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1. Introduction

In the last twenty years there has been considerable interest in the problem

of classifying the nonoscillatory solutions of both ordinary and functional differ-

ential equations in terms of their asymptotic behavior. Much of the work in

this direction has been the derivation of both necessary and sufficient conditions

for the existence of certain types of nonoscillatory solutions. As examples of

such results we cite the recent papers of Kusano and Onose [7] and Odaric and

Shevelo [8], and the references contained therein.

Here we are concerned with the classification of the solutions of the n-th

order functional differential equation

(r(ί)x ( "" v ) (0) ( v )

(E)
+ (Π?=i

using a classification scheme similar to the one employed in [7] and [8]. How-

ever our interest is in obtaining conditions on the functions r, F, and gj which

ensure that all nonoscillatory solutions of (E) belong to certain specified classes

rather than the existence of such a solution in a given class as was done in [7]

and [8]. While results of the same type as ours have been obtained by other

authors, e.g. [3; Th. 5], our results differ in a number of ways from those previ-

ously obtained. For example, the form of our integral conditions (see (7), (8),

(12), and (22) below) differ from those previously required by other authors;

moreover, when r ( ί ) # l , the fact that v can be any integer satisfying l < v < n —1

allows for numerous combinations of middle terms in (E) not considered before.

Notice that equation (E) may be viewed as a generalization of the well known

Emden-Fowler equation. For a discussion of the physical and historical signifi-

cance of the latter equation the reader is referred to the excellent survey paper of

Wong [11].

1) Research supported by the Mississippi State University Biological and Physical Sciences
Research Institute.

2) Research supported by the Ministry of Coordination of Greece.



2 John R. GRAEF, Myron K. GRAMMATIKOPOULOS and Paul W. SPIKES

For simplicity our results are obtained for a special case of (E) in the next

section, with their extensions to (E) being discussed in the last section.

2. Classification of solutions

Consider the n-th order differential equation

(1) (r(ί)x<n-v )(0) ( v ) + P(t) Hg(t))\* sgn x(g(t)) = 0

where α>0, l < v < n — 1, g, p, r: [ί0, co)-+R are continuous and satisfy

(2) r(t) > 0 and Γ [l/r(s)]ds = oo,

(3) g(t)-> co as ί->oo

and

(4) p(t) > 0 and p(t) ψ 0 on [f>, oo) for any b>t0.

At times we will also need that there exists a nondecreasing continuous function

h: [fo> oo)->(0, oo) which satisfies

(5) h{t) < inf^, (min {s, ^(5)}), t > tθ9

and

(6) h(t)-+ 00 as ί-*oo.

Since we are only concerned with the asymptotic behavior of the solutions of

(1), we will assume that every solution x(t) considered here exists on [ίx, 00) for

some tx>t0, and is nontrivial in the sense that sup {|x(i)|: ί > T } > 0 for every

T>tx. Such a solution will be called oscillatory if its set of zeros is unbounded,

and will be called nonoscillatory otherwise. The following two lemmas, both of

which can be found in [1], will be needed in the proofs of our results. Lemma 1

is an adaptation of Lemma 1 in [2] which in turn is an improved version of the

well known lemma of Kiguradze [5, 6] Lemma 2 is an adaptation of Lemma 2

of Staikos and Sficas [9].

LEMMA 1. Let u be a positive (n — v)-times continuously differentiable func-

tion on the interval [α, 00) and let μ be a positive continuous function on [α, 00)

such that

and the function w = μw(n~v) is v-times continuously differentiable on [a, 00).

Moreover, let
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( * > , if 0<k<n-v-l,
ωk =

If ωn(t) = w^v\t) is of constant sign and not identically zero for all large t, then

there exist tu>a and an integer /, 0 < / < n , with n + l even for ωn nonnegative or

n-f / odd for ωn nonpositive, and such that for every t>tu

I > 0 implies ωk(t) > 0 (k = 0, 1,..., / - 1)

and

l<n-l implies (-\) ι + kω k(i) > 0 (fc = Z, Z + 1,..., n - 1).

LEMMA 2. // the functions u, μ, w and ωk are as in Lemma 1 and for some

fc = 0, 1,..., n - 2

In order to simplify statements and proofs of results let

9 t) =

t) =

and

t) =

We are now ready to prove the main results in this paper. In the next section

we indicate how these results can be extended to the more general equation (E)

by using essentially the same proofs as those given here. The theorem below

divides the solutions of (1) into four classes; Corollary 2 further refines this

classification.

THEOREM 1. Suppose that, in addition to (2)-(4), for sufficiently large

T we have
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(7) J S(Γ, s)p(s)ds = oo

and

(8)

Ifn is odd, then every solution x(i) o/(l) satisfies exactly one of the following:
I. x(t) is oscillatory;

II. ωfc(ί)-»O monotonically as t-^ oo for k = 0, 1,..., n — 1;
III. ω^-i^^O and either ωk(t)-+co or ωfc(ί)-> — oo as f-»oo /or /c=0,

1,..., n-2;
or

IV. There exists a constant c>0 and an integer N satisfying l<N<n — 2,
ωfc(ί)-»O as t-*oo for fc = J V + l , ΛΓ + 2,..., n — 1, ana7 ezί/ier ωN(t)-+c

and ωk(t)^oo or ωN(t)^> — c and ωk(t)-^ — oo as ί->oo for /c = 0, 1,...,

iV-1.

//n is even, then x(t) satisfies exactly one of I, III, or IV.

PROOF. Let x(t) be a nonoscillatory solution of equation (1). We may
assume that x(t)>0 on [tx, oo) since — x(t) is also a solution of (1). By (3) there
exists t^t^maxitx, 1} so that g(t)>t'x for ί>ί x . This, together with (4) and
equation (1), yields

(9) ωn(t) = z<v)(ί) < 0

for t>t1. Furthermore, (4) and (1) imply that z(v>(ί)#0 for all large ί, so we may
assume that tt is large enough for Lemma 1 to imply that each of the functions
ωk, fc = 0, 1,..., n — 1, is of constant sign on [tl9 oo). Also since x(t)>0, it is easy
to see that con_1(i)^z(v-1)(0>0 on [ί1? oo).

Next observe that x is monotonic since ωx has fixed sign. First suppose that
x(ί)->2c1 as ί-»oo, where cγ is a positive constant. Then there exists T1>tί such
that c1<x(ί)<3c1 for t>Tγ. In view of condition (9), the integer I assigned to
the solution x by Lemma 1 is such that n + l is an odd integer. If Z>2, then by
Lemma 1 we have ωt and ω2 both positive, and two integrations would yield a
contradiction to the boundedness of x. Therefore, Z = 0 if n is odd and 1 = 1 if
n is even. It is then a consequence of Lemma 1 that

(10) n odd implies (-ϊ)kωk(i) > 0 (k = 0, 1,..., n - 1)

and

(11) n even implies (-l)k+1ωk(t) > 0 (/c = 1,..., n - 1).

Multiplying equation (1) by S(Tl9 t) and integrating yield
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, s)p(s)x«(g(s))ds =-\' S(TU s)z

But

S(Tl9 s)zW(s)ds = S(TU ί > ( v " υ ( 0 - Sr(Tl9 ί> ( v

L

for some constant c2. We then conclude from (10) and (11) that

S(Tl9 s)p(s)x«(g(s))ds < oo

which (since 0<Ci <x(t)) contradicts (7). Therefore, we have that every positive
nonoscillatory solution x(t) of equation (1) satisfies either x(ί)->0 as ί->oo or
x(ί)->oo as i-»oo.

If x(t)^>0 as t-+co, then Lemma 2 implies that ωk(t)-+0 monotonically for
/c = 0, 1, 2,..., n —1 and II holds in this case. Also notice that x(t)->0 as t-^oo
cannot occur when n is even. To see this we need only recall that for n even I is
odd, and therefore Lemma 1 implies that x'(t)>0 so that x(t)-/+0 as ί-*oo. Thus
if :φ)->0 as ί-»oo, then n is odd and II holds.

Now assume that x(ί)-»oo as ί->oo. Since x is monotonic, it follows that x
is nondecreasing on [tl9 oo). Also, recall that it was established earlier in the
proof that z ( v - 1 ) is positive and nonincreasing on [tί9 oo). Hence z^'^ffi^L
as t-> oo for some nonnegative constant L. We show next that L = 0. To do this,
assume the contrary, that L>0. Then from Lemma 2 we have ωk(t)-+co as
ί->oo for fc = 0, 1,..., n-2 . Thus for v>2 it follows that x(t), x'(t\..., x^-v'^(t)9

z(ί),. 5 z
(v~2)(ί) all increase without bound as ί->oo, and, in view of (2), the same

is true for I(tu t)9 Γ(tu i),..., Hn-v-ί\tu t). Observing that χ(π-v)(ί)//(π~v)(ίi, 0
= r(ί)x(π"v)(0/ίv"1==z(0/ίv~1 and applying lΉospitaΓs rule repeatedly lead to

i, 0] = l i π W ίx\t)IΓ(tu ί)] = lim^

^ [z'(ί)/ίv"2] = - =

If v = l, then z(0 = z(v~1)(ί)^L as ί-»oo, and we have as above that [x(t)II(tl9 ί)]
->L as t-*co. Therefore, in either case, it follows from (3) that there are con-
stants Lt >0 and T> t1 so that for each t> T, x{g{t))>L1I{tu g(t)). Integrating
equation (1) over [tl9 ί] we obtain

Z(v-D( ί l) = Z(v-i)(ί) + Cf p(s)x*(g(s))ds
J

Jih, g(s)))*ds
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which contradicts (8). Thus we conclude that z<v~1>(t) = coH-1(t)-+0 as ί-*αo.

Next we examine the behavior of z^t) as t-*co where zi(t) = z(-v~2)(t) if v> 1,

and z 1 (0=x ( π ~ v ~ 1 ) ( ί ) = * ( ' I - 2 ) (0 if v = 1. Notice that zt has fixed sign by Lemma

1, and is nondecreasing since z(v~1)(t)>0. Now if z1(t)<0 for t>tu then zx(t)

-•0 as ί>oo, for otherwise there would exist a positive constant L2 such that

zx(i)< — L 2 for t>tu which is impossible since x(t)>0 on [tί9 oo). Continuing

in this way it is not difficult to see that x(t) satisfies IV in case z 1 (ί)<0. Finally,

if z^t) > 0 on [tί9 oo), then x satisfies one of III or IV and the proof of the theorem

is complete.

COROLLARY 2. In addition to the hypotheses of Theorem 1, let conditions

(5), (6) and

(12) J" sQ*(T, h{s))p(s)ds = OO

hold. If v>2 and x is a nonoscillatory solution of equation (1) such that

* ( 0 [ K 0 χ ( n ~ v ) ( 0 ] ( v ~ 2 ) ι 5 eventually positive, then x satisfies part HI of the con-

clusion of Theorem 1.

PROOF. Let x be a nonoscillatory solution of equation (1), say x(ί)>0 on

[ίx, oo). From the proof of Theorem 1 there exists tt >tx so that on [tl9 oo) we

have g(t)>max{tx, 1}, each ωk has fixed sign, and z ( v ~ 1 ) ( 0 > 0 . Moreover,

ω » - i ( 0 s z ( v " 1 ) ( 0 - > 0 as ί->oo. Hence if z( v " 2 )(0>0, then ωn.2{t) = z^-2\t) is

bounded below on \tl9 oo). Thus Lemma 2, together with the fact that x(t)>0

on [tί9 oo), implies that ωk(t)-+oo monotonically for k = 0, 1,..., n — 3. Therefore

if the conclusion of the corollary does not hold, then z ( v~2 )(ί) tends monotonically

to a positive constant as ί-»oo. Assume that this is the case. Then there exists

Tx > tί such that

Kβ < z^~2\f) < 3K/2

for t > Tx and some K > 0. Successive integrations yield

KiQ(T9 t) < x(t) < K2Q(T9 t)

for t> Tt and some positive constants Kx and K2. Hence in view of (5) and (6)

there exists T > 7\ such that

(13) K,Q{T, h(t)) < x(h(t)) < K2Q(T, h(t))

for t>T.

Next observe that z ( v~ 2 ) is a bounded nonoscillatory solution of the second

order linear delay equation
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(14) y\t) + P(t)y(h(t)) = 0

where P(t) = p(t)xa(g(t))/z^-2\h(t)). Then we have from [10] that

(15) ^ sP(s)ds < oo

since (14) has a bounded nonoscillatory solution. But condition (13) implies

that

(16) P(t) = p(t)x<(g(t))lz<*-*Kh(t)) > MlP(t)(Q(T9 h(t)))a

where Mt is a positive constant. Then (12) and (16) imply that \ sP(s)ds = oo

contradicting (15) and the proof is complete.

REMARK. The classification of a solution x(t) depending on the sign of the

product x(ί)x (""1)(ί) has also been done by Kartsatos [4]. If r(t)=l in Corollary

2, then x(0[r(0x ( π~ vK'J] ( v~ 2 ) = x(0* ( w~2 )(0 so that the results of Kartsatos and

Corollary 2 are quite different.

3. Generalizations and examples

By simple modifications of their proofs the results of the previous section are

easily extended to the equation

(E) (r(0*<"-v>(0)(v) + Π?=i \x(gj(t))\PjF(t, x2<g(φ) UHΫ sgn x(gjk(t)) = 0

where each g^\ [ί0, oo)-># is continuous, each Pj is a nonnegative constant with

Σ7=iP/ = l> 4 is a positive integer such that 2q- l < m , 0>>=0>i,..., ym\ x2<g(t)>

=(x2(g1(t)),..., x2(gm(t))), F: [t0, oo)x[0, oo)™->[0, oo), and r, v and n are as

before. Moreover we shall ask that the function G defined by

(17) G( 7 j

be continuous on the set U = [tθ9 oo) x [0, oo)m, and that

(18) G(ί, <iι(0» φ 0

for all large t where <tt(0> = («i(0> > wm(0) is any vector such that each u/t)>0

on [ί0, oo). Furthermore we assume that for each j

(19) 9j(i)-*<n as ί->oo,

and that there exist continuous functions hji [ί0, oo)->(0, oo) satisfying

(20) hj(t) < inf^ (min {5, gfi)})
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and

(11) hj(t)^oo as f->oo.

According to the definitions in [1-3], we will say that equation (E) is:

(i) ^-distorted superlinear if for any fixed t>t0 the function F(t, < j » is

nondecreasing with respect to <j;> on (0, oo)m;

(ii) ^-distorted sublinear if for any fixed t the function F(t, < j » is non-

increasing with respect to <y> on (0, oo)m.

If we define h(t) = min χ<^m {hj(t)}, then we obtain the following two results

for equation (E).

THEOREM 3. Let condition (2) and (17)-(19) hold and equation (E) be either

g-distorted superlinear or sublinear. If in addition for every constant c>0 and

all large T

\ S(T, s)F(s, c,..., c)ds = oo

and

Π7=i I"<T9 gj(s))F(s, cP(T, <h(s)),..., cl\Z gm{s)))ds = αo

hold, then the solutions of (E) satisfy the conclusion of Theorem 1.

COROLLARY 4. In addition to the hypotheses of Theorem 3 and conditions

(20) and (21), assume that for every positive constant c

(22) J sQ(Γ, h(s))F(s, cQ2(T, /<s)),..., cQ2(T,h(s)))ds = oo

holds. If v > 2 and x is a nonoscillatory solution of (E) such that

x(0[K0* ( / l ~ v ) (0] ( v ~ 2 ) is eventually positive, then x satisfies part III of the

conclusion of Theorem 1.

The proofs of Theorem 3 and Corollary 4 parallel those of Theorem 1 and

Corollary 2 respectively and will not be given.

Each of the examples

(23) xW + (I5ll6t*)x5(tvs) = 0, ί > 1

and

(24) x'" + (3/8ί3) (x(ί3))!/3 = 0, t > 1

satisfies the hypotheses of Theorem 3 with r(t) = l, and v = m = q = l. This is

easy to verify by taking px = \, h(t) = hί(t) = gί(t) = t1ί5 and F(t9 y) = 15/lβt4y-2 in

(23), and by taking p 1 = =l, gx(t) = t3, h(t) = hx(t) = t, and F(t, jO = 3/8ίV / 3 in
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(24). Observe that x^t) = t5/2 and x2(t) = ί3/2 are solutions of (23) and (24) respec-

tively and that both satisfy part III of the conclusion of Theorem 1. This is in

agreement with the results in [3] and [7] for the first example. None of the

results in [7] apply to the second example since it is not a retarded equation.

Another difference in our results and those in [3] and [7] is that the type of

solution described in part IV of the conclusion of Theorem 1 when c = 0 is not

included in the classification given in these papers. That such solutions may

exist is demonstrated by the example

(tWx'Xt))'" + (135/256ί19/4)x(0 = 0

which possesses the solution x(ί) = ί3/2 of type IV with c = 0. Both Theorem 3

and Corollary 4 apply to this example, but none of the results in either [3] or [7]

apply since r(t) = t1/4 . Finally, notice that it follows from Corollary 4 that there

is no solution x(t) of this example of type IV such that x(ί)(ί1 / 4x"(0)' * s eventually

positive.
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