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Introduction

In this paper, we shall give a sufficient condition that properties for a reduced

noetherian scheme X to be Cohen-Macaulay or Gorenstein can be ascended to

or can be descended from the same properties on the normalization ϊ of I .

It is well-known that the condition of flatness plays an important role in the study

of many properties on an extension of a noetherian rings (e.g. [21]). But the

normalization of a reduced noetherian ring is an integral extension which is far

from a flat one. Therefore it seems to the author that we need a "flatness"

condition on X, in some sense, in order to give the above sufficient condition.

Fortunately, in his famous paper [11], H. Hironaka defined the notion of normal

flatness in 1964 (see Def. 2 in this paper). From that time, many mathematicians

have studied properties on normal flatness and have obtained many results on it

(e.g. [9], [10]). Let Y be the closed subscheme of X defined by the conductor

of X in X. By the definition of normal flatness, if X is normally flat along Y9

that is, if the normal cone N of X along Yis flat over Y, then X' x XYis flat over Y

where X' is the blowing up of X along Y. On the other hand, there is a canonical

morphism frorή X' to X (see Prop. 3 in this paper) and P. H. Wilson showed, in

the case where X is a hypersurface, that a necessary and sufficient condition for

this canonical morphism to be an isomorphism can be spoken by a "flatness"

condition (cf. Theorem 2.7 in his paper [22]). The author believes that, under

the condition that X is normally flat along 7, the fibres of N along Y and hence

the fibres of X' along Y are well parametrized. In this point of view, we shall

study the structure of N and show that if X is normally flat along Y and Y is

of pure codimension 1 in X, then

( i ) X' is naturally isomorphic to X.

(ii) X is a Cohen-Macaulay scheme if and only if so is X.

(iii) X is a Gorenstein scheme if so is X.

The author would like to thank Professor Mieo Nishi, Professor Kei-ichi

Watanabe and his friend Akira Ooishi for their kind advice, and would like to

express his gratitude to Professor Masayoshi Nagata for his letter to the author

giving a construction of a hypersurface of any dimension ^ 3 that has a unibranch

point such that the normalization of the local ring at this point is not a Cohen-

Macaulay (local) ring.
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§ 1. Normal flatness (1)

In this section, we shall consider a noetherian scheme S and a closed sub-
scheme Tof S. We refer scheme theoretic languages to [5], [6] and [7].

Let Jί be an 0s-module. For any point s of S, we denote the stalk of Jί
at s by Jίs and the maximal ideal of ΘStS by ms. We put Jί(s) = Jts\msJίs and
κ(s) = Θs(s) = ΘsJms as usual.

Let J be the sheaf of ideals of Θs which defines T. We denote the normal
cone of S along Tby Nτs. Hence by the definition of normal cones,

Nτ,s = &/*">i{& Λ0s))

where %(^s) = ^ r θ ( θ ^ i / " / / n + 1 ) is the graded 0T-algebra associated
with y. For any point t of T, we put

Nτ,s(t) = Spec(Λ,(0s)(O) = Spec (ιc(0 Θ (θ.^iΛ'/m^?))

and Hτs(t; n) = dimκ(f)(e/{l/mί«/'{1). Then we have a well-known proposition.

PROPOSITION 1. There exists the numerical polynomial P with coefficients
in the field of rational numbers such that Hτs(t; n) = P(ή) for every sufficiently
large n and the dimension of NTtS(t) is equal to deg(P) + l.

PROOF. The assertion follows from Th. 20.5 in [15] and Th. 19 of § 7.10
in [18].

DEFINITION 1. We define the degree of HTfS(t; ή) by one of the above
polynomial P.

We now give the definition of normal flatness.

DEFINITION 2. For any point t of T, we say that S is normally flat
along T at t if &*s(&s)t i s a flat ^τ,rm°dule, that is to say, Jn

t\Jγγ is a free
0Γf-module for any n. S is said to be normally flat along T if S is normally
flat along Tat any point of T, in other wards, if JnjJn+1 is a locally free Θτ-
module for any n. This is equivalent to the condition that NTfS is flat over T.

We denote the blowing up of S along T by &/T(S). Hence by the definition
of a blowing up,

where &Λ®s) = ®s®(®n^i ^n) is the ^ e e s 0s-alβebra defined by J. Then we
know that for any point t of T,

x τ Spec(κ(0) =
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While many results on normal flatness have been obtained, we need the fol-

lowing results in this paper.

PROPOSITION 2. Suppose that S is normally flat along T.

( i ) Hτs(t1 n) = Hτs(t2 ή) for any two points tut2 of a connected

component of T. In particular,

dim(ΛΓΓ f S(ί1)) = c l i m ( N Γ > s ( ί 2 ) ) .

(ii) For any point t of T, dim (Nτ s(t)) = codim (Z, S) where Z is any

irreducible component of T which passes t.

(iii) For any point t of T, άim(ΘSt) = άim(ΘTtt) + άim(ΘSz) where z

is the generic point of an irreducible component of T which passes t.

PROOF. The assertions follow from (6.10.5) in [7] and Korollar 1.52. in [9].

COROLLARY 1. If S is normally flat along T and is connected, then Tis of

pure codimension in S.

PROOF. The assertion follows from (i), (ii) in Prop. 2.

COROLLARY 2. If S is normally flat along T and Tis of pure codimension 1

in S, then &/T(S) is finite over S.

PROOF. The assertion follows from (ii) in Prop. 2 and (4.4.2) in [6].

COROLLARY 3. Suppose that S is normal and T is of pure codimension 1

in S. If S is normally flat along T, then @/T(S) = S and therefore «/ is an

ίnvertible sheaf of ideals of Θs.

PROOF. The assertions follow from the above corollary.

§ 2. Normal flatness (2)

From now on, we shall consider a reduced noetherian scheme X of which

the normalization, denoted by X, is finite over X. Let π be the canonical mor-

phism from ϊ t o l . By the conductor # of X in X we mean the largest sheaf

of ideals of Θx which is also a sheaf of ideals of π*(Θχ). Therefore %> =

£έ****Θχ(π*{Θχ)lΘχ). Since X = ty*cχ(n*(0χ))9 we may consider ^ as a sheaf of

ideals of Θx. We denote by Y and Ϋ the closed subschemes of X and X defined

by Ή respectively. We now put shortly

N = Nγ>x, N = NYtχ, X' = a/γ(X)9 and X' = @

Then we have the following commutative diagrams.
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JVΛΫΛΪ x' JC x

4 i "1 ^1 pl

where i and 7 are natural injections and the others are canonical morphisms

induced by π.

P. H. Wilson obtained that π' is an isomorphism in case that X is an ir-

reducible variety (cf. Theorem 1.2 in [22]). More generally we have the fol-

lowing proposition.

PROPOSITION 3. π' is an isomorphism.

PROOF. The assertion follows the fact that (@s(®x))+ = (&Λ@x))+ a n c * from

the construction of &>ty (cf. (2.4) in [5]).

The following theorem is important in this paper.

THEOREM 1. The following conditions are equivalent.

(i) X is normally flat along Y and Yis of pure codimension 1 in X.

(ii) (1) Ϋ is flat over Y.

(2) <β is an invertible sheaf of ideals of Θx.

PROOF. (i)=>(ϋ): By Cor. (ii) of Prop. 2 and Prop. 3, we have X' = X' = X.

Hence ^ is an invertible sheaf of ideals of Θx. Since Ύ=X xxY=X'x XY=

^yY(
τ*(^N)) a n d τ i s flat by the definition of normal flatness, F is flat over Y

by using (2.2.1) in [5].

(ii)=>(i): Since # is an invertible sheaf of ideals of Θx by our assumption

(2), ^ is an invertible one of π+(0χ). For any n ^ l , ̂ nj^nJrl = ^n®π^Θχ)7t^{Oγ)

and therefore we conclude that <^"/^ / ί + 1 is a locally free πHc(^F)-module of rank

1. On the other hand, π*(0F) is a locally free 0y-module by the assumption

(1). Hence 9 " 7 # w + 1 is a locally free one for any n. In other words, X is nor-

mally flat along Y.

Let z be the generic point of an irreducible component of 7. Since X is

finite over X, there exists a point z of F such that π(z) = z and aim((PXE) =

dim ((PXtZ). From the assumption (1), it follows that

dim(0 Γ j f ) = dim(0y jZ) = O (cf. Theorem 20 in [14]).

Therefore z is the generic point of some irreducible component of Ϋ. By the

assumption (2), we have d i m ( 0 J f ) = l and hence dim(0X j Z) = l. Therefore we

conclude that Y is of pure codimension 1 in X.

COROLLARY 1. Under the equivalent conditions of the above theorem, we
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conclude that the blowing up X' of X along Y is the normalization X of X.

We have already shown the assertion in the above proof of Theorem 1.

Hence we omit the proof.

COROLLARY 2. Let X be an affine scheme. Suppose that Γ(X, Θx) is local.

Then the following conditions are equivalent.

(i) X is normally flat along Y and codim(7, X) = l.

(ii) (1) Γ(Ϋ9 Θγ) is a free Γ(Y9 Θγ)-module.

(2) Γ(X, <£) is a principal ideal of Γ(X, Θx) generated by a regular

element.

PROOF. The assertion can be easily seen by Cor. 1 of Prop. 2 and Th. 1.

As for the dimension of the local ring of X at any point, we have the following

theorem.

THEOREM 2. Suppose that X is normally flat along Y and Y is of pure

codimension 1 in X. Let x be any point of X and let x be the point π(x) of X.

Then we have

dim (®x,χ) = dim (ΘXiX).

PROOF. We may assume that 3c is contained in F. By (iii) of Prop. 2 and

Th. 1, we have

>JC) = άim(ΘYtX)

Since F is finite and flat over Y by Th. 1, dim(0 Γ ^) = dim(0 y , x ) (cf. Theorem 20

in [14]). Therefore dim(Θx^) = dim(ΘX x).

In connection with the condition (1) in Theorem 1, we give the following

proposition.

PROPOSITION 4. F is flat over Y if and only if π*(Φχ)/Θx = π*(Θy)/Θγ is

a flat Θγ-module.

PROOF. Since the property of flatness is a local one, the assertion follows

from Chap. I, § 3, n° 5, Prop. 9 in [2].

§ 3. A property for schemes to be Cohen-Macaulay

We refer the definitions of depth, local cohomology, Cohen-Macaulay ring

and Cohen-Macaulay scheme to the books [8], [10] and [14].
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From now to the end of § 5 in this paper, we understand that X is always

normally flat along Γand Y is of pure codimension 1 in X. For the sake of sim-

plicity, we use the following notations.

For any fixed point y of 7, we put shortly

A = ΘXty9 A = π*(0 x) y, C=Vy9m = my9κ = κ(y) and K = A/mA.

Then A is the normalization of A. It follows from Th. 2 that for any maximal

ideal n of A9 the dimension of An is equal to one of A. On the other hand,

W^^Hl^Ά) for any Ϊ ^ O (cf. Corollary 5.7 of Proposition 5.5 in [8]).

Since the condition that X is a Cohen-Macaulay scheme is a local property,

the above facts show the following lemma.

LEMMA. X is a Cohen-Macaulay scheme if and only if π*{Θx) is a Cohen-

Macaulay Θx-module.

THEOREM 3. Let y be a point of Y. Then the following conditions are

equivalent.

(1) X is Cohen-Macaulay at y.

(2) Y is Cohen-Macaulay at y.

(3) X is Cohen-Macaulay along π~1(y).

(4) Ϋis Cohen-Macaulay along π " 1 ^ ) .

PROOF. By Cor. 2 of Th. 1, C is generated by a regular element of A.

Therefore the equivalence between (3) and (4) are obvious (cf. (ii) of Theorem

30 in [14]). Since A/C is a finite and flat extension of A/C by Cor. 2 of Th. 1,

the equivalence between (2) and (4) follows from (21. C) in [14]. Hence we

conclude that (2), (3) and (4) are equivalent.

We now show that (1) implies (2). Put C — cΆ and C — cA. Then we have

C/C'^cA/cA^A/A because c is an ^4-regular element. Hence CjC is a free

,4/C-module by Prop. 4. Set CjC'^Ά/A^®rA/C for some positive integer r

and consider the following exact sequence

0 > C\C > A\C > A\C > 0.

By our assumption, dim (̂ 4) = depth (A), say d, we have depth (AjC) = dim (A/C)

— d— 1. Since A is a normal ring, it follows from the Serre's criterion for nor-

mality (cf. Theorem 39 in [14]) that A is a Cohen-Macaulay ring if d^2. By

the equivalence between (2) and (3), we may assume that d is greater than or equal

to 3. Let i be any positive integer which is less than or equal to ά — 2. Then

Hi

m(A/Ct) = 0. By the above exact sequence, we have an exact sequence

Hence we have
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W-\AIC) s HtiC/C) s e'H*n(AIC) (*).

Since A is normal and dim(/ί)^3, we have depth (An)^ 2 for any maximal

ideal n of A by the Serre's criterion for normality and Th. 2. Therefore

depth(AjCAn) = depth(AJcAJ^l . On the other hand, depth(AjCAn) =

depth (A/Q + depth (AJmAn) = depth (A/C) because A/C is a finite and flat

extension of A/C (cf. (21. C) in [14]). Hence depth(A/Q^l, that is, H^(A/C) =

0. Therefore we have Hi

m(A/C) = 0 by (*). Hence we conclude that depth (A/C)

^d-\. On the other hand, άim(AIC) = d-l by (iii) of Prop. 2. Therefore

AjC is a Cohen-Macaulay ring. This shows (2).

Next we show that (3) implies (1). Consider the following exact sequence

0 > A > A > A/A > 0.

Let i be any non-negative integer which is less than or equal to d— 1 where d —

dim (y4) = dim (A). Then we have an exact sequence

W'KA/A) —+ HUA) — H*n(A) (••)

where we put H~ί(A/A) = 0. Since A is a Cohen-Macaulay ring of dimension

d by our assumption, Hi

m(A) = 0 by the above lemma. By (*) and the equivalence

between (2) and (3), we have

Therefore we have iϊj t(^) = 0 by the above fact and (**). In other words, A is

a Cohen-Macaulay ring. This shows (1).

We now give easy consequences of the above theorem but we omit thier

proofs.

COROLLARY 1. X is a Cohen-Macaulay scheme if and only if so is X,

And if so, Y and Y are Cohen-Macaulay schemes.

COROLLARY 2. X satisfies the Serre's condition (Sn) (cf. (17.1) in [14]) if

and only if so does X.

COROLLARY 3. X satisfies the Serre's condition (S2) and hence Y has no

embedded component (cf. the proof of (vi) in Theorem 2.6 in [4]). In particular,

if X is of dimension 2, then X and Y are Cohen-Macaulay schemes.

§ 4. Fibres of the normal cone

In this section, we shall study some properties on the structure of the fibres

N(y) of the normal cone N of X along Y at any point y of Y. Under the same
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notations as in § 2 and §3, we have π*(&*v((9χ))y = grc(Ά), &*<«(& χ)y = grc(A)

and by Cor. 2 of Th. 1, grc(Ά)=AIC\V~\ where U is an indeterminate, and

grc{A) = AjC®UAjC{Ό'\ because grc(A)+=grc(A)+. Consider the following

exact sequence of ̂ 4/C-modules

0 > grc(A) > grc(A) > A/A > 0.

Then we have an exact sequence

0 > K ® gr
c
(A) > K ® gr

c
(Ά) > K ® A jA > 0

because A/A is a flat A/C-module by Prop. 4. Therefore we have κ®grc(Ά) =

KlU] and κ®grc(A) = κ®UK[U~].

From now on, we put H(y; n) = Hγx(y; n) and h(y) = H(y; 1) for the sake of

simplicity. Then we have the following proposition.

PROPOSITION 5. N(y) and N(y) are Cohen-Macaulay algebraic schemes

of dimension 1 defined over the field κ = κ(y). The multiplicity and the embedded

dimension of N(y) at the origin are same and equal to h(y). In fact, H{y\ ή) =

PROOF. The first assertion is obvious by the above discussion. The last

two assertions follow from the facts that Cw/CM+1=v4/C for any n ^ l and Ά/C

is a free ,4/C-module by Cor. 2 of Th. 1.

We now give a sufficient condition for N and N to be Cohen-Macaulay

schemes.

THEOREM 4. // X is a Cohen-Macaulay scheme, then so are N and N.

PROOF. Since τ and τ are flat, the assertion follows from Cor. 1 of Th. 3,

the above Prop. 5 and (21. C) in [14].

We refer the definition of seminormality and one of glueings to [4], [20]

and [23]. Then we have the following theorem.

THEOREM 5. For any point y of Y, N(y)red is a seminormal curve with

an isolated singularity and its normalization is N(y)τcd.

PROOF. By the beginning of this section, we know that κ®grc{A)^κ®

grc(A). Hence we have (κ(E)grc(A))redcz(κ<g)grc(A))red. On the other hand,

the last ring is KIV] where K = Kτed=AIJ(Ά) and J(Ά) is the Jacobson radical

of A. Therefore (κ®grc(A))τGd = κ®UK[lJ]. Since K is a finite product of

fields, K[U] is a normal ring. Hence the last assertion is obvious by the above

discussion. On the other hand, the conductor of /cφ L/K[l/] in KIV] is UK[IΓ].
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Therefore it is a radical ideal of X[l/] and is the homogeneous maximal ideal of

/c©L/X[(7]. Hence the first assertion follows from Corollary 2.7 of Theorem

2.6 in [4].

COROLLARY 1. If X is an algebraic scheme defined over an algebraically

closed field K and y is any closed point of Y, then N(y)τed is a disjoint union of

affine lines and N(y)red is the curve which is obtained by glueing the origins of

the above lines.

PROOF. Under the same notations as in the proof of the above theorem,

K is the s times product of K for some positive integer s because K is a reduced

artinian ring which is finite over K and K is algebraically closed field by our as-

sumption. Therefore the first assertion is trivial. Since κ@ L/K[(7] is isomorphic

to κ{\JΊ,..., UJKUiUjl i φ / ) where Ul9...9 Us are indeterminates (cf. Corollary 3

of Theorem 1 in [3]), we can prove the second assertion.

We now give a result on the number of branch points of X at any closed point

y of Y under suitable conditions.

COROLLARY 2. Under the same assumptions as the above corollary, if

X is unramified over X, then N(y) is a semίnormal curve and its normalization

is N(y). Moreover the number of branch points of X at y is equal to h(y) and

h(yί) = h(y2) for any two points yu y2 if they are contained in a same con-

nected component of Y.

PROOF. Under the same notations as in the beginning of this section, K =

Kred because X is unramified over X. Hence we conclude that N(y) =

Spec(X[l/]) is reduced. Therefore N(y) = N(y)Ted. Hence the former assertion

follows from the above corollary. The latter one follows from the fact that

π - H ^ s P r o j ί ί π τ ) * ^ ) ^ ) ) by Prop. 3, Cor. 1 of Th. 1 and from (i) of Prop. 2,

Prop. 5 and Cor. 1 of Th. 5.

§ 5. A property for schemes to be Gorenstein

For any noetherian scheme S, we define the following condition for any

non-negative integer n.

(Gn): Let s be any point of S. If dim(0 s > s)ί£n, then ΘSs is a Gorenstein

ring.

We shall show the following:

PROPOSITION 6. Let y be the generic point of an irreducible component of

Y. If X satisfies the condition (GJ, then the multiplicity of X at y is equal to

2andh(y) = 2.
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PROOF. Under the same notations as in § 3, Ά\C is flat over AjC by Th. 1.

Let e be the multiplicity of A. Then

e = άimκ(K) = dimκ(κ(xM/C) = τa.nkA/c(AIC),

Since Y is of pure codimension 1 in X, A is a Gorenstein ring of dimension 1

by our assumption. Hence lengthy/C(A/C) = 2 lengthy/C(A/C) (cf. Korollar 3.5

von Satz 3.3 in [10]). Therefore rank i4/c(JΪ/C) = 2. Hence e = 2. On the other

hand, h(y) = H(y; 1) = dimκ(/c®C/C2) and C/C2^A/C by Th. 1. Therefore

PROPOSITION 7. J/X satisfies the condition (GJ, ί/zen JV(y) is β Gorenstein

affine plane curve defined over the field κ(y) for any point y of Y and the mul-

tiplicity at the origin is equal to 2. Moreover N(y) is a complete intersection

in the affine plane over Spec (κ(y)).

PROOF. Since h(y) = 2 by (i) of Prop. 2 and the above proposition, we have

κ(y)®grc(A) = κ(y)[U\, t/2]/(/) where U1 and U2 are indeterminates and /

is a form of degree 2. Therefore the assertions are obvious.

COROLLARY 1. Let X is an algebraic scheme defined over an algebraically

closed field. If X satisfies the condition (Gx) and X is unramified over X, then

the number of branch points of X at any closed point of Y is equal to 2.

The assertion is obvious and we omit the proof.

COROLLARY 2. If X satisfies the condition (GJ, then π*(Θχ)lΘx is a locally

free Θγ-module of rank 1.

PROOF. Since the rank of π*(Θγ) at any point y of Y is equal to h(y) by

Cor. 2 of Th. 1, it is equal to 2 by the proof of the above proposition. Therefore

the assertion follows from Prop. 4 and from the following exact sequence of Θγ-

modules

0 > φγ > n^Θγ) , π^ΘjdlΘx > 0.

In connection with canonical modules, we shall study the 0y-module

π*(Θχ)lΘx. Now for any coherent 0x-module <̂ > w e denote the dual module

JFofnoJ^Jt', Θx) of Jί by Jί*. Then we have the following proposition.

PROPOSITION 8. There exist canonical isomorphisms from π*{Θχ) to <£*

and from π*(Θχ)l@x to #*>flx(i*(@γ), Θx) where i is the canonical injection

from Y to X.

PROOF. Consider the following exact sequence of ^-modules



Some results on the normalization and normal flatness 219

0 > V > Θx > i*(Θγ) > 0.

Then we have an exact sequence

0 > 0$ > V* > Λ / k ( i *(0y), Oχ) > 0 .( )

because ί*(0γ)* = O and &<**},X(ΘX, OX) = Q. Since ΘX^ΘX, we consider Θx

as an 0x-submodule of # * by means of scalar multiplications. On the other

hand, # is also a sheaf of ideals of π*(Θx), we may naturally consider π*(Θx)

as an 0^-submodule of ^ * by the same method. We now show that π*(Θx)y =

&* for any point y of X. We may assume that y is a point of Y. Under the same

notations as in § 3, ^ * = Hom^(C, Λ) = A: QC where Q is the full ring of quotients

of A (cf. Lemma 2.1 in [10]). By Cor. 2 of Th. 1, we may put C = cA for some

^-regular element c of C. Then we have A: QC = A: QcA = l/c(A: QA) in Q.

Since A:QΆczA because A has the unity, we have A: QA = A: AA — C by the

definition of the conductor. Therefore A: QC=\jc(C) = \jc{cΆ) = A. Hence

we prove the first assertion. The second one follows from the first one and from

the exact sequence (*).

From now on we put Ω = #a>slx(i*(0γ)9 Θx). Then we have the following

corollary.

COROLLARY. // X satisfies the condition (Gj), then Ω is a locally free

Θγ-module of rank 1.

PROOF. The assertion follows from Cor. 2 of Prop. 7 and the above pro-

position.

PROPOSITION 9. Suppose that X satisfies the condition (GJ. Then N

satisfies the condition (Gn) if and only if so does Y.

PROOF. Since τ is flat and surjective, the assertion follows from Prop. 7

and Theorem V in [21].

For any coherent 0 r-module Jί, we have the natural isomorphism

Hence we have a spectral sequence of ^^-

Then we have the following proposition.

PROPOSITION 10. If X is a Gorensteίn scheme, then we have

*~ΊisY)( *, Ω) s Λ / J J 1 ^ . Θx)
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for any coherent Θγ-module Jί.

PROOF. Since X is a Gorenstein scheme and therefore it is a Cohen-Macaulay

scheme, Y is a Cohen-Macaulay scheme of dimension dim (X) — 1 by Cor. 1 of

Th. 3. Hence we have ^*/gx(/#(0γ), &χ)=0 if <?φl by the duality theorem

for Gorenstein schemes (cf. Theorem 6.3 in [8]). Therefore the above spectral

sequence (*) is degenerate. Hence we conclude the assertion.

Let y be any point of Y. Under the same notations as in § 3, put d = dim (Λ)

and let / be an injective hull of K as an ^4-module. Then I is an injective hull

of K as an ^4/C-module where I = HomA(A/C91). For any ^4-module M, we

denote Hom^(M, /) by D(M). If M is an Λ/C-module, then we have D ( M ) ^

Hom / 4 / c(M, /). For any finitely generated A/C-moάu\e M, we know that

= Hn(M) for any non negative integer n. If X is a Gorenstein scheme,

by Cor. 2 of Prop. 7. Hence for any finitely generated v4/C-module

M, we have Ext5 / C(M, A/C)^Έxtp

A

+1(M, A) by the above proposition. On

the other hand, D(Extp

A

+1(M, A))^Hd

m-ι-p{M)^Hiηh~p{M) by the duality

theorem for Gorenstein rings. Therefore we have the following theorem.

THEOREM 6. If X is a Gorenstein scheme, then so are Y and N.

PROOF. Under the same notations as in above discussion, A/C is a Cohen-

Macaulay ring of dimension d—i by Cor. 1 of Th. 3. Since Hom^^Ext^/c

(M,A/C)9 7)^D(Ext5+ 1(M, A))^H*j}r*(M) by the above discussion, A/C is

a canonical module of AjC. Hence A/C is Gorenstein. This shows that Y is a

Gorenstein scheme. Hence AT is a Gorenstein scheme by Prop. 9.

COROLLARY. If X satisfies the condition (Gn), then Y satisfies the condition

(Gπ_!) and hence so does N.

PROOF. The assertion follows from Th. 3, Prop. 9 and the above theorem.

We now study the property for X to be Gorenstein. Since ^ is an invertible

sheaf of ideals of π*(Θχ), for any point y of 7, X is Gorenstein along n~1{y) if

and only if Ϋis so along π " 1 ^ ) (cf. Theorem 4.1 in [1] and Theorem 206 in [12]).

On the other hand, Ϋ=0>*<yγ(τ*(ΘN)) and τ*(ΘN) is generated by τ*(&N)ι over

ΘY9 which is a subsheaf of τ^(ΘN) of degree 1. Now we consider Y as the vertex

of N and let A be a canonical morphism from N - Y to F. Then A is a smooth

and surjective morphism by (2.2.1) in [5]. Therefore we have the following

theorem.

THEOREM 7. If X satisfies the condition (GJ, then so does X and Y satisfies

the condition (GM_i).
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PROOF. The assertion follows from Cor. of Th. 6, Theorem Γ in [21] and

the above discussion.

COROLLARY. If X is a Gorenstein scheme, then so are X and Y.

The assertion is obvious by the above theorem and we omit the proof.

§ 6. Examples

Let (R, m, K) be a reduced noetherian local ring of dimension 1 and let R be

the normalization of R. Suppose that R is not normal and R is a finite extension

of R. Then the conductor, say C, of R in R is an m-primary ideal. Since R is a

principal ideal ring, Spec (R) is normally fait along Spec (R/C) if and only if R/C

is a flat R/C-algebra by Cor. 2 of Th. 1. If R is a Gorenstein ring and R/C is

flat over R/C, then the multiplicity of R is equal to 2 by Prop. 6.

We refer the definition of the first neighbourhood to [13]. Then we have

the following proposition.

PROPOSITION 11. // R is a Gorenstein ring and R/C is flat over R/C, then

the first neighbourhood of R is m" 1 .

PROOF. The assertion follows from Theorem 12.17, Theorem 13.3 in [13]

and Prop. 6.

PROPOSITION 12. Let K be a field and let U be an indeterminate. Put

R = κ[lJn,Un+2P-1\υnfUn + 2P-χ) with n^2 and p^\. Then R/C is flat over

R/C if and only ίfn = 2.

PROOF. Since R is a Gorenstein ring, the "only if" part is obvious by Prop.

6. We now show the "if" part. Since the conductor C of R = κ\U2,

U2p+1l(u*,uzp + i) i s (u2p> U2P+1)R and the normalization R of R is κ[(7] ( t / ),

we have C = (U2P)R. Therefore we have Λ/C = /c[l/2]/(ί/2^)κ:[ί/2] and R/C =

/c[C/]/(ί72^)κ:[(7]. Hence R/C = R/C® UR/C where V is the image of U in R/C.

Our assertion follows from the above fact.

In case that the conductor C is the maximal ideal m of R, Spec (R) is trivially

normally flat along Spec (R/C). In the above proposition, this is the only one

case of p = 1. But all singuralities of curves in the above proposition are cuspidal.

In connection with ordinary multifold points, we give the following proposition.

PROPOSITION 13. Under the same notations as in § 2,

(i) if X is a seminormal curve which is not normal, then X is normally

flat along Y and Yίs of pure codimension 1 in X. More generally,

(ii) if X is a seminormal scheme which is not normal and satisfies the Serre's
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condition (S2), then Y is of pure codimension I in X and there exists an open

subset W of X such that W Γϊ Y is dense in Y and W is normally flat along W [) Y.

PROOF. The assertions follow from Theorem 1 in [3], Corollary 2.7 of

Theorem 2.6 in [4] and Corollary of Theorem 1 (p. 189) in [11].

We now consider the following seminormal curve (cf. Corollary 3 of Theorem

1 in [2]).

X = Spec(ιc[l71,...,l/J/(t/ ll/ i | ϊΦ7)) with n ^ 3

where K is a field and U^s are indeterminates. Under the same notations as

in § 2, X is normally flat along Y by the above proposition. Although I is a

regular scheme, X is not a Gorenstien scheme by Prop. 6 because the multiplicity

of X at the origin is equal to n>2. Therefore the converse of corollary of Th. 7

is false.

Appendix

In connection with the notion of normal flatness, L. Robbiano and G. Valla

defined the concept of normal torsion-freeness in their joint work [19]. Let S

be a noetherian scheme and let J be a sheaf of ideals of Θs. Under the same

notations as in § 1, we give the definition of normal torsion-freeness.

DEFINITION. Let Γbe the closed subscheme of S defined by«/. We say that

S is normally torsion-free along T if Jn\Jn+x is a torsion-free 0Γ-module for

any natural number n.

We now give a sufficient condition that the blowing up of a normal scheme

is also normal.

PROPOSITION. Under the same notations as in § 1, let S be normal and

e/ be divίsorial, that is to say, Js be a divisorίal ideal of ΘS)S for any point s

of S. If S is normally torsion-free along T, then we have

(i) Jn is dίvisorial for any n.

(ii) @s(®s) ι s a normal Θs-algebra.

In particular, the blowing up of S along the center Tis a normal scheme.

PROOF. We may assume that S is a normal integral affine scheme. Put

B = Γ(S,ΘS) and I = Γ(S,J). Then we have Γ(S, ^(Θs)) = ®n^0I
n where

1° = B. Since / is a divisorial ideal of B9 we have AssB(B/I) a Utx(B) where Ht^B)

is the set of prime ideals of B of height 1. On the other hand, for any element

q of AssB(In/In+1) there exsits an element p of AssB(B/7) such that q c p because

jnjjn+i j s a torsion-free ^//-module by our assumption. Since p eHt^B), q = τp.
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Hence we have Ass^JV/^O^Ass^/^czHt^JB). Therefore under the no-

tations and terminologies in [16] and [17], we have (J"/JM+1)~ = 0 and hence

jnjjn+i j s a codivisorial E-module, that is, In+1 is divisorial in In. Since / is divi-

sorial, it follows from Corollary 1 of Proposition 12 in [16] that /" is divisorial

by induction on n. Therefore Θn>o^n * s a divisorial B-module by Proposition 34

in [17]. This fact implies that ®n^oI" = rΛp®nzoIn

P by (i) of Theorem 4 in [16]

and Corollary 3 of Proposition 34 in [17] where p runs over the set Ht^B).

Since Bp is a principal valuation ring for any element p of Ήt^B), ®n^0Ip is

isomorphic to the polynomial ring of one variable over Bp and hence it is normal.

Therefore ®n^0I
n is a normal ring. The last assertion is obvious.
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