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Introduction

In the previous paper [3], we proved that the "regular" representation of

the infinite dimensional rotation group G on the "infinite dimensional sphere"

is decomposed into the "class one" representations with respect to the subgroup

K of elements which fix a unit vector.

In this paper we shall prove an analogue of the Peter-Weyl theorem for the

group O(E) (for the definition, see § 1) which contains G.

As is well-known the group O(E) as well as G admits no Haar measure.

To formulate an analogue of the Peter-Weyl theorem we imbed O(E) into a

measure space Ω on which O(E) acts on the left and right as measure-preserving

transformations. Thus we obtain the left and right "regular" representations of

O(E) on the Hubert space of all square integrable functions on Ω, the decom-

position of which gives us an analogue of the Peter-Weyl theorem.

Now let M be a compact riemannian manifold and DiffM the group of all

diffeomorphisms. In [5] A. M. Vershik, I. M. GeΓfand and M. I. Graev

constructed a certain class of irreducible unitary representations of DiffM. For

each irreducible representation p of the symmetric group 6M (n=l ,2 , . . . ) they

assigned an irreducible unitary representation Unp. Putting E=CCO(M) one can

prove that Unp is extended to a representation πrttP of O(E). The regular re-

presentation of O(E) on the infinite dimensional sphere decomposes into the

space of symmetric functions on Mx-xM (n-times) which gives us the Fock

space for Bose particles on M. Here appear only those representations πnl which

correspond to the trivial representation 1 on 6 t t. One of the motivation of our

study of the present article was to look for a scheme such that, by substituting a

more general measure space for the infinite dimensional sphere, we may have

representations πnp as components of the irreducible decomposition. In §4

and §5 we shall prove that the Fock space for Fermi particles as well as Bose

particles can be obtained as a subrepresentation of the left and regular represen-

tation of O(E) on the Hubert space of all square integrable functions on Ω.

Finally we would like to comment on the difference of the definition of the

class one representation between the previous paper and the present paper. The

pupose of the previous paper was to characterize those representations which
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appear in the irreducible decomposition of the regular representation of G on the

infinite dimensional sphere. Our method was to generalize differential equations

which are satisfied by the spherical functions and we considered the Casimir

operator, so that we assumed the sufficient differentiability of X-fixed vectors.

In this paper we shall give another characterization of these representations

(McKean's conjecture) as an application of Theorems 1 and 2, specifying the

kind of representations permitted, (see [4], p. 203).

The authors would like to express their hearty thanks to Professor T. Hida

and Professor M. Hitsuda for valuable discussions.

§ 1. Preliminaries

Let M be a compact riemannian manifold. We denote by Diff M the group

of all diffeomorphisms. The group Diff M is assumed to be furnished with the

natural C°°-topology. Let 6M be the group of all permutations of {1, 2,..., n},

and p be an irreducible representation of 6 Π on a finite dimensional vector space

Vp. Then one can choose an inner product on Vp such that for any σ in S n

p(σ) is a unitary operator on Vp. We denote by S,, the set of all equivalence

classes of irreducible unitary representations of SΛ . The group S n acts on

Mx-xM (n-times) on the right by (pl9...9 pπ) σ = ( p σ ( 1 ) , . . . , pσ(n)), where

(Pi* > Pn)e M x x M, σ e S n . We denote by L2(M x x M) the Hubert space

of all square integrable functions o n M x x M . For any irreducible represen-

tation (p, Vp) of S π we consider the Hubert space L2(M x x M, Vp) of Vp-

valued functions / o n M x x M such that

ll/ll2 = \ \\KPu-,Pn)\\2vpdpv~dpn < +oo.

We denote by 3^np the subspace of functions / in L2(Mx x M , Vp) such that

/(Ar(!),.••> Pa{n)) = P^TViPW", Pn)

for any σ in SΛ . For any g in Diff M and / in 3^ΛtP we define

Then UHtP is a unitary representation of Diff M on «^ΠjP. In case n = 0 we put

3tifn tP=R and Unp(g) = I for any g in Diff M, where / denotes the identity operator.

Let C°°(M) be the space of all C°°-functions on M. Then we have a Gel'fand

triple

L2(M) c C™(M)*9
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where C^iM)* is the dual space of C™(M). We write E, H and E* instead of

C^{M)9 L2(M) and C»(M)*, respectively. By the Bochner-Minlos theorem,

there exists a probability measure μ on E* such that for any ξ in E we have

e-\\ξ\\2/2 = f ei<x>ξ>dμ(x).

Let JV be the set of all positive integers. We fix, once for all, an orthonormal

basis {ξj jeN} of H such that ξjβE for any jeN. We shall consider an

Hermite polynomial

For any n in JV U {0} we put

Then it is known that WJJL0 95Π is an orthonormal basis of L2(E*, μ). We denote

by J^n the closed subspace spanned by 93M. Then we get an orthogonal decom-

position

L2(E*, μ) = Σ£=o θ tfH. (Wiener-Itό decomposition).

We denote by Pn the projection operator of L2(E*, μ) on 3^n. For any n in JV

we denote simply by 1 the trivial representation of ©Λ. In particular, if n is equal

to 1, then we write simply gξ instead of Uul(g)ξ for each g in DiffM and ξ in E.

We use the same notation for the dual action of g on E*; (gx, ξ> = <χ, g~1ξ}.

For any g in DiffM a n d / i n L2(E*, μ) we define

(l/ fo)/)00 =/(flf"1x) for a.e. x in E*.

Then ί/̂  is a unitary representation of DiffM on L 2(E*, μ). Since 34?n is

t/*(DiffM)-invariant, we have the subrepresentation Un of DiffM on 3^n. The

following propositions were proved by A. M. Vershik, I. M. GeΓfand and M. I.

Graev, (see [5]).

PROPOSITION 1. 1) If p is irreducible, then (UntP9 JfntP) is irreducible.

2) Two representations (UHtP, Jί?ntP) and (Un,tP>9 JFn>tP) are equivalent if

and only if n = nf and p is equivalent to p''.

PROPOSITION 2. For each non-negative integer n, the representation (Un,

Jfn) is an irreducible unitary representation of DiffM, and is equivalent to the

representation (Unl, ^fn>i).

We denote by O(E) the group of all linear homeomorphisms of E which are

isometries of H. For any g in O(E) and / i n L2(E*, μ) we define
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Then π* is a unitary representation of O(E). It is known [4] that Jί?n is π*(O(E))-

invariant, so that we have the subrepresentation (πΛ, jfn). According to the paper

[1] we define a transformation £Γ by

W)(£) = ί e*<*'*>f{x)dμ(x)9 feL\E\μ\ξeE.
JE*

And we define a transformation &~* by

feL2(E\μ),ξeE.

Then ^ is injective. In case &~*f=φ, we write /=</>*. We denote by L2(M x

••• x M ) A the Hubert space of all square integrable symmetric functions on M x

••• x M (n-times). By the canonical isomorphism we have

L2(M x x M) 2 L2(M) ®" ®L\M),

where L2(M)® -~®L2(M) denotes the completion of the tensor product L2(M)®

•• ®L 2(M). Using this isomorphism, for any g in O(E) we can define the unitary

operator πn(g) on L2(Mx ••• x M) which corresponds to the mapping: ηt(S)-~®ηn

• - K O T I ) ® - - - ® ^ , , ) , where η1®- (g)ηneL2(M)®'-®L2(M). Clearly πn is a

unitary representation of O(E) and L2(M x x My is πw(0(E))-invariant.

Since L 2 ( M X " x M ) A = ^ f n l , we have the subrepresentation (nnl, J>ίfnl) of

O(E). For any/in «#*„ there exists a unique F in Jί?n Λ such that

\ e ^ ^ > / ( # ( x ) = β-llίH2/2/w f F(p pJξ(Pιy.ξ(PiϊdPi ' dpΛ,
JE* JMx — xM

(see [1]). We put AJ=F. Then for any g in O(E) we have

A, πn(0) = ^ f l t o ) - i 4 B .

REMARK 1. The operator An gives the equivalence (πn, <#?n) = (πntl, JFn,i)

and restricting these representations πn and π Π t l to Diίf M we get the equivalence

in Proposition 2.

REMARK 2. Proposition 2 shows that L2(E*, μ) gives the Fock space for Bose

particles. In §5 we shall show that the Fock space for Fermi particles as well

as (the Fock space) for Bose particles can be obtained as a subrepresentation of

L2(Ω9 v).

§2. Peter-Weyl theorem for O(E)

We shall consider a GeΓfand triple



On a certain class of irreducible unitary representations II 389

C»(M x M) c L2(M xM)c C™(M x M)*.

We can identify C^iM x M), L\M x M) and C°°(M x M)* with E®#, H ® H
and (E(§)E)* respectively, where E(χ)E and H®H denote the completions of
E®E and H®H respectively. Now, we get a probability measure v on
such that for any ζ in E®E

where Ω=(E®E)*. Since {^®ίy; i,jeN} is an orthonormal basis contained
in E®E, the collection { Π u ί π y U " " ) - 1 / * ^
/, j e ΛΓ} forms an orthonormal basis in L2(Ω, v).

For any g in O(E) let us consider two bilinear mappings of E x E into

(ξ, 17) I > (flfξ) ® f/, ( { , 1;) I > ί

Then there exist two linear mappings of E&E into itself such that

LJίξQη) = (gξ) ® η, Rg(ξ®η) = η® (gξ).

We denote by gfx and xg the dual actions of O(E) on Ω defined by

(gx, C> = <x, L,-,C>, <xflf, C> = < ,̂ R9O,

where xeΩ, ζeE®E, geO(E). It is clear that the measure v is O(E)-
biinvariant. For any g in O(E) we define

(πL(g)f)(x) =/to"1x), (πR(g)Ω(x) =

Then πL and πΛ are unitary representations of O(E). For any (gί9 g2) in O(E)
x O(E) we put

(ω*(0lf g2)f)(x) =/(^Γ 1 ^2) .

Then ω# is a unitary representation of O(E) x O(E). Fix any n in 2V U {0} and
let §„ be the closed subspace spanned by

jl 2"»)-WHnJί(x9 ξ^ξj}/^2); Σtj^j = n, iJeN}.

Then it is clear that ξ>n is ω^ίO^) x 0(2£))-invariant. Thus we obtain a unitary
representation ωn of O(E) x O(E) on §Π. Let p be an irreducible unitary re-
presentation of ®Π on Kp. By the canonical isomorphisms we have

L\M x •• x M, Fp) s L2(M x x M ) 0 F ^ L2(M)® - p

Using these isomorphisms, we can define the unitary operator ftntP(g) on
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L2(Mx-xMy Vp) which corresponds to the mapping: ηί®'-®ηn®vt-+(gηί)

~®(gηn)®v. For any σ in S π and F in L2(M x ••• x M, Kp) we define

λ(σ)F(pu..., pn) = F((p l 5..., pn)>σ) = F(p σ ( 1 >,...,

We put

^ = {αeL 2(M)®.. ®L 2 (M)®F p ; A(σ)α

Then jfΠfP is isomorphic to «̂ f̂ >p. As is easily seen J^np is πΠfP(O(E))-invariant,

so that we have the subrepresentation (πn p, 3tfn p). We remark that πn p | D ί f f Λ f =

THEOREM 1 (an analogue of the Peter-Weyl theorem for O(E)). The unitary

representation ω* ofO(E)xO(E) is decomposed as follows;

L2(Ω, V) = Σ n % θ ΣP^n,P ® ^ ί . p ,

where Σp ί 5 ί̂ fĉ w ^ ^ ^ «// P f'w ®Λ, flwd con(gi, g?) corresponds to πntP(g\)®

<P(g2)for each (gl9 g2) in O(E) x O(E).

PROOF. We denote by L2((M x M) x x (M x M)Y the Hubert space of all

square integrable symmetric functions on (M x M) x ••• x (M x M) (n-times). We

put § > { j ? e L 2 ( M x x M ) ® L 2 ( M x x M ) ; (λ(σ)®λ(σ))β = β, σ e 6 w } .

Then we have the canonical isomorphism β,,:L 2 ((MxM)x x(MxM)) A ->

§ ; . We put BJ= F, where fe L2((M x M) x x (M x M)T and F e $£. Then

it is easy to see that for any (gί9 g2) in O(E) x O(E) and / in L2((M x M) x ••• x

(M x M)) we have

pi, ^fO,..., (pn, qn))

We put (Mχ. xM)' = {(p1,...,pn)eMx . χ M ; p £ #p y (i#i)} Let Fn be a

fundamental domain, so that the mapping:

Fn x <5ns(u, σ) I > u-σe(Mx x M ) '

is bijective. Let L2(SΠ) be the space of all functions on Srt. We introduce an

inner product defined by the normalized Haar measure on S n . Then by the

Peter-Weyl theorem for ©„, we have

L2(Sn) = Σ P Vp ® V*.

We remark that the unitary operator defined by the right translation of σ in SΠ

corresponds to 7®p(σ)*. Since for any σ in 6Π λ(σ) is a unitary operator, we get
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L\Mx x M ) s L\(Mx ••• xM)') s L2(FBx©„)

3 L2(Fn) ® L2(SB) £ Σ P L
2(Fn) ® Fp® V*.

It follows that §„ is identified with

(/®J®p?(σ)®/®J®pf(σ))α = α,

In the above we used the following. Schur's lemma implies that

[0 (
dim {we VPi®VP2; (Pi(σ)®p2(σ))w = w} =

U
Finally we notice that ω * ^ , # 2 ) corresponds to πnίP{gx)®π*tp(g2).

We put UL = πL\DiffM, UR = πR\DmM and Γ* = ω* | D i f f M x D i f f M Then
we have the following

COROLLARY. T* ca UL\χ_\UR, where UL\χ\UR denotes the outer tensor product
of UL and UR.

§ 3. Polynomial representations of discrete class

In the following (§3-§5) we keep the notation; M, C^M), L2(Λf),
E, H, E*9 {ξ/JeN}, 0{E\ Ω, L2(E*, μ), L2(Ω, v), π», ω*, πL, πΛ, πn, ̂  πΠ>p,

We shall identify every element g of O(E) with the linear form on
defined by

ξι®ξj\—*<ξt,0ξj> (UJeN).

Thus we regard the group O(E) as a subset of Ω. Let Λ[X0 ; i,7'eiV] be the
polynomial ring of infinite variables Xtj (/', j e N) over R. Let C(Ω) be the set of
all continuous functions on Ω. We denote by C(O(E)) the set of all functions
given by the restriction of functions in C(Ω) to the group O(E). We consider
the mapping from R\_Xij\ /, j'elV] to C(Ω) defined by the map: Fw/, where
F((Xl7))e*[*;,•; /,7 6iV],/6C(β) and/(x) = F(«x,^®^.») . We shall denote
by F(Ω) the image of this mapping. We call functions in F(Ω) polynomials on Ω.
It is easy to see that the restriction map:/H->/|0(Js:) is injective. We put F(0(E))
= F(Ω) \o(Ey We also call functions in F(0(E)) polynomials on O(E). Since the
restriction mapping is injective, for each polynomial / on O(E) there exists a
unique polynomial / on Ω such t h a t / = / | 0 ( £ ) . In the following we use the same
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notation / instead of /. Let (π, §) be an irreducible unitary representation of

O(E). For υ and w in § we define a function φ*tW on O(E) by

Φv,w(d) = (v, π(g)w).

We call (π, §) a polynomial representation of O(E) if there exists an orthonormal

basis {Vj jeN} of § such that φ?tJ(g) = (vh π(g)vj) (/, je iV) are polynomials.

We denote by §y the space of all finite linear combinations of Vj (j e N). Let

(π, §) be an irreducible unitary polynomial representation of O(E). We shall

call (π, §) of discrete class if the multilinear functional B:

?>fxξ>fx§>fxξ)f3 (v, w, </, w') I—> ^ ΦlMΦV, w ( # W e JR

is continuous.

PROPOSITION 3. 1) Lei (π, §) 6^ α/τ irreducible unitary polynomial repre-

sentation of discrete class. Then there exists a positive constant c such that

Φl*!w(x)Φl*,w(x)dv(x) = c{υ9 υ') (w, w') (v, w, ϋ', w' e $f).

2) Let (π, §) αnί/ (π', §') ^e irreducible unitary polynomial represen-

tations of discrete class. If π and π' are non-equivalent, then

PROOF. 1) We fix w and w'. Then

JΩ

is a continuous bilinear functional on ξ>f x 9)f. It is easy to see that Φi*g)OtW(x) =

Φϊ*w(g~1x) (g e O(E)). Since the measure v is O(E)-biinvariant, it follows that

B{ -, w, , w') is π(O(J£))-invariant. From this fact one can find a constant

cWtW> such that

(3.1) B(v, w, v\ vv') = cww>(v, υ') (v, vreξ>f).

Similarly, let us fix v and v'. Then there exists a constant c'VtΌ> such that

(3.2) B(p9 W, υ\ w') = c;fl,<w, w') (w, w' e ξ>f).

From (3.1) and (3.2) we conclude that there exists a constant c such that

B(v, w, t/, vv') = c(v, ι?')(w, w') (u, vv, t?', vv' e &/).

It is clear that c is positive.
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2) We fix w in $f and w' in §}, and put

From 1) it is easy to see that Bww{-, •) is an O(E)-invariant continuous bilinear

functional on ξ>fxξ>'f and so we have a continuous linear operator A: §/->§}

such that

Obviously for any g in O(E)

A-π(g) = π'(g)-A.

Since π and π' are non-equivalent, we have A = 0. If follows that

Φi*w{χ)Φ«;*Aχ)dv{χ) = o.

THEOREM 2. For any n in N\J {0} and irreducible unitary representation

(p, Vp) of ®Λ, (πn/>, «^,jP) is on irreducible unitary polynomial representation of

discrete class. Conversely for any irreducible unitary polynomial represen-

tation of discrete class (π, §), there exist an n in N{] {0} and an irreducible

unitary representation (p, Vf)) of S Λ such that (π, §) is equivalent to (πM p, ^, l 5 / ,) .

PROOF. From Proposition 1 the representation (πΠ/9, ^ Π , p ) is an irreducible

unitary representation of O(E). Let {υί9..., vm} be an orthonormal basis of Vp.

Then we have an orthonormal basis {ζiχ®'~®ζin®Vi\ ieN} of L 2(M)® ®

L2(M)® Vp, where ξ(1,..., {in are orthonormal basis of L2(M). We put

We write simply (i) instead of (/1?..., in\ /), and we put

Then we have

where 5,̂ - is Kronecker's ^. Thus 0 ( ί ) j O) is a polynomial on O(E).

Now we shall show that the functional B is continuous. For any ι\ w, v' and

w' in $y we put
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Then we have

We put/ ί O i ϋ ) (x) = <x, ξ i l ® ^ 1> <x, ξin®ξjn}. Then

/fo.ω(*)/(W*)*<*) = 0

unless the fallowings hold; for any m and m', m occurs the same times in the

series il9..., in and fcls..., kn9 so does ra' in the seriesΛ,...,./„ and / l5..., /„. Using

the Schwarz inequality we have

if Φl,»(χ)Φl>,Λχ)dv(χ)\
JΩ

^ Σ(o Σo , Σ. Σ Λ A I I « <

This shows that B is continuous.

Conversely let (π, ί>) be an irreducible unitary polynomial representation of

discrete class. Then, by definition, there exists an orthonormal basis {Vj- jeN}

of § which satisfies the following conditions; φffJ(g) = (vh n(g)vj) (i,jeN) are

polynomials on O(E) and B:

x S / 3 f a w, t;', wr) I > ^φ« v*w(x)φ« vf i W,(x)dv(x)eR

is continuous, where 9yf is the space of all finite linear combinations of

Vj (jeN). From Proposition 3 there exists a positive constant c such that

ί φ«v*w(x)φ«vf>w,(x)dv(x) = c(v, υ') (w, w').
JΩ

Now we fix v0 in ξ>f. For any v in Sy we define a linear operator A by

Since B is continuous, A defines a bounded linear operator of § into L2(Ω, v).

We know that for any g in O(E)

(Λπ(g)v)(x) = 0 ί U , J x ) = Φl*Vo(g~ιx) = (πL(g)Av)(x).

This implies that A is an intertwining operator of § into L2(£2, v). Thus (π, £))

is equivalent to a subrepresentation of (πL, L2(Ω, v)). On the other hand, from

Theorem 1 we can prove that any subrepresentation of (πL, L2(Ω, v)) is equivalent

t° (πn,p» ^n,p) f° r some n in N u {0} and p in Sn. This completes the proof of

the theorem.
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§ 4. Class one representations

Let G be the subgroup (of O(E)) of all g in O(E) such that gξj = ξj except fini-

tely many j in N. We put K = {g e G; gξλ = { J . We denote by § B o s e the closed

subspace spanned by {Π; #«,«*, £t ®£i>/2 1 / 2); Σ i " i < + ° ° } Clearly § B o s e is

πL(O(E))-invariant, so that we have the subrepresentation ( π B o s e , § B o s e ) . It is

obvious that (πφ, L2(E*9 μ)) is equivalent to ( π B o s e , § B o s e ) .

Let (π, 9}) be an irreducible unitary polynomial representation of discrete

calss. We call (π, §) class one (with respect to K) if the space of all π(X)-fixed

vectors is of one dimension.

THEOREM 3 (McKean's conjecture). For any n in iVu{0} (πn, Jfn) is an

irreducible unitary polynomial representation of discrete class which is class

one (with respect to K). Conversely, for any irreducible unitary polynomial

representation of discrete class (π, §) which is class one (with respect to K),

there exists an n in N\J {0} such that (π, §) is equivalent to (πΛ,

PROOF. We can show in the same way as in [3] that § B o s e coincides with the

space of all πΛ(K)-fixed vectors in L2(Ω, v). It follows from Theorem 1 that

ι\Bose ,v/ V 0 0 V 3^ Ί$\ (ZP* Λκ

Ό = 2-n=0 2^pJίrn,p Φ \<πn,p) >

where (Jf*fP)
κ denotes the space of all π* p(K)-fixed vectors. Since ( π B o s c , § B o s e )

is equivalent to (π*, L2(E*, μ))9 it follows from Remark 1 that (J^*tP)
κ vanishes

unless p is trivial and that dim-(jf*f/>)x is equal to 1. Since

the dimension of the space of all πM(K)-fixed vectors in JFn is equal to 1. It fol-

lows from Theorem 2 that (πM, e?fn) is an irreducible unitary polynomial repre-

sentation of discrete class.

Conversely, let (π, §) be an irreducible unitary polynomial representation of

discrete class which is class one. Then from Theorem 2 there exist an n in

N U {0} and p in SΠ such that (π, §) is equivalent to (πn p, JfntP). If p is not

trivial, we have

\*^nfp) = \tJτ n,p*) — \V/| .

This completes the proof of the theorem.

§ 5. Fock space for Fermi particles

Let § £ e r m i be the closed subspace spanned by {2~w/2 Σ«τ s 8 n ( σ ) Π"=i H^ζx,
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ξki®ζσ(i)}βί/2)l l ^ ^ i < <^π}9 where sgn(σ) denotes the signature of σ in
§>„ and the summation Σ σ is taken over all σ in Sn. Clearly §£ e r m ί is πL(O(E))-
invariant, so that we have the subrepresentation (π£ e r m i, S£ e r m i) We put
^Fermi^^oo=o ©§Fermi W e write simply v{k) instead of 2-"/2 ΣσSgnί^Πί^i
Hi((x, ξki®ζσ(i)}l2ι/2). We shall calculate the ̂ -transformation of ι?(k). We

e«*-t>2-"'* Σσsgn(σ) Π?= 1 Hi«x, ξfci®C

c(f) Σ.sgn(σ)Π?=i <f, ίt.Θί.,,,) .

c(C) Σ , sgn (σ) ί (Π?-i ξkt(Pι)ξ.W(qdC(pt, ?ι))
J ( Λ f x M ) x > ! ( M xM)

Since Π?=i ίσ(o'(^) = Π?»i ξ'ώσ-m))> we have

«W (0 = c(C) ( (Π?= i {̂ (Pi)) de
J(MxAf)x x(MxM)

χ(Πϊ=iCO>ί,

Clearly the value of the integral is invariant by the action of ®n. It follows that

)(0 = C(O| MχM χ χ MχM ί'1!)"1 Σσ(Π?=l £*,(Pσ(θ)) det ((ξjί^ίm)))

x (Π"=i C(Pσίo». <i*(i)))4Pidqi—dpHdqn

= c(O ( (Λ!)"1. Σσ sgn (σ)(Π?=i ί f c |(Λ (o)) d e t

J(Λf xM)x x(Λf xM)

x

(^i)-1 det ((ί^ί/i j)) det
(A#xAf)x —x(ΛfxAf)

x (Π?=i ζ(Pi, qi

Now we put

Dnv(k) = (n\r^ det ((ξkι(Pm))).

{v(k)} and {(n!)~1/2det((£fcιQ?w)))} are orthonormal bases of § ί e r m ί and ^, > s g n

respectively, where ^, > s g n is the space of all skew-symmetric functions on M x
• x M (n-times). It follows that Dn can be extended to an isometry of §£ e r m i

onto ^.sgn It is easy to see that for any g in O(E)
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Thus we have the following

THEOREM 4. 1) « e r m ί , §>£ermi) is equivalent to (πΛ > s g n, ^ Π > s g n ) .
2) §Fermi = ^αo=o ©§Fermi (\rreducible decomposition).
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