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Introduction

Let A be an affine domain over a field k and let R be a subring of A containing

k. It is well-known that R is again an affine domain over k when d i m # = l.

But, when dim/?^2, R is not necessarily noetherian, and not necessarily an

affine domain over k even when R is noetherian. The purpose of the present

paper is to find certain conditions for R to be an affine domain over k.

In the first section we define an ideal s/{R) of R and by making use of this

ideal we prove that R is an affine domain over k if and only if Rm is a locality ovef

k for any maximal ideal m of R, where a locality over k is a local ring which is a

localization of an aίfine domain over k (cf. Theorem 1.6).

It is known that R is an affine domain over k if R is a neotherian normal

subring of dimension 2 and tr. degfc R/p = 1 for any prime ideal p of height 1

(cf. [2], [5]). If R satisfies these conditions it is seen that R is equidimensional,

that is, we have dim Rm = 2 for any maximal ideal m of i?. In the third section

we generalize this result as follows: if R is a noetherian subring of an affine domain

over a field k such that the integral closure R' of R in its quotient field is equidi-

mensional then R is an affine domain over k (cf. Theorem 3.2).

As a corollary of this theorem we prove that if R is a universally catenary

and equidimensional subring then R is an affine domain over k. For the proof

of this corollary we need the following theorem: the finiteness of the integral

closure Rr of R in its quotient field is a local property, that is, R' is a finite R-

module if and only if R'm is a finite ^m-module for any maximal ideal m of R.

We prove this theorem in the second section (cf. Theorem 2.5).

Throughout this paper we fix a field k. All rings under consideration are

commutative /c-algebras and all affine domains are assumed to be defined over k.

1. The ideal rf(R)

Let A be an affine domain over a field /c, that is, an integral domain which is

finitely generated over k. We are mainly interested in subrings R of A, and we

shall study when R is again an affine domain over k. For this purpose we define

an ideal s/(R) of R as follows:
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PROPOSITION 1.1. Let R be a subring of an affine domain A over k. Define

s/(R) by

= {a; aeR and Λ[l/α] is an affine domain over k} U {0}.

Then s/{R) is a non-zero radical ideal of R.

PROOF. By virtue of Propositon (2.1) in [3], we see that j / ( £ ) # 0 . We

shall prove that s/(R) is an ideal of R. Since R[\jax']=R[\ja'] [1/x], we have

axes/(R) for any aesf{R) and xeR. We shall show a + bes/(R) for any
non-zero elelments a and b of jtf(R). Since /?[l/α] and Λ[l/ft] are aίϊine domains

over k, there exist elements α l 5 . . . , as and bv,...,bt of # such that K[l/α] =

/c[l/α, a l v . . , a,] and Λ[l/ft] = fc[l/ft, ft^..., ft,]. Let C = fc[α, ft, α^..., αs,

fe!,..., &J. Then C is an affine domain over /c and we have C^R. Let x be an

arbitrary element of R. Since β [ l / α ] c C [ l / α ] and Λ [ l / ί ] s C [ l / 6 ] , we have

αwx e C and b"x e C for a sufficiently large positive integer n. Then, as is easily

seen, we have (a + b)2"xeC, whence we have xeC[l/(α + ί>)]. Since x is an

arbitrary element of R9 we have C[l/(a + ft)] 3 Λ[l/(α 4- 6)] and hence C[l/(β + ft)]

= Λ[l/(α + ft)]. Therefore JR[l/(α-hft)] is an affine domain over /c and we have

a + bejt/(R). Thus j/(i?) is an ideal of R. Finally we prove that s/(R) is a

radical ideal. Let x be an element of R with xn e s/(R) for some positive integer

n. Since /?[1/JC] = Λ[1/X Π ], we have xej*r(#). Therefore J ^ ( Λ ) is a radical

ideal. Q.E.D.

COROLLARY 1.2. Lei R be a subring of an affine domain over k. Then we

have dim R = tr.degk R.

PROOF. Let n = tr.degkR and let a be a non-zero element of s/(R). Then

/?[l/α] is an affine domain over k and hence we have dimjR[l/α] = n (cf. [4,

(14.G)]). Therefore we have dim R^dim /?[ 1 /a] = π. Since dim R^n in general,

we have dim R = n. Q. E. D.

We call a local ring S a locality over k if S is a localization of an affine domain

over k with respect to a prime ideal (cf. [6, Ch. VI]).

LEMMA 1.3. Let R be a subring of an affine domain A over k and let p

be a prime ideal of R. Then Rp is a locality over k if and only if

PROOF. Let x be a non-zero element of stf(R). Replacing A by

we may assume that R and A are birational. Assume that s/(R)^p and take an

element a of s/(R)\p. Then #[ l/α] is an affine domain over k and p[l/α] is a

prime ideal of R[\ja]. Hence Rp = i?[ l/α] p [ 1 / α ] is a locality over k. Conversely,

assume that Rp is a locality over k. Then there exist an affine domain.£ over k

and a prime ideal P of B such that Rp = BP. We may assume that B^R. Let K
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be the quotient field of A and let B' and R' be the integral closures of B and R in

X, respectively. Let p ' be a prime ideal of R' lying over p and let P' = pr OB'.

Since the integral closure of Rp=BP in K coincides with R'p=B'P9 we have Rp==

B'P,. Let F={Q; QeSpccB\htQ=\ and B'Q^R'}. We claim that F is a

finite set. In fact, since A is an affine domain, the integral closure A' of A in K

is also an affine domain. Therefore A' is finitely generated over B', whence there

exists an element b of B' such that B'\\ jb~\ ΏA'Ώ R'. Then it is easy to see that F

is a subset of the set of the minimal prime divisors of b. Thus F is a finite set.

Let F={P',,..., P'n} and let P^P'^B for l ^ t ^ n . Suppose that Pi(]

•• n P Λ s P . Then we have P fc/> for some /, and hence BPi^BP = Rp^R',

which is a contradiction. Thus we have P x Π ••• Γ\Pn^P. Take an element α

of Pj n ••• ΠPn\P and let Λ = {Q; βeSpectf', htQ = l and at£Q}. Then, as is

easily seen, we have B'Q'ΞΪR' for any element Q of /I, whence we have £'[l/α] =

n Q e y l β β 2 i ? ' . Therefore we have 5'[l/α] = jR'[l/α], and /?'[!/«] i s a n a f f i n e

domain over k. Hence jR[l/α] is also an affine domain over k by the following

well-known lemma. Since a e B\P c R\p, we have s/(R)^p. Q. E. D.

LEMMA 1.4. Let a ring R' be an integral extension of a ring R. If R' is

an affine domain over /c, then R is also an affine domain over k.

PROOF. See [1, Ch. V, § 1.9, Lemma 5].

COROLLARY 1.5. Let R be a subring of an affine domain over k. Then we

have V(V(K)) = {p; p eSpecK and Rp is not a locality over k).

The following theorem is an immediate cosequence of Corollary 1.5 which

asserts that affineness is a local property for subrings of an affine domain.

THEOREM 1.6. Let R be a subring of an affine domain over k. Then the

following three conditions are equivalent to each other.

(1) R is an affine domain over k.

(2) Rp is a locality over kfor any prime ideal p of R.

(3) Rm is a locality over kfor any maximal ideal m of R.

2. Open properties of a ring

Let P be a property for domains. For the sake of brevity, we use the symbol

[ P ] to denote the class of domains which have the property P. We say that a

property P is stable under localization if a domain R belongs to [ P ] then Rp

belongs to [ P ] for any prime ideal p of R. For a domain R, we define

P(R) = {α; a eR and K[l/α] e [P]} U {0}

and



380 Nobuharu ONODA and Ken-ichi YOSHIDA

AP(R) = {p;peSpecR and Rp φ [ P ] } .

We say that P is an open property for R if AP(R) is a closed set of Spec R.

LEMMA 2.1. Let P be a property stable under localization and let R be a
domain. Then

(1) If P(R) is an ideal of R then P(R) is a radical ideal of R.
(2) Jp(Λ)cV(P(Λ)j,
(3) //p eJp(JR) ί/ien qezlp(JR)/or αrcy specialization qofp.

PROOF. (1): Since i*[l/α] = Λ[l/απ], we have aeP(R) if and only if a" e
P(R). Hence the assertion is obvious.

(2): Let p be a prime ideal of R with p^P(R) and let α be an element of
P(R)\p. Then•• K[l/α] 6 [P] and p[l/α] eSpec£[l/α], hence we have Λp =
Λ[l/β]p[i/β] e [P] because Pis stable under localization. Thus we have p t£AP(R).

(3): Let pezJP(jR) and let q be a specialization of p. Suppose that q^
AP(R). Then we have Rqe[P], and hence we have # p e [ P ] because Rp is a
localization of Rq with respect to the prime ideal p/?q. Thus we have p^AP(R),
which is a contradiction. Therefore we have q e AP(R). Q. E. D.

LEMMA 2.2. Let P be a property stable under localization and let R be a
domain. Then the following two conditions are equivalent to each other.

(1) AP(R) = V(P(R)).
(2) // p is a prime ideal of R with Rp e [P], then P(R)<£p.

PROOF. (1)=>(2): Let p be a prime ideal of R with Rp e [P]. Then we have
p(£AP(R) by the definition. Since AP(R) = V(P(R)), we have P(R)<£p.

(2) =>(1): If the condition (2) holds, we have jRp<£[P], i.e., peAP(R) for
any p e\(P(R)). Thus we have V(P(#))cAP(R). On the other hand, we have

^p(/?) by Lemma 2.1, whence AP{R) = V(P(JR)). Q. E. D.

COROLLARY 2.3. Lef P be α property stable under localization and let R
be a domain. Assume that R satisfies the following three conditions.

(1) P(R) is an ideal of R.
(2) AP(R) = V(P(R)).
(3) Rm e [P] for any maximal ideal m of R.

Then R has the property P.

PROOF. We have P(R)<£m for any maximal ideal m of R by Lemma 2.2.
Since P(R) is an ideal of R, we have P(R) = R, hence R e [P]. Q. E. D,

We shall denote by / and F the properties for domains defined by

R E [/] implies that R is integrally closed.
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R e [ F ] implies that the integral closure R' of R in its quotient field is a

finite R-module.

PROPOSITION 2.4. Let R be a noetherian subring of an affine domain over k

and let P be either I or F.

Then we have the following:

(1) P(R) is a non-zero radical ideal of R.

(2)

PROOF. (I) The case P=I.

(1): Let R' be the integral closure of R in the quotient field K of R and let a

be a non-zero element of jtf(R). Since R\Ma~\ is an affine domain, the integral

closure Λ'[l/α] of #[l/α] in K is a finite #[l/fl]-module. Hence there exist

elements α l 5 . . . , α s of R' such that Λ/[l/α] = Λ[l/ίz]α1 + +/?[l/tf]αs. Take an

element b of R such that b^eR for 1^/^s. Then we have R'[l/α]cJR[l/Λ]

[1/6], whence we have Rr[\lab~\ = R[_\lab~]. Thus R[l/a6] is integrally closed,

and hence we have O^abeΙ(R). Therefore I(R)^0. Next we shall prove that

I(R) is a radical ideal of R. It is easy to see that we have are T(R) for any a e I(R)

and reR. Let a and b be two non-zero elements of I(R) and let p be an element

of D(α + b), where D(α 4- b) = {p p e Spec R and α + b^p}. Then we have either

a<£p or b&p, and we may assume that α ^ p . Then R[\ja~\ is integrally closed

and p[l/α] is a prime ideal of fl[l/α], hence / ^ ^ [ l A O p π / α ] is integrally closed.

Since R[l/(α+ /?)] = A p 6 D ( α + f t ) Λp, we see that #[l/(α + /?)] is integrally closed,

i.e., a + beI(R). Therefore T(R) is an ideal of R, and hence I(R) is a radical

ideal of R by Lemma 2.1.

(2): Let p be a minimal element of Aj(R). We claim that depth Rp = 1.

In fact, suppose that depthR p >\ and let Λ = {q; qeSpecR, depthR q = \ and

q ^ p } . Then, for any element q of A, we have q^J 7 (/?), i.e., Rq is integrally

closed because p is a minimal element of Aj(R). Since Rp = Γ\qeΛRcι, we see that

Rp is integrally closed. Hence we have p^Aj(R)9 which is a contradiction. By

Lemma 2.1, we have AI(R)^\(I(R))9 hence we have p^I(R). Let α be a non-

zero element of I(R). Since depth # p = 1 and a e p , p is a prime divisor of aR.

Therefore we see that the number of the minimal elements of At{R) is finite because

R is noetherian. Let pu...,pt be all the minimal elements of Aj(R) and let

& = pί Π ••• Π p f . Then we have Aj(R) = W(a) by Lemma 2.1. We shall show that

a = I(R). Since V(α) = AI(R)^N(I(R)) and α is a radical ideal, we have I(R)^a.

Conversely, let x be an element of α and let p be an element of D(x), where D(x) =

{p peSpeci? and x ^ p } . Then we have p^a and hence p§έ.V(α) = J/(I?),

i.e., Rp is integrally closed. Since R[llx] = Γ\peD(x)Rp, we see that #[ l/x] is

integrally closed, whence we have xeI(R). Thus we have , α £ I(R), and hence
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(II) The case P=F.

(1): Since T(R)^F(R) and J ( £ ) # 0 , we have F(R)^0. We shall prove that

F(R) is a radical ideal of R. It is easy to see that we have areF(R) for any

a EF(R) and reR. Let a and ft be two non-zero elements of F(R). Then there

exist elements α 1 ? . . . ,α s and βu...,βt of R' such that Λ/[l/ί7]

7?[l/α]αsandΛ/[l//7] = Λ [ l / ^ 1 + ... + Λ[l/6]A. Let £ = * ! > „

Then £ is a finite fl-module, and we have Λ'[ l/α]cB[l/α] and

Hence, for any element x of i?', there exists a positive integer n such that anxe B

and bnxeB. Then we have (α + ft)2"xE#, whence xe5[ l/(α + ft)]. Therefore

we have Λ'[l/(α + ft)] = JB[l/(β 4- ft)], and hence R'[M(a + ft)] is a finite R[\j{a + ft)]-

module, i.e., a + be F(R). Thus F(K) is an ideal of R, and F(R) is a radical ideal

by Lemma 2.1.

(2): By Lemma 2.1, it suffices to show that V(F(#))c AF(R). Let p be an

element of W(F(R)) and suppose that p^AF(R). Then we have Rp e [ F ] , hence

the integral closure R'p of Rp in its quotient field is a finite ^-module. Thus

there exist elements α l 5 . . . , α r of R' such that R^R^^ \-Rpccr. Let C —

R[ctu..., α r ]. Then C is a finite ^-module and we have R'p = Cp. Let P,,..., Pne

SpecC be all the minimal elements of Aj(C), and let Pi — Pi Γ\ R for l^i^n.

We shall show that pί n ••• Π p M £p. In fact, if p t n ••• Π p M ^ p then we have

Pi^p for some /. Since P i n Λ = p j £ p and Ct3 = /?J) is integrally closed, we see

that Cp. is also integrally closed. Hence we have P^A^C), which is a con-

tradiction. Let x be an element of p1 n ••• Π pn\p, and let P be a prime ideal of

C with x ^ P . Then we have Pί Π ••• Π P r t £ P , whence we have P^^lj(C) because

Pl9...,Pn are all the minimal elements of Aj{C). Thus C P is integrally closed,

and hence we see that C[l/x] is also integrally closed. Therefore the integral

closure of P[l/x] in its quotient field coincides with C[l/x]. Since C[l/x] is a

finite i?[l/x]-module, we have xeF(R), whence F(R)ζ£p. Thus we have p<£

V(F(JR)), which is a contradiction. Hence we have peAF(R), and V(F(fl))c

AF(R). Q.E.D.

By virtue of Proposition 2.4 and Corollary 2.3, we have the following:

THEOREM 2.5. Let R be a noetherian subring of an affine domain over k

and let R' be the integral closure of R in its quotient field. Then R' is a finite

R-module if and only if R'm is a finite Rm-module for any maximal ideal m of R.

3. Affineness of noetherian subrings of an affine domain

In this section we shall prove that a noetherian subring R of an affine domain

over k will be an affine domain over k provided the integral closure R' of R in its

quotient field is equidimensional. For the proof we need the following:
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THEOREM 3.1. Let R be a d-dimensional subring of an affine domain over k

and let R' be the integral closure of R in its quotient field K. Let 9[ft be

a maximal ideal of R' with htsJJΪ = d. If R is noetherian then R'^ is a locality

over k.

PROOF. Let m = 9W Π R. Since R is noetherian, m is finitely generated, say

m = (x!,..., xt)R. Let B be an affine domain over k contained in R such that R

and B are birational and xί9..., xteB. Let M = m Π B. Then we have x^..., xte

M and hence MR = m. Since ht SR = d and tr. άegk R'/Wl g tr. degfc R' - ht 9Ji, we

have tr. degfc B/M^tϊ. degfc R'/sJJl = 0. Thus B\M is algebraic over /c, hence BjM

is a field and M is a maximal ideal of B. Let JB' be the integral closure of B in K

and let R = R[B']. Since £ is an affine domain over k, B' is a finite B-module.

Whence R is a finite /^-module, especially R is noetherian. Let 9l = 9Jΐ n # and

let M' = 5ft Π £'. Since R' is integral over R, we have ht 91^ht SR = d, hence we

have ht$ίi = d. On the other hand, β' is integral over B and M' lies over the

maximal ideal M of #. Hence M' is a maximal ideal of B\ and we have ht M' — d

because B' is an affine domain over k. Thus we have dim B'M. =dim Λŝ . Notice

that M'R9j2MK9j = mΛ9? and mR^ is a 9tR9Γprimary ideal. Therefore there

exists a positive integer r such that 5lΓJί scΛf'Λ s . Let k' = B'jM' and let

L = RI9l. Then we have lengthyRm/M'Rχ^(lengthyL)(lengthy^/9lΓ) Since

ht 91 = d, we have tr. degfc R/91 = 0, and hence L = K/9t is a subfield of a certain affine

domain over k (cf. [7, Theorem 2]). Thus L is a finite algebraic extension field

of k, whence lengthk L is finite, a fortiori, lengthy L is finite. On the other hand,

since R is noetherian, we have lengthy Λ/9Ίr is finite. Thus we have lengthy Λ^/

M'RM is finite. Moreover, since B' is a normal affine domain, B'M> is analytically

normal by Theorem (37.5) in [6], and obviously R^ and B'M, are birational.

Hence we have B'M, =R^ by Theorem (37.4) in [6]. Thus R% is integrally closed,

whence we have R% = R'^ because R'% is integral and birational over Rdι. Therefore

R'% is a local ring, and hence we have Rf^ = Rf

m. Whence we have R'm = B'M, and

R'm is a locality over k. Q. E. D.

THEOREM 3.2. Let R be a d-dimensional subring of an affine domain over k

and let R' be the integral closure of R in its quotient field. If R is noetherian

and R' is equidimensional, that is, dim R'm = d for any maximal ideal Wl of R'',

then R is an affine domain over k.

PROOF. Since R' is equidimensional, R'm is a locality over k for any maximal

ideal 9)1 of R' by Theorem 3.1. Thus R' is an affine domain over k by Theorem

1.6, and hence R is also an affine domain over k by Lemma 1.4. Q. E. D.

Recall that a ring R is called catenary if, for any pair of prime ideals p, q

with p ^ q , we have h t p = h t q + ht(p/q). A ring R is called universally catenary

if R is noetherian and if every K-algebra of finite type is catenary (cf. [4, (14.B)]).
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COROLLARY 3.3. Let R be a subring of an affine domain over k. If R is

universally catenary and equidimensional then R is an affine domain over k.

PROOF. Let tπ = (x1,..., xt)R be an arbitrary maximal ideal of R and let B

be an affine domain over k contained in R such that R and B are birational and

xl9...,xteB; Let B' be the integral closure of B in its quotient field and let

R = R[B'~]. Then R is a finite K-module. Let-9M,,..., sDίπ be all the maximal

ideals of R lying over m. Since R is universally catenary and R is a finite R~

module, the dimension formula holds between R and R, whence we have ht50?t =

htm for each i (cf. [4, (14.C)]). Thus, as is shown in the proof of Theorem 3.1,

we have Rystι

τ=iBf

Mi for each /, where M ^ ^ n ΰ ' . Therefore RTli is integrally

closed for each /, hence Rm is integrally closed. Thus the integral closure of Rm

in its quotient field is equal to Rm which is a finite #m-module. Whence, by

Theorem 2.5, the integral closure R' of R in its quotient field is a finite Λ-module,

and hence the dimension formula holds between R and R'. Since R is equidi-

mensional, we see that Rf is also equidimensional. Thus the assertion follows

from Theorem 3.2. Q.E. D.
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