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Throughout the present paper, R will represent an associative ring (with or

without 1), and C the center of R. We denote by N and D = D(R) the set of all

nilpotent elements and the commutator ideal of R, respectively. Given a, beR,

we set [α, b~] = ab — ba as usual, and formally write α(l-f b) (resp. (l + f?)α) for

a + ab (resp. a + ba). Let m, n be fixed positive integers.

Following [7], a ring R is called s-unital if for each x in R, x e Rx n xR. As

stated in [7], if .R is an s-unital ring, then for any finite subset F of R, there exists

an element e in R such that ex = xe = x for all x in F. Such an element e will be
called a pseudo-identity of F.

We consider the following conditions:

1) There exist non-zero polynomials φ(f), \j/(f) with integer coefficients whose

constant terms are 0 and such that [φ(x), ψ(y)~\ = 0 for all x, y e R.

1)» [>"> r] = 0 f o r a l l x , yeR.
!)'„ For each pair of elements x, y in ,R there exists a positive integer f =

/(x, y) such that [xπί, yM]=0.

2)Λ (xy)M = jc'ιyί and (xj)"+1 =xM+1y+1 for all x, 3; e#.
3)Λ (xy)n = (yx)" for all x, y e #.

4). [x,(xy)M] = O f o r a l l x , yeR.

5)B [x", y] = 0 for all x, y e R.
5)J, For each pair of elements x, y in R there exists a positive integer i =

ϊ(x, y) such that [xπί, j>]=0.

6)π [xπ, y] = [x, r] for all x, y e R.
6)'n There exists a polynomial ι/^(ί) with integer coefficients such that

[x2^(x), y] = [x, yn~\ for all x, yeR.

6)2 [x, (x + JO" - J>Λ] = 0 for all x, y e R.
7)π For each pair of elements x9 y in R there exists a polynomial ρ(t) =

p(x, yi 0 with integer coefficients such that [nx —x2p(x), j>]=0.
8)M For each pair of elements x, y in R there exist a positive integer i = i(x, y)

with (i, n) = 1 and a polynomial ψ(t) = ψ(x, y; i) with integer coefficients such that

[ΐx-x2ιKx), y]=Q.
9)Λ For each pair of elements x, y in R, n[x, y]=0 implies [x, y]=0.

Needless to say, l)π implies 1) and 1)̂ , and 5)w does 6)M.

Recently, in [1], [3], [7], [8] and [9], the following commutativity theorems
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have been obtained.

A ([1, Theorem 1] and [9, Theorem 1]). If R is an s-unίtal ring satisfying
!)„ and 9)w, then the following statements are equivalent:

a) R is commutative.
b) [x, (xy)n-(yx)n~\=Qfor all x, yeR.
c) [x, {x(l + w)}"-xM(l+w)π]=0/or allueN and xeR.

B ([7, Theorem 3, 4)], [3, Theorem 5] and [9, Theorem 2]).

(1) Let R be an s-unital ring satisfying 2)π. If N is n-torsion free, then R
is commutative.

(2) Suppose n>\. If R is a ring with 1 satisfying 6)n and 9)n, then R is

commutative.
(3) Suppose m>n and mn>L Let R be an s-unital ring satisfying the

identity [xm, y] = [x, }>"]. If for each pair of elements x, y in R, n![x, }>] = 0
implies [x, y]=0, then R is commutative.

C ([8, Theorem]). Suppose m>l. Let R be a ring with 1 satisfying 2)n.
//(m, n) = l and (x + y)m = xm + ym for all x9 yeR, then R is commutative.

D ([3, Theorem 6]). Suppose m>l and n>l. Let R be a ring with 1
satisfying 6)m and 6)n. // (m, n) = l, then R is commutative.

The present objective is to prove the following theorems.

THEOREM 1. IfR is an s-unital ring satisfying !)„ and 9)π, then the following
statements are equivalent:

a) # is commutative.
b) Every ueN with w2 = 0 is central.

c) [x, {x/I(l + w)}/I-{xw~1(l + M)x}/1]=0/or all u eN with w2 = 0 and xeR.
d) [x, {x(l+u)}n-x"(l + w)π]=0/or all uεN with w 2=0 and xeR.

THEOREM 2. Let R be an s-unital ring satisfying 9)Λ.
(1) If any of the conditions 2)π, 3)rt, 4)M, 5)w, 5)^ and 6)'n is satisfied, then R

is commutative.
(2) Suppose n>l. If R satisfies the condition 6)n or 6) ,̂ then R is com-

mutative.
(3) The conditions ΐ)n and !)'„ are equivalent.

THEOREM 3. Suppose m>l and (m, n) = l. Let R be an s-unital ring
satisfying 6)̂ . I f R satisfies one of the conditions 2)M, 3)B, 4)Λ, 5)n, 5); and 6)'n,
then R is commutative.

THEOREM 4. IfR is an s-unital ring satisfying 1), 7)n and 9)π, then R is com-
mutative.
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THEOREM 5. Let R be an s-unital ring satisfying 6)'m and 6)'n. If (ra, n) = 1,
then R is commutative.

Obviously, Theorem 1 covers Theorem A. Moreover, in view of Theorem 2

(3), Theorem 1 also improves [4, Theorem 1]. Theorems 2 and 5 improve
Theorems B and D, and Theorem 3 contains Theorem C.

In preparation for the proof of our theorems, we establish the following
lemmas and propositions.

LEMMA 1. Let R be a ring satisfying a polynomial identity /=0, where the
coefficients o f f are integers with highest common factor 1. // there exists no
prime p for which the ring of 2 x 2 matrices over GF(p) satisfies /=0, then D is a
nil ideal and there exists a positive integer h such that [x, y~]h — (^ for all x, yeR.

PROOF. By [2, Theorem 1], D is a nil ideal. Consider the direct product
RRXR. Since the ring RRXR satisfies the same identity /=0, D(RR*R) is also nil.

Let X = (x\Xty)eRχR, Y=(y\x,y)eRχR, and [X, 7]Λ=0. Then it is immediate
that [x, y~\h = 0 for all x, y e R.

LEMMA 2. If an s-unital ring R satisfies \)'n and 9)M, then [u, xw]=0/or all
ueN and xεR, and N is a commutative nil ideal containing D.

PROOF. Obvious by [6, Theorem] and the proof of [4, Lemma 5].

LEMMA 3. If R is an s-unital ring satisfying 1), then there exists a positive
integer k such that kD = Q.

PROOF. Let Φ(t) = pιt + p2t
2-\ ----- \-pm

tm Suppose £1=0. Obviously,
φ'(t) = 2p2t + 3p3t

2-) — + mpmtm~l is non-zero, and so there exists an integer ίr

such that qί = φ'(t1)^0. Then Φι(t) = φ(ti + t) = qΐt+ > +pmtm, and [(̂ (x),
^(j)] = 0 for all x, yeR. (Note that # is s-unital.) Because of the above
observation, we may assume that pi^O. Now, replacing x by ix in the identity

[PI*, ΆOO] +•••+ QV, ΆOO] = [<£(*), ΨWl = o,
we have

</ΌO] =0 (ί = 1,..., m).

Hence, d[pιX, <A(y)] = 0, where d(^0) is the determinant of the matrix of integer
coefficients in the last equations. Finally, repeating the above procedure for

ψ(y), we obtain the conclusion.

COROLLARY 1. Let R be a ring satisfying 9)M. If there exists a polynomial
ψ(i) with integer coefficients such that [nx — x2ψ(x), y] = 0/or all x, yeR, then

R is commutative.

PROOF. As is easily seen from the proof of Lemma 3, there exists a positive
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integer k such that /cD=0. Combining this with 9)rt, we can see that there exists

a polynomial y(i) with integer coefficients such that [x — x2y(x)9 j>]=0 for all x,
y e R. Then R is commutative by [5, Theorem 3].

PROPOSITION 1. If R is an s-unital ring satisfying !)„ and 9)w, then DN = 0,
and in particular, D2 = 0.

PROOF. According to Lemma 2, N is a commutative nil ideal containing D
and [w, XM] =0 for all u e N and x e R. Now, let u e N, and x, y e R. Then

0 = [xw, y"] = x[w, y"] + [x, J"]w = [x, y»"\u

1'1" = Σί-o1 /(r-'-1")!*, Λ = ny*-*[x, y~\u.

Hence, by [1, Lemma 1 (2)], we obtain n[x, jφ=0. On the other hand, by
Lemma 3 and 9)π, fc[x, y~\u = 0 with a positive integer k such that (n, fc) = 1 . Now,
it is immediate that [x, y]w = 0, proving Zλ/V = 0.

PROPOSITION 2. // jR is an s-unital ring, then there hold the following
implications : 2)Λ=>3)n=>4)Mo5)π=>5);ί.

PROOF. Since 2)n together with 5)w implies 3)π and 5)M does 4)M and 5X, it is
enough to show that 2)w=>4)ll and 3)n=>4)/l=>5)M.

2)Π=>4)M. Since xyxnyn = (xy)n+l=xn+lyn+1, we have x[xπ, j]y" = 0, and
therefore x[x", j] =0 by [1, Lemma 1 (2)]. In particular, x[xn, 3;"] = 0. Hence,
[x, (xyn = x{(xy)n-(yxy} = x[xn

9 y]=0.
3)M=>4)π. It is immediate that [x, (xy)"] = x{(xy)n - (yx)"} = 0.

4)M=>5)Π. As a consideration of x = Eί2 and y = E2ί shows, D is a nil ideal
(Lemma 1). Let Γbe the (s-unital) subring of R generated by all n-th powers of

elements of jR. Let u e N, and u' the quasi-inverse of u. If a is an arbitrary ele-
ment of R, and e a pseudo-identity of {w, α}, then [w, α]" = [e + M, {(e + w)(e +
w')fl}π] = 0. In particular, every nilpotent element of T is in the center of T.

Now, let s, teT. Since s"ί"-(sOπ is in the nil ideal D(T), we get s"[s, ί"] =
[s, swί"] = [s, (sί)"] = 0. Then, [s, ί"] = 0 by [1, Lemma 1 (2)]. This implies
that [x", y"2]=0 for all x, yεR. So, according to Lemma 3, we can find a
positive integer k such that /cD = 0. Then, recalling that [xw, [xw, j]] = 0, we see

that [x"fc, y] = fexn(fc-1>[xπ, }>]=0. This enables us to see that xπ2fc[x, yn'] =
[x, x"2Λj;M] = [x, (x x^-iy)"] = 0. Hence, [x, yM] =0 again by [1, Lemma 1(2)].

LEMMA 4. Assume that for each uεN and xeR there exists a positive
integer i = i(u, x) such that [(l + w)nί, x] = 0. Then for each ueN and xeR
there exists a positive integer I such that [nlu, x] = 0.

PROOF. Let u e N, and x e #. By hypothesis, there exists a positive integer
i such that [(l+w)nί, x] = 0. If w2 = 0, then [nfw, x] = [(l + w)rtί, x] = 0. Sup-
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pose now that if uh=Q with h<k then [Vw, x]=0 for some positive integer j,
and consider u with w Λ = 0. Then, we can find a positive integer j such

that [Vu2, x] = — = [n*unt, x]=0. Obviously, [n'+ /ii, x] = w'[(l + w)ni, x]=0.
This completes the proof.

LEMMA 5. Lei R be a ring satisfying the identity [[x, y], z] = 0. //n>l,
f/ierc 6)π implies 5)nβ.

PROOF. First, we claim that R satisfies the identity

(x<"-»2-i)[x, r3] = o.
Indeed,

0 = [x"2, j;»] - [χ«, j;"2] = «x"(n-1>[VJ, jn] - /I*""1!;*, X'2]

= Tφct"-1)2 - I)*"'1 [x, j;"2] = (xf-1)2 - 1) [x«, .y "2] = ( c^-1)2 - 1) [x, j;"3] .

Since every ring is a subdirect sum of subdirectly irreducible rings, we may assume
that R itself is a subdirectly irreducible ring with heart S(^0). Now, let a be an
arbitrary element in the right annihilator r(S) of S. If [α, r"3] is non-zero for
some re R, then, by the claim at the opening, the left ideal / = {xe.R|
xα ("-1)2=x} contains the non-zero central element [0, r"3], so that I^S.

But then s = sα ("~1)2=0 for all sεS. This is a contradiction. We have thus
seen that [α, ^"3]=0 for all yeR. Next, we prove that .R satisfies the identity
[x"3, y"3]=0. If [x, ^"3]=0 for all x, yeR, there is nothing to prove. Now,
assume that [fe, J/|3]τέO for some b, deR. Then, again by the opening claim,
the left annihilator /(b(π~1)2+1 — fo) contains the non-zero central element [b, d"3],
and so contains S. Then, since fr("-i)2+1 — £ is in r(S), it follows from what was

just shown above that [M l l~1>2+1-&, dπ3]=0. Thus, at any rate, R satisfies the
identity [x(rt~1>2+1 — x, y"3] =0, and so the subring generated by all n3-th powers of
elements of R is commutative by [5, Theorem 3]. Consequently, R satisfies the
identity [x"3, j"3] =0. Now, by 6)n, it is immediate that [x*6, y] = [x"3, y"3] = 0.

PROPOSITIONS. // n>l, f/zeπ 6)M, 6)1, and 6)'̂  are equivalent, and 6)n

implies 5)π«/or some positive integer a.

PROOF. Obviously, 6)n implies 6)^. If 6)̂ , is satisfied, then

[x, (x + j)" - y^ = tx2ψ(x), (x + jO - y] = [^¥W, x] = 0.

Next, if 6)tr

n is satisfied then

[x, rl - [x", y] = ίx, (^+J)M] - [ίχ+yY, y\ = [χ+y, (x+y)"! = o.

We have thus seen the equivalence of 6)rt, 6)^ and 6)'ή
Suppose now that 6)M is satisfied. By Lemma 1, there exists a positive integer

h such that [x, y]Λ = 0 for all x, yeR. Choose a positive integer K such that
nκ>h. Let Γbe the subring of .R generated by all nκ-th powers of elements of
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R. Since [[x, y], z"κ] = [[x, j;]"*, z]=0 for all x, y, zeR, we get [s"6, ί] = 0
for all 5, t e T(Lemma 5). It therefore follows that [x"2>c+ 6, j;] = [x"κ+ 6, y"*] = 0

for all x, yeR.

The next is a slight generalization of [2, Theorem 2].

COROLLARY 2. Suppose n>l. Let The the subring of R generated by all
n-th powers of elements of R. If R satisfies 6)n and the centralizer of T in R
coincides with C, then R is commutative.

PROOF. According to Proposition 3, there exists a positive integer α such

that [x""'1, y\ = [x"α, j>] = 0 for all x, y e R. Then, [xn"~\ y] = 0 by hypothesis.
We can repeat the above process to obtain the conclusion [x, y~\ = 0.

LEMMA 6. T/?e condition 8)M implies 9)n.

PROOF. Suppose n[α, b] = 0 (α, beR). Let #' be the subring of R gen-

erated by {a, b}. Then it is easy to see that n[x, y] = 0 for all x, .yeK'. Com-
bining this with 8)π, we can show that for each pair of elements x, y in R' there
exists a polynomial y(i) = y(x, y ί) with integer coefficients such that [x — x2y(x), y]
= 0. Hence, R' is commutative by [5, Theorem 3], and so [α, b] = 0.

We now proceed to prove our theorems.

PROOF OF THEOREM 1. a)=>c) and d). Trivial.
b)=>a). By Proposition 1, every commutator squares to 0, and hence is

central. Then n2x"~1j;/l~1[x, y] = wxn""1[x, jn] = [x", .yn] = 0. Now, by [1,
Lemma 1 (2)], it follows that n2[x, j] = 0, and so [x, y]=0.

c)=>b). Let u2 = 0. Since [xw, w] = 0 by Lemma 2, we have

0 = [x, {xn(l+u)}n - {x

= [x, x r t 2(l+M)M - xn2

= x"2-1^, [x, (1 + ιι)»]] = nx"2-1^, [x, ιι]] .

Now, by making use of [1, Lemma 1 (2)] and 9)n, we obtain [x, [x, w]] = 0.

This yields nx""1^, w] = [xw, w]=0. Hence, we get [x, w]=0 again by [1,
Lemma 1 (2)] and 9)Λ.

d)=>b). Let M2 = 0. Since [{(l + w)x}", l+w] = 0 by Lemma 2, we see that

0 = xίl + iO-TO + tO*}", 1 + 11] = [x,

= IX xπ(l + M)π] = nx"[x, M] .

Then, by [1, Lemma 1 (2)], we obtain n[x, w] = 0, and hence [x, w] = 0.

PROOF OF THEOREM 2. (1) First, we prove that if R satisfies 5);, then R
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is commutative. Let a,beR, and e a pseudo-identity of {a, b}. Then
[απί, ί?]=0 with some positive integer i. Since [α, b^εN (Lemma 2), [α, [α,
b]]=0 by Lemma 4. Hence we get nlani~l\_a, fr] = [αnί, b]=0. Similarly,

n /'(a + e)π</~1[α, b]=0 with some positive integer j. From these we obtain
nka«*-l[a, b']=Q = nk(a + e)nk~1[_a, 6], where /c = max{i,7*}. Then, by [1,
Lemma 1 (2)] there holds that nk\_a, ί?]=0, and hence [α, fe]=0.

If any of the conditions 2)n, 3)Λ, 4)π and 5)Λ is satisfied, 7? is commutative by
Proposition 2 and what was just shown above. If 6)i is satisfied then R is com-
mutative by [5, Theorem 3]. On the other hand, in case n > 1 and 6)'n is satisfied,
R satisfies 5),,« for some positive integer α (Proposition 3). Thus, again by the

the above, .R is commutative.
(2) This is only a combination of (1) and Proposition 3.
(3) It suffices to show that 1)^ implies !)„. Let T be the (s-unital) subring of

R generated by all n-th powers of elements of R. Then T satisfies 5)J, and hence

Tis commutative by (1). That is, R satisfies !)„.

Combining Theorem 2 with Lemma 6, we obtain

COROLLARY 3. Let R be an s-unίtal ring satisfying 8)n.
(1) // any of the conditions 2)Λ, 3)π, 4)π, 5)rt, 5)'n and 6)'n is satisfied, then R

is commutative.
(2) Suppose n>\. If R satisfies the condition 6)M or 6)'̂ , then R is com-

mutative.

PROOF OF THEOREM 3. Let x, y e R, and e a pseudo-identity of {x, y}. Then

Thus we have

[mx + (?)x2 +•••+ mx1""1, j] = [(x + e)m - xw, j] = 0,

and so R satisfies 8)M. Hence, R is commutative by Corollary 3.

PROOF OF THEOREM 4. By Lemma 3, there exists a positive integer fe such that
/cD = 0. In view of 9)rt, we may assume that (k, n) = 1. Combining this with 7)π,
we see that for each pair of elements x, y in R there exists a polynomial γ(t) =
y(x, y; t) with integer coefficients such that [x — x2y(x), }>]=0. Hence, Λ is

commutative by [5, Theorem 3].

PROOF OF THEOREM 5. If m = l or n = l, then K is commutative by [5,

Theorem 3]. Henceforth, we assume that m>l and n>ϊ. Then, by Pro-

position 3,
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[x, my + (%)y2 +•••+ my-1] = 0 and [x, ny + (ϊ)y2 • + •••+ ny"'1] = 0

(see the proof of Theorem 3). Since (m, n)= 1, the last two identities imply that
there exists a polynomial y(f) with integer coefficients such that [x, v — y2y(y)] = 0
for all x, yeR. Hence, again by [5, Theorem 3], R is commutative.

Finally, we prove the following

COROLLARY 4. Suppose mn>l and (m, rc) = l. If R is an s-unίtal ring
satisfying the identity [xπ, y] = [x, ym], then R is commutative.

PROOF. We may assume that n>\. If m = l, then .R is commutative by
[5, Theorem 3]. Thus, henceforth, we assume that m> 1. Then, by Proposition
3, R satisfies 5)m« for some positive integer α. This also implies that [x, yn"~] =
[xmβ, j] = 0. Since (mα, rcα)= 1, R is commutative by Theorem 5.
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