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Introduction

The purpose of the present paper is to study Riemannian manifolds admitting
some linearly independent special concircular vector fields and determine geo-
metrical structures of such manifolds. Some results in this paper contain gener-
alizations of results due to Y. Tashiro (see Proposition 7.3 in [4] and Corollaries
2 and 3 in this paper).

We shall define an almost everywhere warped product and give a few ex-
amples in §1. We also state some properties of this kind of product. In §2,
we shall determine structures of n-dimensional Riemannian manifolds admitting
n linearly independent special concircular vector fields and investigate some
relations between these vector fields and their associated scalar fields. In §3,
we prove that any Riemannian manifold admitting some linearly independent
special concircular vector fields is an almost everywhere warped product, a part
of which is a space of constant curvature, and obtain some results on the given
manifold. Finally, in §4, we shall give geometrical structures of Riemannian
manifolds mentioned in § 3.

Throughout this paper, we assume that manifolds and quantities are differ-
entiable of class C*.

The author would like to express his sincere thanks to his teacher Y. Tashiro,
who suggested this problem and gave him valuable advice, and to Doctor N. Abe
for his pertinent criticisms in discussions.

§1. Almost everywhere warped products

Let M, and M, be Riemannian manifolds of dimension m and n—m respec-
tively, and f a positive-valued differentiable function on M;. The warped product
M=M, x ;M, is by definition (see [1]) the product manifold M, x M, endowed
with Riemannian metric

X, X) = (n, X, 7, X) + f2(m,%) (0, X, 7, X)

for any vector X € T,(M), xe M, where =, (=1, 2) is the natural projection
M- M,, the tangential map of =, is denoted by the same character, and ( , ) is
the Riemannian inner product.
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Let (x*)=(x", x?) be a local coordinate system of M, called a separate
coordinate system, where (x*) and (x?) are those of M; and M, respectively.
Here and hereafter Greek indices «, 4, g, v,... run on the ranges 1, 2,..., n, and
Latin indices run on the following ranges

h, i, j, k,... =1,2,..., m,
pP,q, 71 S.. = m+1, m+2,...,n

respectively, unless otherwise stated. If the components of the metric tensors of
M, M, and M, are denoted by g,,, g;; and g,, respectively, then the metric form
of the warped product M =M, x M, is expressed by

(1.1) gudxtdx? = gudxidxt + [f(x*)]%g,,dxdx?

with respect to a separate coordinate system (x¥)=(x", x?). The components
9, of the metric tensor of M belonging to (x?) are equal to

(1.2) 9ap =S *Fop-

Let M be an n-dimensional Riemannian manifold, M, a submanifold of M,
[ a differentiable function on M, N the zero-level hypersurface of M, defined by
f=0 and M9 a connected component of M; —N. We assume that the gradient
vector of f does not vanish on N. If M — N is diffeomorphic to the product mani-
fold MY x M, of M¢ with a certain Riemannian manifold M,, and if the metric
form of M is expressed by (1.1) on M —N, where g,,dx?dx? is a metric form of
M,, then we say that M has an almost everywhere warped product structure, or
simply, M is an almost everywhere warped product (briefly AEWP). Denoting
M9 by M, again, we also express M as M, x ;M,.

We give two examples of AEWP structures on a space form S*(k) of curvature
k+#0 as follows:

ExampLE 1. Let (X° X!,..., X") be a canonical coordinate system in R"*!
and M the hypersurface of R**! defined by

1.3) (sgn (k)) (XO)2 + (X1)2 + .- 4 (X")2 = 1/k,

where k#0 and X°>|k|~1/2 when k<0. Then M with the induced metric from
the metric form

(sgn (k) (dX°)? + (dX1)? + -+ (dX")?
on R**! is a space form S"(k). We consider the following parametric equations
X0 = [1—(k/4)RF][1—(k/49)R3]/IK|'/2S,S,,
Xi = xS;, X?=[1-(k/HR}]Ix?/S.S,,
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where we have put
(1.4) R} = x'x', R3 = x?x?, S; =1+ (k/4)R?, S, =1 + (k/4)R3

and summation convention has been also applied to repeated upper indices.
Then the metric form of M is given by

ds? = (1/8?)dxidx' + {[1—(k/4)R?]/S,}*(1/S%)dxrdxP .
The parts

ds? = (1/83)dx‘dx}, ds3= (1/S%)dxrdxp

are the metric forms of space forms S™(k) and S"~"(k) respectively, and hence M
has an AEWP structure S™(k) x S"~™(k), where

f=[0-(k/49RY/S, .

In particular, for k<0, the hyperbolic space M=S"(k) is an ordinary warped
product of two hyperbolic spaces S™(k) and S*~"(k).

ExAMPLE 2. Let M be the hypersurface of R**! defined by in Example 1.
We consider another parametric equations

X0 = [1—(k/DRT]/|k['/?S,, X'=xi[S; (i=1L..,m—1),
Xm = [1—(1/4)R31x™/S;S,, XP = x"x?/§,§,,
where we have put

S, =1+ (1/4R3

and the others are the same as in (1.4). Then the metric form of M is expressed
in the form

ds? = (1/SPdx*dx? + [(x™)2/S3] (1/S%)dxrdxP .
The second part
ds? = (1/52)dx?dx?

is the metric form of the spherical space S”~™(1), and M has an AEWP structure
Sm(k) x ;S"~m(1), where

f=x"/S;.

Return to a general AEWP M=M, x ;M,. We denote the Christoffel
symbols of M, M, and M, by I'5;, {1} and {7} respectively. In a separate
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coordinate system we have the relations
(1 5) F_’;l= {]!'i}! Fj!q:O: Fp'-lq= _ffhgrqa
F_I;i =0, qu = (l/f)fﬂsg, qu = {r’;}’

where we have put f;=7F;fand f*=gf,.
For every point xe M —N, we denote by M,(x) the copy of M, through x.
Then we obtain immediately from (1.5) the following

THEOREM 1. If M is an AEWP M x M,, then M, is a totally geodesic
submanifold of M and each copy M,(x), xe M—N, is a totally umbilical sub-
manifold of M.

Denote the components of the curvature tensors of M, M; and M, by
K,,:*, Ry;"* and R, /P respectively. Then we have the relations

Kii* = Ry, Kgi* = Kiplf = K" =0,
(1.6) K" = =f(fMFrpy K = — A1) (P )%,
Ksrqp = Rsrqp _ftfl(él;grq - 5€gsq) 5

F indicating the covariant differentiation with respect to {};}.
We shall denote the magnitude of a tensor by | |. For example, that of the
curvature tensor K,,;* is defined by

”Kvpi. * ”2 = Kvu).xKv“AK .
By means of the equations (1.6) we have
1Ky I12 = IR;* 11> + [4(n—m)/ f2]I| 7; grad f ||
+ (1/f4) ” [RsrqlJ - ugradfuz(ég—g-rq - 5'l"gsq)] "2 .

If the function f has a zero-level surface N, then we make a point of M, tend to
a point of N and obtain the following '

THEOREM 2. For an AEWP M =M, x ;M,, if the function f has non-empty
zero-level surface N and dim M,>2, then M, is a space of constant curvature
llgrad f (|3, that is,

(17) Rsrqp = “gfadfﬂz(éfgrq - 5£,gsq) .
If an AEWP M =M, x ;M, is of constant curvature k, that is,
(1.8 K, = k(6591 — 054v4) 5

then we compare (1.6) with (1.8) and obtain the following
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THEOREM 3. An AEWP M=M,x M, is of constant curvature k if and
only if the following conditions are satisfied:
(1) M, of dimension >1 is a space of constant curvature k, that is,

(1.9) Rkjih = k(019 — 0%91);

(2) Either M, of dimension >1 is a space of constant curvature kf?+
lgrad f||3, that is,

(1'10) Rsrqp = (kf2 + "gradf”2) (6ls’grq - 61:5541):

or M, is 1-dimensional Euclidean space;
(3) The function f satisfies the equation

(1.11) Vifi= —kfgj;.

A function f satisfying the equation (1.11) is called a special concircular
scalar field with characteristic constant k. For such a function f, we easily see
that kf2+ |gradf|? is a constant. Thus the following is immediate from Theo-
rems 2 and 3.

COROLLARY 1. Suppose that the function f has a non-empty zero-level
surface N on an AEWP M=M, x ;M,. Then M is a space of constant curva-
ture k if and only if the following conditions are satisfied:

(1) Provided dim M;>1, M, is of constant curvature k;

(2) The function f on M, is a special concircular scalar field with charac-
teristic constant k.

§2. Riemannian manifolds of dimension n admitting n special concircular
vector fields

On an n-dimensional Riemannian manifold M, a vector field V=(V*) is
called a special concircular vector field (briefly SCVF) if it satisfies the equation

(2.1) FyV = ¢X; PV~ = po%

for any vector X € T,(M), where ¢ is a scalar field on M. Locally an SCVF is a
gradient vector field of a scalr field p, that is, V=F p, which satisfies the equation

(2.2 P.lp = ¢gus-

If M is simply connected, then such a scalar field p exists globally for an SCVF
V. If an SCVF has zero points, that is, stationary points of the scalar field p,
then the points are isolated and the number of them is at most two. Geodesics
issuing from a zero point of an SCVF V are trajectories of V.
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SCVEFE’s V;, are simply said to be linearly independent in M if they are linear-
ly independent except a border subset of M. The scalar fields ¢ and p for every
SCVF V,;, are also marked off by suffix in parentheses.

For some SCVF’s V;, the following lemmas are known ([4]).

Lemma 1. If two SCVF’s V(yy and V,y have a zero point in common, then
they are linearly dependent and one is a constant multiple of the other.

LEMMA 2. If more than two SCVF’s V; are linearly independent in a
Riemannian manifold M, then the scalar fields ¢, are written in the form

(2.3) Px¢dw = — kg(X, Vip); w = —kpe + b

for any vector X € T(M), where k is a constant in common with all the SCVF’s
and b, are constants.

Consequently p;’s are special concircular scalar fields with the same con-
stant k, which is called the characteristic constant of V; too.

In the remaining of this section, we shall consider an n-dimensional Rieman-
nian manifold M admitting n linearly independent SCVF’s V;, and the indices
h, i, j, k,... will run on the range 1, 2,..., n. We prove the following

THEOREM 4. If an n-dimensional Riemannian manifold M admits n
linearly independent SCVF’s V,;, with characteristic constant k, then M is of
constant curvature k. In addition, if M is complete and simply connected, then
M is a space form S*(k).

Proor. Computing (VV(k) VV(j) - VV(J’) W — V":V(k)!V(j)])I/(i) and using (2.1)
and (2.3), we have

K(Viy Vi)Vay = kL9(Viiys Vi)V — 9V Vi) Vil -
Since V,;, are linearly independent, M is a space of constant curvature k.

Now we locate ourselves in a local coordinate system (x*) of a manifold M
of constant curvature k, where the metric tensor is expressed as

2.4 gji =(1/8%d;;, S =1+ (k/4R?, R?= xkxh.
The Christoffel symbol is there given by

(2.5) F,’I‘i = - (k/ZS) (xjéih + Xiajh - xhaji) .
From (2.2) and (2.3) we have the equation

(2.6) ViVip = (—kp + b)g i,
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which is reduced to

0,0,p + (k[2S)(x/0;p + xi0;p — 6 ;;x*Opp) = (1/S2)(—kp + b) ;.
The general solution of the equation above is given by
2.7 p = (1/S)[A(1 - (k/4)R?) + Byx" + (b/2)R?],
where A and B,’s are constants ([4]). We put
(2.8) Py = (1/S)[1=(k/4R?], pu = x"[S, py = R?[2S.

The gradient vector fields corresponding to these scalar fields have covariant
components as

Vioy = — (k/S?)xt, Vi = (1/S?) [So4; — (k[2)x"x],

29
( ) V(oo)i = (I/SZ)xi’

and we have, from (2.4), (2.5), (2.8) and (2.9), the equations
(2.10) ViV = (—kp@y + b@)gjis

where «=0, 1,..., n, 0. This equation shows that these n+1 vector fields V¥,
are also SCVF’s on M. In the case k#0, the constant b, in (2.10) is equal to
zero for Vo) and Vs, and V|, is parallel to Vp). In the case k=0, we have

(2.11) V(h)i = Opp» V(oo)i = x/,

the first n vector fields of which are parallel and the last is a concurrent vector
field. Any SCVF is represented by a linear combination of these n+1 vector
fields with constant coefficients.

We shall investigate the zero-level hypersurface of p,, and the zero points of
the SCVF’s V,,, corresponding to these functions p,,. In the case k>0, the zero--
level hypersurface of p(o, is the equatorial hypersphere and that of p, the longi-
tudial hypersphere defined by x*=0. The vector field V|, vanishes at the north
and south poles. Each vector field V{;, vanishes at the points belonging to an
intersection of the equatorial hypersphere with one of the longitudial hyper-
spheres except the one defined by x*=0. 1In the case k<0, p, vanishes nowhere
and p;, does on the hypersurface defined by x*=0. The vector field V|, vanishes
at the point x* =0 for all h and V{;, does nowhere. In the case k=0, p, vanishes
on the hyperplane defined by x*=0 and p,, does at the origin. The parallel
vector fields ¥, vanish nowhere and the concurrent vector field ¥, does at the
origin.
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§3. Riemannian manifolds admitting some special concircular vector fields

In this section, we consider an n-dimensional Riemannian manifold M
admitting m>2 linearly independent SCVF’s V(;. Then, for i=1, 2,..., m and
any vector X € T,(M), x € M, we have the equations (2.1), (2.3) and

3.1 9(X, Vi) = Xpg -
We define the distributions D, and D, by

32 { Dy = span {Vyy, Vizpr---s Vimy} »
D, = {X e T,(M)|g(X, V(i)) = 0}
except at the zero points of V;’s.
LEMMA 3. The distributions D, and D, are completely integrable.
Proor. It follows from (2.1) that
(3.3) Vur Vol = doVip — ¢V € D1

and hence D, is completely integrable. For every two vectors X, YeD,, we
obtain

by means of (3.1). Hence the distribution D, is also completely integrable.
Now we define a 1-form w on M by

[ a)(V(,-)) = 4’(;‘),

(3.5)
oX)=0 for XeD,.
LeMMA 4. dow = 0.

Proor. For every two vectors V;), V(;) € D,, we have
2do(Vijy Vi) = Vip(bw) — VP
— 0wV~ dpVw) =0
by use of (3.1), (3.3) and (3.5). For any vector X € D, we obtain
g(VV(,,X, V(i)) = I/(j)(g(Xa V(i))) =0,
9([X, Vipl Vi) = 9(o(nX — B, X, Vi) = 0
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by means of (2.1) and (3.5). Using these equations, we have
2da(X, Vi) = X(o(Vip)) — o([X, Vi)
= — kg(X, V) = 0.

For every two vectors X, Ye D,, we have dw(X, Y)=0 because of [X, Y]eD,.
Hence we have dwo=0 on M.

Let F be the set of all zero points of the SCVF’s V;,. Then it is finite and a
border subset of M as we have already seen in §2. We prove the following

THEOREM 5. Suppose that an n-dimensional Riemannian manifold M
admits m>2 linearly independent SCVF’s with characteristic constant k and let
F be the set of all zero points of the SCVF’s. Then M —F is locally an AEWP
My x M, such that M, is an m-dimensional space of constant curvature k and
the function f on M, satisfies the equation

(3.6) Py gradf = — kfX,
where X € T.(M,) and V is the covariant derivative on M.

ProorF. Lemma 4 shows that there exists a coordinate neighborhood U(x)
of xe M—F and a function ¥ on U such that w|y=dy. Then the definition
(3.5) implies that

3.7 Vo) = ¢up X)) =0  for any vector XeD,

on U. Since the distributions D, and D, are completely integrable, we can
choose U(x) such that it is diffeomorphic to U, x U,, where U, and U, are the
slices of D, and D, through x, and a separate coordinate system (x*, x?) in U(x)
such that (x*) and (xP) are local coordinate systems in U, and U, respectively.
Since D, and D, are mutually orthogonal, the metric tensor g has components

qp

Each Vj;, of the SCVF’s has components (V;*, 0) with respect to this separate
coordinate (x*, x?).
Putting k= p and u=j in (2.1), we obtain

ViV = 0,V +T5 V" + I,V =0,

from which it follows that I'?,=0 and hence 0,4;=0. This means that the
components g; are independent of x? and regarded as the metric tensors of U,.
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We shall denote the slice U, equipped with the metric tensors g;; by M,.
Putting k=p and p=r in (2.1), we obtain
th V(i)" = ¢(i)5’:,
which implies the equation
V(i)hahgrq = 2¢(i)grq‘

By means of (3.7) and the linear independence of Vy;, this equation is equivalent
to

ahgrq = z(ahllj)grq .

Therefore, putting f=exp (), we see that the components g,, are written in the
form

grq = f2grqa

where g,, are dependent on x? only and regarded as the metric tensors of U,.
We also denote by M, the slice U, equipped with the metric tensors g,

Since Y and hence f are functions on M, the metric form of M are written
in the form

ds* = ds} + [f(x")]*ds}

in U, where ds? and ds? are the metric forms of M, and M, respectively. There-
fore M —F is locally an AEWP M, x ;M,.
Putting k=h and u=r in (2.1), we have

VrV(i)h = arV(i)h =0.
The equation (2.1) for k=h and u=j yields
ViV = 0V + ThVi* = (—kp + b@)dh.

The above two equations show that the SCVF’s V;, are regarded as those of M.
Therefore the m-dimensional part M,; admits m linearly independent SCVF’s
and hence, by Theorem 4, M, is a space of constant curvature k.

The equation (3.7) is reduced to

9V grad f) = f .
Differentiating this equation covariantly along M,, we obtain
9(PxViy, grad f) + g(Vuy, Py gradf) = (X)) + fPxdg)

for any vector X € T(M,), x € M,, which implies
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(3.8 g(V(i)’ Py gradf) = — kfg(V(i), X)

by means of (2.1) and (2.3). Since V{;’s are linearly independent, the equation
(3.8) is reduced to (3.6). Thus the proof is completed.

We have already seen in § 1 that, if f satisfies the equation (3.6), the function
kf?+ |gradf||? is a constant. The following are immediate consequences of
Theorems 2, 3 and 5.

PROPOSITION 6. Suppose that an n-dimensional Riemannian manifold M
admits m>2 linearly independent SCVF’s with characteristic constant k and let
F be the set of all zero points of the SCVF’s. Then the manifold M —F is locally
an AEWP M x M,, and M is of constant curvature k if and only if M, is a
space of constant curvature kf?+ | grad f||2.

PROPOSITION 7. Suppose that an n-dimensional Riemannian manifold M
admits n—1 linearly independent SCVF’s. Then M is a space of constant
curvature.

PrOPOSITION 8. Suppose that an n-dimensional Riemannian manifold M
admits 2<m<n—1 linearly independent SCVF’s and let F be the set of all zero
points of the SCVF’s. If the function f appearing in the AEWP M—F=M,
X ;M, has non-empty zero-level surface, then M is a space of constant
curvature.

§4. Structures of Riemannian manifolds admitting some linearly independent
special concircular vector fields

Suppose that an n-dimensional Riemannian manifold M admits m > 2 linearly
independent SCVE’s V,;, with characteristic constant k. Then M —F is locally
an AEWP M, x M,, where F is the set of all zero points of the SCVF’s V;), and
the integral manifold M, of the distribution D, defined by (3.2) is an m-dimen-
sional space of constant curvature k by Theorem 5. As we have seen in the proof
of Theorem 5, the SCVF’s V{; and the associated scalar fields p, are regarded
as those of M.

We choose a local coordinate system (x*, xP) in M such that the metric
tensors for the local coordinate (x*) in M, are given by (2.4), and consider the
equation (2.6) on M. The general solution (2.7) of (2.6) is a linear combination
of the m+1 scalar fields p), pr, and py) on M, given by (2.8) with constant
coefficients. The part M,; admits the m+1 SCVF’s ¥,y and V;’s in the case
k#0 and V,’s and V(,, in the case k=0 which are given by (2.9). When M
admits m linearly independent SCVF’s, there occurs a problem such as which of
m+1 vectors given by (2.9) are the m linearly independent SCVF’s in M, itself,
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First, we consider the case k#0. Then the equation (2.6) represented by
the scalar fields p, are written as

4.1) Vup(u)l = aup(a)l —-Tr L;P(a)t == kp(a)gul

in M, where and in the sequel a indicates 0, 1,..., m and we have put p 1 =00
Since M—F is locally an AEWP, putting A=p, u=q into (4.1), we have the
equation

97 0i9p)P i = — 2kp w9 gp
or, substituting (2.4) into this equation,

4.2) Szp(a)i(aigqp) = 2kp(a)gqp >

where and in the sequel summation convention is also applied to repeated lower
indices.

If the m SCVF’s on M are the extensions of m linear combinations of V{,’s
on M, except Vo) with constant coefficients, then we may assume that the m
SCVEF’s are V) themselves. Substituting

Py = XIS, puy = (1/87)(S8y; — (k[2)x+x?)
into (4.2), we have the equation
4.3) S049,p — (K[2)x*(x%0,9,,) = (2k/S)x"g,, .
By contraction of (4.3) with x*, we have
4.4 x!0,g,, = — {2kR%[S[1 — (k/4)R?]}g,, .
Substituting again (4.4) into (4.3), we have the solution of (4.3)
9ap = {[1 — (k/HR?1[S}* Gy, = Pi0)yp>

where g,, is regarded as the metric tensor of M,. The set F is contained in the
zero-level surface N of p, for k>0 and is empty for k<0, as we have seen in
the end of §2. Thus the manifold M is locally an AEWP M, x po,M,. If k>0,
the zero-level surface N of p,, is the equatorial hypersphere of M. Therefore,
by Theorem 2, the (n—m)-dimensional manifold M, is of positive constant cur-
vature ||Vo,[|> and hence M is a space of constant curvature k by Propositions 7
and 8. Moreover, we see that M is locally isometric to a space form S*(k) given
by Example 1. If k<O, the function p,, vanish nowhere. Therefore M is
locally a warped product of an m-dimensional manifold M, of constant curvature
k with an (n—m)-dimensional Riemannian manifold M,. If M, is a space of
constant curvature kp()2+ || V(o,I%, then M is a space of constant curvature k by
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Proposition 6 and hence it is locally isometric to a space form S*(k) given by
Example 1.

If the m SCVF’s on M are the extensions of m linear combinations of Vo,
and m—1 V;,’s on M, with constant coefficients, then we may assume that the m
SCVF’s are Voy and Vs (h=1, 2,..., m—1). We have the equation (4.3) for
h=1,2,..., m—1. Substituting

Py = (1[S)[1 = (k/HR?],  poy = — (k[SH)x?
into (4.2) for =0, we also have
(4.6) x'0,g,, = (2/S)[1 — (k/4)R?]g,, .
Substituting again (4.6) into (4.3) for h=1,..., m—1, we have
S0494p = — kx"g,,

or
Ondqp + (2/8)g4,0,S = 0.

Hence the components g,, are written in the form

9op = (1/S2hg,,

where h,, are functions of x™, x™*1,... x". Substituting these expressions into
(4.6), we can easily see that h,, is written as (x™)?g,, with §,, depending on x™*1,
..., x" only. Thus we have

(4.7) 9ep = [(xm)Z/SZngp = p(zm)gqp’

where g, is regarded as a metric tensor of M,. In this case, the set F is contained
in the zero-level surface N of p,,, as we have seen in §2. Therefore the manifold
M is locally an AEWP M, x p,,,M,. By Theorem 2 the (n—m)-dimensional
manifold M, is of positive constant curvature ||V, | and hence the manifold M
is of constant curvature k by Propositions 7 and 8. Moreover, the manifold M
with the metric tensor given by (2.4) and (4.7) is locally isometric to a space form
S7(k) given by Example 2.
Thus we can state the following

THEOREM 9. Suppose that an n-dimensional Riemannian manifold M
admits m>2 linearly independent SCVF’s V;, with associated scalar fields
P and characteristic constant k#0. In the case where each p, is one of the
Sfunctions

[1— (k/4)R?/S for k>0 and xS,
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the manifold M is locally isometric to a space form S*(k). In the case where one
of pu)’s is the function

[1—-(k/HR?]/S  for k<O,

the manifold M is locally a warped product M, x p;,M, of m-dimensional mani-
fold M, of constant curvature k with an (n—m)-dimensional Riemannian mani-
fold M ,.

COROLLARY 2. Suppose that M is complete and simply connected in ad-
dition to the assumption of Theorem 9. In the case of k>0, the manifold M is
isometric to a sphere SMk). In the case of k<0, the manifold M is either iso-
metric to a hyperbolic space S"(k) or a warped product M{x M, with f=
[1—(k/4)R%]/S on M,.

Next, we consider the case k=0. Then the equations of p, are given by

—_ 1 —_
Vubpyr = 9uPpy2 — TPy = b(py9us

which are reduced to

4.8) P09, =0,

where f indicates 1, 2,..., m, co.

If the m SCVF’s on M are the extensions of m linear combinations of V{4,’s
on M, except V., with constant coefficients, then we may assume that the m
SCVF’s are V|, themselves. The part M, is locally Euclidean. Since

4.9) Py = Oni

and hence the equations (4.8) are reduced to d,9,,=0, we see that g,, are inde-
pendent of x#. Since the parallel vector fields (4.9) vanish nowhere, the set F is
empty. Thus we obtain the well-known result that a manifold admitting m
parallel vector fields V¥, is locally the product space M, x M, of an m-dimen-
sional Euclidean space M, and an (n—m)-dimensional Riemannian manifold M,.

If the m SCVF’s on M are the extensions of m linear combinations of V{;,’s
and V|, with constant coefficients, then we may assume that the SCVF’s are
m—1 Vyy’s,say h=1, 2,..., m—1, and V,,,. Then we have the equations

ahgqp = 0
for h=1, 2,...,m—1. For the vector V,, we have
X0 ,p = 294p -

It follows from the above two equations that the components g,, are expressed
in the form
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9ap = (™?Fgp = Plm)Tap>

where g, are independent of x* and regarded as a metric tensor of an (n—m)-
dimensional manifold M,. As we have seen in § 2, the set F is contained in the
zero-level surface N of p,,. Thus the manifold M is locally an AEWP M, x
pPemM,. From Theorem 2 we see that M, is a space of constant curvature 1,
and from Propositions 7 and 8 that the manifold M is locally isometric to a
Euclidean space.

Thus we state the following

THEOREM 10. Suppose that an n-dimensional Riemannian manifold M
admits m>2 linearly independent SCVF’s V,;y with characteristic constant
k=0. If one of the SCVF’s is concurrent and hence the others are parallel,
then the manifold M is locally isometric to an Euclidean space. If the SCVF’s
are parallel, then M is locally the product space M, x M, of an m-dimensional
Euclidean space M, and an (n—m)-dimensional Riemannian manifold M ,.

In the case where M is a complete and simply connected manifold, we obtain
the well-known result.

COROLLARY 3. Suppose that M is complete and simply connected in
addition to the assumption of Theorem 10. If M admits a concurrent vector
field V, then M is Euclidean. If M admits m parallel vector fields V;, then
M is the product space M, x M, of an m-dimensional Euclidean space M, and
an (n—m)-dimensional Riemannian manifold M.
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