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1. Introduction

From numerical aspects, difference schemes for solving initial value problems
have been extensively investigated for a long time. In linear initial value prob-
lems, Lax obtained the remarkable result which states that the stability of a
consistent difference scheme is a necessary and sufficient condition for the con-
vergence if the problem is well posed [22]. This has become well known as
Lax's Equivalence Theorem. The stability used there means conceptually the
boundedness of numerical solutions given by the difference scheme. For numeri-
cal studies of engineering and physical problems, many authors have constructed
several difference schemes. In particular, Peetre and Thomee [21] investigated
these in the Sobolev spaces and gave several estimates for the rate of convergence,
assuming that they are stable. For linear hyperbolic systems the theory of the
Sobolev spaces of L2-type has played an important role in establishing the ex-
istence and uniqueness of solution. Along such lines the L2-stability of difference
schemes has also been studied. Such a stability can be obtained in terms of the
amplification matrix defined by the Fourier transform of the difference operator.
Lax [13], Lax and Wendroff [14, 15], Kreiss [11], Yamaguti and Nogi [31],
Lax and Nirenberg [16], Vaillancourt [28, 29, 30], Koshiba [10] and so on [20,
25, 26, 27] are relevant here.

Though a considerable portion of the progress in difference schemes for
hyperbolic systems is confined to the linear theory, we must mention some results
related to nonlinear theory of initial value problems. Strang [24] contributed
to the establishment of convergence of difference approximations to smooth
solutions in nonlinear problems. This will be briefly stated below. Modifying
Lax's Equivalence Theorem, Kreth [12], von Dein [3] and Ansorge [1] dis-
cussed the convergence of difference approximations in an abstract setting and so,
to our knowledge, their results seem less applicable.

Concerning weak solutions of quasi-linear hyperbolic equations of con-
servation laws, Le Roux [17] studied problems of the convergence for difference
approximations.

In nonlinear initial value problems, Lax's Equivalence Theorem is not valid
in general, so the convergence must be proved without the help of the stability
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of the nonlinear scheme. From this requirement, Strang [24] discussed the

convergence of difference approximations for the following quasi-linear hyperbolic

system :

(1.1) |^(f, x) = Σ3-ι Aj(t, x, ιι(ί, xto-g^V, x) + B(t, x9 u(t, x))

(xeJR"; 0 ̂  t g T),

(1.2) w(0,x) = Wo(x),

where X/ί, x, •) (7 = 1,..., n) are NxN matrices, B(t, x, •) and w(ί, x) are

ΛΓ- vectors. From analytical point of views the existence and uniqueness of smooth

solution of (1.1), (1.2) are proved by Fischer and Marsden [4, 5] and Kato [8, 9].

The approximating difference scheme for the above system is written in the

following form :

(1.3) υJ+*(x) = Sk(jk)υJ(x) (j = 0, 1,..., v-1; 0 g vfc g T),

(1.4) t;°(x) = Mo(x),

where k and /i denote the time step and the space mesh width, respectively, and

Sh(t) is a difference operator derived from the discretization of (1.1). Strang

obtained the following result: Let Φ be

Suppose that Aj (j = l,..., n), B9 Φ and a solution u of (1.1) have continuous

derivatives up to order m4-[(n-i-l)/2] + r + 21) for some positive integer r and

that the difference scheme (1.3) approximates (1.1) with accuracy of order m.

Then if the first variation of Φ is l2-stable, it holds that

(1 .5) t;v(x) = u(t, x) + O(km) (x e Rn ί = vfc e [0, T]) ,

where k/h is kept constant as h varies.

His method of proof is as follows : He first constructed the expansion

(1.6) w(ί, x, fc) = u(ί, x) + Σ5»

so that (1.6) satisfies (1.3) with an error o(kq+1). He found the fact that w(v/c, x, k)

— ι?v(x) is governed by the /2-stability of the first variation of Φ. Then, estimating

two quantities w(v/c, x, fc) — v v(x) and w(vfc, x, k) — u(vk, x), he obtained the rate

of convergence (1.5). This method is simple, but the calculations are too com-

plicated for us.

1) [a] denotes the greatest integer not exceeding a.
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Thus, in the same framework as Strang's we shall give a different method
from his, so that we obtain improved results. Our method is to directly estimate
u(vk, x) — vv(x) in the maximum norm by using the Sobolev-type theorem. The
discussion is carried out in the way almost similar to the one used in [12], [3] and
[1]. We assume that Sh(t)vJ(x) is a function of ι; >(;c +ftp*1 >),..., ^(x f ftp(ί))> t, x
and ft, where p(ί)'s are multi-indices of integers. Then we can divide the function
Sh(t)vj(x) into two parts by the mean-value theorem, i.e.,

(1.7) Sh(jk)υJ(x) = Lh(jk, vJ /ι)^(x) + hG(jk; ft)t '(x),

where Lh(jk, vj\ ft) is the first variation with respect to vj(x) and G(j/c; h)υj(x)
is the remainder. Using the stability of LΛ, we estimate u(vk, x) — vv(x) in the
Sobolev spaces of L2-tyρe, and then, obtain a convergence theorem (Theorem
3.1), i.e.,

where u is assumed to be differentiate up to order m + [n/2]-h r + 2, and | |r
denotes the norm in the space Cr

B consisting of all functions which, together with
all their derivatives up to order r, are continuous and bounded. We note that
when r = 0, this result leads to Strang's result (1.5).

We next show the stability of Lh by Lax-Nirenberg Theorem for difference
operators, imposing some conditions on the amplification matrix / of LΛ, and
obtain a convergence theorem (Theorem 5.1), which states as follows: The
difference approximations converge to the exact solution in the C|-norm by the
Sobolev-type theorem, if /-/*/;>0.

Since the original system (1.1) does not contain the second-order derivatives
of M, it should seem needless to derive the C|-convergence, but reasonable to
derive the CJB-convergence. In order to prove such a convergence we prepare an
inequality (Theorem 4.2) excluding the second-order derivatives of the amplifi-
cation matrix. This inequality corresponds to the one in Lax-Nirenberg Theorem
which serves to establish the energy inequality of linear difference scheme. Using
it, we arrive at the C^-convergence theorem (Theorem 5.2), where it is assumed
that there exist two matrix functions α(^0) and b satisfying I — l*l = b*ab.

2. Preliminaries

We denote by CN the complex JV-dimensional space. We abbreviate Cl=C
and denote the norm of z in CN by |z|. We define the norm of an N x N matrix
by its operator norm in CN

9 writing as |α|. Unless otherwise stated, we denote by
w, v, w,/,φ, etc. N-vector functions. For a multi-index α = (αl5..., αn) of non-
negative integers we use the notations
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3S=δSi-δ;;, dxj = -^-(j = 1,..., n), |α| = αx +-+ αn.

For any nonnegative integer m let Qj be the space consisting of all functions
which, together with all their partial derivatives up to order w, are continuous
and bounded on Rn. Then C?g is a Banach space with the norm | |m given by

M m = Σ|α|^mSUpx |δίφ(x)|.

The space Wm stands for the Sobolev space of L2-type with the scalar product
( , )m and the norm || ||m. For simplicity we write ( , ) and || || instead of
( , )0 and || ||0, respectively. In this paper we use the following Sobolev-type
theorem [18, 19]:

THEOREM 2.1. (i) Let m>n/2 + m' (w'^0). Then WmcιC^9 i.e.,

(2.1) \f\m, ^ K,(m', n, N) ||/||m for all f ( x ) e W»9

where K^(mf, n, N) is a constant depending on m', n and N.
(ii) Let m>n/2 and let

where a(j) (7 = !,..., r) are multi-indices of nonnegative integers. Then

(2.2) I|3 C1!Λ 3S(Γ>/Γ|| g K2(m, n, ΛOΠj-i \\fj\L

for a l l f j ( x ) e Wm (7 = !,..., r), where //x) (7 = !,..., r) are N -vector functions > the
operation denotes the componentwise multiplication and K2(m, n, N) is a
constant depending on m, n and N but not on ̂ n (7 = !,..., r).

3. Difference approximations and their convergence

3.1. The difference scheme

Put

(3.1) J = [0, T], K = [0, fc0], H = [0, A0],

where /c0 is a positive constant such that /c0^Tand /ι0 = /c0/λ for some constant
A. For the time step k and the space mesh width h we approximate the solution
of (1.1), (1.2) by the following difference scheme of the form, keeping the ratio
λ = k/h constant as h varies:

(3.2) υJ+i(x) = ΦC/fc, x, Mx + M")}2",..., MX + /Φ<*>)}Γ, A)

(7 = 0, l,...,v-l; fceK; vfc ^ Γ),

(3.3)
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where p<» = (p{J\..., p(

n

j)) (j = l,...9q) for integers p\j} (i = l,..., π), Φ(f, x, }>, μ)
is an JV- vector function defined on J x R" x (CN)β x // and { }r stands for the
transpose of a vector. The space variable of (CN)^ is denoted by y in the sense
that

y = θΊι, » yίN> )>2i> > )>2ivv ., yβι,.-, J^N) -

We assume that Φ(ί, x, j;, μ) is continuously diίferentiable on J xRn x
(CN)«x Hand that

(3.4) Φ(ί, x, z,..., z, 0) = z for all (ί, x, z)e J x Rn x CN.

Then by the mean-value theorem we have

Φ(t, x, v(x9 h\ h) = t (x) + Φ(ί, x, v(x, h\ h) - Φ(t, x, v(x, 0), 0)

= Φ) + Σ?=ι //ί, x, »(*, Λ),
+ hg(t,x, φc, /z), h),

where

ί, x, y, μ) = δWlΦ(ίf x,

0y + (l-%', θμ)dβ) (7 = 1,..., q),

g(t, x, y, μ) = δμΦ(ί, x,

0' = !,...,#; i = 1,...,N),
^ji

and

(3.5) φc, μ) = (vτ(x + μpW),...9

Put

L ί̂, u; μ) = / + Σ;=ι (/(*» ^> v(λ', μ), μ)(T^0)-7) (ηeH),

where T^U) is a translation operator defined by

Γξ0)ι?(x) = v(x + ηpu>) (j = !,.••> «)•

Then it follows that

(3.6) Φ(ί, x, ι<x, Λ), Λ) = LΛ(ί, t;; /ι)ι (x) 4- Λ^(ίf x, ι;(x, fc), fc)

and
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(3.7) Lη(t9v9μ)\η=0 = I for all (t, μ)e J x H.

It is clear that LΛ(ί, t>; Λ) is a linear operator for any fixed ί, v and A.
From the above consideration, the difference scheme (3.2) may be represented

by the form introduced in Section 1, i.e.,

(3.8) υJ+i(x) = Sh(jk)υJ(x) (j = 0, 1,..., v-l keK; vk g T),

(3.9) f^(x) = fi0(x),

where Sμ(t)v(x} (μ e H) takes the form of

(3.10) Sμ(t)u(x) = Lμ(ί, Ό; μ)v(x) + μG(t\ μ)v(x)

by using

(3.11) Lη(t, υι μ) = ΣσeΛ UΛ *> Φ, μ), μ)?1;,

and

(3.12) G(ί μXx) = g(t, x, t<x, μ), μ) (μ, 17 e ff)

Here /d is a finite set, σ,- (j = l,..., n) are integers and v(x, μ) is given by (3.5).
Furthermore, NxN matrix functions /σ(ί, x, y, μ) (σeΛ) and an AT- vector func-
tion g(t, x, j;, μ) are defined on J x Rn x (CN)« x //. In view of (3.7), we assume
that

(3.13) Σ,6Λ lj(t, x, y, μ) = •/ for all (ί, x, j,, μ) 6 J x R» x (C )̂« x /f .

In the sequel we are concerned with the difference scheme of the form (3.8).

3.2. Accuracy and stability

To state the definitions of accuracy and stability we introduce two sets
Wm(d) and Ul m(d) for arbitrary integers /, m ( / ^ l ; m ^ 0 ) and an arbitrary
number d>Q. Wm(d) is given by

W>»(d) = {φ(x)eW>»: \\φ\\m£d}9

and Ul m(d) consists of all functions u(t, x) with the properties:
1) tι(ί, )eΛi= 0C ί(J; Wm+l'l\ where Cl(J\ Wj) denotes the space of all

functions u(t, •) from J to Wj such that w(ί, •) is ί-times continuously differ-
entiable with respect to t in the FT' '-topology

2) maxogi^maxo^T ||3{κ(ί, )L+ϊ-i ^ d, d\ =

3) w(ί, •) is the unique solution of (1.1) with the initial value w(0, •).

DEFINITION. Let d be a positive number and let mί9 w2, w3 (m t^l;
m j + 1; m3^0) be integers. Then we say that the difference scheme (3.8) ap-
proximates (1.1) wίf f t accuracy of order m± in Um2 m3(d) if the following con-
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ditions (a-1) and (a-2) are fulfilled:
(a-1) SΛ(ί) is a mapping from W™3 into itself for any fixed (ί, h) e J x //;
(a-2) Um2'm3(d) is not empty and there exists a constant c^ such that

(3.14) \\u(t + k, .)-

for all w(ί, x)e Um2>m*(d), keK and ί, ί + fce J.

For a given i? we define the following difference scheme derived from (3.10)

by

(3.15) w'+1(*) = LΛ(.//c, ι;; Λ)w'(x) (j = 0, 1,..., v- 1; fceX; vk ̂  Γ),

(3.16) w°(x) = M0W

From now on we call (3.15) the linear difference scheme of (3.10).

DEFINITION. Let d and m be a positive number and a nonnegative integer,

respectively. Then the linear difference scheme (3.15) is said to be stable in Wm

for all Wjβ Wm(d) (j = 0, 1,...) if the operator Lh(t, •; ή) satisfies the following

conditions :
(s-1) When a function v e Wm(d) is given, Lh(t, v; h) is a linear operator

from FP1 into itself for any fixed (ί, h) e J x H
(s-2) There exists a constant c2 such that

(3.17) ||Lfc(f + (v-l)fc, w v _ ι ; /2)LΛ(ί4-(v-2)/c, w v _ 2 ; /ι) LΛ(ί, w0;

for all w/x)ePfm(d)(j = 0, 1,..., v-1), u(x)eWm, kεKand t, ί - fv fee/ .

For all integers v^O and keK we define φv(t, v(x)) by

(3.18) ^<+1α ΦO) = Sh(t+jk)φi(t, v(x)) α = 0, l , . . . ,v- l ;vg l ) ,

(3.19) 0°(ί,<x)) = t;(x).

3.3. Convergence theorem

We show the following convergence theorem which improves Strang's result

[24].

THEOREM 3.1. Let the difference scheme (3.8) approximate (1.1) with
accuracy of order mί in Unt2>m3(dί) (dί>Q; ro^l; m 2 ^m 1 -f-l; m3^0) and let

(3.20) ||{LA(ί, w; Λ) - Lh(t, v; h)}u\\m3 ^ c3/z||w-ι;||m3,

(3.21) ||G(ί; Λ)w - G(ί; /ι)ι;||m3 ^ C a l l w - t L,

/or all w(x), ι<x)e Wm^(d2\ u(x)eWm^l(d2\ heH and teJ, where d2 (d2>di)
and c3 are constants. Suppose that the linear difference scheme (3.15) is stable
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in W^for all WjeW^dJ 0 = 0, 1,...). Then

(3.22) φv(ί, κ(ί, x))eFP"(d2),

(3.23) ||«(r + vk, •) - 0v(f, ιι(ί, ))IL, ^ {(l+c

/or α / / u(ί, x)6l/m*.m3(di), fce[0, fej and ί, ί + v/ce J,

(3.24) c4 = max {c l f 2c3, cic2, 2c2c3} ,

(3.25) fcx = min{/c0,

c t is a constant satisfying (3.14) with d = dί and c2 is also a constant satisfying
(3.17) with d = d2 and w = m3.

REMARK 3.1. (i) Since

for all integers v^O and k e K such that vfc^ Γ, it follows from (3.23) that

(3.26) ||u(ί + vfe, •) ~ Φv(t, u(t, ))L3 ̂

for all u(ί, x) e t/111^1"^^^ fc e [0, fej and ί, ί -f vk e J.

(ii) Let ra3 ̂  [n/2] + 1 . Then, by using the Sobolev-type theorem (Theorem
2.1), we obtain from (3.26)

(3.27) |ll(ί + vfe, •) - 0v(ί, fl(f, .))L3-[n/2]-l ^ CΛ»»

for all κ(ί, x)eί/m 2 m3(ί/ι), fee[0, fej] and ί, f + v/ce J, where C is a positive
constant.

PROOF OF THEOREM 3.1. The proof will be done by induction on v (v^l).
For v = l it follows from (3.14) that

(3.28) ||ιι(ί + fc, •) - φ\t9 u(t, ))L3 ^ c^*^1 g c4Λ«">+ 1.

Since (3.25) implies

c4Λ»i+1 ^ (c4T/A)(d2-d1)exp(-c4T/λ) ^ d2 - ^ ,

we have

(3.29) llc^α w(ί, ))L3 ^ ll"(ί + fe, )ll»3 + d2 - d, ^ d2.

Hence (3.22) and (3.23) for v = l follow from (3.29) and (3.28).
Suppose that (3.22) and (3.23) hold for all j (l^j^v- 1), where v > 1 . For

simplicity we put

Uj = u(t+jk, x), vvy = φJ(t9 u(t, x)),

Lj(v) = Lh(t +jk, v h\ Gjυ
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FJ(V)W = LJ(V)W + hGjV (j = 0, 1,..., v) .

Then
(3.30) w v -

= u - FV

By the inductive hypothesis we have from (3.20) and (3.21)

(3.31) K-F^ίw^y-iLa

-l)fc)ι^

;_ 1-G J_ 1w J._ 1L 3

2c3ft||ιι</_1 - w,..!!!^ ̂  Ci/z^1 + 2

Applying the stability of the linear difference scheme (3.15) and using (3.31), we
obtain from (3.30)

W v - Fv-Λw^K-lllma + C2 Σϊ=ί l l«v-i ~ ̂ v-l- i

+i + 2c3{(l + c^)^1 - 1}̂ +1

and by (3.25)

i|wv |L3 ^ ||uv||M3 + {(l + c4Λ)^l}Λ«ι ^ d,

Hence our induction on v is complete. This gives the proof.

REMARK 3.2. The assumption (3.13) is not used in the proof of Theorem
3.1. However, it will be used in Section 6.2.

4. Families of linear difference operators

4.1. Definitions

We regard Lh(t, v; h) as a one parameter family of the linear difference
operators depending on ί, when v is given. In this section we show some proper-
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ties of linear operators mapping L2 into itself. Some results obtained here will
be used to show the stability of the linear difference scheme (3.15).

For N x N matrices aσ(t, x, μ) such that d^aσ(t9 x, μ)(|α| gr) and δμaσ(t, x, μ)
are continuous and bounded on / x R" x H9 we write

(4.1) Ah(t\ μ) = Σσ*Λ x> μ)Tl, σ = (σl5..., σn)9

where the summation is taken over some finite set of σ. Here we define jtfr

(r=l, 2) by the set of two parameter families of Ah(t'9 μ) (h9 μeH) and also
define <stfr

0 (r = 1, 2) by the set of one parameter families of Ah(t; h) (h e H).
Then it is found that ja^cj/1, j^gcj/J and that Ah(t'9μ)is a bounded

linear operator from L2 into itself, if it belongs to ja^1. We have the following
lemmas :

LEMMA 4.1. Let Ah(t; μ) belong to j t f 1 . Then

(4.2) \\{Λk(t;h)-Ak(t;0)}u\\^CAh\\u\\

for all u(x) e L2, h e H and t e J9 where

(4.3) CA = Σa supί>x>μ \dμaσ(t, x, μ)\ .

PROOF. The proof is obvious by the mean- value theorem.

LEMMA 4.2. Let Ah(t\ h) and Bh(t; h) belong t o j t f r

0 ( r = l9 2). Then the sum
Ah(t; h) + Bh(t; h), the product Ah(t\ h)Bh(t\ h\ the operation ρAh(t\ h) (peC)
and the adjoint Af(t', h) also belong to jtfr

0 (r=l, 2).

PROOF. The statements for Ah(t9 h) + Bh(t\ h\ Ah(t\ h)Bh(t\ h) and ρAh(t\ h)
can be easily shown. Let Ah(t; μ) be written as (4.1). Then we have

(4.4) A*(t h) = Σσ «ί(', * - hσ, h)Th~',

which belongs to ja^ζ (r = l, 2), where a* denotes the conjugate transpose of the
matrix aσ.

Now we introduce the amplification matrix of Ah(t\ h)ej/h which will be
used in the next subsection. Let Ah(t; μ) be of the form (4.1). We put

(4.5) a(t, x, ω, μ) = Σσ ^ *(*> *> μ) exp (iσ ω) (ω e R") .

Then

(4.6) Ah(t; μ)u(x) = ̂ a(t, x, hξ,

where (^u)(ξ) and (^sr~1v)(x) denote the Fourier transform of w(x)eL2 and the
inverse Fourier transform of v(ξ)9 respectively. In the case when aσ is independent
of x, i.e., ασ(ί, x, μ) = aσ(t9 μ)9 it follows that
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(4.7) \\Ak(t; h)u(x)\\ = ||fl(r, hξ,

where

(4.8) a(t, ω, μ) = Σσ^Λ μ)exp(fσ ω) (ωeK»).

It is said, in view of (4.7), that a(t, ω, h) is the amplification matrix of Ah(t\ K).
In the following we would say that a(t, x, ω, /ι) is the amplification matrix even
if aσ(t, x, μ) depends on x.

4.2. Lax-Nirenberg Theorem

Without proof we first state Lax-Nirenberg Theorem [16, 30] which plays
an important role in establishing the stability of the linear difference scheme
(3.15).

THEOREM 4.1 (Lax-Nirenberg). Let a(t, x, ω, h) be the amplification
matrix of Ah(t\ /ι)ej/§, where Ah(t\ μ) is of the form (4.1). Suppose that
a(t, x, ω, 0) is hermitian and positive semi-definite:

(4.9) a(t, x, ω, 0) ̂  0 for all (ί, x, ω) e J x Rn x Rn.

Then there exists a constant KA such that

(4.10) Re(^(ί; h)«, w) ^ -XχΛ||u||2

for all u(x) e L2, heH and / e J, where

(4.11) KA = 2-1(|α|2,0 + c|α|0>2) + CΛ,

(4.12) |α|ί>m = Σσ[supWs({sup(,jaίασ(ί, x, 0)|}](l + σί + ... + ̂ )» /2

(/, m = 0, 1,2),

c is a constant independent of Ah(t\ h) and CA is given by (4.3).

We next show the inequality, which plays the same role as the one (4.10),
excluding the second-order derivatives of the amplification matrix. For this
purpose we introduce Condition A to be imposed on the amplification matrix,

and Property B, which a partition of unity {ψ%(x)} possesses, to be used in es-
tablishing the above inequality.

CONDITION A. When /ι = 0, the amplification matrix a(t, x, ω, h) of Ah(t\ h)
e ja/J is written as

(4.13) α(ί, x, ω, 0) = g(t, x, ω) Σ, |s/(ω)|2,

where



476 Kenji TOMOEDA

(4. 14) g(t, x, ω) = Σm gj& *K(

(4.15) s/ω) = Σr«yrexpO> ω), r =

(4.16) em(ω) Σ,Φ/ω)l2 = Σ

the summations are taken over respective finite sets of indices, qjr and eml are
constants, ess supjem(ω)| is finite and d$gm(t, x) (|α| ̂  1) are continuous and

bounded on J x Rn.

PROPERTY B. (1) ψa(x) ̂  0, ψΛ(x) e C°°, supp ψΛ(x) c VΛ = {x e Rn : \x - x<α> |
<<5} for all α, where 5 is a positive constant and

x<α> = (δαi/^/n,..., δocj^/n), α = (αl5..., απ), αf = 0, ±1,... (i = 1,..., n);

(2) Σ«^W = i;
(3) There exists a constant K(δ) such that

for all x eR\

Let M(x) denote the number of α such that \l/Λ(x) *? 0 for each x e R". Since M(x)
is bounded on Rn by (1) of Property B, we put M = supxM(x). Then we have

THEOREM 4.2. Let the amplification matrix α(ί, x, ω, h) of Ah(t;
satisfy Condition A. Suppose that g(t, x, ω) is hermitian and that there exists
a positive constant ε such that

(4.17) g(t, x, ω) ̂  εl

for all (t, x)eJxR" and for almost all ωeRn. Then

(4.18) ReG4A(ί, h)u, u) ^ Σ.Σj(β-%lι.oo) \\ΛjhψΛu\\2

-Άβ^hΣtΣjC^Λj^M2 - C2h\\u\\2,

for all u(x) e L2, heH and t e J, where

(4.19) ΛJh=Σr4jrT'k,

(4.20) \g\ltn = Σm{Σ?=ιSupί)JC|δ^m(ί, x)|}ess.supω|βm(ω)|,

(4.21) Cu = Σr(Σϊ-ι |Γ||)max(|βyp|, 1),

(4.22) C2 = |^|1>00 Σ, Cu + CA + MK\δ) | f l |0 f 2Λ0 ,

κ is gfit βn by (4.3).

This theorem will be proved in Section 6.1.
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5. Convergence theorems

5.1. Condition C

In this section we are concerned with the difference scheme (3.8)-(3.12) under
the assumption that (3.13) holds. We introduce Condition C imposed on the
difference scheme.

CONDITION C. (1) lσ(t, x, y, μ) (σ e A), together with all their first-order
derivatives, are continuous and bounded on JxRnx (C$)q x H for any fixed
number d > 0, where C"d = {z e CN : \z\ ̂  d}

(2) δ«xd
β

ylσ(t, x, y, μ) (σeΛ) and d*dζg(t, x, y, μ) (\<*\ + \β\£m) are continu-
ous and bounded on JxRnx(C$)qxH for any fixed number d>0, where m^2.

Under Condition C, Lh(t, w; h) belongs to j/g (r = l, 2) for a given w(x)

e Ws (s>n/2 + r). We have the following lemma.

LEMMA 5.1. Let Condition C be satisfied, where m>n/2 + l. Then:
(i) For every d>ΰ there exists a constant c3(d) satisfying

(5.1) \\{Lh(t9 w; fc) - Lh(t, v; h)}^^, ^ c3(d)h\\w - v\\m^

and

(5.2) ||G(ί; Λ)w - G(ί; h}υ\\m_, ̂

for all w(x), v(x) e Wm~l(d\ u(x) e Wm(d), heHandteJ.
(ii) For a positive number d and a constant M0 let

(5.3) | |LΛ(ί,w;ft)ιι | |^(l + MoΛ)||ιι||

for all w(x) e Wm(d), u(x) e L2, h e H and t e J. Then there exists a constant Mt

such that

(5.4) | |LΛ(ί,w;Λ)fi |L^(l+M 1Λ)| | ιι |L

for all w(x) e Wm(d), u(x) e Wm, heH and t e J. Moreover, the linear difference

scheme (3.15) is stable in Wm for all WjeWm(d) 0 = 0, 1,...).

The proof will be given in Section 6.2.

Under Condition C let /(f, x, w(x), ω, A) be the amplification matrix of
Lh(t9 w; h) and let

(5.5) Ί(t9 x, z, ω) = Σσea W x, z, , *> O)exp(iσ ω).

Then it follows that
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(5.6) /(ί, x, w(x), ω, h) = ΣaeΛ UΛ *> w(x, /i), A)exp(iσ ω)

and

(5.7) /(f, x, w(x), ω, 0) = Z(ί, x, wr(x), ω)

for all w(x)eWm (m>n/2 + l) and (ί, x, ω)e JxR" xjR", where w(x, μ) is de-
fined as v(x, μ) (see (3.5)).

5.2. Convergence theorems

In this subsection we state two convergence theorems (Theorems 5.1 and
5.2) in terms of the amplification matrix.

THEOREM 5.1. Assume that Condition C is satisfied, where raΞ>[n/2]+4,
and that the difference scheme (3.8) approximates (1.1) with accuracy of order
m t in Um2'nt3(dί)9 where

(5.8) ί/! > 0, m^ 1, m2^m1 + 1, m3 = |>/2] + 3.

Suppose that there exists a constant d2 (d2>d1) such that

(5.9) / - /*(*, x, w(x), ω, 0)/(f, x, w(x), ω, 0) ̂  0

for all w(x) e W m3(d2) and (ί, x, ω)e JxRn xRn. Then for sufficiently small
/c x>0 there exists a constant cs such that

(5.10) \\u(t + vk, •) - φ\t, u(t, ))L3 ^ ^5^mι

/or α// u(t, x)e U™2'"13^^, /ce[0, /cj and t, t + vkeJ. Moreover, it holds that

(5.11) |ιι(ί + vfe, -) - φv(ί, u(t, -))|2 ^ CΛmι

/or α// w(ί, x)e Unt2 m3(d1), /ce[0, /cj and ί, ί + v/ce J, w/iere C is some constant.

REMARK 5.1. As a sufficient condition under which (5.9) holds, we obtain

(5.12) / - I*(ί, x, z, ω)Z(ί, x, z, ω) ̂  0

for all (ί, x, z, ω) e J x JRM x C£3 x JR", where d3 = ̂ ^0, n, N)d2. The expression
(5.12) can be shown by the Sobolev-type theorem.

PROOF OF THEOREM 5.1. In view of Theorem 3.1 and Remark 3.1, it suffices
to show that the assumptions of Theorem 3.1 are satisfied. By the assertion (i)

of Lemma 5.1 the inequalities (3.20) and (3.21) hold with c3 = c3(ί/2) To prove
the stability of the linear difference scheme (3.15) we now show that there exists
a constant M0 such that the inequality (5.3) holds, where d = d2 and w = w3.
Give a function w(x) e Wm3(d2). It follows from Lemma 4,2 that
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Ah(t, w; A) = / - LJ(ί, w; h)Lh(t, w; A)

belongs to ja/§. Denoting by a(t, x9 w(x), ω, h) the amplification matrix of

Ah(t, w; A), we find that

fl(ί, x, w(x), ω, 0) = / - i*(ί, x, w(x), ω, 0)/(f, x, w(x), ω, 0).

Since (5.9) leads to α(ί, x, vv(x), ω, 0)^0, Theorem 4.1 yields

(5.13) Re(4fcα w; Λ)ιι, ιι) £ -XAA||ι<||2

for all w(x) e L2, A e //, ί e J, and hence

(5.14) \\Lat, wιh)u\\£(l + KAh)\\u\\

for all H(X) e L2, heH, tEJ.
Applying the Sobolev-type theorem

(5.15) |w|2 ^ K& n, N) ||w||m3 g K&, n, N)d2 for all w(x) e ̂ " »(d2)

and Condition C to the representations of CA ((4.3)) and KA ((4.11)), we obtain

a constant M0 independent of w(x) such that

KA ^ MO for all w(x) e PFm3(^2)

Therefore (5.3) follows from (5.14), and the linear difference scheme (3.15) is

stable in Wm* for all wy e Wm3(d2) (j = 0, 1,...) by the assertion (ii) of Lemma 5.1.

Thus the assumptions of Theorem 3.1 are satisfied. This completes the proof.

According to this theorem, the difference approximations t;v(x) defined by

(3.8) and (3.9) converge to the exact solution in the Cj-norm. However it should

seem needless to derive the C|-convergence, because the original system (1.1)

does not contain the second-order derivatives of u. We shall derive the C1

B-

convergence. For this purpose we introduce the conditions.

CONDITION D. b(t, x, z9 ω) is an N x N matrix function and can be written
as

(5.16) b(t, x, z, ω) = Σσbσ(t, x, z)exp(ί'σ ω), σ = (σl5..., σrt),

where the summation is taken over a finite set of σ and d*dβ

zZ?σ(t, x, z) (|α| + \β\ ̂  1)

are continuous and bounded on J x Rn x C£ for any fixed number d>Q.

CONDITION E. (1) α(ί, x, z, ω) is an N x N matrix function satisfying
Condition D;

(2) α(ί, x, z, ω) is written as

(5.17) α(ί, x, z, ω) -== g(t> x, z, ω) Σj |s/ω)|2,.
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where

(5.18) g(t, x, z, ω) = ΣmΛ fr *, *)*»(<»

(5.19) sj(ώ) = Σr0jrexp(ir ω), r = (rls..., rn),

(5.20) em(ω)Σ>Xω)|2 = Σι**ιexp(i/ ω), / = (/ l f..., /„),

the summations are taken over respective finite sets of indices, qjr and eml are
constants, ess supω|em(ω)| is finite and d*dβ

zgm(t, x, z) (|α| f |/?| ̂  1) are con-
tinuous and bounded on J x Rn x C£ for any fixed number d>0.

Now we state the following convergence theorem.

THEOREM 5.2. Assume that Condition C is satisfied, where m^[n/2] + 3,
and that the difference scheme (3.8) approximates (1.1) with accuracy of order
m1 in Um2'm3(d1)9 where

(5.21) £/! > 0, mί ^ 1, m2 ^ m t + 1, m3 = [n/2] + 2.

Lei 1 — 1*1 be written as

(5.22) / - J*(f, x, w(x), ω, 0)/(ί, x, w(x), ω, 0)

= 6*(ί, x, wr(x), ω)α(ί, x, wr(x), ω)b(t, x, wr(x), ω),

w/iere fc(ί, x, z, ω) and a(t, x, z, ω) satisfy Conditions D and E, respectively.
Suppose that g(t9 x, z, ω) is hermitian and that there exist constants d2 (d2>dί)
and ε (ε>0) such that

(5.23) g(t, x, wr(x), ω) ̂  ε/

/or a// w(x)e Wm*(d2)9 (t, x)eJxRn and for almost all ωeR". Then for
sufficiently small fc1>0 there exists a constant c6 such that

(5.24) ||u(ί + vfe, •) - φv(t, u(t, ))IL3 ^ c6h^

for all u(t, x)eUm2 m3(dί), fce[0, /cj and ί, ί + v/ceJ. Moreover, it holds that

(5.25) |ϋ(ί + vfc, •) - 0v(ί, ιι(ί, ))lι ^ CΛ-i

/or a// w(ί, x)e l/1"2*1113^!), fce[0, /cx] and t, ί + v/ceJ, w/iere C is some con-
stant.

REMARK 5.2. As a sufficient condition under which (5.23) holds, we have

(5.26) g(t, x, z, ω) ̂  el

for all (ί, x, z) e J x Rn x C£3 and for almost all 00 e Kn, where as = Xt(0, n,
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PROOF OF THEOREM 5.2. Since a(t, x, z, ω) satisfies (1) of Condition E, we

may write it as

a(t, x, z, ω) = Σα<UΛ *> z)exp(ία ω), α = (α^..., απ).

For each w(x) e Wm3(d2) we introduce the one parameter families of linear opera-
tors Ah(t, w) and Bh(t, w) belonging to «*/£, i.e.,

and

for all ι/(x) e L2, ft e /f and ί e J.
Now we shall prove the theorem by using the properties of Ah(t9 w) and

Bh(t, w). To this end it suffices to show that there exists a constant M0 such that

the inequality (5.3) holds, when d = d2 and m = m3.
We first prove the following inequality :

(5.27) Re(ΛO, vv)w, u) ^ -KAh\\"\\2

for all u(x) e L2, heH, teJ and w(x) e PFm3(^2)5 where Xx is a constant inde-
pendent of w(x). By Condition E the amplification matrix of Ah(t, w), a(t, x,

wr(x), ω), satisfies Condition A for each w(x)e FFm3(d2) Since g(t, x, wτ(x), ω)
^ε/ holds for w(x) e Wm*(d2\ Theorem 4.2 yields

(5.28)

for all M(x)eL2, fte/f and teJ, where |gf|1 § 0 0, Cυ and C2 are given by (4.20),
(4.21) and (4.22), respectively. The constant CA in (4.22) vanishes, because
a(t, x, z, ω) is independent of h. Applying the Sobolev-type theorem (Theorem
2.1) and Condition E to |#| l j00 depending on w(x), we obtain a constant M2

independent of w(x) e W m3(d2) such that

(5.29) |0|1 > 0 0^M2 for all w(x) e W

In a similar way, we obtain a constant M3 such that

(5.30) |α|0,2 ^ M3 for all w(x) e W

Since Σ« ̂ « = 1> we have

(5.31) Σ J^.^B2^(Σ,M)2I

Choose δ small so that 5 <ε/M2 and put
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(5.32) KA = 3M2 ΣyCumax{(Σr l<7,>!)2, 1} + MM3K
2(δ)h0 .

Then by (5.29)-(5.32), (5.28) is reduced to

ί, w)κf ii) ^ -2M 2ΛΣjC ι yΣJΛ y f cιM|| 2 - C2h\\u\\2 ^ -KAh\\u\\2.

Thus we obtain (5.27).
Putting

and

QΛ(ί, w; /O = J5J(ί, w)Λ(ί, w)Bh(t, w),

we next show that there exists a constant KL such that

(5.33) ||{Pfc(t, w; h) - QΛ(ί, w; Λ)}ιι|| g KL/φ|

for all u(x) e L2, Λ e //, ί 6 J and w(x) e ^m3(rf2) Since PΛ(ί, w ft) and βfc(ί, w ft)

belong to sf^ for each w(x)e ^m3(ί/2)9

 we nave by Lemma 4.1

(5.34) ||{PΛ(f, w; fc) - PΛ(f, w; 0)}ιι|| g CPΛ||α||

and

(5.35) «•{&(*, w; ft) - Qh(t, w; 0)}u|| ^ CQh\\u\\

for all w(x) e L2, /i e H, ί e J and for each w(x) e W^m3(^2)» where CP and CQ are
defined as CA (see (4.3)).

Let us denote by p(t, x, w, ω, Λ) and ^f(ί, x, w, ω, /ι) the amplification
matrices of PΛ(ί, w 'Λ) and Qh(t, w; /i), respectively. Since (5.22) implies

p(t, x, w, ω, 0) = g(ί, x, w, ω, 0) ,

we have

PΛ(ί, w; 0) = βΛ(ί, w O).

Hence, by (5.34) and (5.35)

(5.36) ||{Pfc(ί, w; h) - Qfc(ί, w; Λ)}ιι|| g (CP + CQ)h\\u\\

for all u(x)eL2, heH and teJ. In the same way as the one used in the
proof of (5.29) we know that there exists a constant M4 satisfying

Cp + CQ ^ M4 for all w(x) e H""̂ )

Thus (5.33) follows from (5.36) where KL = M4.
Finally we show that the inequality (5.3) holds for some constant M0. By

(5.27) and (5.33) we obtain
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(5.37) Re(Pft(ί, w; h)u, u) £ Re(QΛ(/, w; h)u, u) - KLh\\u\\2

3; Re(Ah(t, w)Bh(t, w)u, Bh(t, w)u) - KLh\\u\\2

Since Condition D implies the existence of a constant M5 satisfying

Σ,sup(,Jfcβ(ί, x, wr(x))| ^ M5 for all w(x)e W^(d2

it follows that

f, Hθfi|| £M5 | |u||

for all w(x)eL2, heH, teJ and w(x)eWm3(d2). Hence, from (5.37) we have

(5.3) with M0 = KAM5 + KL, d = d2 and w = m3. Thus the linear difference

scheme (3.15) is stable in Wm* for all Wj e Wm3(d2) O' = 0, 1,...) by the assertion
(ii) of Lemma 5.1. This completes the proof.

5.3. Examples

In this subsection we introduce two difference schemes proposed by Gourlay

and Morris [7], which approximate the following symmetric hyperbolic system:

(5.38) (/, x) = Σj-i Λ>Γ(ί, x)) (t, x)

with the initial condition (1.2), and seek some restrictions on λ under which the

inequalities (5.9) and (5.23) hold. For simplicity we assume that Aj(z) (;' = !,..., n)

are sufficiently smooth. The approximating difference schemes are written as

(3.8) and (3.9) with the difference operators Sjh (j=l, 2) given by

(5.39) S1Λφc) = Chv(x) + (A/2) Σj=ι AJυτ

and

(5.40) S2kυ(x) = v(x) + (A/2) Σjβ l AJvτ(x, h))(TJh - Trf)v(x, Λ),

where

S(x, /ι) = Qφ) -f (A/4) Σ5=1 ̂ (̂

and βj is the unit vector in Rn whose j-th entry is unity. It is clear that the

operators Sjh(j = l,2) give the difference schemes with accuracy of order j

(j = 1, 2) in UJ+ί>m(d) (m^ [n/2] + 1). We put

(5.41) L1Λ(ιO = Ch + (A/2) Σj-i Aj(vT(x»(Tjh - Γ i)

and
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(5.42) L2h(v9 μ) = /•+ (A/2) Σ?=ι A$τ(x9 μ))(TJh - Γjί

+ (A2/8) Σ3=ι Λ/FOc, μ)) Σ?=ι ^^Γ(x + μβ

- (A2/8) Σ3-ι Λ/δΓ(x, JO) Σϊ-i ^(x-jie^TjtfΓtt - Tϋ1

Then Lίh(υ) and L2Λ(t>; Λ) belong to ̂  for a given v(x)eWm (m^[n
and satisfy the equality (3.13). Furthermore,

S1Λφc) = Llh(v)v(x)9 S2hv(x) = L2h(v; h)v(x) .

Denoting by /ι(w(x), ω) and /2(w(x), ω, ft) (w(x) e FFm, m ̂  [n/2] + 2) the
amplification matrices of L1Λ(w) and L2Λ(w; /i), respectively, we have

(5.43) /ι(w(x), ω) = c(ώ)I + iAA(w(x), sin ω)

and

(5.44) I2(w(jc), ω, 0) = / + iλA(\v(x), sin ω)c(ω) - (Λ2/2),42(w(x), sin ω) ,

where

c(ω) = n~l Σ3=ιcosωj> sinω = (sinα^,..., sinωπ)

and

Following Yamaguti and Nogi [31], we obtain

(5.45) / - /*(w(x), ω^Kx), ω) = ftfα

and

(5.46) / - /J(w(x), ω, 0)/2(w(x), ω, 0) =

where

(5.47) a^τ(x\ ω) = {w1/ - AMJ(w(x), sin ω)} Σ?=ι sin2

(5.48) α2(wτ(x), ω) = {w1/ - (Λ2/4M2(w(x), sin ω)} Σ"=ι sin2 ω,

Xz(w(x), ω) = Σj=ι Aj(wτ(x))ωj/\ω\, cjk(ω) = cos ω, - cos ωfc ,

bί = I, fr2(w
r(x), ω) .=. ,L4(w(x), sin ω) .

Here we put

= Σ3=ι

and
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(5.49) 0/wτ(x), ω) = a^(x\ ω)//(ω) 0=1,2).

Let us seek some restrictions on λ under which the inequalities (5.9) and
(5.23) hold. For any fixed number d>0 we put

Pd = supω=¥0,w(*)P(^(vΦO, ω)),

where the supremum with respect to w(x) is taken over W[nl2^+2(d) and ρ(Az)
denotes the spectral radius of Az. We choose λ satisfying λρd^l/^n, so that

/ - /?(H<JC), ω)lί(w(x), ω) ̂  0 for all w(x) 6 W

Hence, if λpd2^l/^/n, then the inequality (5.9) holds for each d2>0, where / = / x .
For each λ satisfying λpd^2/^/n we similarly know 02 = 0, an^ therefore

obtain (5.9) with / = /2

 for each d2>0, if λρd2<^2/jn.
It is known that α, (j = l, 2) satisfy Condition E by (5.47), (5.48) and (5.49)

and that (5.22) holds by (5.45) and (5.46), where I = lj9 6 = 6, and a = aj U=l, 2).
For each λ such that λρd<l/^/n we have

g^τ(x\ ω) ^ minftn-1 - λ2p2)9 n~2}I > 0

for all w(x)e W* n/2i+2(d) and for almost all ωeRn. Hence, if λpd2<l/jn>
then the inequality (5.23) holds for each d2>0, where g — g^ Similarly we can
show (5.23) with g = g2 for each d2 > 0, if λρd2 < 2/^/n.

6. Proofs

6.1. Proof of Theorem 4.2

We prepare the following two lemmas:

LEMMA 6.1. For all w(x)eL2, he H and teJ and for all j

(6.1) l(Λ(t;θ)u,ιι)-Σ.(ΛO
(6.2) Λ(ί, 0) = Gh(0 Σ j ΛJhAjh,

(6.3) ||{GA(ί)Λ.*Λ — /l*ΛGΛ(ί)}M|| ^

w/ιer^

C3 = MK\S)h0, Gh(ί)=Σmβ

LEMMA 6.2. For α/i u(x) e L2, heH and teJ and for all j and α

(6.4) |({GΛ(f) - Gxh(t)}ΛJhψxu, ΛjhψΛu)\ £ \g\ίtao(δ

where
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GΛ(t)=ΣmβJίt, *•>)£„>•

By these lemmas we have

(6.5) ReGVf; Λ)«, u) ^ Re(A(f OX 11) - CXΛ||«Ϊ|2

.il, «M) - (Cx + |β|o.2

lM, 1M) - (Cx + |α|o.2C3)Λ||u||2

^ Σ. Σ^ReCG^ίM. Λ," ΛjrfjΛ) - \g\lιX(δ + 2Cυ h) \\Λjhψxu\\2}

-(lβl 1,»ΣyC u + Cx + iβ|o.2C3)Λ||tt||2.

Since Ga)l(ί) is an operator independent of x, the assumption (4.17) yields

Hence, combining the above with (6.5), we have (4.18).

PROOF OF LEMMA 6.1. Putting

F = (Ah(t 0)ιι, «) - Σ«(Ah(f, 0)ψxu, .̂«),

we have, by (2) of Property B,

(6.6) F = Σ, {«,(', *, 0)u(x + Λσ)}*(l - Σα Ά«(* + hσ)ψx(x))u(X)dx

Since

it holds from (6.6) that

\F\ ^ 2-ι Σ.sup,,, \a,(t, x, 0)| \\u\\

Σσsupf,,|ασ(ί, x, 0)|(Σ?=ι σ?) ||«||

which yields the desired inequality (6.1).
It is clear that Λjh and Emk are both bounded linear operators from L2 into
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itself. By (4. 13), (4. 14) and (4. 16) we have

Σ*<**(t, x> O)exp(ίσ

and

EmhΣjAJhΛjh

Then Ah(t 0) is represented as

Λ(';0)= Σm0m(^χ)Σιemln

= Σm gm(t, *)Emh Σj ΛJhλjh = Gk(t) Σj ΛJhΛjh ,

which is (6.2).
Finally (6.3) is proved by the fact that

\\{Gh(t)ΛJh - ΛJhGh(t)}u\\ ^ Σm \\{gJίt, x)ΛJh - AJhgm(t9 x)}Emhu\\

^ Σm Σr\qjr\ \\{gm(t, x) - gJίt, x-hr)}T^Emhu\\

^ ΣmΣrkjr |A(Σ?-l W) Σ?=l SUPf>JC |̂ w(ί, x)| \\EmhU\\ ^ \g\

Here we used the relation EmhΛJh = ΛJhEmh.

PROOF OF LEMMA 6.2. By the mean-value theorem we have

({GΛ(0 - GΛh(t)}ΛjhφΛu9 ΛJhψΛu) = Σm({9m(t, x) ~ gm(t,

Since Ajh is written as a finite sum of translation operators Tj, it follows that

supp(Λ^.ιι)c: WΛ = {xεRn: |jc-χ(«>|

Hence we obtain

|({GΛ(ί) - GΛh(t)}ΛjhψΛu, ΛjhψΛu)\ ^ \g\^\\Λ

which is (6.4).

6.2. Proof of Lemma 5.1

We show (i). From (3.11) and (3.13) it follows that

(6.7) {Lh(t, w; h) - L,,0, ι;; Λ)}ιι(x) = Σ^^(ί5 w, t?;

where

7ff(ί, w, i?; Λ) = /ff(ί, x, w(x, A), A) - /ff(ί, x, t;(x, A), A)

Carrying out the differentiations, we obtain
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(6.8) d*x{Ja(t, w, v; h)(Tt - /MX)}

= Σa+6=sc(α, b){d°xJa(t, w, β; h)}{d%Γl - /)«(

yΛβ, w,

x

+ δ δJWί, x, c(x, h), h){Ss

x(

where

s = («!,..., sπ) (|s| g ro-1), α = (a^..., aa), b = (ί>ls..., bn), α = (α!,..., απ),

β = (/?(",..., J8W), /?(« = 0?iV,..., ΛV, /ϊ^,..., ffi) (k = I,-, n),

= ΣZ-i . , .

δ = (*„..., «, 5» = ak - α, - \βW\ (k = 1,..., n),

w(x) = (WjCx),..., w,v(x))r, D(X) = MX),..., VN(X))T,

Elja(θ, w, υ) = dyιjla(t, x, θw(x, h) + (1 - β)ι<x, Λ), ft)

(σe/1; i = 1,..., q j = 1,...,

F^ίw) is the product of the powers of d^w^x + hpW) with exponent βff for
ί — 1,..., q, j = l,..., N, fe = l,..., n, F00;) is defined similarly, and Cxf is a constant
deendin on α and ?.depending on α and /?.

Since

for all M(Λ:) e Wm(d), the Sobolev-type theorem yields

(6.10) \\(Wj-Vj){ds

x Fβ(w)}d» (TTf -/)««

^ AΓ,(0, «, ^Hw-ϋlL.^aίm, n,

and

(6.1 1) || {dx(Fβ(w) - Fβ(vffiSb

x(Tl

^ (m-ί)K3(m, n, f^^

for all w(x), v(x)e Wm~ί(d) and u(x)e Wm(d), where K3(m, n, N) is a constant
independent of β, δ, σ and b.

By Condition C we have

(6.12) \d*xd*EiJσ(θ, w, v)| g c7(d') (σ e A 0 g θ g 1)

and
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(6.13) I WΛf, x, v(x, hi h)\ g cΊ(df) (σ e A)

for all w(x), v(x)ε Wm(d), where d'^K^Q, n, N)d and cΊ(d') is a constant de-
pending on d'. Put

c(d) = (ΣσeΛ

x {qKQ, n, JV)(1 + d) + m-l}K3(m, n,

Then by (6.8) and (6.10)-(6.13) it follows from (6.7) that

ί, w; A) - L,(f, ι;;

and (5.1) follows. Similarly it can be shown that (5.2) holds.
We show (ii). From (3.11) it follows that

(6.14) ||LA(ί, w; h}u\\ϊ = ΣI K

where

F(α, 6, w, «) = Σ^(β;{/β(ί, x, H<X, A),

By (5.3) we have

(6.15) \\Lk(t, w; A)3jιι|| g (1 +M0A) ||3jκ|| (|s| ^ m) .

We estimate the L2-norm of V(a, b, w, M). From the assumption (3.13)
we obtain

t> x, >v(x, A), A)} = 0 (|α| ^ 1) ,

so that

V(a, b, w, ii) = Σ^Cδ ίWί, x, w(x, A), A)})3J(Tj-ί)u (|α| ^ 1; |

Hence by the Sobolev-type theorem, Condition C and (6.9) we have

(6.16) \\V(a9 b, w, tι)|| ^ (Σ^\σ\)M2(d9 m, n,

for all w(x) e if m(d) and u(x) e PFm, where M2(d, m, n, N) is a constant inde-
pendent of a and fe. Put

(6.17) M! = 2M0 + M§A0 + M|A0 + 2M3(1+M0A0),

where

f m, n,

Then (5.4) holds by (6.14)-(6.17).
By (5.4) we have
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(v-l)fc, w v _ l f ft)LA(ί + (v-2)fe, w v_ 2, Λ) LΛ(ί, w0,

for all Wj(x)eWm(d) (7=0, 1,..., v-1), ιφc)e Wm, /ee£ and f, t + vke J. Hence
the linear difference scheme (3.15) is stable in Wm for all w^ e Wm(d) (7 = 0, !,...)•
This completes the proof.
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