Some commutativity theorems for rings

Dedicated to Professor F. Kasch on his 60th birthday

Yasuyuki Hirano and Hisao Tominaga
(Received January 12, 1981)

Throughout the present paper, R will represent an associative ring (with or without 1), and C the center of R. We denote by N and $D=D(R)$ the set of all nilpotent elements and the commutator ideal of R, respectively. Given $a, b \in R$, we set $[a, b]=a b-b a$ as usual, and formally write $a(1+b)$ (resp. $(1+b) a)$ for $a+a b$ (resp. $a+b a$). Let m, n be fixed positive integers.

Following [7], a ring R is called s-unital if for each x in $R, x \in R x \cap x R$. As stated in [7], if R is an s-unital ring, then for any finite subset F of R, there exists an element e in R such that $e x=x e=x$ for all x in F. Such an element e will be called a pseudo-identity of F.

We consider the following conditions:

1) There exist non-zero polynomials $\phi(t), \psi(t)$ with integer coefficients whose constant terms are 0 and such that $[\phi(x), \psi(y)]=0$ for all $x, y \in R$.
2) $n \quad\left[x^{n}, y^{n}\right]=0$ for all $x, y \in R$.
3) ${ }_{n}^{\prime}$ For each pair of elements x, y in R there exists a positive integer $i=$ $i(x, y)$ such that $\left[x^{n^{i}}, y^{n}\right]=0$.
4) $n_{n}(x y)^{n}=x^{n} y^{n}$ and $(x y)^{n+1}=x^{n+1} y^{n+1}$ for all $x, y \in R$.
5) ${ }_{n} \quad(x y)^{n}=(y x)^{n}$ for all $x, y \in R$.
6) $n_{n}\left[x,(x y)^{n}\right]=0$ for all $x, y \in R$.
7) $n_{n} \quad\left[x^{n}, y\right]=0$ for all $x, y \in R$.
$5)_{n}^{\prime}$ For each pair of elements x, y in R there exists a positive integer $i=$ $i(x, y)$ such that $\left[x^{n^{i}}, y\right]=0$.
$6)_{n} \quad\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all $x, y \in R$.
$6)_{n}^{\prime}$ There exists a polynomial $\psi(t)$ with integer coefficients such that $\left[x^{2} \psi(x), y\right]=\left[x, y^{n}\right]$ for all $x, y \in R$.
8) ${ }_{n}^{\prime \prime} \quad\left[x,(x+y)^{n}-y^{n}\right]=0$ for all $x, y \in R$.
9) $)_{n}$ For each pair of elements x, y in R there exists a polynomial $\rho(t)=$ $\rho(x, y ; t)$ with integer coefficients such that $\left[n x-x^{2} \rho(x), y\right]=0$.
10) $)_{n}$ For each pair of elements x, y in R there exist a positive integer $i=i(x, y)$ with $(i, n)=1$ and a polynomial $\psi(t)=\psi(x, y ; t)$ with integer coefficients such that $\left[i x-x^{2} \psi(x), y\right]=0$.
11) n_{n} For each pair of elements x, y in $R, n[x, y]=0$ implies $[x, y]=0$.

Needless to say, 1) ${ }_{n}$ implies 1) and 1$)_{n}^{\prime}$, and 5$)_{n}$ does 6$)_{n}$.
Recently, in [1], [3], [7], [8] and [9], the following commutativity theorems
have been obtained.
A ([1, Theorem 1] and [9, Theorem 1]). If R is an s-unital ring satisfying $1)_{n}$ and 9$)_{n}$, then the following statements are equivalent:
a) R is commutative.
b) $\left[x,(x y)^{n}-(y x)^{n}\right]=0$ for all $x, y \in R$.
c) $\left[x,\{x(1+u)\}^{n}-x^{n}(1+u)^{n}\right]=0$ for all $u \in N$ and $x \in R$.

B ([7, Theorem 3, 4)], [3, Theorem 5] and [9, Theorem 2]).
(1) Let R be an s-unital ring satisfying 2$)_{n}$. If N is n-torsion free, then R is commutative.
(2) Suppose $n>1$. If R is a ring with 1 satisfying 6) ${ }_{n}$ and 9$)_{n}$, then R is commutative.
(3) Suppose $m \geq n$ and $m n>1$. Let R be an s-unital ring satisfying the identity $\left[x^{m}, y\right]=\left[x, y^{n}\right]$. If for each pair of elements x, y in $R, n![x, y]=0$ implies $[x, y]=0$, then R is commutative.
$\mathrm{C}([8, \text { Theorem] }) \text {. Suppose } m>1 \text {. Let } R \text { be a ring with } 1 \text { satisfying })_{n}$. If $(m, n)=1$ and $(x+y)^{m}=x^{m}+y^{m}$ for all $x, y \in R$, then R is commutative.

D ([3, Theorem 6]). Suppose $m>1$ and $n>1$. Let R be a ring with 1 satisfying 6) $)_{m}$ and 6$)_{n}$. If $(m, n)=1$, then R is commutative.

The present objective is to prove the following theorems.
Theorem 1. If R is an s-unital ring satisfying 1$)_{n}$ and 9$)_{n}$, then the following statements are equivalent:
a) R is commutative.
b) Every $u \in N$ with $u^{2}=0$ is central.
c) $\left[x,\left\{x^{n}(1+u)\right\}^{n}-\left\{x^{n-1}(1+u) x\right\}^{n}\right]=0$ for all $u \in N$ with $u^{2}=0$ and $x \in R$.
d) $\left[x,\{x(1+u)\}^{n}-x^{n}(1+u)^{n}\right]=0$ for all $u \in N$ with $u^{2}=0$ and $x \in R$.

Theorem 2. Let R be an s-unital ring satisfying 9) .
(1) If any of the conditions 2$\left.\left.\left.\left.)_{n}, 3\right)_{n}, 4\right)_{n}, 5\right)_{n}, 5\right)_{n}^{\prime}$ and 6$)_{n}^{\prime}$ is satisfied, then R is commutative.
(2) Suppose $n>1$. If R satisfies the condition 6$)_{n}$ or 6$)_{n}^{\prime \prime}$, then R is commutative.
(3) The conditions 1$)_{n}$ and 1$)_{n}^{\prime}$ are equivalent.

Theorem 3. Suppose $m>1$ and $(m, n)=1$. Let R be an s-unital ring satisfying 6$)_{m}^{\prime \prime}$. If R satisfies one of the conditions 2$\left.\left.\left.\left.)_{n}, 3\right)_{n}, 4\right)_{n}, 5\right)_{n}, 5\right)_{n}^{\prime}$ and 6$)_{n}^{\prime}$, then R is commutative.

Theorem 4. If R is an s-unital ring satisfying 1), 7) ${ }_{n}$ and 9$)_{n}$, then R is commutative.

Theorem 5. Let R be an s-unital ring satisfying 6$)_{m}^{\prime}$ and 6$)_{n}^{\prime} . \quad$ If $(m, n)=1$, then R is commutative.

Obviously, Theorem 1 covers Theorem A. Moreover, in view of Theorem 2 (3), Theorem 1 also improves [4, Theorem 1]. Theorems 2 and 5 improve Theorems B and D, and Theorem 3 contains Theorem C.

In preparation for the proof of our theorems, we establish the following lemmas and propositions.

Lemma 1. Let R be a ring satisfying a polynomial identity $f=0$, where the coefficients of f are integers with highest common factor 1 . If there exists no prime p for which the ring of 2×2 matrices over $G F(p)$ satisfies $f=0$, then D is a nil ideal and there exists a positive integer h such that $[x, y]^{h}=0$ for all $x, y \in R$.

Proof. By [2, Theorem 1], D is a nil ideal. Consider the direct product $R^{R \times R}$. Since the ring $R^{R \times R}$ satisfies the same identity $f=0, D\left(R^{R \times R}\right)$ is also nil. Let $X=(x)_{(x, y) \in R \times R}, Y=(y)_{(x, y) \in R \times R}$, and $[X, Y]^{h}=0$. Then it is immediate that $[x, y]^{h}=0$ for all $x, y \in R$.

Lemma 2. If an s-unital ring R satisfies 1$)_{n}^{\prime}$ and 9$)_{n}$, then $\left[u, x^{n}\right]=0$ for all $u \in N$ and $x \in R$, and N is a commutative nil ideal containing D.

Proof. Obvious by [6, Theorem] and the proof of [4, Lemma 5].
Lemma 3. If R is an s-unital ring satisfying 1), then there exists a positive integer k such that $k D=0$.

Proof. Let $\phi(t)=p_{1} t+p_{2} t^{2}+\cdots+p_{m} t^{m}$. Suppose $p_{1}=0$. Obviously, $\phi^{\prime}(t)=2 p_{2} t+3 p_{3} t^{2}+\cdots+m p_{m}{ }^{m-1}$ is non-zero, and so there exists an integer t_{1} such that $q_{1}=\phi^{\prime}\left(t_{1}\right) \neq 0$. Then $\phi_{1}(t)=\phi\left(t_{1}+t\right)=q_{1} t+\cdots+p_{m} t^{m}$, and $\left[\phi_{1}(x)\right.$, $\psi(y)]=0$ for all $x, y \in R$. (Note that R is s-unital.) Because of the above observation, we may assume that $p_{1} \neq 0$. Now, replacing x by $i x$ in the identity

$$
\left[p_{1} x, \psi(y)\right]+\cdots+\left[p_{m} x^{m}, \psi(y)\right]=[\phi(x), \psi(y)]=0
$$

we have

$$
i\left[p_{1} x, \psi(y)\right]+\cdots+i^{m}\left[p_{m} x^{m}, \psi(y)\right]=0 \quad(i=1, \ldots, m)
$$

Hence, $d\left[p_{1} x, \psi(y)\right]=0$, where $d(\neq 0)$ is the determinant of the matrix of integer coefficients in the last equations. Finally, repeating the above procedure for $\psi(y)$, we obtain the conclusion.

Corollary 1. Let R be a ring satisfying 9) $)_{n}$. If there exists a polynomial $\psi(t)$ with integer coefficients such that $\left[n x-x^{2} \psi(x), y\right]=0$ for all $x, y \in R$, then R is commutative.

Proof. As is easily seen from the proof of Lemma 3, there exists a positive
integer k such that $k D=0$. Combining this with 9$)_{n}$, we can see that there exists a polynomial $\gamma(t)$ with integer coefficients such that $\left[x-x^{2} \gamma(x), y\right]=0$ for all x, $y \in R$. Then R is commutative by [5, Theorem 3].

Proposition 1. If R is an s-unital ring satisfying 1$)_{n}$ and 9$)_{n}$, then $D N=0$, and in particular, $D^{2}=0$.

Proof. According to Lemma 2, N is a commutative nil ideal containing D and $\left[u, x^{n}\right]=0$ for all $u \in N$ and $x \in R$. Now, let $u \in N$, and $x, y \in R$. Then

$$
\begin{aligned}
0 & =\left[x u, y^{n}\right]=x\left[u, y^{n}\right]+\left[x, y^{n}\right] u=\left[x, y^{n}\right] u \\
& =\sum_{i=0}^{n-1} y^{i}[x, y] y^{n-i-1} u=\sum_{i=0}^{n-1} y^{i}\left(y^{n-i-1} u\right)[x, y]=n y^{n-1}[x, y] u .
\end{aligned}
$$

Hence, by [1, Lemma 1 (2)], we obtain $n[x, y] u=0$. On the other hand, by Lemma 3 and 9$)_{n}, k[x, y] u=0$ with a positive integer k such that $(n, k)=1$. Now, it is immediate that $[x, y] u=0$, proving $D N=0$.

Proposition 2. If R is an s-unital ring, then there hold the following implications: 2$\left.\left.\left.\left.)_{n} \Rightarrow 3\right)_{n} \Rightarrow 4\right)_{n} \Leftrightarrow 5\right)_{n} \Rightarrow 5\right)_{n}^{\prime}$.

Proof. Since 2) ${ }_{n}$ together with 5) ${ }_{n}$ implies 3$)_{n}$ and 5$)_{n}$ does 4$)_{n}$ and 5$)_{n}^{\prime}$, it is enough to show that 2$\left.)_{n} \Rightarrow 4\right)_{n}$ and 3$\left.\left.)_{n} \Rightarrow 4\right)_{n} \Rightarrow 5\right)_{n}$.
$\left.2)_{n} \Rightarrow 4\right)_{n}$. Since $x y x^{n} y^{n}=(x y)^{n+1}=x^{n+1} y^{n+1}$, we have $x\left[x^{n}, y\right] y^{n}=0$, and therefore $x\left[x^{n}, y\right]=0$ by $\left[1\right.$, Lemma 1 (2)]. In particular, $x\left[x^{n}, y^{n}\right]=0$. Hence, $\left[x,(x y)^{n}\right]=x\left\{(x y)^{n}-(y x)^{n}\right\}=x\left[x^{n}, y^{n}\right]=0$.
$\left.3)_{n} \Rightarrow 4\right)_{n}$. It is immediate that $\left[x,(x y)^{n}\right]=x\left\{(x y)^{n}-(y x)^{n}\right\}=0$.
$\left.4)_{n} \Rightarrow 5\right)_{n}$. As a consideration of $x=E_{12}$ and $y=E_{21}$ shows, D is a nil ideal (Lemma 1). Let T be the (s-unital) subring of R generated by all n-th powers of elements of R. Let $u \in N$, and u^{\prime} the quasi-inverse of u. If a is an arbitrary element of R, and e a pseudo-identity of $\{u, a\}$, then $[u, a]^{n}=[e+u,\{(e+u)(e+$ $\left.\left.\left.u^{\prime}\right) a\right\}^{n}\right]=0$. In particular, every nilpotent element of T is in the center of T. Now, let $s, t \in T$. Since $s^{n} t^{n}-(s t)^{n}$ is in the nil ideal $D(T)$, we get $s^{n}\left[s, t^{n}\right]=$ $\left[s, s^{n} t^{n}\right]=\left[s,(s t)^{n}\right]=0$. Then, $\left[s, t^{n}\right]=0$ by [1, Lemma 1 (2)]. This implies that $\left[x^{n}, y^{n^{2}}\right]=0$ for all $x, y \in R$. So, according to Lemma 3, we can find a positive integer k such that $k D=0$. Then, recalling that $\left[x^{n},\left[x^{n}, y\right]\right]=0$, we see that $\left[x^{n k}, y\right]=k x^{n(k-1)}\left[x^{n}, y\right]=0$. This enables us to see that $x^{n^{2} k}\left[x, y^{n}\right]=$ $\left[x, x^{n^{2} k} y^{n}\right]=\left[x,\left(x \cdot x^{n k-1} y\right)^{n}\right]=0$. Hence, $\left[x, y^{n}\right]=0$ again by [1, Lemma 1(2)].

Lemma 4. Assume that for each $u \in N$ and $x \in R$ there exists a positive integer $i=i(u, x)$ such that $\left[(1+u)^{n^{i}}, x\right]=0$. Then for each $u \in N$ and $x \in R$ there exists a positive integer l such that $\left[n^{l} u, x\right]=0$.

Proof. Let $u \in N$, and $x \in R$. By hypothesis, there exists a positive integer i such that $\left[(1+u)^{n^{i}}, x\right]=0$. If $u^{2}=0$, then $\left[n^{i} u, x\right]=\left[(1+u)^{n^{i}}, x\right]=0$. Sup-
pose now that if $u^{h}=0$ with $h<k$ then $\left[n^{j} u, x\right]=0$ for some positive integer j, and consider u with $u^{k}=0$. Then, we can find a positive integer j such that $\left[n^{j} u^{2}, x\right]=\cdots=\left[n^{j} u^{n^{i}}, x\right]=0$. Obviously, $\left[n^{i+j} u, x\right]=n^{j}\left[(1+u)^{n^{i}}, x\right]=0$. This completes the proof.

Lemma 5. Let R be a ring satisfying the identity $[[x, y], z]=0$. If $n>1$, then 6) ${ }_{n}$ implies 5) ${ }_{n}{ }^{6}$.

Proof. First, we claim that R satisfies the identity

$$
\left(x^{(n-1)^{2}}-1\right)\left[x, y^{n^{3}}\right]=0 .
$$

Indeed,

$$
\begin{aligned}
0 & =\left[x^{n^{2}}, y^{n}\right]-\left[x^{n}, y^{n^{2}}\right]=n x^{n(n-1)}\left[x^{n}, y^{n}\right]-n x^{n-1}\left[x, y^{n^{2}}\right] \\
& =n\left(x^{(n-1)^{2}}-1\right) x^{n-1}\left[x, y^{n^{2}}\right]=\left(x^{(n-1)^{2}}-1\right)\left[x^{n}, y^{n^{2}}\right]=\left(x^{(n-1)^{2}}-1\right)\left[x, y^{n^{3}}\right] .
\end{aligned}
$$

Since every ring is a subdirect sum of subdirectly irreducible rings, we may assume that R itself is a subdirectly irreducible ring with heart $S(\neq 0)$. Now, let a be an arbitrary element in the right annihilator $r(S)$ of S. If $\left[a, r^{n^{3}}\right]$ is non-zero for some $r \in R$, then, by the claim at the opening, the left ideal $I=\{x \in R \mid$ $\left.x a^{(n-1) 2}=x\right\}$ contains the non-zero central element $\left[a, r^{n^{3}}\right]$, so that $I \supseteq S$. But then $s=s a^{(n-1)^{2}}=0$ for all $s \in S$. This is a contradiction. We have thus seen that $\left[a, y^{n^{3}}\right]=0$ for all $y \in R$. Next, we prove that R satisfies the identity $\left[x^{n^{3}}, y^{n^{3}}\right]=0$. If $\left[x, y^{n^{3}}\right]=0$ for all $x, y \in R$, there is nothing to prove. Now, assume that $\left[b, d^{n^{3}}\right] \neq 0$ for some $b, d \in R$. Then, again by the opening claim, the left annihilator $l\left(b^{(n-1)^{2+1}}-b\right)$ contains the non-zero central element $\left[b, d^{n^{3}}\right]$, and so contains S. Then, since $b^{(n-1)^{2}+1}-b$ is in $r(S)$, it follows from what was just shown above that $\left[b^{(n-1)^{2+1}}-b, d^{n^{3}}\right]=0$. Thus, at any rate, R satisfies the identity $\left[x^{(n-1)^{2+1}}-x, y^{n^{3}}\right]=0$, and so the subring generated by all n^{3}-th powers of elements of R is commutative by [5, Theorem 3]. Consequently, R satisfies the identity $\left[x^{n^{3}}, y^{n^{3}}\right]=0$. Now, by 6$)_{n}$, it is immediate that $\left[x^{n^{6}}, y\right]=\left[x^{n^{3}}, y^{n^{3}}\right]=0$.

Proposition 3. If $n>1$, then 6$\left.)_{n}, 6\right)_{n}^{\prime}$ and 6$)_{n}^{\prime \prime}$ are equivalent, and 6) n_{n} implies 5) ${ }_{n^{\alpha}}$ for some positive integer α.

Proof. Obviously, 6$)_{n}$ implies 6$)_{n}^{\prime}$. If 6$)_{n}^{\prime}$ is satisfied, then

$$
\left[x,(x+y)^{n}-y^{n}\right]=\left[x^{2} \psi(x),(x+y)-y\right]=\left[x^{2} \psi(x), x\right]=0 .
$$

Next, if 6) ${ }_{n}^{\prime \prime}$ is satisfied then

$$
\left[x, y^{n}\right]-\left[x^{n}, y\right]=\left[x,(x+y)^{n}\right]-\left[(x+y)^{n}, y\right]=\left[x+y,(x+y)^{n}\right]=0 .
$$

We have thus seen the equivalence of 6$\left.)_{n}, 6\right)_{n}^{\prime}$ and 6$)_{n}^{\prime \prime}$.
Suppose now that 6) $)_{n}$ is satisfied. By Lemma 1, there exists a positive integer h such that $[x, y]^{h}=0$ for all $x, y \in R$. Choose a positive integer κ such that $n^{\kappa} \geq h$. Let T be the subring of R generated by all n^{κ}-th powers of elements of
R. Since $\left[[x, y], z^{n^{x}}\right]=\left[[x, y]^{n^{x}}, z\right]=0$ for all $x, y, z \in R$, we get $\left[s^{n^{6}}, t\right]=0$ for all $s, t \in T$ (Lemma 5). It therefore follows that $\left[x^{n^{2 \kappa+6}}, y\right]=\left[x^{n^{\kappa+6}}, y^{n^{n}}\right]=0$ for all $x, y \in R$.

The next is a slight generalization of [2, Theorem 2].
Corollary 2. Suppose $n>1$. Let T be the subring of R generated by all n-th powers of elements of R. If R satisfies 6$)_{n}$ and the centralizer of T in R coincides with C, then R is commutative.

Proof. According to Proposition 3, there exists a positive integer α such that $\left[x^{n^{\alpha-1}}, y\right]=\left[x^{n^{\alpha}}, y\right]=0$ for all $x, y \in R$. Then, $\left[x^{n^{\alpha-1}}, y\right]=0$ by hypothesis. We can repeat the above process to obtain the conclusion $[x, y]=0$.

Lemma 6. The condition 8$)_{n}$ implies 9$)_{n}$.
Proof. Suppose $n[a, b]=0(a, b \in R)$. Let R^{\prime} be the subring of R generated by $\{a, b\}$. Then it is easy to see that $n[x, y]=0$ for all $x, y \in R^{\prime}$. Combining this with 8$)_{n}$, we can show that for each pair of elements x, y in R^{\prime} there exists a polynomial $\gamma(t)=\gamma(x, y ; t)$ with integer coefficients such that $\left[x-x^{2} \gamma(x), y\right]$ $=0$. Hence, R^{\prime} is commutative by [5, Theorem 3], and so $[a, b]=0$.

We now proceed to prove our theorems.
Proof of Theorem 1. a) $\Rightarrow \mathrm{c}$) and d). Trivial.
b) $\Rightarrow a$). By Proposition 1 , every commutator squares to 0 , and hence is central. Then $n^{2} x^{n-1} y^{n-1}[x, y]=n x^{n-1}\left[x, y^{n}\right]=\left[x^{n}, y^{n}\right]=0$. Now, by $[1$, Lemma 1 (2) $]$, it follows that $n^{2}[x, y]=0$, and so $[x, y]=0$.
c) $\Rightarrow \mathrm{b}$). Let $u^{2}=0$. Since $\left[x^{n}, u\right]=0$ by Lemma 2 , we have

$$
\begin{aligned}
0 & =\left[x,\left\{x^{n}(1+u)\right\}^{n}-\left\{x^{n-1}(1+u) x\right\}^{n}\right] \\
& =\left[x, x^{n^{2}}(1+u)^{n}-x^{n^{2}-1}(1+u)^{n} x\right] \\
& =x^{n^{2-1}}\left[x,\left[x,(1+u)^{n}\right]\right]=n x^{n^{2}-1}[x,[x, u]] .
\end{aligned}
$$

Now, by making use of $[1$, Lemma 1 (2) $]$ and 9$)_{n}$, we obtain $[x,[x, u]]=0$. This yields $n x^{n-1}[x, u]=\left[x^{n}, u\right]=0$. Hence, we get $[x, u]=0$ again by $[1$, Lemma 1 (2)] and 9) .
d) $\Rightarrow \mathrm{b}$). Let $u^{2}=0$. Since $\left[\{(1+u) x\}^{n}, 1+u\right]=0$ by Lemma 2, we see that

$$
\begin{aligned}
0 & =x(1+u)^{-1}\left[\{(1+u) x\}^{n}, 1+u\right]=\left[x,\{x(1+u)\}^{n}\right] \\
& =\left[x, x^{n}(1+u)^{n}\right]=n x^{n}[x, u] .
\end{aligned}
$$

Then, by $[1$, Lemma 1 (2)], we obtain $n[x, u]=0$, and hence $[x, u]=0$.
Proof of Theorem 2. (1) First, we prove that if R satisfies 5$)_{n}^{\prime}$, then R
is commutative. Let $a, b \in R$, and e a pseudo-identity of $\{a, b\}$. Then $\left[a^{n^{i}}, b\right]=0$ with some positive integer i. Since $[a, b] \in N$ (Lemma 2), $[a,[a$, $b]]=0$ by Lemma 4. Hence we get $n^{i} a^{n^{i-1}}[a, b]=\left[a^{n^{i}}, b\right]=0$. Similarly, $n^{j}(a+e)^{n^{j-1}}[a, b]=0$ with some positive integer j. From these we obtain $n^{k} a^{n^{k}-1}[a, b]=0=n^{k}(a+e)^{n^{k}-1}[a, b]$, where $k=\max \{i, j\}$. Then, by $[1$, Lemma 1 (2)] there holds that $n^{k}[a, b]=0$, and hence $[a, b]=0$.

If any of the conditions 2$\left.\left.)_{n}, 3\right)_{n}, 4\right)_{n}$ and 5$)_{n}$ is satisfied, R is commutative by Proposition 2 and what was just shown above. If 6$)_{1}^{\prime}$ is satisfied then R is commutative by [5, Theorem 3]. On the other hand, in case $n>1$ and 6$)_{n}^{\prime}$ is satisfied, R satisfies 5$)_{n^{\alpha}}$ for some positive integer α (Proposition 3). Thus, again by the the above, R is commutative.
(2) This is only a combination of (1) and Proposition 3.
(3) It suffices to show that 1$)_{n}^{\prime}$ implies 1$)_{n}$. Let T be the (s-unital) subring of R generated by all n-th powers of elements of R. Then T satisfies 5$)_{1}^{\prime}$, and hence T is commutative by (1). That is, R satisfies 1$)_{n}$.

Combining Theorem 2 with Lemma 6, we obtain
Corollary 3. Let R be an s-unital ring satisfying 8$)_{n}$.
(1) If any of the conditions 2$\left.\left.\left.\left.)_{n}, 3\right)_{n}, 4\right)_{n}, 5\right)_{n}, 5\right)_{n}^{\prime}$ and 6$)_{n}^{\prime}$ is satisfied, then R is commutative.
(2) Suppose $n>1$. If R satisfies the condition 6$)_{n}$ or 6$)_{n}^{\prime \prime}$, then R is commutative.

Proof of Theorem 3. Let $x, y \in R$, and e a pseudo-identity of $\{x, y\}$. Then

$$
\begin{aligned}
{\left[x^{m}, y\right] } & =\left[x^{m}, y+e\right]=\left[(x+y+e)^{m}, y+e\right] \\
& =\left[(x+y+e)^{m}, y\right]=\left[(x+e)^{m}, y\right]
\end{aligned}
$$

Thus we have

$$
\left[m x+\binom{m}{2} x^{2}+\cdots+m x^{m-1}, y\right]=\left[(x+e)^{m}-x^{m}, y\right]=0,
$$

and so R satisfies 8$)_{n}$. Hence, R is commutative by Corollary 3.
Proof of Theorem 4. By Lemma 3, there exists a positive integer k such that $k D=0$. In view of 9$)_{n}$, we may assume that $(k, n)=1$. Combining this with 7$)_{n}$, we see that for each pair of elements x, y in R there exists a polynomial $\gamma(t)=$ $\gamma(x, y ; t)$ with integer coefficients such that $\left[x-x^{2} \gamma(x), y\right]=0$. Hence, R is commutative by [5, Theorem 3].

Proof of Theorem 5. If $m=1$ or $n=1$, then R is commutative by [5, Theorem 3]. Henceforth, we assume that $m>1$ and $n>1$. Then, by Proposition 3,

$$
\left[x, m y+\binom{m}{2} y^{2}+\cdots+m y^{m-1}\right]=0 \text { and }\left[x, n y+\binom{n}{2} y^{2}+\cdots+n y^{n-1}\right]=0
$$

(see the proof of Theorem 3). Since $(m, n)=1$, the last two identities imply that there exists a polynomial $\gamma(t)$ with integer coefficients such that $\left[x, y-y^{2} \gamma(y)\right]=0$ for all $x, y \in R$. Hence, again by [5, Theorem 3], R is commutative.

Finally, we prove the following
Corollary 4. Suppose $m n>1$ and $(m, n)=1$. If R is an s-unital ring satisfying the identity $\left[x^{n}, y\right]=\left[x, y^{m}\right]$, then R is commutative.

Proof. We may assume that $n>1$. If $m=1$, then R is commutative by [5, Theorem 3]. Thus, henceforth, we assume that $m>1$. Then, by Proposition $3, R$ satisfies 5$)_{m^{\alpha}}$ for some positive integer α. This also implies that $\left[x, y^{n^{\alpha}}\right]=$ $\left[x^{m^{\alpha}}, y\right]=0$. Since $\left(m^{\alpha}, n^{\alpha}\right)=1, R$ is commutative by Theorem 5.

References

[1] H. Abu-Khuzam, H. Tominaga and A. Yaqub: Commutativity theorems for s-unital rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111-114.
[2] H. E. Bell: On some commutativity theorems of Herstein, Archiv Math. 24 (1973), 34-38.
[3] H. E. Bell: On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
[4] H. E. Bell: On rings with commuting powers, Math. Japonica 24 (1979), 473-478.
[5] I. N. Herstein: Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411-412.
[6] I. N. Herstein: A commutativity theorem, J. Algebra 38 (1976), 112-118.
[7] Y. Hirano, M. Hongan and H. Tominaga: Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65-72.
[8] M. -L. Lin: A commutativity theorem for rings, Math. Japonica, to appear.
[9] E. Psomopoulos, H. Tominaga and A. Yaqub: Some commutativity theorems for n torsion free rings, Math. J. Okayama Univ. 23 (1981), to appear.

> Department of Mathematics, Faculty of Science, Hiroshima University*) and
> Department of Mathematics, Faculty of Science, Okayama University

[^0]
[^0]: * The present address of the first named author is as follows: Department of Mathematics, Faculty of Science, Okayama University.

