On noetherian subrings of an affine domain

Dedicated to Professor Yoshikazu Nakai on his sixtieth birthday

Nobuharu ONODA and Ken-ichi YOSHIDA (Received January 6, 1982)

Introduction

Let A be an affine domain over a field k and let R be a subring of A containing k. It is well-known that R is again an affine domain over k when dim $R \ge 1$. But, when dim $R \ge 2$, R is not necessarily noetherian, and not necessarily an affine domain over k even when R is noetherian. The purpose of the present paper is to find certain conditions for R to be an affine domain over k.

In the first section we define an ideal $\mathscr{A}(R)$ of R and by making use of this ideal we prove that R is an affine domain over k if and only if R_m is a locality over k for any maximal ideal m of R, where a locality over k is a local ring which is a localization of an affine domain over k (cf. Theorem 1.6).

It is known that R is an affine domain over k if R is a neotherian normal subring of dimension 2 and tr. $\deg_k R/\mathfrak{p} = 1$ for any prime ideal \mathfrak{p} of height 1 (cf. [2], [5]). If R satisfies these conditions it is seen that R is equidimensional, that is, we have dim $R_m = 2$ for any maximal ideal m of R. In the third section we generalize this result as follows: if R is a noetherian subring of an affine domain over a field k such that the integral closure R' of R in its quotient field is equidimensional then R is an affine domain over k (cf. Theorem 3.2).

As a corollary of this theorem we prove that if R is a universally catenary and equidimensional subring then R is an affine domain over k. For the proof of this corollary we need the following theorem: the finiteness of the integral closure R' of R in its quotient field is a local property, that is, R' is a finite Rmodule if and only if R'_m is a finite R_m -module for any maximal ideal m of R. We prove this theorem in the second section (cf. Theorem 2.5).

Throughout this paper we fix a field k. All rings under consideration are commutative k-algebras and all affine domains are assumed to be defined over k.

1. The ideal $\mathscr{A}(R)$

Let A be an affine domain over a field k, that is, an integral domain which is finitely generated over k. We are mainly interested in subrings R of A, and we shall study when R is again an affine domain over k. For this purpose we define an ideal $\mathscr{A}(R)$ of R as follows:

PROPOSITION 1.1. Let R be a subring of an affine domain A over k. Define $\mathscr{A}(R)$ by

 $\mathscr{A}(R)$: = {a; $a \in R$ and R[1/a] is an affine domain over k} \cup {0}.

Then $\mathscr{A}(R)$ is a non-zero radical ideal of R.

PROOF. By virtue of Propositon (2.1) in [3], we see that $\mathscr{A}(R) \neq 0$. We shall prove that $\mathscr{A}(R)$ is an ideal of R. Since R[1/ax] = R[1/a][1/x], we have $ax \in \mathscr{A}(R)$ for any $a \in \mathscr{A}(R)$ and $x \in R$. We shall show $a + b \in \mathscr{A}(R)$ for any non-zero elements a and b of $\mathcal{A}(R)$. Since R[1/a] and R[1/b] are affine domains over k, there exist elements a_1, \dots, a_s and b_1, \dots, b_t of R such that R[1/a] = $k[1/a, a_1, ..., a_s]$ and $R[1/b] = k[1/b, b_1, ..., b_t]$. Let $C = k[a, b, a_1, ..., a_s]$ b_1, \ldots, b_r]. Then C is an affine domain over k and we have $C \subseteq R$. Let x be an arbitrary element of R. Since $R[1/a] \subseteq C[1/a]$ and $R[1/b] \subseteq C[1/b]$, we have $a^n x \in C$ and $b^n x \in C$ for a sufficiently large positive integer n. Then, as is easily seen, we have $(a+b)^{2n}x \in C$, whence we have $x \in C[1/(a+b)]$. Since x is an arbitrary element of R, we have $C[1/(a+b)] \supseteq R[1/(a+b)]$ and hence C[1/(a+b)]=R[1/(a+b)]. Therefore R[1/(a+b)] is an affine domain over k and we have $a+b\in \mathscr{A}(R)$. Thus $\mathscr{A}(R)$ is an ideal of R. Finally we prove that $\mathscr{A}(R)$ is a radical ideal. Let x be an element of R with $x^n \in \mathcal{A}(R)$ for some positive integer n. Since $R[1/x] = R[1/x^n]$, we have $x \in \mathcal{A}(R)$. Therefore $\mathcal{A}(R)$ is a radical ideal. Q. E. D.

COROLLARY 1.2. Let R be a subring of an affine domain over k. Then we have dim $R = \text{tr.deg}_k R$.

PROOF. Let $n = \text{tr.deg}_k R$ and let a be a non-zero element of $\mathscr{A}(R)$. Then R[1/a] is an affine domain over k and hence we have dim R[1/a] = n (cf. [4, (14.G)]). Therefore we have dim $R \ge \dim R[1/a] = n$. Since dim $R \le n$ in general, we have dim R = n. Q. E. D.

We call a local ring S a locality over k if S is a localization of an affine domain over k with respect to a prime ideal (cf. [6, Ch. VI]).

LEMMA 1.3. Let R be a subring of an affine domain A over k and let \mathfrak{p} be a prime ideal of R. Then $R_{\mathfrak{p}}$ is a locality over k if and only if $\mathscr{A}(R) \not\subseteq \mathfrak{p}$.

PROOF. Let x be a non-zero element of $\mathscr{A}(R)$. Replacing A by R[1/x], we may assume that R and A are birational. Assume that $\mathscr{A}(R) \not\equiv \mathfrak{p}$ and take an element a of $\mathscr{A}(R) \mid \mathfrak{p}$. Then R[1/a] is an affine domain over k and $\mathfrak{p}[1/a]$ is a prime ideal of R[1/a]. Hence $R_{\mathfrak{p}} = R[1/a]_{\mathfrak{p}[1/a]}$ is a locality over k. Conversely, assume that $R_{\mathfrak{p}}$ is a locality over k. Then there exist an affine domain B over k and a prime ideal P of B such that $R_{\mathfrak{p}} = B_P$. We may assume that $B \subseteq R$. Let K

be the quotient field of A and let B' and R' be the integral closures of B and R in K, respectively. Let \mathfrak{p}' be a prime ideal of R' lying over \mathfrak{p} and let $P' = \mathfrak{p}' \cap B'$. Since the integral closure of $R_{\mu} = B_P$ in K coincides with $R'_{\mu} = B'_P$, we have $R'_{\mu'} =$ $B'_{P'}$. Let $F = \{Q; Q \in \text{Spec } B', \text{ ht} Q = 1 \text{ and } B'_Q \not\supseteq R'\}$. We claim that F is a finite set. In fact, since A is an affine domain, the integral closure A' of A in K is also an affine domain. Therefore A' is finitely generated over B', whence there exists an element b of B' such that $B'[1/b] \supseteq A' \supseteq R'$. Then it is easy to see that F is a subset of the set of the minimal prime divisors of b. Thus F is a finite set. Let $F = \{P'_1, \dots, P'_n\}$ and let $P_i = P'_i \cap B$ for $1 \leq i \leq n$. Suppose that $P_1 \cap$ $\dots \cap P_n \subseteq P$. Then we have $P_i \subseteq P$ for some *i*, and hence $B'_{P_i} \supseteq B'_P = R'_p \supseteq R'$, which is a contradiction. Thus we have $P_1 \cap \cdots \cap P_n \not\subseteq P$. Take an element a of $P_1 \cap \cdots \cap P_n \setminus P$ and let $\Lambda = \{Q; Q \in \text{Spec } B', htQ = 1 \text{ and } a \notin Q\}$. Then, as is easily seen, we have $B'_Q \supseteq R'$ for any element Q of A, whence we have B'[1/a] = $\bigcap_{o \in A} B'_o \supseteq R'$. Therefore we have B'[1/a] = R'[1/a], and R'[1/a] is an affine domain over k. Hence R[1/a] is also an affine domain over k by the following well-known lemma. Since $a \in B \setminus P \subseteq R \setminus \mathfrak{p}$, we have $\mathscr{A}(R) \not\subseteq \mathfrak{p}$. Q. E. D.

LEMMA 1.4. Let a ring R' be an integral extension of a ring R. If R' is an affine domain over k, then R is also an affine domain over k.

PROOF. See [1, Ch. V, § 1.9, Lemma 5].

COROLLARY 1.5. Let R be a subring of an affine domain over k. Then we have $V(\mathscr{A}(R)) = \{\mathfrak{p}; \mathfrak{p} \in \text{Spec } R \text{ and } R_{\mathfrak{p}} \text{ is not a locality over } k\}.$

The following theorem is an immediate cosequence of Corollary 1.5 which asserts that affineness is a local property for subrings of an affine domain.

THEOREM 1.6. Let R be a subring of an affine domain over k. Then the following three conditions are equivalent to each other.

- (1) R is an affine domain over k.
- (2) R_{p} is a locality over k for any prime ideal p of R.
- (3) R_m is a locality over k for any maximal ideal m of R.

2. Open properties of a ring

Let **P** be a property for domains. For the sake of brevity, we use the symbol [P] to denote the class of domains which have the property **P**. We say that a property **P** is stable under localization if a domain R belongs to [P] then R_{p} belongs to [P] for any prime ideal p of R. For a domain R, we define

$$P(R) = \{a; a \in R \text{ and } R[1/a] \in [P]\} \cup \{0\}$$

and

Nobuharu ONODA and Ken-ichi YOSHIDA

$$\Delta_{\boldsymbol{P}}(R) = \{\mathfrak{p}; \mathfrak{p} \in \operatorname{Spec} R \text{ and } R_{\mathfrak{p}} \notin [\boldsymbol{P}]\}.$$

We say that **P** is an open property for R if $\Delta_P(R)$ is a closed set of Spec R.

LEMMA 2.1. Let P be a property stable under localization and let R be a domain. Then

- (1) If P(R) is an ideal of R then P(R) is a radical ideal of R.
- (2) $\Delta_{\boldsymbol{P}}(R) \subseteq \mathcal{V}(\boldsymbol{P}(R)).$
- (3) If $\mathfrak{p} \in \Delta_{\mathbf{P}}(R)$ then $\mathfrak{q} \in \Delta_{\mathbf{P}}(R)$ for any specialization \mathfrak{q} of \mathfrak{p} .

PROOF. (1): Since $R[1/a] = R[1/a^n]$, we have $a \in P(R)$ if and only if $a^n \in P(R)$. Hence the assertion is obvious.

(2): Let \mathfrak{p} be a prime ideal of R with $\mathfrak{p} \not\supseteq P(R)$ and let a be an element of $P(R) \setminus \mathfrak{p}$. Then $R[1/a] \in [P]$ and $\mathfrak{p}[1/a] \in \operatorname{Spec} R[1/a]$, hence we have $R_{\mathfrak{p}} = R[1/a]_{\mathfrak{p}[1/a]} \in [P]$ because P is stable under localization. Thus we have $\mathfrak{p} \notin \Delta_P(R)$.

(3): Let $\mathfrak{p} \in \Delta_{\mathbf{P}}(R)$ and let q be a specialization of \mathfrak{p} . Suppose that $q \notin \Delta_{\mathbf{P}}(R)$. Then we have $R_{\mathfrak{q}} \in [\mathbf{P}]$, and hence we have $R_{\mathfrak{p}} \in [\mathbf{P}]$ because $R_{\mathfrak{p}}$ is a localization of $R_{\mathfrak{q}}$ with respect to the prime ideal $\mathfrak{p}R_{\mathfrak{q}}$. Thus we have $\mathfrak{p} \notin \Delta_{\mathbf{P}}(R)$, which is a contradiction. Therefore we have $\mathfrak{q} \in \Delta_{\mathbf{P}}(R)$. Q.E.D.

LEMMA 2.2. Let P be a property stable under localization and let R be a domain. Then the following two conditions are equivalent to each other.

- (1) $\Delta_{\boldsymbol{P}}(R) = V(\boldsymbol{P}(R)).$
- (2) If \mathfrak{p} is a prime ideal of R with $R_{\mathfrak{p}} \in [\mathbf{P}]$, then $\mathbf{P}(R) \not\subseteq \mathfrak{p}$.

PROOF. (1) \Rightarrow (2): Let \mathfrak{p} be a prime ideal of R with $R_{\mathfrak{p}} \in [P]$. Then we have $\mathfrak{p} \notin \Delta_{P}(R)$ by the definition. Since $\Delta_{P}(R) = V(P(R))$, we have $P(R) \not\subseteq \mathfrak{p}$.

(2) \Rightarrow (1): If the condition (2) holds, we have $R_{\mathfrak{p}} \notin [\mathbf{P}]$, i.e., $\mathfrak{p} \in \Delta_{\mathbf{P}}(R)$ for any $\mathfrak{p} \in V(\mathbf{P}(R))$. Thus we have $V(\mathbf{P}(R)) \subseteq \Delta_{\mathbf{P}}(R)$. On the other hand, we have $V(\mathbf{P}(R)) \supseteq \Delta_{\mathbf{P}}(R)$ by Lemma 2.1, whence $\Delta_{\mathbf{P}}(R) = V(\mathbf{P}(R))$. Q. E. D.

COROLLARY 2.3. Let P be a property stable under localization and let R be a domain. Assume that R satisfies the following three conditions.

- (1) P(R) is an ideal of R.
- (2) $\Delta_{\boldsymbol{P}}(R) = V(\boldsymbol{P}(R)).$

(3) $R_m \in [\mathbf{P}]$ for any maximal ideal m of R. Then R has the property \mathbf{P} .

PROOF. We have $P(R) \not\subseteq \mathfrak{m}$ for any maximal ideal \mathfrak{m} of R by Lemma 2.2. Since P(R) is an ideal of R, we have P(R) = R, hence $R \in [P]$. Q. E. D.

We shall denote by I and F the properties for domains defined by

 $R \in [I]$ implies that R is integrally closed.

380

 $R \in [F]$ implies that the integral closure R' of R in its quotient field is a finite R-module.

PROPOSITION 2.4. Let R be a noetherian subring of an affine domain over k and let \mathbf{P} be either \mathbf{I} or \mathbf{F} .

Then we have the following:

(1) P(R) is a non-zero radical ideal of R.

(2) $\Delta_{\boldsymbol{P}}(R) = V(\boldsymbol{P}(R)).$

PROOF. (1) The case P = I.

(1): Let R' be the integral closure of R in the quotient field K of R and let a be a non-zero element of $\mathscr{A}(R)$. Since R[1/a] is an affine domain, the integral closure R'[1/a] of R[1/a] in K is a finite R[1/a]-module. Hence there exist elements $\alpha_1, ..., \alpha_s$ of R' such that $R'[1/a] = R[1/a]\alpha_1 + \cdots + R[1/a]\alpha_s$. Take an element b of R such that $b\alpha_i \in R$ for $1 \le i \le s$. Then we have $R'[1/a] \subseteq R[1/a]$ [1/b], whence we have R'[1/ab] = R[1/ab]. Thus R[1/ab] is integrally closed, and hence we have $0 \ne ab \in I(R)$. Therefore $I(R) \ne 0$. Next we shall prove that I(R) is a radical ideal of R. It is easy to see that we have $ar \in I(R)$ for any $a \in I(R)$ and $r \in R$. Let a and b be two non-zero elements of I(R) and let p be an element of D(a+b), where $D(a+b) = \{p; p \in \text{Spec } R \text{ and } a+b \notin p\}$. Then we have either $a \notin p$ or $b \notin p$, and we may assume that $a \notin p$. Then R[1/a] is integrally closed. Since $R[1/(a+b)] = \bigcap_{p \in D(a+b)} R_p$, we see that R[1/(a+b)] is integrally closed. Since $R[1/(a+b)] = \bigcap_{p \in D(a+b)} R_p$, we see that R[1/(a+b)] is integrally closed, i.e., $a+b \in I(R)$. Therefore I(R) is an ideal of R, and hence I(R) is a radical ideal of R and p let p

(2): Let \mathfrak{p} be a minimal element of $\Delta_{I}(R)$. We claim that depth $R_{\mathfrak{p}} = 1$. In fact, suppose that depth $R_{\nu} > 1$ and let $\Lambda = \{q; q \in \text{Spec } R, \text{ depth } R_{\nu} = 1 \text{ and } R_{\nu} = 1 \text{ or } R_{\nu} = 1 \text{ or$ $q \subseteq p$. Then, for any element q of Λ , we have $q \notin \Delta_I(R)$, i.e., R_q is integrally closed because p is a minimal element of $\Delta_I(R)$. Since $R_p = \bigcap_{a \in A} R_a$, we see that $R_{\mathfrak{p}}$ is integrally closed. Hence we have $\mathfrak{p} \notin \Delta_{I}(R)$, which is a contradiction. By Lemma 2.1, we have $\Delta_{I}(R) \subseteq V(I(R))$, hence we have $\mathfrak{p} \supseteq I(R)$. Let a be a nonzero element of I(R). Since depth $R_{p} = 1$ and $a \in p$, p is a prime divisor of aR. Therefore we see that the number of the minimal elements of $\Delta_I(R)$ is finite because R is noetherian. Let p_1, \dots, p_r be all the minimal elements of $\Delta_I(R)$ and let $\mathfrak{a} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$. Then we have $\Delta_I(R) = V(\mathfrak{a})$ by Lemma 2.1. We shall show that $\mathfrak{a} = \mathbf{I}(R)$. Since $V(\mathfrak{a}) = \Delta_{\mathbf{I}}(R) \subseteq V(\mathbf{I}(R))$ and \mathfrak{a} is a radical ideal, we have $\mathbf{I}(R) \subseteq \mathfrak{a}$. Conversely, let x be an element of a and let p be an element of D(x), where D(x) = $\{\mathfrak{p}; \mathfrak{p} \in \operatorname{Spec} R \text{ and } x \notin \mathfrak{p}\}$. Then we have $\mathfrak{p} \not\supseteq \mathfrak{a}$ and hence $\mathfrak{p} \notin V(\mathfrak{a}) = \Delta_{\mathfrak{l}}(R)$, i.e., R_{ν} is integrally closed. Since $R[1/x] = \bigcap_{\nu \in D(x)} R_{\nu}$, we see that R[1/x] is integrally closed, whence we have $x \in I(R)$. Thus we have $a \subseteq I(R)$, and hence a = I(R).

(II) The case P = F.

(1): Since $I(R) \subseteq F(R)$ and $I(R) \neq 0$, we have $F(R) \neq 0$. We shall prove that F(R) is a radical ideal of R. It is easy to see that we have $ar \in F(R)$ for any $a \in F(R)$ and $r \in R$. Let a and b be two non-zero elements of F(R). Then there exist elements $\alpha_1, ..., \alpha_s$ and $\beta_1, ..., \beta_t$ of R' such that $R'[1/a] = R[1/a]\alpha_1 + \cdots + R[1/a]\alpha_s$ and $R'[1/b] = R[1/b]\beta_1 + \cdots + R[1/b]\beta_t$. Let $B = R[\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t]$. Then B is a finite R-module, and we have $R'[1/a] \subseteq B[1/a]$ and $R'[1/b] \subseteq B[1/b]$. Hence, for any element x of R', there exists a positive integer n such that $a^n x \in B$ and $b^n x \in B$. Then we have $(a+b)^{2n}x \in B$, whence $x \in B[1/(a+b)]$. Therefore we have R'[1/(a+b)] = B[1/(a+b)], and hence R'[1/(a+b)] is a finite R[1/(a+b)] = B[1/(a+b)].

(2): By Lemma 2.1, it suffices to show that $V(F(R)) \subseteq \Delta_F(R)$. Let \mathfrak{p} be an element of V($\mathbf{F}(R)$) and suppose that $\mathfrak{p} \notin \Delta_{\mathbf{F}}(R)$. Then we have $R_{\mathfrak{p}} \in [\mathbf{F}]$, hence the integral closure R'_{ν} of R_{ν} in its quotient field is a finite R_{ν} -module. Thus there exist elements $\alpha_1, \ldots, \alpha_r$ of R' such that $R'_{\mu} = R_{\mu}\alpha_1 + \cdots + R_{\mu}\alpha_r$. Let C = $R[\alpha_1,...,\alpha_r]$. Then C is a finite R-module and we have $R'_{\nu} = C_{\nu}$. Let $P_1,...,P_n \in$ Spec C be all the minimal elements of $\Delta_I(C)$, and let $\mathfrak{p}_i = P_i \cap R$ for $1 \leq i \leq n$. We shall show that $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n \not\subseteq \mathfrak{p}$. In fact, if $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n \subseteq \mathfrak{p}$ then we have $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some *i*. Since $P_i \cap R = \mathfrak{p}_i \subseteq \mathfrak{p}$ and $C_{\mathfrak{p}} = R'_{\mathfrak{p}}$ is integrally closed, we see that C_{p_i} is also integrally closed. Hence we have $P_i \notin \Delta_I(C)$, which is a contradiction. Let x be an element of $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n \setminus \mathfrak{p}$, and let P be a prime ideal of C with $x \notin P$. Then we have $P_1 \cap \cdots \cap P_n \not\subseteq P$, whence we have $P \notin \Delta_I(C)$ because P_1, \ldots, P_n are all the minimal elements of $\Delta_I(C)$. Thus C_P is integrally closed, and hence we see that C[1/x] is also integrally closed. Therefore the integral closure of R[1/x] in its quotient field coincides with C[1/x]. Since C[1/x] is a finite R[1/x]-module, we have $x \in F(R)$, whence $F(R) \not\subseteq \mathfrak{p}$. Thus we have $\mathfrak{p} \notin \mathcal{F}(R)$ V(F(R)), which is a contradiction. Hence we have $\mathfrak{p} \in \Delta_F(R)$, and $V(F(R)) \subseteq$ $\Delta_{\mathbf{F}}(\mathbf{R}).$ Q. E. D.

By virtue of Proposition 2.4 and Corollary 2.3, we have the following:

THEOREM 2.5. Let R be a noetherian subring of an affine domain over k and let R' be the integral closure of R in its quotient field. Then R' is a finite R-module if and only if R'_{m} is a finite R_{m} -module for any maximal ideal m of R.

3. Affineness of noetherian subrings of an affine domain

In this section we shall prove that a noetherian subring R of an affine domain over k will be an affine domain over k provided the integral closure R' of R in its quotient field is equidimensional. For the proof we need the following:

382

THEOREM 3.1. Let R be a d-dimensional subring of an affine domain over k and let R' be the integral closure of R in its quotient field K. Let \mathfrak{M} be a maximal ideal of R' with ht $\mathfrak{M}=d$. If R is noetherian then $R'_{\mathfrak{M}}$ is a locality over k.

PROOF. Let $\mathfrak{m} = \mathfrak{M} \cap R$. Since R is noetherian, \mathfrak{m} is finitely generated, say $\mathfrak{m} = (x_1, \dots, x_t)R$. Let B be an affine domain over k contained in R such that R and B are birational and $x_1, ..., x_t \in B$. Let $M = \mathfrak{m} \cap B$. Then we have $x_1, ..., x_t \in B$. M and hence $MR = \mathfrak{m}$. Since ht $\mathfrak{M} = d$ and tr. deg_k $R'/\mathfrak{M} \leq \operatorname{tr. deg}_k R' - \operatorname{ht} \mathfrak{M}$, we have tr. deg_k $B/M \leq tr. deg_k R'/\mathfrak{M} = 0$. Thus B/M is algebraic over k, hence B/Mis a field and M is a maximal ideal of B. Let B' be the integral closure of B in K and let $\overline{R} = R[B']$. Since B is an affine domain over k, B' is a finite B-module. Whence \overline{R} is a finite *R*-module, especially \overline{R} is noetherian. Let $\mathfrak{N} = \mathfrak{M} \cap \overline{R}$ and let $M' = \mathfrak{N} \cap B'$. Since R' is integral over \overline{R} , we have ht $\mathfrak{N} \ge ht \mathfrak{M} = d$, hence we have ht $\mathfrak{N} = d$. On the other hand, B' is integral over B and M' lies over the maximal ideal M of B. Hence M' is a maximal ideal of B', and we have ht M' = dbecause B' is an affine domain over k. Thus we have dim $B'_{M'} = \dim \overline{R}_{\mathfrak{N}}$. Notice that $M'\overline{R}_{\mathfrak{N}} \supseteq M\overline{R}_{\mathfrak{N}} = \mathfrak{m}\overline{R}_{\mathfrak{N}}$ and $\mathfrak{m}\overline{R}_{\mathfrak{N}}$ is a $\mathfrak{N}\overline{R}_{\mathfrak{N}}$ -primary ideal. Therefore there exists a positive integer r such that $\mathfrak{N}^r \overline{R}_{\mathfrak{N}} \subseteq M' \overline{R}_{\mathfrak{N}}$. Let k' = B'/M' and let $L = \overline{R}/\mathfrak{N}$. Then we have length_k, $\overline{R}_{\mathfrak{N}}/M'\overline{R}_{\mathfrak{N}} \leq (\text{length}_{k'} L)(\text{length}_{\overline{R}} \overline{R}/\mathfrak{N})$. Since ht $\mathfrak{N} = d$, we have tr. deg_k $\overline{R}/\mathfrak{N} = 0$, and hence $L = \overline{R}/\mathfrak{N}$ is a subfield of a certain affine domain over k (cf. [7, Theorem 2]). Thus L is a finite algebraic extension field of k, whence length_k L is finite, a fortiori, length_{k'} L is finite. On the other hand, since \overline{R} is noetherian, we have length $\overline{R} \overline{R}/\Re^r$ is finite. Thus we have length $k' \overline{R}_{\Re}/\Re^r$ $M'\bar{R}_{\mathfrak{N}}$ is finite. Moreover, since B' is a normal affine domain, $B'_{M'}$ is analytically normal by Theorem (37.5) in [6], and obviously $\overline{R}_{\mathfrak{N}}$ and $B'_{M'}$ are birational. Hence we have $B'_{M'} = \overline{R}_{\Re}$ by Theorem (37.4) in [6]. Thus \overline{R}_{\Re} is integrally closed, whence we have $\overline{R}_{\Re} = R'_{\Re}$ because R'_{\Re} is integral and birational over \overline{R}_{\Re} . Therefore $R'_{\mathfrak{N}}$ is a local ring, and hence we have $R'_{\mathfrak{N}} = R'_{\mathfrak{M}}$. Whence we have $R'_{\mathfrak{M}} = B'_{M'}$ and $R'_{\mathfrak{M}}$ is a locality over k. Q. E. D.

THEOREM 3.2. Let R be a d-dimensional subring of an affine domain over k and let R' be the integral closure of R in its quotient field. If R is noetherian and R' is equidimensional, that is, dim $R'_{\mathfrak{M}} = d$ for any maximal ideal \mathfrak{M} of R', then R is an affine domain over k.

PROOF. Since R' is equidimensional, $R'_{\mathfrak{M}}$ is a locality over k for any maximal ideal \mathfrak{M} of R' by Theorem 3.1. Thus R' is an affine domain over k by Theorem 1.6, and hence R is also an affine domain over k by Lemma 1.4. Q.E.D.

Recall that a ring R is called catenary if, for any pair of prime ideals \mathfrak{p} , q with $\mathfrak{p} \supseteq \mathfrak{q}$, we have ht $\mathfrak{p} = ht \mathfrak{q} + ht(\mathfrak{p}/\mathfrak{q})$. A ring R is called universally catenary if R is noetherian and if every R-algebra of finite type is catenary (cf. [4, (14.B)]).

COROLLARY 3.3. Let R be a subring of an affine domain over k. If R is universally catenary and equidimensional then R is an affine domain over k.

PROOF. Let $\mathfrak{m} = (x_1, ..., x_t)R$ be an arbitrary maximal ideal of R and let B be an affine domain over k contained in R such that R and B are birational and $x_1, ..., x_t \in B$. Let B' be the integral closure of B in its quotient field and let $\overline{R} = R[B']$. Then \overline{R} is a finite R-module. Let $\mathfrak{M}_1, ..., \mathfrak{M}_n$ be all the maximal ideals of \overline{R} lying over \mathfrak{m} . Since R is universally catenary and \overline{R} is a finite R-module, the dimension formula holds between R and \overline{R} , whence we have ht $\mathfrak{M}_i =$ ht \mathfrak{m} for each i (cf. [4, (14.C)]). Thus, as is shown in the proof of Theorem 3.1, we have $\overline{R}_{\mathfrak{M}_i} = B'_{\mathfrak{M}_i}$ for each i, where $M_i = \mathfrak{M}_i \cap B'$. Therefore $\overline{R}_{\mathfrak{M}_i}$ is integrally closed for each i, hence \overline{R}_m is integrally closed. Thus the integral closure of R_m in its quotient field is equal to \overline{R}_m which is a finite R_m -module. Whence, by Theorem 2.5, the integral closure R' of R in its quotient field is a finite R-module, and hence the dimension formula holds between R and R'. Since R is equidimensional, we see that R' is also equidimensional. Thus the assertion follows from Theorem 3.2.

References

- [1] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972.
- P. Eakin, A note on finite dimensional subrings of polynomial rings, Proc. Amer. Math. Soc. 31 (1972), 75-80.
- [3] J. M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras, Arch. Math. 36 (1981), 305–312.
- [4] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- [5] M. Nagata, Lectures on the fourteenth problem of Hilbert, Lectures on Math. and Physics, Vol. 31, Tata Inst. of Fund. Research, Bombay, 1965.
- [6] M. Nagata, Local Rings, Interscience Tracts 13, John Wiley, 1962.
- [7] A. R. Wadsworth, Hilbert subalgebras of finitely generated algebras, J. of Algebra 43 (1976), 298-304.

Department of Mathematics, Faculty of Science, Osaka University