Some commutativity theorems for rings

Dedicated to Professor F. Kasch on his 60th birthday

Yasuyuki HIRANO and Hisao TOMINAGA (Received January 12, 1981)

Throughout the present paper, R will represent an associative ring (with or without 1), and C the center of R. We denote by N and D = D(R) the set of all nilpotent elements and the commutator ideal of R, respectively. Given $a, b \in R$, we set [a, b] = ab - ba as usual, and formally write a(1+b) (resp. (1+b)a) for a+ab (resp. a+ba). Let m, n be fixed positive integers.

Following [7], a ring R is called s-unital if for each x in R, $x \in Rx \cap xR$. As stated in [7], if R is an s-unital ring, then for any finite subset F of R, there exists an element e in R such that ex = xe = x for all x in F. Such an element e will be called a *pseudo-identity* of F.

We consider the following conditions:

1) There exist non-zero polynomials $\phi(t)$, $\psi(t)$ with integer coefficients whose constant terms are 0 and such that $[\phi(x), \psi(y)] = 0$ for all $x, y \in R$.

1)_n $[x^n, y^n] = 0$ for all $x, y \in R$.

1)'' For each pair of elements x, y in R there exists a positive integer i = i(x, y) such that $[x^{n^i}, y^n] = 0$.

2)_n $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$ for all $x, y \in R$.

3)_n $(xy)^n = (yx)^n$ for all $x, y \in R$.

4)_n $[x, (xy)^n] = 0$ for all $x, y \in R$.

 $5)_n$ $[x^n, y] = 0$ for all $x, y \in R$.

5)'_n For each pair of elements x, y in R there exists a positive integer i = i(x, y) such that $[x^{n^i}, y] = 0$.

6)_n $[x^n, y] = [x, y^n]$ for all $x, y \in R$.

6)'_n There exists a polynomial $\psi(t)$ with integer coefficients such that $[x^2\psi(x), y] = [x, y^n]$ for all $x, y \in R$.

6)''_n $[x, (x+y)^n - y^n] = 0$ for all $x, y \in R$.

7)_n For each pair of elements x, y in R there exists a polynomial $\rho(t) = \rho(x, y; t)$ with integer coefficients such that $[nx - x^2\rho(x), y] = 0$.

8)_n For each pair of elements x, y in R there exist a positive integer i=i(x, y) with (i, n)=1 and a polynomial $\psi(t)=\psi(x, y; t)$ with integer coefficients such that $[ix-x^2\psi(x), y]=0$.

9)_n For each pair of elements x, y in R, n[x, y] = 0 implies [x, y] = 0. Needless to say, 1)_n implies 1) and 1)'_n, and 5)_n does 6)_n.

Recently, in [1], [3], [7], [8] and [9], the following commutativity theorems

have been obtained.

A ([1, Theorem 1] and [9, Theorem 1]). If R is an s-unital ring satisfying 1_n and 9_n , then the following statements are equivalent:

a) R is commutative.

b) $[x, (xy)^n - (yx)^n] = 0$ for all $x, y \in R$.

c) $[x, \{x(1+u)\}^n - x^n(1+u)^n] = 0$ for all $u \in N$ and $x \in R$.

B ([7, Theorem 3, 4)], [3, Theorem 5] and [9, Theorem 2]).

(1) Let R be an s-unital ring satisfying $2)_n$. If N is n-torsion free, then R is commutative.

(2) Suppose n > 1. If R is a ring with 1 satisfying 6)_n and 9)_n, then R is commutative.

(3) Suppose $m \ge n$ and mn > 1. Let R be an s-unital ring satisfying the identity $[x^m, y] = [x, y^n]$. If for each pair of elements x, y in R, n![x, y] = 0 implies [x, y] = 0, then R is commutative.

C ([8, Theorem]). Suppose m > 1. Let R be a ring with 1 satisfying 2)_n. If (m, n) = 1 and $(x+y)^m = x^m + y^m$ for all x, $y \in R$, then R is commutative.

D ([3, Theorem 6]). Suppose m > 1 and n > 1. Let R be a ring with 1 satisfying 6_m and 6_n . If (m, n) = 1, then R is commutative.

The present objective is to prove the following theorems.

THEOREM 1. If R is an s-unital ring satisfying 1_n and 9_n , then the following statements are equivalent:

a) R is commutative.

b) Every $u \in N$ with $u^2 = 0$ is central.

c) $[x, \{x^n(1+u)\}^n - \{x^{n-1}(1+u)x\}^n] = 0$ for all $u \in N$ with $u^2 = 0$ and $x \in R$.

d) $[x, \{x(1+u)\}^n - x^n(1+u)^n] = 0$ for all $u \in N$ with $u^2 = 0$ and $x \in R$.

THEOREM 2. Let R be an s-unital ring satisfying 9_{n} .

(1) If any of the conditions 2_{n} , 3_{n} , 4_{n} , 5_{n} , 5_{n} and 6_{n} is satisfied, then R is commutative.

(2) Suppose n > 1. If R satisfies the condition $6)_n$ or $6)''_n$, then R is commutative.

(3) The conditions $1)_n$ and $1'_n$ are equivalent.

THEOREM 3. Suppose m > 1 and (m, n) = 1. Let R be an s-unital ring satisfying $6''_m$. If R satisfies one of the conditions $2)_n$, $3)_n$, $4)_n$, $5)_n$, $5)'_n$ and $6)'_n$, then R is commutative.

THEOREM 4. If R is an s-unital ring satisfying 1), 7)_n and 9)_n, then R is commutative.

458

THEOREM 5. Let R be an s-unital ring satisfying $6'_m$ and $6'_n$. If (m, n) = 1, then R is commutative.

Obviously, Theorem 1 covers Theorem A. Moreover, in view of Theorem 2 (3), Theorem 1 also improves [4, Theorem 1]. Theorems 2 and 5 improve Theorems B and D, and Theorem 3 contains Theorem C.

In preparation for the proof of our theorems, we establish the following lemmas and propositions.

LEMMA 1. Let R be a ring satisfying a polynomial identity f=0, where the coefficients of f are integers with highest common factor 1. If there exists no prime p for which the ring of 2×2 matrices over GF(p) satisfies f=0, then D is a nil ideal and there exists a positive integer h such that $[x, y]^h = 0$ for all $x, y \in R$.

PROOF. By [2, Theorem 1], D is a nil ideal. Consider the direct product $R^{R\times R}$. Since the ring $R^{R\times R}$ satisfies the same identity f=0, $D(R^{R\times R})$ is also nil. Let $X=(x)_{(x,y)\in R\times R}$, $Y=(y)_{(x,y)\in R\times R}$, and $[X, Y]^h=0$. Then it is immediate that $[x, y]^h=0$ for all $x, y \in R$.

LEMMA 2. If an s-unital ring R satisfies $1'_n$ and $9)_n$, then $[u, x^n] = 0$ for all $u \in N$ and $x \in R$, and N is a commutative nil ideal containing D.

PROOF. Obvious by [6, Theorem] and the proof of [4, Lemma 5].

LEMMA 3. If R is an s-unital ring satisfying 1), then there exists a positive integer k such that kD=0.

PROOF. Let $\phi(t) = p_1 t + p_2 t^2 + \dots + p_m t^m$. Suppose $p_1 = 0$. Obviously, $\phi'(t) = 2p_2 t + 3p_3 t^2 + \dots + mp_m t^{m-1}$ is non-zero, and so there exists an integer t_1 such that $q_1 = \phi'(t_1) \neq 0$. Then $\phi_1(t) = \phi(t_1 + t) = q_1 t + \dots + p_m t^m$, and $[\phi_1(x), \psi(y)] = 0$ for all $x, y \in R$. (Note that R is s-unital.) Because of the above observation, we may assume that $p_1 \neq 0$. Now, replacing x by ix in the identity

$$[p_1x, \psi(y)] + \dots + [p_m x^m, \psi(y)] = [\phi(x), \psi(y)] = 0,$$

we have

$$i[p_1x, \psi(y)] + \dots + i^m[p_mx^m, \psi(y)] = 0$$
 $(i = 1, \dots, m)$.

Hence, $d[p_1x, \psi(y)] = 0$, where $d(\neq 0)$ is the determinant of the matrix of integer coefficients in the last equations. Finally, repeating the above procedure for $\psi(y)$, we obtain the conclusion.

COROLLARY 1. Let R be a ring satisfying 9)_n. If there exists a polynomial $\psi(t)$ with integer coefficients such that $[nx - x^2\psi(x), y] = 0$ for all x, $y \in R$, then R is commutative.

PROOF. As is easily seen from the proof of Lemma 3, there exists a positive

integer k such that kD=0. Combining this with 9)_n, we can see that there exists a polynomial $\gamma(t)$ with integer coefficients such that $[x-x^2\gamma(x), y]=0$ for all x, $y \in R$. Then R is commutative by [5, Theorem 3].

PROPOSITION 1. If R is an s-unital ring satisfying 1_n and 9_n , then DN = 0, and in particular, $D^2 = 0$.

PROOF. According to Lemma 2, N is a commutative nil ideal containing D and $[u, x^n] = 0$ for all $u \in N$ and $x \in R$. Now, let $u \in N$, and $x, y \in R$. Then

$$0 = [xu, y^n] = x[u, y^n] + [x, y^n]u = [x, y^n]u$$

= $\sum_{i=0}^{n-1} y^i [x, y] y^{n-i-1}u = \sum_{i=0}^{n-1} y^i (y^{n-i-1}u) [x, y] = ny^{n-1} [x, y]u.$

Hence, by [1, Lemma 1 (2)], we obtain n[x, y]u=0. On the other hand, by Lemma 3 and 9)_n, k[x, y]u=0 with a positive integer k such that (n, k)=1. Now, it is immediate that [x, y]u=0, proving DN=0.

PROPOSITION 2. If R is an s-unital ring, then there hold the following implications: $2)_n \Rightarrow 3)_n \Rightarrow 4)_n \Leftrightarrow 5)_n \Rightarrow 5)'_n$.

PROOF. Since 2)_n together with 5)_n implies 3)_n and 5)_n does 4)_n and 5)'_n, it is enough to show that 2)_n \Rightarrow 4)_n and 3)_n \Rightarrow 4)_n \Rightarrow 5)_n.

2)_n \Rightarrow 4)_n. Since $xyx^ny^n = (xy)^{n+1} = x^{n+1}y^{n+1}$, we have $x[x^n, y]y^n = 0$, and therefore $x[x^n, y] = 0$ by [1, Lemma 1 (2)]. In particular, $x[x^n, y^n] = 0$. Hence, $[x, (xy)^n] = x\{(xy)^n - (yx)^n\} = x[x^n, y^n] = 0$.

3)_n \Rightarrow 4)_n. It is immediate that $[x, (xy)^n] = x\{(xy)^n - (yx)^n\} = 0$.

4)_n \Rightarrow 5)_n. As a consideration of $x = E_{12}$ and $y = E_{21}$ shows, D is a nil ideal (Lemma 1). Let T be the (s-unital) subring of R generated by all n-th powers of elements of R. Let $u \in N$, and u' the quasi-inverse of u. If a is an arbitrary element of R, and e a pseudo-identity of $\{u, a\}$, then $[u, a]^n = [e+u, \{(e+u)(e+u')a\}^n] = 0$. In particular, every nilpotent element of T is in the center of T. Now, let $s, t \in T$. Since $s^n t^n - (st)^n$ is in the nil ideal D(T), we get $s^n[s, t^n] = [s, s^n t^n] = [s, (st)^n] = 0$. Then, $[s, t^n] = 0$ by [1, Lemma 1 (2)]. This implies that $[x^n, y^{n^2}] = 0$ for all $x, y \in R$. So, according to Lemma 3, we can find a positive integer k such that kD = 0. Then, recalling that $[x^n, [x^n, y]] = 0$, we see that $[x^{nk}, y] = kx^{n(k-1)}[x^n, y] = 0$. This enables us to see that $x^{n^2k}[x, y^n] = [x, (x \cdot x^{nk-1}y)^n] = 0$. Hence, $[x, y^n] = 0$ again by [1, Lemma 1(2)].

LEMMA 4. Assume that for each $u \in N$ and $x \in R$ there exists a positive integer i=i(u, x) such that $[(1+u)^{n^i}, x]=0$. Then for each $u \in N$ and $x \in R$ there exists a positive integer l such that $[n^lu, x]=0$.

PROOF. Let $u \in N$, and $x \in R$. By hypothesis, there exists a positive integer *i* such that $[(1+u)^{n^i}, x]=0$. If $u^2=0$, then $[n^i u, x]=[(1+u)^{n^i}, x]=0$. Sup-

460

pose now that if $u^h = 0$ with h < k then $[n^j u, x] = 0$ for some positive integer j, and consider u with $u^k = 0$. Then, we can find a positive integer j such that $[n^j u^2, x] = \cdots = [n^j u^{n^i}, x] = 0$. Obviously, $[n^{i+j}u, x] = n^j [(1+u)^{n^i}, x] = 0$. This completes the proof.

LEMMA 5. Let R be a ring satisfying the identity [[x, y], z] = 0. If n > 1, then $6)_n$ implies $5)_{n^6}$.

PROOF. First, we claim that R satisfies the identity

$$(x^{(n-1)^2}-1)[x, y^{n^3}] = 0.$$

Indeed,

$$0 = [x^{n^2}, y^n] - [x^n, y^{n^2}] = nx^{n(n-1)}[x^n, y^n] - nx^{n-1}[x, y^{n^2}]$$

= $n(x^{(n-1)^2} - 1)x^{n-1}[x, y^{n^2}] = (x^{(n-1)^2} - 1)[x^n, y^{n^2}] = (x^{(n-1)^2} - 1)[x, y^{n^3}].$

Since every ring is a subdirect sum of subdirectly irreducible rings, we may assume that R itself is a subdirectly irreducible ring with heart $S(\neq 0)$. Now, let a be an arbitrary element in the right annihilator r(S) of S. If $[a, r^{n^3}]$ is non-zero for some $r \in R$, then, by the claim at the opening, the left ideal $I = \{x \in R \mid xa^{(n-1)^2} = x\}$ contains the non-zero central element $[a, r^{n^3}]$, so that $I \supseteq S$. But then $s = sa^{(n-1)^2} = 0$ for all $s \in S$. This is a contradiction. We have thus seen that $[a, y^{n^3}] = 0$ for all $y \in R$. Next, we prove that R satisfies the identity $[x^{n^3}, y^{n^3}] = 0$. If $[x, y^{n^3}] = 0$ for all $x, y \in R$, there is nothing to prove. Now, assume that $[b, d^{n^3}] \neq 0$ for some $b, d \in R$. Then, again by the opening claim, the left annihilator $l(b^{(n-1)^{2+1}}-b)$ contains the non-zero central element $[b, d^{n^3}]$, and so contains S. Then, since $b^{(n-1)^{2+1}} - b$ is in r(S), it follows from what was just shown above that $[b^{(n-1)^{2+1}} - b, d^{n^3}] = 0$. Thus, at any rate, R satisfies the identity $[x^{(n-1)^{2+1}} - x, y^{n^3}] = 0$, and so the subring generated by all n^3 -th powers of elements of R is commutative by [5, Theorem 3]. Consequently, R satisfies the identity $[x^{n^3}, y^{n^3}] = 0$. Now, by $6)_n$, it is immediate that $[x^{n^6}, y] = [x^{n^3}, y^{n^3}] = 0$.

PROPOSITION 3. If n > 1, then 6_{n} , $6'_{n}$ and $6''_{n}$ are equivalent, and $6'_{n}$ implies $5'_{n\alpha}$ for some positive integer α .

PROOF. Obviously, 6_n implies $6'_n$. If $6'_n$ is satisfied, then

$$[x, (x+y)^n - y^n] = [x^2\psi(x), (x+y) - y] = [x^2\psi(x), x] = 0.$$

Next, if $6)_n^n$ is satisfied then

 $[x, y^{n}] - [x^{n}, y] = [x, (x+y)^{n}] - [(x+y)^{n}, y] = [x+y, (x+y)^{n}] = 0.$

We have thus seen the equivalence of 6_{n} , $6'_{n}$ and $6''_{n}$.

Suppose now that 6_n is satisfied. By Lemma 1, there exists a positive integer h such that $[x, y]^h = 0$ for all $x, y \in R$. Choose a positive integer κ such that $n^{\kappa} \ge h$. Let T be the subring of R generated by all n^{κ} -th powers of elements of

R. Since $[[x, y], z^{n^{\kappa}}] = [[x, y]^{n^{\kappa}}, z] = 0$ for all $x, y, z \in R$, we get $[s^{n^{6}}, t] = 0$ for all $s, t \in T$ (Lemma 5). It therefore follows that $[x^{n^{2\kappa+6}}, y] = [x^{n^{\kappa+6}}, y^{n^{\kappa}}] = 0$ for all $x, y \in R$.

The next is a slight generalization of [2, Theorem 2].

COROLLARY 2. Suppose n > 1. Let T be the subring of R generated by all n-th powers of elements of R. If R satisfies 6_n and the centralizer of T in R coincides with C, then R is commutative.

PROOF. According to Proposition 3, there exists a positive integer α such that $[x^{n^{\alpha-1}}, y] = [x^{n^{\alpha}}, y] = 0$ for all $x, y \in R$. Then, $[x^{n^{\alpha-1}}, y] = 0$ by hypothesis. We can repeat the above process to obtain the conclusion [x, y] = 0.

LEMMA 6. The condition $8)_n$ implies $9)_n$.

PROOF. Suppose n[a, b]=0 $(a, b \in R)$. Let R' be the subring of R generated by $\{a, b\}$. Then it is easy to see that n[x, y]=0 for all $x, y \in R'$. Combining this with 8)_n, we can show that for each pair of elements x, y in R' there exists a polynomial $\gamma(t)=\gamma(x, y; t)$ with integer coefficients such that $[x-x^2\gamma(x), y]=0$. Hence, R' is commutative by [5, Theorem 3], and so [a, b]=0.

We now proceed to prove our theorems.

PROOF OF THEOREM 1. $a \rightarrow c$ and d. Trivial.

b) \Rightarrow a). By Proposition 1, every commutator squares to 0, and hence is central. Then $n^2 x^{n-1} y^{n-1} [x, y] = n x^{n-1} [x, y^n] = [x^n, y^n] = 0$. Now, by [1, Lemma 1 (2)], it follows that $n^2 [x, y] = 0$, and so [x, y] = 0.

c) \Rightarrow b). Let $u^2 = 0$. Since $[x^n, u] = 0$ by Lemma 2, we have

$$0 = [x, \{x^{n}(1+u)\}^{n} - \{x^{n-1}(1+u)x\}^{n}]$$

= [x, x^{n^{2}}(1+u)^{n} - x^{n^{2}-1}(1+u)^{n}x]
= x^{n^{2}-1}[x, [x, (1+u)^{n}]] = nx^{n^{2}-1}[x, [x, u]].

Now, by making use of [1, Lemma 1 (2)] and 9)_n, we obtain [x, [x, u]]=0. This yields $nx^{n-1}[x, u]=[x^n, u]=0$. Hence, we get [x, u]=0 again by [1, Lemma 1 (2)] and 9)_n.

d) \Rightarrow b). Let $u^2 = 0$. Since $[\{(1+u)x\}^n, 1+u] = 0$ by Lemma 2, we see that

$$0 = x(1+u)^{-1}[\{(1+u)x\}^n, 1+u] = [x, \{x(1+u)\}^n]$$
$$= [x, x^n(1+u)^n] = nx^n[x, u].$$

Then, by [1, Lemma 1 (2)], we obtain n[x, u] = 0, and hence [x, u] = 0.

PROOF OF THEOREM 2. (1) First, we prove that if R satisfies $5'_n$, then R

is commutative. Let $a, b \in R$, and e a pseudo-identity of $\{a, b\}$. Then $[a^{n^i}, b]=0$ with some positive integer *i*. Since $[a, b] \in N$ (Lemma 2), [a, [a, b]]=0 by Lemma 4. Hence we get $n^i a^{n^{i-1}}[a, b]=[a^{n^i}, b]=0$. Similarly, $n^j(a+e)^{n^{j-1}}[a, b]=0$ with some positive integer *j*. From these we obtain $n^k a^{n^{k-1}}[a, b]=0=n^k(a+e)^{n^{k-1}}[a, b]$, where $k=\max\{i, j\}$. Then, by [1, Lemma 1 (2)] there holds that $n^k[a, b]=0$, and hence [a, b]=0.

If any of the conditions $2)_n$, $3)_n$, $4)_n$ and $5)_n$ is satisfied, R is commutative by Proposition 2 and what was just shown above. If $6)'_1$ is satisfied then R is commutative by [5, Theorem 3]. On the other hand, in case n > 1 and $6)'_n$ is satisfied, R satisfies $5)_{n^{\alpha}}$ for some positive integer α (Proposition 3). Thus, again by the the above, R is commutative.

(2) This is only a combination of (1) and Proposition 3.

(3) It suffices to show that $1)'_n$ implies $1)_n$. Let T be the (s-unital) subring of R generated by all n-th powers of elements of R. Then T satisfies $5)'_1$, and hence T is commutative by (1). That is, R satisfies $1)_n$.

Combining Theorem 2 with Lemma 6, we obtain

COROLLARY 3. Let R be an s-unital ring satisfying $8)_n$.

(1) If any of the conditions 2_{n} , 3_{n} , 4_{n} , 5_{n} , 5_{n} and 6_{n} is satisfied, then R is commutative.

(2) Suppose n > 1. If R satisfies the condition $6'_n$ or $6''_n$, then R is commutative.

PROOF OF THEOREM 3. Let $x, y \in R$, and e a pseudo-identity of $\{x, y\}$. Then

$$[x^{m}, y] = [x^{m}, y+e] = [(x+y+e)^{m}, y+e]$$
$$= [(x+y+e)^{m}, y] = [(x+e)^{m}, y].$$

Thus we have

$$[mx + \binom{m}{2}x^{2} + \dots + mx^{m-1}, y] = [(x+e)^{m} - x^{m}, y] = 0,$$

and so R satisfies $8)_n$. Hence, R is commutative by Corollary 3.

PROOF OF THEOREM 4. By Lemma 3, there exists a positive integer k such that kD=0. In view of 9)_n, we may assume that (k, n)=1. Combining this with 7)_n, we see that for each pair of elements x, y in R there exists a polynomial $\gamma(t) = \gamma(x, y; t)$ with integer coefficients such that $[x - x^2\gamma(x), y]=0$. Hence, R is commutative by [5, Theorem 3].

PROOF OF THEOREM 5. If m=1 or n=1, then R is commutative by [5, Theorem 3]. Henceforth, we assume that m>1 and n>1. Then, by Proposition 3,

$$[x, my + {\binom{m}{2}}y^2 + \dots + my^{m-1}] = 0$$
 and $[x, ny + {\binom{n}{2}}y^2 + \dots + ny^{n-1}] = 0$

(see the proof of Theorem 3). Since (m, n) = 1, the last two identities imply that there exists a polynomial $\gamma(t)$ with integer coefficients such that $[x, y - y^2\gamma(y)] = 0$ for all $x, y \in R$. Hence, again by [5, Theorem 3], R is commutative.

Finally, we prove the following

COROLLARY 4. Suppose mn > 1 and (m, n) = 1. If R is an s-unital ring satisfying the identity $[x^n, y] = [x, y^m]$, then R is commutative.

PROOF. We may assume that n > 1. If m = 1, then R is commutative by [5, Theorem 3]. Thus, henceforth, we assume that m > 1. Then, by Proposition 3, R satisfies $5)_{m^{\alpha}}$ for some positive integer α . This also implies that $[x, y^{n^{\alpha}}] = [x^{m^{\alpha}}, y] = 0$. Since $(m^{\alpha}, n^{\alpha}) = 1$, R is commutative by Theorem 5.

References

- H. Abu-Khuzam, H. Tominaga and A. Yaqub: Commutativity theorems for s-unital rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111–114.
- [2] H. E. Bell: On some commutativity theorems of Herstein, Archiv Math. 24 (1973), 34-38.
- [3] H. E. Bell: On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
- [4] H. E. Bell: On rings with commuting powers, Math. Japonica 24 (1979), 473-478.
- [5] I. N. Herstein: Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411-412.
- [6] I. N. Herstein: A commutativity theorem, J. Algebra 38 (1976), 112-118.
- [7] Y. Hirano, M. Hongan and H. Tominaga: Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65–72.
- [8] M.-L. Lin: A commutativity theorem for rings, Math. Japonica, to appear.
- [9] E. Psomopoulos, H. Tominaga and A. Yaqub: Some commutativity theorems for ntorsion free rings, Math. J. Okayama Univ. 23 (1981), to appear.

Department of Mathematics, Faculty of Science, Hiroshima University*) and Department of Mathematics, Faculty of Science, Okayama University

^{*} The present address of the first named author is as follows: Department of Mathematics, Faculty of Science, Okayama University.