e Wm’

where K (m’, n, N) is a constant depending on m’, n and N.
(ii) Let m>n/2 and let

Z;‘=l ]a(j)] é m, Ia(j)l 2 1 (] = 19"" r),
where a') (j=1,..., r) are multi-indices of nonnegative integers. Then

(2'2) ”a;“)fl"'az(r)fr“ =<: K2(m9 n, N) HS’=1 ”f:]”m

Sor all f(x)e Wm (j=1,..., r), where f(x) (j=1,..., r) are N-vector functions, the
operation - denotes the componentwise multiplication and K,(m, n, N) is a
constant depending on m, n and N but not on o) (j=1,...,r).

3. Difference approximations and their convergence

3.1. The difference scheme
Put
3.1 J =[0, T], K =0, ko], H = [0, hy],

where k, is a positive constant such that ko <T and h,=k,/A for some constant
A.  For the time step k and the space mesh width h we approximate the solution
of (1.1), (1.2) by the following difference scheme of the form, keeping the ratio
A=k[h constant as h varies:

(3.2) vi*tY(x) = B(jk, x, {vi(x+hpW)}T,..., {vi(x+hpD)}T, h)
(j=0,1,.,v-1; keK; vk £ T),
(3.3) v%(x) = uo(x),
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where pD=(p{",..., p) (j=1...., q) for integers p{’’ (i=1,..., n), B(t, x, y, p)
is an N-vector function defined on J x R” x(C¥)?x H and {-}7 stands for the
transpose of a vector. The space variable of (C¥)? is denoted by y in the sense
that

Y= (Vitreeos Vins Yatseees YaNseess Yaireees Van) -

We assume that &(t, x, y, ) is continuously differentiable on J x R" x
(CM)1 x H and that

(3.4 (1, x, 2,...,2,0) =z for all (¢, x, z)eJ x R" x CV,
Then by the mean-value theorem we have
&(t, x, v(x, h), h) = v(x) + D(t, x, v(x, h), h) — d(t, x, v(x, 0), 0)
= v(x) + 291 Li(t, x, o(x, h), h) {v(x+hpW)—v(x)}
+ hg(t, x, v(x, h), h),

where

1
% 3w = ([ 2,,00, x 6y +1-0)y', O)de,...
1
Soamdﬁ(t, x, 0y +(1=0)y’, ou)de) G=1,0) ),

1
ot %, v, 1) = || 3,800, % Oy+(1=0)y', Op)de,

V' = (Fi1seeer ViNs Vitreews ViNseews Vitse-s Yin) €(CY)9,

_ 0 . . Y
ayﬁ - a’v—; (J = 1,..-, q;1= 1,..., N), au = _._a_u__
and
(3.5) v(x, p) = (VT +pp®),..., vT(x+up@®))  (neH).
Put

Ln(t9 v #) =1 + Z§=l Ij(t: X, v(x, /‘t)’ ﬂ)(Tgm"I) (" EH)a

where T? is a translation operator defined by

TP u(x) = v(x+npP)  (j=1,.,9).
Then it follows that
(3.6) o(t, x, v(x, h), h) = Ly, v; h)u(x) + hg(t, x, v(x, h), h)

and
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3.7 Lt v; Wly=0=1 forall (t, e x H.

It is clear that Ly(t, v; h) is a linear operator for any fixed ¢, v and h.
From the above consideration, the difference scheme (3.2) may be represented
by the form introduced in Section 1, i.e.,
(3.8) vI+1(x) = S,(jk)vi(x) (j=0,1,..,v=1; keK; vk £T),
(3.9 vo(x) = uo(x),
where S,(t)v(x) (n € H) takes the form of

(3.10) S (Dv(x) = L,(t, v; wo(x) + uG(t; po(x)

by using

(3.11) Lt v; 1) = Zoealo(t, x, 0(x, ), TG, 0 =(0y,...,0,)
and

(3.12) G(t; wu(x) = g(t, x, v(x, W, p) (4, neH).

Here A is a finite set, o; (j=1,..., n) are integers and v(x, u) is given by (3.5).
Furthermore, N x N matrix functions I (¢, x, -y, pt) (6 € A) and an N-vector func-
tion g(t, x, y, u) are defined on J x R*" x(C")2x H. In view of (3.7), we assume
that

(B13) Y,alt,x,y, =1 forall (t,x, y,n)ed x R* x (CV)1 x H.

In the sequel we are concerned with the difference scheme of the form (3.8).

3.2. Accuracy and stability

To state the definitions of accuracy and stability we introduce two sets
Wm(d) and U'"™(d) for arbitrary integers I, m (I=1; m=0) and an arbitrary
number d>0. W™(d) is given by

wn(d) = {p(x)e W": |lo|,, < d},
and U*™(d) consists of all functions u(t, x) with the properties:

1) u(t, -)eNio Ci(J; Wmti-i), where Ci(J; W) denotes the space of all
functions u(t, -) from J to WJ such that u(t, -) is i-times continuously differ-
entiable with respect to ¢ in the W/-topology;

D) maXogisiMaXogesr [0(t, Mlwei-i Sy 0= (5)

3) u(t, -)is the unique solution of (1.1) with the initial value u(0, -).

DEerFINITION. Let d be a positive number and let m,, m,, my (m;=1; m,=

m,+1; my=0) be integers. Then we say that the difference scheme (3.8) ap-
proximates (1.1) with accuracy of order m; in Um2.m3(d) if the following con-
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ditions (a-1) and (a-2) are fulfilled:
(a-1) S,(¢) is a mapping from W™ into itself for any fixed (¢, h)e J x H;
(a=2) Umzm3(d) is not empty and there exists a constant ¢, such that

(3.14) lu(t+k, -) = S,(ult, )lw, = chmt?

for all u(t, x) e U™2.m3(d), ke K and t, t+ ke J.

For a given v we define the following difference scheme derived from (3.10)
by '
(3.15) witl(x) = L,(jk, v; hwi(x) (j=0,1,..,v—1; keK; vk £ T),
(3.16) wOo(x) = ug(x).
From now on we call (3.15) the linear difference scheme of (3.10).

DErFINITION. Let d and m be a positive number and a nonnegative integer,
respectively. Then the linear difference scheme (3.15) is said to be stable in W™
for all w;e Wm(d) (j=0, 1,...) if the operator L(t, -; h) satisfies the following
conditions:

(s-1) When a function ve W™(d) is given, L,(t, v; h) is a linear operator
from W™ into itself for any fixed (¢, h)eJ x H;

(s—2) There exists a constant ¢, such that

(BA7) ILyt+ =Dk, wy_ys DL+ =2)k, w,_ 25 h)---Ly(t, wo; Mullm = csflull
for all wi(x)e Wm(d) (j=0, 1,...,v—=1), u(x)e W™, ke K and ¢, t+vkeJ.
For all integers v=0 and ke K we define ¢*(t, v(x)) by
(3.18) @/*U(t, v(x)) = S(t+jk)i(t, v(x))  (j=0,1,..,v—=1;v=1),
(3.19) ¢, v(x)) = v(x).

3.3. Convergence theorem

We show the following convergence theorem which improves Strang’s result

[24].

THEOREM 3.1. Let the difference scheme (3.8) approximate (1.1) with
accuracy of order my in Um2m3(d,) (d{>0; m;=1; m,=2m;+1; m3=0) and let

(3:20) I{La(t, w3 h) = Ly(t, v; W}ullm, < cshllw—vlm,,

(3.21) 1G(t; Wyw — G(t; h)vllmy = c3llw—0lim,

for all w(x), v(x)e Wm3(d,), u(x)e Wms*1(d,), he H and te J, where d, (d,>d,)
and c, are constants. Suppose that the linear difference scheme (3.15) is stable
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in Wms for all w;e Wms(d,) (j=0, 1,...). Then

(3.22) (¢, u(t, x)) e Wms(d,),

(3.23) lu(t+vk, -) — (1, u(t, Dllm, < {(1+cgh)*— 1} hm
for all u(t, x)e Um2.m3(d,), ke [0, k,] and t, t+vkeJ, where

(3.24) ¢y = max{c,, 2¢3, ¢{C3, 2¢5C3},

(3.25) ky = min {ko, A{(d, —d,)exp(—c,T/A)}t/m},

¢, is a constant satisfying (3.14) with d=d, and c, is also a constant satisfying

(3.17) with d=d, and m=m;.
REMARK 3.1. (i) Since
(L+c4h)” < exp(caT/2)
for all integers v=0 and k € K such that vk<T, it follows from (3.23) that
(3.26) lu(t+vk, -) = ¢*(t, u(t, Nln, < {exp(c T/} hm
for all u(t, x)e Um2.m3(d,), ke [0, k,] and t, t+vke J.

(i) Let my=[n/2]+1. Then, by using the Sobolev-type theorem (Theorem

2.1), we obtain from (3.26)

(3.27) lu(t+vk, -) — (1, u(t, -Dlny=gnj21-1 < Ch™

for all u(t, x)e Um2m3(d,), ke[0, k,] and t, t+vkeJ, where C is a positive

constant.

ProOF OF THEOREM 3.1. The proof will be done by induction on v (v=1).

For v=1 it follows from (3.14) that
(3.28) lu(t+k, ) — o't u(t, - Dlp, = ch™m*t < ¢ hmtl,
Since (3.25) implies

cah™*t < (¢, T/ (dy—dy)exp(—c,T/A) s d, — dy,
we have
(3.29) o', u(t, Nlm, < lu(t+k, Ym, +dy —dy S d,.
Hence (3.22) and (3.23) for v=1 follow from (3.29) and (3.28).

Suppose that (3.22) and (3.23) hold for all j (1< j<v—1), where v>1.

simplicity we put
uj = u(t+jk, X), wj = ¢j(ts u(t’ X)),
Li(v) = Ly(t+jk, v; h), Gv = G(t+jk; hyv(x),

For
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Fj(v)w = Li(v)w + hG (j=0,1,..,v).

Then
3.30) u,—w,

=u, = Fy_iWy_uy_y + Z}2HIT =S i Fiwpuy - = T2  Fj(Wuy— -1}

=u, = Fyo Wy uy—y + 22T - Liwp) {uy—s — F ooy i (Wy g Uy -1 -
By the inductive hypothesis we have from (3.20) and (3.21)
(331) lu; = Fyoy(Wj—ttj— tllm,

Slluj—Fjo (i Jujgllmy + 1Fjo oDy — FjogWi— D1 llm,

S ;= Sut+ G =Dl g+ L - (- ) =L y(Wj— )}t 1 [y

+h||Gj—qujg — Gjm Wiy llmy
S crhmtt £ 2¢3hflujy — wis gl S e h™* 4+ 2¢3{(1+c4h) ™1 — 1 hmitt
(j=1,.,v).

Applying the stability of the linear difference scheme (3.15) and using (3.31), we
obtain from (3.30)
Ity =Wyl

S lluy = Fyoy(Wym Dty g llmy + €2 2= thy—i — Fymi i (Wym i Dby i 1 |y

< e bt 4 2e3{(1+c4h)~t — 1 pmi+t

+ ¢, YvzHe kMt 4+ 2¢5{(1 + ¢ h)v~i~1 — 1} it 1}

S vt 4 ¢ T2 {( +cgh) —13hm*t < {(1+ ¢ h)y —1}hm,

and by (3.25)
1Wallms < Tttyllmg + {(L+cah) = 13hm < dy + {exp(caT/D}hm < d.

Hence our induction on v is complete. This gives the proof.

REMARK 3.2. The assumption (3.13) is not used in the proof of Theorem
3.1. However, it will be used in Section 6.2.

4. Families of linear difference operators

4.1. Definitions

We regard L,(t, v; h) as a one parameter family of the linear difference
operators depending on ¢, when v is given. In this section we show some proper-
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ties of linear operators mapping L, into itself. Some results obtained here will
be used to show the stability of the linear difference scheme (3.15).

For N x N matrices a,(t, x, p) such that d%a,(t, x, p) (|| =7) and 0,a,(t, x, p)
are continuous and bounded on J x R* x H, we write

4.1) Ah(t; W = X, a4t x, WTg, g = (Ul""’ Cn),

where the summation is taken over some finite set of 6. Here we define "
(r=1, 2) by the set of two parameter families of A,(t; ) (h, ue H) and also
define & (r=1, 2) by the set of one parameter families of A,(¢; h) (h € H).

Then it is found that w2c.w!, i</} and that A,(t; p)is a bounded
linear operator from L, into itself, if it belongs to «!. We have the following
lemmas:

LemMA 4.1.  Let A,(t; p) belong to 1. Then

4.2 I{A4x(t; h) — Ax(t; O}ull < C,hlull
for all u(x)e L,, he H and teJ, where
(4'3) CA = chupt,x,u Iauaa(t’ X, /l)l .

Proor. The proof is obvious by the mean-value theorem.

LemMA 4.2. Let A,(t; h) and B,(t; h) belong to &7 (r=1, 2). Then the sum
A(t; h)+By(t; h), the product A,(t; h)B,(t; h), the operation pA,(t; h) (peC)
and the adjoint A}(t; h) also belong to &% (r=1, 2).

ProoF. The statements for A4,(t; h)+ B,(t; h), A,(t; h)B,(t; h) and pA,(t; h)
can be easily shown. Let A,(t; ) be written as (4.1). Then we have

4.4) Aj(t; h) = 25 a5(t, x—ho, DT},

which belongs to &7} (r=1, 2), where a¥ denotes the conjugate transpose of the
matrix a,.

Now we introduce the amplification matrix of A,(t; h) € &§, which will be
used in the next subsection. Let A4,(t; u) be of the form (4.1). We put

4.5) at, x, o, p) = ¥, a,(, x, wexp(ic-w) (weR").
Then
(4.6) At wu(x) = F71a(t, x, hE, W(Fu)(&) (EeR),

where (Fu)(¢) and (&F ~v)(x) denote the Fourier transform of u(x)e L, and the
inverse Fourier transform of v(§), respectively. In the case when a, is independent
of x, i.e., a,(t, x, Wy=a,t, p), it follows that
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4.7) [ 4x(t; Mux)|| = lla(t, hE, B)(Fu)(©)],
where
(4.8) a(t, o, p) = 3, a,(t, Wexp(ic-w) (weR").

It is said, in view of (4.7), that a(t, w, h) is the amplification matrix of A4,(¢; h).
In the following we would say that a(t, x, w, h) is the amplification matrix even
if a,(t, x, n) depends on x.

4.2, Lax-Nirenberg Theorem

Without proof we first state Lax-Nirenberg Theorem [16, 30] which plays
an important role in establishing the stability of the linear difference scheme
(3.15).

THEOREM 4.1 (Lax-Nirenberg). Let a(t, x, w, h) be the amplification
matrix of A,(t; h)e o£3, where A,(t; p) is of the form (4.1). Suppose that
a(t, x, w, 0) is hermitian and positive semi-definite:

4.9) a(t,x, ,00=20  forall (1, x, w)eJ x R* x R",
Then there exists a constant K , such that

(4.10) Re(A,(t; hu, u) 2 — K h|u|?

for all u(x)e L,, he H and te J, where

(4.11) K, =27Y(lals,0 + clalo,2) + Cy,

(4.12) |alym = X o [5UPja 51 {8UPs,x 05a0(1, X, O} (1 +06F+ - +07)"/?
(Lm=0,1,2),

¢ is a constant independent of A,(t; h) and C, is given by (4.3).

We next show the inequality, which plays the same role as the one (4.10),
excluding the second-order derivatives of the amplification matrix. For this
purpose we introduce Condition A to be imposed on the amplification matrix,
and Property B, which a partition of unity {y¥2(x)} possesses, to be used in es-
tablishing the above inequality.

ConNDITION A.  When h=0, the amplification matrix a(t, x, w, h) of A,(t; h)
€ &/} is written as

(4.13) a(t, x, o, 0) = g(t, x, ®) T, s (@),

where
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(4.14) g(t, x, ©) = X gut, X)e,(®),
(4'15) sj(w) = Zr quexp(ir'w)’ r= (7'1,..., rn)s
(4.16) en(@) X jlsj(@)> = X emexp(il-0), 1= (..., L),

the summations are taken over respective finite sets of indices, g;, and e,, are
constants, ess-sup, |e,(w)| is finite and 02g,(t, x) (Jo| 1) are continuous and
bounded on J x R".

PROPERTY B. (1) ¢ (x)=0, Y, (x)eC>, supp ¥ (x)=V,={xeR": |x— x|
<6} for all a, where ¢ is a positive constant and

X® = (80t [/ Ny, O/ /1), & = (0g5eees 0), & =0, £ 1,... (i = L,..., n);

@ Z¥ix)=1;
(3) There exists a constant K(d) such that

Y ipis1 108 (x)| < K(6)  forall xeR".

Let M(x) denote the number of « such that y,(x)*0 for each x e R*. Since M(x)
is bounded on R" by (1) of Property B, we put M =sup, M(x). Then we have

THEOREM 4.2. Let the amplification matrix a(t, x, », h) of A,(t; h)e L}
satisfy Condition A. Suppose that g(t, x, ) is hermitian and that there exists
a positive constant ¢ such that

4.17) g(t, x, ) = el
for all (t, x)e J x R* and for almost all e R*. Then
(4.18) Re(4,(t, hu, u) 2 3,3 (6—0lgl1,.) A1)
= 2lgl1,0h 222 Cijll Ajapaul? — Coh|lul?,

for all u(x)e L,, he H and te J, where

4.19) Ap = 2,q;,Th,

(4.20) 191,00 = Zm {2 i=1 5P, |0x9m(t, X)|} €55 - sUD,, |en(@)],
4.21) Cyj= 2, (X1 | max(|gl, 1),

(4.22) C; =19l1,0 2;Cyj + C4 + MK?(9) lalo,2ho,

and C, is given by (4.3).

This theorem will be proved in Section 6.1.
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5. Convergence theorems

5.1. Condition C

In this section we are concerned with the difference scheme (3.8)~(3.12) under
the assumption that (3.13) holds. We introduce Condition C imposed on the
difference scheme.

Conpition C. (1) I, x, y, n) (o6 € A), together with all their first-order
derivatives, are continuous and bounded on JxR"x(CY)2x H for any fixed
number d >0, where Cy ={z e C":|z|<d};

(2) 020811, x, y, p) (6 € A) and 02089(t, x, y, p) (Ja|+|B| <m) are continu-
ous and bounded on J x R* x (CY)4 x H for any fixed number d >0, where m=2.

Under Condition C, L,(t, w; h) belongs to 4 (r=1,2) for a given w(x)
e Ws (s>n/2+r). We have the following lemma.

LEMMA 5.1. Let Condition C be satisfied, where m>n/2+1. Then:
(i) For every d>0 there exists a constant c4(d) satisfying

5.0 H{Lu(t, w; B) — Ly(t, v; W}ullu—y S cs(dhlw — vfl,—y
and
(5.2 1G(@; Wyw — G(t; hllmw—1 < c3(d) [W = vl -1

for all w(x), v(x) e Wm=1(d), u(x)e Wm(d), he H and teJ.
(ii) For a positive number d and a constant M, let

(5.3) ILu(t, w; hull < (1+Mqoh) ||ul]

for all w(x)e Wm™(d), u(x)e L,, he H and teJ. Then there exists a constant M,
such that

(5.4 Ly, w3 Wullm < (1+Mh) ul,

for all w(x)e W™(d), u(x)e W™, he H and te J. Moreover, the linear difference
scheme (3.15) is stable in W™ for all w;e Wm(d) (j=0, 1,...).

The proof will be given in Section 6.2.

Under Condition C let I(t, x, w(x), @, h) be the amplification matrix of
L,(t, w; h) and let

(5.5) It, x, z, ®) = ¥ oen L,(t, X, 2,..., 2, 0)exp (ic - ).
Then it follows that
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(5.6) I(t, x, w(x), @, h) = X e L,(t, x, w(x, h), h)exp (io - w)
and
(5.7 I(t, x, w(x), @, 0) = I(t, x, wT(x), w)

for all w(x)e W™ (m>n/2+1) and (¢, x, ) eJ x R* x R", where w(x, u) is de-
fined as v(x, u) (see (3.5)).

5.2. Convergence theorems

In this subsection we state two convergence theorems (Theorems 5.1 and
5.2) in terms of the amplification matrix.

THEOREM 5.1. Assume that Condition C is satisfied, where m=[n/2]+4,
and that the difference scheme (3.8) approximates (1.1) with accuracy of order
my in Um2.m3(d,), where

(5.8) di>0, myz21, my=2m;+1, my=_[n/2]+3.
Suppose that there exists a constant d, (d,>d,) such that
(5.9 I—1*, x, w(x), o, OU(t, x, w(x), , 0) = 0

for all w(x)e Wms(d,) and (t, x, w)eJ xR*x R". Then for sufficiently small
k>0 there exists a constant cs such that

(5.10) lu(t+vk, -) — ¢*(t, u(t, -)llm, < csh™

for all u(t, x)e Um2.m3(d,), ke[0, k] and t, t+vkeJ. Moreover, it holds that

(5.11) lu(t+ vk, -) — ¢(t, u(t, )|, < Chm

for all u(t, x) e Um2.m3(d,), ke [0, k ] and t, t+vk e J, where C is some constant.
REMARK 5.1.  As a sufficient condition under which (5.9) holds, we obtain

(5.12) I=1¥1, x, z, w)l(t, x, z, ®) =0

for all (¢, x, z, w)e J x R" x C§, x R", where d3=K,(0, n, N)d,. The expression
(5.12) can be shown by the Sobolev-type theorem.

PRrOOF OF THEOREM 5.1. In view of Theorem 3.1 and Remark 3.1, it suffices
to show that the assumptions of Theorem 3.1 are satisfied. By the assertion (i)
of Lemma 5.1 the inequalities (3.20) and (3.21) hold with c¢;=c;(d;). To prove
the stability of the linear difference scheme (3.15) we now show that there exists
a constant M, such that the inequality (5.3) holds, where d=d, and m=m;.
Give a function w(x) € Wms(d,). It follows from Lemma 4.2 that
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Ay, w; h) =1 — L¥(t, w; h)Ly(t, w; h)

belongs to 3. Denoting by a(t, x, w(x), , h) the amplification matrix of
A(t, w; h), we find that

a(t, x, w(x), o, 0) = I — I*(t, x, w(x), w, 0)I(t, x, w(x), ®, 0).
Since (5.9) leads to a(t, x, w(x), w, 0)=0, Theorem 4.1 yields
(5.13) Re(A4,(t, w; hu, u) = — K 4h|u|?
for all u(x)e L,, he H, te J, and hence
(5.14) IL(t, ws Mull < (1 + K4h) |lu]

for all u(x)e L,, he H, teJ.
Applying the Sobolev-type theorem

(5.15) |wly = Ky(2, n, N) [Wllm, < Ky(2, n, N)d,  forall w(x)e Wm(d,)

and Condition C to the representations of C, ((4.3)) and K, ((4.11)), we obtain
a constant M, independent of w(x) such that

K, =M, for all w(x)e Wms(d,).

Therefore (5.3) follows from (5.14), and the linear difference scheme (3.15) is
stable in Wm: for all w; e Wms(d,) (j=0, 1,...) by the assertion (ii) of Lemma 5.1.
Thus the assumptions of Theorem 3.1 are satisfied. This completes the proof.

According to this theorem, the difference approximations v”(x) defined by
(3.8) and (3.9) converge to the exact solution in the C3-norm. However it should
seem needless to derive the C%-convergence, because the original system (1.1)
does not contain the second-order derivatives of u. We shall derive the C}-
convergence. For this purpose we introduce the conditions.

ConpITION D.  b(1, X, 2z, ®) is an N x N matrix function and can be written
as
(5.16) b(t, x, z, w) = Y., b,(t, x, z)exp(ic-w), & = (04,...,0,),

where the summation is taken over a finite set of ¢ and 020%b,(t, x, z) (la| +|B| £ 1)
are continuous and bounded on J x R"* x CY for any fixed number d>0.

ConpiTioN E. (1) a(t, x, z, ®) is an Nx N matrix function satisfying
Condition D;
(2) af(t, x, z, ) is written as

(5.17) a(t, x, z, w) = g(t, x, z, ®) ¥ ;s (w)|%,
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where

(5.18) g(t, x, z, @) = T . gu(t, X, 2)e (),

(5.19) $1@) = X, q;,exp(ir - o), F = (P o),
(5.20) e, (0) X lsj()? = X eqmexp(il-w), I=(,..., 1),

the summations are taken over respective finite sets of indices, q;, and e, are
constants, ess-sup, |e ()| is finite and 020%g,(t, x, z) (Ja|+|BI<1) are con-
tinuous and bounded on J x R* x C¥ for any fixed number d>0.

Now we state the following convergence theorem.

THEOREM 5.2. Assume that Condition C is satisfied, where m=[n/2]+3,
and that the difference scheme (3.8) approximates (1.1) with accuracy of order
m, in Um2.m3(d,), where

(5.21) di>0, m=21, my=2m;+1, my=_[nf2]+2.
Let I —I1*1 be written as
(5.22) I —-I*(, x, w(x), @, 0)I(t, x, w(x), @, 0)
= b*(t, x, wT(x), w)a(t, x, wI(x), @)b(t, x, wT(x), w),

where b(t, x, z, ®) and a(t, x, z, w) satisfy Conditions D and E, respectively.
Suppose that g(t, x, z, w) is hermitian and that there exist constants d, (d,>d,)
and & (¢>0) such that

(5.23) g(t, x, wT(x), w) = el

for all w(x)e Wms(d,), (t, x)eJ xR" and for almost all weR". Then for
sufficiently small k, >0 there exists a constant cg such that

(524) ”u(t+Vk’ ) - d)v(t’ u(t’ '))"m; é CGhMl
for all u(t, x)e Umz.m3(d,), ke [0, k,] and t, t+vkeJ. Moreover, it holds that
(5.25) lu(t+vk, <) — ¢¥(t, u(t, -)|; < Chm

for all u(t, x)e Um2.m3(d,), ke[O, k] and t, t+vkeJ, where C is some con-
stant.

REMARK 5.2. As a sufficient condition under which (5.23) holds, we have
(5.26) g(t, x, z, w) = &l
for all (t, x, z)e J x R* x CY, and for almost all we R", where d3=K,(0, n, N)d,.
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ProOF oF THEOREM 5.2. Since a(t, x, z, w) satisfies (1) of Condition E, we
may write it as

a(t, x, z, ®) = Y., a,(t, x, z)exp(ia-w), o= (Aq,..., A,).

For each w(x) e Wm3(d,) we introduce the one parameter families of linear opera-
tors A,(t, w) and By(t, w) belonging to <73, i.e.,

Ah(t’ w)u = Za aa(t, X, WT(X))Tﬁ“
and
By(t, wu = 3, b(t, x, wT(x))Tgu

for all u(x)e L,, he H and teJ.

Now we shall prove the theorem by using the properties of A,(t, w) and
B,(t, w). To this end it suffices to show that there exists a constant M, such that
the inequality (5.3) holds, when d=d, and m=m;.

We first prove the following inequality:

(5.27) Re (4,(t, whu, u) 2 — K 4h|ul?

for all u(x)eL,, he H, teJ and w(x)e Wm(d,), where K, is a constant inde-
pendent of w(x). By Condition E the amplification matrix of A4,(t, w), a(t, x,
wT(x), w), satisfies Condition A for each w(x) e Wms(d,). Since g(t, x, wT(x), w)
2 ¢l holds for w(x) e W™3(d,), Theorem 4.2 yields

(5.28) Re(Ay(t, wu, u) 2 3,3 ;(e—0lgly,o) | Ajaul?
= 2gly,0h Za X Cyjll Ajattl® — Coh|ull?

for all u(x)eL,, he H and teJ, where |g|,,,, C;; and C, are given by (4.20),
(4.21) and (4.22), respectively. The constant C, in (4.22) vanishes, because
a(t, x, z, w) is independent of h. Applying the Sobolev-type theorem (Theorem
2.1) and Condition E to |g|, ., depending on w(x), we obtain a constant M,
independent of w(x) e W™3(d,) such that

(5.29) 1911, = M, for all w(x)e Wms(d,).
In a similar way, we obtain a constant M5 such that

(5.30) lalo, £ M3 for all w(x)e Wm(d,).
Since Y, y¥2= i, we have

(5.3 el Aupall? < (Z,lg;02 ul2

Choose ¢ small so that 6 <¢/M, and put
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(5.32) K y=3M,%,;C;max{(Z,lq;)?* 1} + MM3K*()h, .
Then by (5.29)—(5.32), (5.28) is reduced to
Re(Ay(t, wu, u) 2 =2M,h 3 ;Cy; T, [ A aull®> — Cohllull? 2 — K 4hllul?.

Thus we obtain (5.27).
Putting

P(t, w; h) =1— L%(t, w; h)L,(t, w; h)
and

Qh(t9 w3 h) = Bz‘(t’ W)Ah(t’ W)Bh(t’ W),
we next show that there exists a constant K; such that
(5.33) I{P(t, wi h) — Qy(t, w; M}ull < Kphllul

forallu(x)e L,, he H, te J and w(x) € W™3(d,). Since P,(t, w; h) and Q,(t, w; h)
belong to =} for each w(x) e Wm3(d,), we have by Lemma 4.1

(5.34) [{Pu(t, w; h) = Py(t, w; 0)}u| < Cphlul|
and
(5.35) 1{Qx(t, w; h) — Qu(t, w; 0)}ull = Cohllull

for all u(x)e L,, he H, teJ and for each w(x)e Wm(d,), where Cp and C, are

defined as C, (see (4.3)).
Let us denote by p(t, x, w, w, h) and q(t, x, w, w, h) the amplification
matrices of P,(t, w; h) and Q,(t, w; h), respectively. Since (5.22) implies

p(t, x, w, o, 0) = q(1, x, w, , 0),
we have
Py(t, w; 0) = Q,(t, w; 0).
Hence, by (5.34) and (5.35)
(5.36) {P(t, w3 h) — Qy(t, w; W}ull = (Cp + Codhllu]

for all u(x)eL,, heH and teJ. In the same way as the one used in the
proof of (5.29) we know that there exists a constant M, satisfying

Cr+Co =M, for all w(x)e Wm(d,).

Thus (5.33) follows from (5.36) where K, =M 4
Finally we show that the inequality (5.3) holds for some constant M,. By
(5.27) and (5.33) we obtain
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(5.37) Re(Pyt, w; hu, u) = Re(Q,(t, w; hu, u) — K hjju|?
2 Re(4,(t, w)B)(t, wlu, By(t, wyu) — Kph|u|?
Z — K h|By(t, wiu|? — Kphfju|?.

Since Condition D implies the existence of a constant M satisfying

Za’supl,x lbo'(t’ X, WT(X))I —g MS fOI' a" W(X)G ng,(dz)’
it follows that
[ B(t, wiul < Ms|ul

for all u(x)eL,, heH, teJ and w(x)e W™3(d,). Hence, from (5.37) we have
(5.3) with M=K ,Ms+K,,d=d, and m=m,. Thus the linear difference
scheme (3.15) is stable in Wms for all w;e Wm3(d,) (j=0, 1,...) by the assertion
(ii) of Lemma 5.1. This completes the proof.

5.3. Examples

In this subsection we introduce two difference schemes proposed by Gourlay
and Morris [7], which approximate the following symmetric hyperbolic system:

ou
axi

( x)

(5.38) % (1, x) = T3oy 4,7, X))

with the initial condition (1.2), and seek some restrictions on A under which the
inequalities (5.9) and (5.23) hold. For simplicity we assume that A,(z) (j=1,..., n)
are sufficiently smooth. The approximating difference schemes are written as
(3.8) and (3.9) with the difference operators S;, (j=1, 2) given by

(5.39) Sia(x) = Cuo(x) + (4/2) =1 A; 0T (Tj — T7)v(x)
and
(5.40) Syno(x) = v(x) + (4/2) L=y A (07(x, M) (Tj — T7)8(x, h),
where
Ch=Qn) 2 (T + T7)), THv(x) = vo(x + he;),
9(x, h) = Cyo(x) + (4/4) =1 A (0T () (Tj, — T5)u(x)

and e; is the unit vector in R" whose j-th entry is unity. It is clear that the
operators S;, (j=1, 2) give the difference schemes with accuracy of order j
(j=1, 2) in UI*Lm(d) (m=[n/2]+1). We put

(5.41) Liy(v) = Cyp + (A2) Th=y A 0T (T — T3k

and
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(5.42) Lyu(v; w =T+ (4/2) =1 A;(07(x, W) (T — T7)Cy,

+ (A2[8) Th=y 4,(07(x, W) Ti=y A0 (x+pe)) Tp(Tin — T3

— (22/8) Th=y A0 (x, W) Xy A0 (x — pe)T7H(Ty, — T3
Then L,,(v) and L,,(v; h) belong to 7§ for a given v(x)e W™ (m=[n/2]+2)
and satisfy the equality (3.13). Furthermore,

St(x) = Lyy()o(x),  Sz0(x) = Lay(v; h)o(x).
Denoting by [;(w(x), w) and L,(w(x), w, h)(w(x)e W™, m=[n/2]+2) the
amplification matrices of L,,(w) and L,,(w; h), respectively, we have
(5.43) I,(w(x), w) = c(w)] + iLA(w(x), sin w)
and
(5.44) 1,(w(x), w, 0) = I + iAA(W(x), sin w)c(w) — (12/2)A%(w(x), sin w),
where
cw)=n"1¥"_ cosw; sinw = (sinaw;,...,sin w,)

and

AW(x), w) = X7y AW (X)), .

Following Yamaguti and Nogi [31], we obtain

(5.45) I — I¥(w(x), w)l;(w(x), w) = b¥a, b,
and

(5.46) I — E(w(x), w, 0)],(w(x), w, 0) = b%a,b,,
where

(5.47) a;(wT(x), @) = {n™'1 — A2A2(w(x), sin w)} 3", sin? w;
+ 172 jox (@),
(5.48) a,(wT(x), w) = {n™'I — (A2/4)AX(w(x), sin w)} 3 "_; sin? w;
+ 17 jok (@),
AW, @) = Ty AWTCNw, /o], ¢i(@) = cos o, — cosa,
by =1, b,(WT(x), w) = AA(W(x), sin w).
Here we put
f(@) = Ti=ysin*w; + 3 js i ch(w)

and
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(5.49) g, wT(x), @) = a;(w(x), @)/ flw) (j=1,2).

Let us seek some restrictions on A under which the inequalities (5.9) and
(5.23) hold. For any fixed number d>0 we put

Pa = SUPu=0,w(x) p(A.(W(x), w)),

where the supremum with respect to w(x) is taken over WI*/21*2(d) and p(A4,)
denotes the spectral radius of A,. We choose A satisfying Ap,<1/\/n, so that
a; =20 and

I — P¥(w(x), o)l;(w(x), ®) =0 for all  w(x) e Win/21+2(d)

Hence, if 1p,, < 1//n, then the inequality (5.9) holds for each d, >0, where I=1,.

For each A satisfying Ap,,§2/\/n we similarly know a,=0, and therefore
obtain (5.9) with I=1, for each d,>0, if Ap;,<2/\/n.

It is known that a; (j=1, 2) satisfy Condition E by (5.47), (5.48) and (5.49)
and that (5.22) holds by (5.45) and (5.46), where I=1;, b=b; and a=a; (j=1, 2).
For each 4 such that 1p;<1/,/n we have

9:(WT(x), @) 2 min{(n™! — 22pd), n=2}1 > 0

for all w(x)e Wi"/21¥%(d) and for almost all weR". Hence, if ip,,<1/\/n,
then the inequality (5.23) holds for each d, >0, where g=g,. Similarly we can
show (5.23) with g=g, for each d,>0, if Ap,,<2/\/n.

6. Proofs

6.1. Proof of Theorem 4.2

We prepare the following two lemmas:

LemMMA 6.1. For all u(x)e L,, he H and te J and for all j

(6.1) [(Ax(t; O)u, u) — 3, (Ax(t; OWu, Yu)| < lalo,2.Cshlull?,
(6.2) Ay, 0) = G(t) X ; A%, A,

(6.3) H{G(OAY, — A%G(D}ull £ 1911,0C1jhllull,

where

C3 = MKZ(‘S)hO’ Gh(t) = Zm gm(t’ x)Emh’ Emh = y-lem(hé)f'
LEMMA 6.2. For all u(x)e L,, he H and teJ and for all j and a

(6.4) I({Gu(t) = G} A0 u, Aju)| < 1911,0(8 + Cyjh) | A1l

where
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Gan() = X gu(t, X)E,,.
By these lemmas we have
(6.5) Re(Ay(t; hu, u) = Re(Ay(t; Ou, u) — C hllu|?
2 > Re(A4,(t; OWou, Yu) — (Cq+ lalo,2Ca)hlul?
= Y. 2 ; Re(G,()A% A u, Y u) — (C 4+ laly ,C3)h|lul?
=Y, Zj{Re(Gh(t)Ajh‘//au’ Ajhl//u“) - 'gll,oocljh”Ajhl//au” 1 uell}
= (C4 + lalo,2C)h|ul?
2 2. 2 {Re(Gi(D A au, Aphtt) = 1911, Cy skl A1)}
—(Igl1,00 2;C1; + C4 + lalo,2C)h|ul?
2 3. X {Re(Gu(DA ot A ) — 1911,00(8 + 2C 1 jh) |40 111}
— (911,00 £;Cyj + C4 + lalo,2Ca)h]ul>.
Since G,(t) is an operator independent of x, the assumption (4.17) yields
(Gan(DA i, Ajhu) 2 el Ay ull®.
Hence, combining the above with (6.5), we have (4.18).
PROOF OF LEMMA 6.1. Putting
F = (Ay(t; Ou, u) — X, (Ay(t; OWrau, You),

we have, by (2) of Property B,
(6.6) F= S 2o {a,(t, x, O)u(x+ho)}*(1 — 3, Y (x + ho)y(x))u(x)dx

= 21 (5, 4,01, x, OuCr+ho)}* T (Yl +ho) — () Pu(x)dx.
Since
22 (Yux+ho) — Y (x))? < 2MK3(6) (X 11 0})h?,
it holds from (6.6) that
[FI = 271 X sup, . |a (1, x, O)] |ull2MK2(8) (X =1 a)h?|u]
= MK*§)h? T, sup, . |a(t, x, 0)| (1= %) lull?
< MK*(8)hohlalo,|lull?,

which yields the desired inequality (6.1).
It is clear that A4, and E,, are both bounded linear operators from L, into
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itself. By (4.13), (4.14) and (4.16) we have

25,1, x, 0)exp(io- ) = ¥, gu(t, X)X emexp (il - )
and
Epy 25 A% A = Z1em T,
Then A,(t; 0) is represented as
Alt;0) = L gn(t, X) ZiTh
= 2ty X)Epp 2 ; A% A5 = Gy(t) X5 A% Ay,

which is (6.2).
Finally (6.3) is proved by the fact that

{GK DAL, — ABRGUOI S T I{gult, X)A%, — ALugult, X)}Epytt]
é Zm Zrlqul " {gm(t’ X) - gm(t’ x—hr)}T;rEmhu"
S Zm 2o lqplh(E = i) Xi= 1 suP 105, m(t, X)| | Epatt ]| = 1911, C b lull -

Here we used the relation E, A%, = A%E,,.
PrOOF OF LEMMA 6.2. By the mean-value theorem we have
{Gu(t) = Gy} A u, Apu) = 3 ({Gmt, X) — gult, XOVE AW, Apiu)
= T St ([} 2t 300005 = XONOE it = X))
Since A, is written as a finite sum of translation operators T7, it follows that
supp (A u) = W, = {x e R": |[x —x®| < d+max, (T2 |riDh}.
Hence we obtain

I({Gu(®) = GO} Ajitlatty At )| < gl | AjWattll (64 Cyjh) | Ajuibull
which is (6.4).

6.2. Proof of Lemma 5.1
We show (i). From (3.11) and (3.13) it follows that

(6.7)  {Ly(t, w; h) — Ly(t, v; h)}u(x) = X seqJo(t, w, v5 B)(T5 — Du(x),
where

J,(t, w, v; h) = 1(1, x, w(x, h), h) — 1,(t, x, o(x, h), h) (ceA).

Carrying out the differentiations, we obtain
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(6.8) d3{J,(t, w, v; h)(T7 — Du(x)}
= Ya+p=s (a, b){02J,(t, w, v; W} {OUTF — Du(x)}

= Tarpms €@, B) T2, Cupl They S 3201, (0, w, v)d9
x {w(x+hp®) — v;(x+hp®)} {02F y(w)}0%(T§ — Du(x)
+ 03071,(1, x, v(x, h), h) {0%(Fy(w) — F(v))}0%(T5 — Du(x)}],
where
s = (5., 8p) (IS Em—-1), a =(ay,..., a,), b =(by,..., b,), = (dg,..., &),
B =(BW,..., B™), p& = (BE,..., BK, BEY,..., BK)  (k=1,..,n),
Y= Zﬁ=1 ﬂ(k)’ ZI: B = Z¢,+|p(1)|sa, Z¢"+|p(n)|§,,n, c(a, b) = (a+b)!/(a!b!),
5 = (51""’ n) 5k =ay — o — |ﬂ(k)| (k = 1,"" n)’
w(x) = (W1 (X)s-.., wy(NT, v(x) = (v1(x),..., va(X)T,
E;j, (0, w,v) = y” 1,(t, x, Ow(x, h)+ (1 —06)v(x, h), h)
(ced;i=1,.,q;j=1,..,N),
Fy(w) is the product of the powers of 0, w;(x+hp®) with exponent B} for

i=1,...,q,j=1,..., N, k=1,..., n, Fy(v) is defined similarly, and C,; is a constant
depending on « and f.

Since

(6.9) H(T;=Du}lm-1Slolhlul, < |olhd  (c€4)

for all u(x)e Wm™(d), the Sobolev-type theorem yields

(6.10) 10w —0,){02 Fy(w)}32 (T5—Dul
< K0, n, N)|w—0|,—1K5(m, n, NY(1+ d)" ! o|hd (j=1,..., N)

and

(6.11) I{OUF g(w) — Fp(u))}0X(T5 — Dull

< (m—1K5(m, n, N) |w—0],-,(1+d)""?|o|hd

for all w(x), v(x)e Wm=1(d) and u(x)e W™(d), where K;(m, n, N) is a constant
independent of B, é, ¢ and b.
By Condition C we have

(6.12) |0301E (0, w, V)] S ¢o(d)  (0€A;0S0<1)

and
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(6.13) 10303152, x, v(x, h), W) < ¢7(d')  (0€4)

for all w(x), v(x) e Wm(d), where d'=K,(0, n, N)d and c,(d’) is a constant de-
pending on d’. Put

C(d) = (ZaeA Io.l) {ZISI_S_m—l Za+b=sc(a’ b) Z/:,ﬂ Caﬂ}
x {NgK (0, n, N(1 +d)+m—1}K;(m, n, N)d(1+d)"2c,(d’).
Then by (6.8) and (6.10)-(6.13) it follows from (6.7) that
I{Ly(t, w3 h) — Ly(t, v; W)}ullpm—y < C(DRIW—0] -y,

and (5.1) follows. Similarly it can be shown that (5.2) holds.
We show (ii). From (3.11) it follows that

(6.14)  |ILy(t, w; Wullz = Xy sm 105{Ly(t, w3 B)u}|)?
= Y isism | Zatv=s,a1z1 €@, D)V (a, b, w, u) + Li(t, w; h)osu]?,
where
V(a, b, w, u) = 3,04 (93{1,(t, x, w(x, h), W)} THu.
By (5.3) we have
(6.15) ILa(t, w3 Bosull < (1+Moh) [|ogull (sl = m).

We estimate the L,-norm of V(a, b, w, u). From the assumption (3.13)
we obtain

Y oea 04{1,(t, x, w(x, h), )} =0 (la] = 1),
so that
V(a, b, w, u) = 3,4 (04{1,(t, x, w(x, h), W}OXT;—Du (la] = 1; |b]| £ m—1).

Hence by the Sobolev-type theorem, Condition C and (6.9) we have
(6.16) 1V(a, b, w, Wl £ (XsealoDM(d, m, n, N)(1+d)y"h||ul|,,

for all w(x)e Wm(d) and u(x)e W™, where M,(d, m, n, N) is a constant inde-
pendent of a and b. Put

(6.17) Ml = 2M0 + M%ho + M%ho + 2M3(1+M0h0),
where V
M3 = lelém Za+b=s,|a|g1 c(a, b)(ZUEA lal)MZ(d’ m, n, N)(1+d)m~

Then (5.4) holds by (6.14)-(6.17).
By (5.4) we have



490 Kenji ToMOEDA

”Lh(t'l_(v_l)ks Wy—15 h)Lh(t+(v_2)k’ Wy—2, h)'“Lh(t, Wo, h)u"m
S A+Mh)|ul, < {exp(M T/} [ullm

for all wi(x)e W™(d) (j=0, 1,...,v—=1), u(x)e W™, keK and ¢, t+vkeJ. Hence
the linear difference scheme (3.15) is stable in W™ for all w;e W™(d) (j=0, 1,...).
This completes the proof.

Acknowledgment

The author would like to express his sincere gratitude to Professor Masayasu
Mimura, Hiroshima University, who has given successive encouragement and
valuable suggestion. It is also noted with sincere appreciation that Professor
Tomoyasu Taguti of Konan University extended his help to read the manuscript
and to give incisive comments.

References

[1] R. Ansorge, Differenzenapproximationen partieller Anfangswertaufgaben, B. G. Teubner,
Stuttgart, 1978.

[2] S.Z. Burstein and A. A. Mirin, Third order difference methods for hyperbolic equations,
J. Computational Phys., 5 (1970), 547-571.

[3] H.von Dein, Konvergenzbedingungen bei der numerischen Lésung nichtlinearer Anfangs-
wertaufgaben mittels Differenzenverfahren, ISNM, vol. 31 (editors: J. Albrecht and
L. Collatz) Birkhaeuser, Basel und Stuttgart, 1976.

[4]1 A. Fischer and J. Marsden, The Einstein evolution equations as a first-order quasi-linear
symmetric hyperbolic system, I, Comm. Math. Phys., 28 (1972), 1-38.

[5] A. Fischer and J. Marsden, General relativity, partial differential equations, and dynamical
systems, Proc. Symp. Pure Math., 23 (1973), 309-327.

[6] D. Gottlieb, Strang-type difference schemes for multidimensional problems, SIAM 1J.
Numer. Anal., 9 (1972), 650-661.

[7]1 A.R.Gourlay and J.Ll. Morris, Finite-difference methods for nonlinear hyperbolic
systems, Math. Comp., 22 (1968), 28-39.

[8] T.Kato, Quasi-linear equations of evolution, with applications to partial differential
equations, Springer Lecture Notes, 448 (1975), 25-70.

[9] T.Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch.
Rational Mech. Anal., 58 (1975), 181-205.

[10] Z. Koshiba, On the general form of Yamaguti-Nogi-Vaillancourt’s stability theorem,
Publ. RIMS, Kyoto Univ., 15 (1979), 289-313.

[11] H. O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential
equations, Comm. Pure Appl. Math., 17 (1964), 335-353.

[12] H. Kreth, Ein Aquivalenzsatz bei der numerischen L6sun,§ quasilinearer Anfangswert-
aufgaben, Springer Lecture Notes, 395 (1974), 33-55.

[13] P.D. Lax, On the stability of difference approximations to solutions of hyperbolic equations
with variable coefficients, Comm. Pure Appl. Math., 14 (1961), 497-520.

[14] P.D. Lax and B. Wendroff, On the stability of difference schemes, ibid., 15 (1962),
363-371.



[15]
[16]
171
(18]
[19]
[20]
[21]
(22
[23]
[24]
[25]
(26]
27
[28]
[29]
(301

B1]

Convergence of difference approximations for quasi-linear hyperbolic systems 491

P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of
accuracy, 1ibid., 17 (1964), 381-398.

P. D. Lax and L. Nirenberg, On stability for difference schemes; a sharp form of Garding’s
inequality, ibid., 19 (1966), 473-492.

A.Y.Le Roux, A numerical conception of entropy for quasilinear equations, Math.
Comp., 31 (1977), 848-872.

S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press,
Cambridge, 1973.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa,
13 (1959), 115-162.

B. Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math.,
19 (1966), 111-123.

J. Peetre and V. Thomée, On the rate of convergence for discrete initial-value problems,
Math. Scand., 21 (1967), 159-176.

R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems,
Interscience, New York, 1967.

G. Strang, Accurate partial difference methods 1: Linear Cauchy problems, Arch.
Rational Mech. Anal., 12 (1963), 392-402.

G. Strang, Accurate partial difference methods Il. Non-linear problems, Numer. Math.,
6 (1964), 37-46.

V. Thomée, Stability theory for partial difference operators, SIAM Rev., 11 (1969),
152-195.

H. Shintani and K. Tomoeda, Stability of difference schemes for nonsymmetric linear
hyperbolic systems with variable coefficients, Hiroshima Math. J., 7 (1977), 309-378.

K. Tomoeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems,
ibid., 7 (1977), 787-812.

R. Vaillancourt, A strong form of Yamaguti and Nogi's stability theorem for Friedrichs’
scheme, Publ. RIMS, Kyoto Univ., 5 (1969), 113-117.

R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified Lax-Wendroff
scheme, Math. Comp., 24 (1970), 767-770.

R. Vaillancourt, A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math.,
23 (1970), 151-163.

M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its application,
Publ. RIMS, Kyoto Univ., Ser. A, 3 (1967), 151-166.

Department of Mathematics,
Faculty of Science,
Hiroshima University








