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Introduction

Let A be an affine domain over a field k and let R be a subring of 4 containing
k. It is well-known that R is again an affine domain over k when dim R=1.
But, when dim R=2, R is not neccessarily noetherian, and not necessarily an
affine domain over k even when R is noetherian. The purpose of the present
paper is to find certain conditions for R to be an affine domain over k.

In the first section we define an ideal .«7(R) of R and by making use of this
ideal we prove that R is an affine domain over k if and only if R,, is a locality over
k for any maximal ideal m of R, where a locality over k is a local ring which is a
localization of an affine domain over k (cf. Theorem 1.6).

It is known that R is an affine domain over k if R is a neotherian normal
subring of dimension 2 and tr.deg, R/p=1 for any prime ‘ideal p of height 1
(cf. [2], [S]). If R satisfies these conditions it is seen that R is equidimensional,
that is, we have dim R, =2 for any maximal ideal m of R. In the third section
we generalize this result as follows: if R is a noetherian subring of an affine domain
over a field k such that the integral closure R’ of R in its quotient field is equidi-
mensional then R is an affine domain over k (cf. Theorem 3.2).

As a corollary of this theorem we prove that if R is a universally catenary
and equidimensional subring then R is an affine domain over k. For the proof
of this corollary we need the following theorem: the finiteness of the integral
closure R’ of R in its quotient field is a local property, that is, R’ is a finite R-
module if and only if R, is a finite R,-module for any maximal ideal m of R.
We prove this theorem in the second section (cf. Theorem 2.5).

Throughout this paper we fix a field k. All rings under consideration are
commutative k-algebras and all affine domains are assumed to be defined over k.

1. The ideal o/ (R)

Let A be an affine domain over a field k, that is, an integral domain which is
finitely generated over k. We are mainly interested in subrings R of A, and we
shall study when R is again an affine domain over k. For this purpose we define
an ideal &/(R) of R as follows:
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PROPOSITION 1.1. Let R be a subring of an affine domain A over k. Define
«(R) by

#(R): = {a; ae R and R[1/a] is an affine domain over k} U {0}.
Then «/(R) is a non-zero radical ideal of R.

PrOOF. By virtue of Propositon (2.1) in [3], we see that &/(R)#0. We
shall prove that o«/(R) is an ideal of R. Since R[1/ax]=R[1/a][1/x], we have
axe Z(R) for any ae «(R) and xe R. We shall show a+be«(R) for any
non-zero elelments a and b of »/(R). Since R[1/a] and R[1/b] are affine domains
over k, there exist elements a,,..., a, and b,,..., b, of R such that R[l/a]=
k(l/a, a,,..., a,] and R[1/b]=k[1/b, b,,..., b,]. Let C=k[a, b, ay,..., a
by,..., b]. Then C is an affine domain over k and we have C<R. Let x be an
arbitrary element of R. Since R[1/a]=C[1/a] and R[1/b]<C[1/b], we have
a"x e C and b"x € C for a sufficiently large positive integer n. Then, as is easily
seen, we have (a+b)?>"xe C, whence we have xeC[1/(a+b)]. Since x is an
arbitrary element of R, we have C[1/(a+ b)] = R[1/(a+ b)] and hence C[1/(a+ b)]
=R[1/(a+b)]. Therefore R[1/(a+b)] is an affine domain over k and we have
a+be L (R). Thus &(R) is an ideal of R. Finally we prove that «/(R) is a
radical ideal. Let x be an element of R with x" € o7(R) for some positive integer
n. Since R[1/x]=R[1/x"], we have xe/(R). Therefore «/(R) is a radical
ideal. Q.E.D.

COROLLARY 1.2. Let R be a subring of an affine domain over k. Then we
have dim R =tr.deg, R.

PrROOF. Let n=tr.deg, R and let a be a non-zero element of «/(R). Then
R[1/a] is an affine domain over k and hence we have dim R[1/a]=n (cf. [4,
(14.G)]). Therefore we have dim R=>dim R[1/a]=n. Since dim R <n in general,
we have dim R=n. Q.E.D.

We call a local ring S a locality over k if S is a localization of an affine domain
over k with respect to a prime ideal (cf. [6, Ch. VI]).

LEMMA 1.3. Let R be a subring of an affine domain A over k and let p
be a prime ideal of R. Then R, is a locality over k if and only if «Z(R)%p.

PROOF. Let x be a non-zero element of o/(R). Replacing 4 by R[1/x],
we may assume that R and A4 are birational. Assume that «/(R)%p and take an
element a of &/(R)\p. Then R[1/a] is an affine domain over k and p[1/a] is a
prime ideal of R[1/a]. Hence R,=R[1/a],,, is a locality over k. Conversely,
assume that R, is a locality over k. Then there exist an affine domain B over k
and a prime ideal P of B such that R,=B,. We may assume that BER. Let K
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be the quotient field of 4 and let B’ and R’ be the integral closures of B and R in
K, respectively. Let p’ be a prime ideal of R’ lying over p and let P'=p'nB'.
Since the integral closure of R, =B, in K coincides with R}, =B}, we have R}, =
Bp.. Let F={Q; QeSpecB’, htQ=1 and Bjp2R’}. We claim that F is a
finite set. In fact, since A is an affine domain, the integral closure A’ of 4 in K
is also an affine domain. Therefore A’ is finitely generated over B’, whence there
exists an element b of B’ such that B'[1/b]2 A’2R’. Then it is easy to see that F
is a subset of the set of the minimal prime divisors of b. Thus F is a finite set.
Let F={Pi,...,P,} and let P,=P;nB for 1<i<n. Suppose that P;n
-+NP,=P. Then we have P,cP for some i, and hence Bp,2Bp=R,2R/,
which is a contradiction. Thus we have P, n:--nP,%P. Take an element a
of Pyn:--nP,\P and let A={Q; QeSpec B’, htQ=1 and ae&Q}. Then, as is
easily seen, we have By 2R’ for any element Q of A, whence we have B'[1/a]=
NgeaBg2R’. Therefore we have B’[1/a]=R’[1/a], and R’[1/a] is an affine
domain over k. Hence R[1/a] is also an affine domain over k by the following
well-known lemma. Since a € BIP<=R\p, we have o&/(R)%p. Q.E.D.

LEMMA 1.4. Let a ring R’ be an integral extension of a ring R. If R is
an affine domain over k, then R is also an affine domain over k.

ProOOF. See [1, Ch.V, § 1.9, Lemma 5].

COROLLARY 1.5. Let R be a subring of an affine domain over k. Then we
have V(«£(R))={p; p € Spec R and R, is not a locality over k}.

The following theorem is an immediate cosequence of Corollary 1.5 which
asserts that affineness is a local property for subrings of an affine domain.

THEOREM 1.6. Let R be a subring of an affine domain over k. Then the
following three conditions are equivalent to each other.

(1) R is an affine domain over k.

(2) R, is a locality over k for any prime ideal p of R.

(3) R, is alocality over k for any maximal ideal m of R.

2. Open properties of a ring

Let P be a property for domains. For the sake of brevity, we use the symbol
[P] to denote the class of domains which have the property P. We say that a
property P is stable under localization if a domain R belongs to [P] then R,
belongs to [P] for any prime ideal p of R. For a domain R, we define

P(R) = {a; aeR and R[1/a]e[P]} U {0}

and
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Ap(R) = {p; peSpecR and R, & [P]}.
We say that P is an open property for R if 4p(R) is a closed set of Spec R.

LEMMA 2.1. Let P be a property stable under localization and let R be a
domain. Then

(1) If P(R) is an ideal of R then P(R) is a radical ideal of R.

(2) 4p(R)=V(P(R)).

(3) Ifpedp(R) then qe 4p(R) for any specialization q of p.

PRrOOF. (1): Since R[1/a]=R[1/a"], we have ae P(R) if and only if a"e
P(R). Hence the assertion is obvious.

(2): " Let p be a prime ideal of R with p2P(R) and let a be an element of
P(R)\p. Then R[1/a]e[P] and p[l/a]eSpecR[1/a], hence we have R,=
R[1/a],1,a; € [P] because Pis stable under localization. Thus we have p & 4p(R).

(3): Let pedp(R) and let q be a specialization of p. Suppose that q&
4p(R). Then we have R, e[P], and hence we have R, e [P] because R, is a
localization of R, with respect to the prime ideal pR,. Thus we have p & 4p(R),
which is a contradiction. Therefore we have q € 4p(R). Q.E.D.

LEMMA 2.2. Let P be a property stable under localization and let R be a
domain. Then the following two conditions are equivalent to each other.

(1) 4p(R)=V(P(R)).

(2) Ifp isa prime ideal of R with R, € [P], then P(R)%p.

PROOF. (1)=>(2): Let p be a prime ideal of R with R, e [[P]. Then we have
p& 4p(R) by the definition. Since Ap(R)=V(P(R)), we have P(R)Zp.

(2) =(1): If the condition (2) holds, we have R, & [P], i.e., p € 4p(R) for
any p € V(P(R)). Thus we have V(P(R))<S 4p(R). On the other hand, we have
V(P(R))24p(R) by Lemma 2.1, whence 4p(R)=V(P(R)). Q.E.D.

COROLLARY 2.3. Let P be a property stable under localization and let R
be a domain. Assume that R satisfies the following three conditions.

(1) P(R) is an ideal of R.

(2) 4p(R)=V(P(R)).

(3) R, €[P] for any maximal ideal m of R.
Then R has the property P.

PrROOF. - We have P(R)Zm for any maximal ideal m of R by Lemma 2.2.
Since P(R) is an ideal of R, we have P(R)=R, hence R e [P]. Q.E.D.

We shall denote by I and F the properties for domains defined by

R e [I] implies that R is integrally closed.
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R e [F] implies that the integral closure R’ of R in its quotient field is a
finite R-module.

PROPOSITION 2.4. Let R be a noetherian subring of an affine domain over k
and let P be either I or F.

Then we have the following:

(1) P(R) is a non-zero radical ideal of R.

(2) 4p(R)=V(P(R)).

PRrROOF. (I) The case P=1I.

(1): Let R’ be the integral closure of R in the quotient field K of R and let a
be a non-zero element of «/(R). Since R[1/a] is an affine domain, the integral
closure R'[1/a] of R[1/a] in K is a finite R[1/a]-module. Hence there exist
elements a,,..., «, of R’ such that R'[1/a]=R[l/a]a,+ -+ R[1/a]e,. Take an
element b of R such that ba;e R for 1<i<s. Then we have R’[l/a]gR[l/a]
[1/b], whence we have R'[1/ab]=R[1/ab]. Thus R[1/ab] is integrally closed,
and hence we have 0#ab e I(R). Therefore I(R)#0. Next we shall prove that
I(R) is a radical ideal of R. It is easy to see that we have ar € I(R) for any a € I(R)
and re R. Let a and b be two non-zero elements of I(R) and let p be an element
of D(a+b), where D(a+b)={p; peSpecR and a+be&p}. Then we have either
a&yp or bgp, and we may assume that agp. Then R[1/a] is integrally closed
and p[1/a] is a prime ideal of R[1/a], hence R,=R[1/a],, 4 is integrally closed.
Since R[1/(a+b)]=\,epwu+r R, wWe see that R[1/(a+b)] is integrally closed,
ie., a+beI(R). Therefore I(R) is an ideal of R, and hence I(R) is a radical
ideal of R by Lemma 2.1. '

(2): Let p be a minimal element of 4,(R). We claim that depth R, =1.
In fact, suppose that depth R,>1 and let A={q; geSpecR, depthR,=1 and
qu}., Then, for any element q of A, we have q& 4,(R), i.e., R, is integrally
closed because p is a minimal element of 4,(R). Since R,=/\ 4R, we see that
R, is integrally closed. Hence we have p & 4,(R), which is a contradiction. By
Lemma 2.1, we have 4,(R)< V(I(R)), hence we have p2I(R). Let a be a non-
zero element of I(R). Since depthR,=1 and aep, p is a prime divisor of aR.
Therefore we see that the number of the minimal elements of 4,(R) is finite because
R is noetherian. Let p,,..., p, be all the minimal elements of 4,(R) and let
a=p;N--Nnp, Then we have 4;(R)=V(a) by Lemma 2.1. We shall show that
a=I(R). Since V(a)=4,(R)= V(I(R)) and a is a radical ideal, we have I(R)<a.
Conversely, let x be an element of a and let p be an element of D(x), where D(x)=
{p;peSpecR and x&p}. Then we have pz2a and hence pe V(a)=4,(R),
i.e., R, is integrally closed. Since R[1/x]=\,p.)R,, we see that R[1/x] is
integrally closed, whence we have x e I(R). Thus we have a<I(R), and hence
a=I(R).
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(I) The case P=F.

(1): Since I(R)< F(R) and I(R)#0, we have F(R)#0. We shall prove that
F(R) is a radical ideal of R. It is easy to see that we have are F(R) for any
aeF(R) and reR. Let a and b be two non-zero elements of F(R). Then there
exist elements «,,..., o, and B,,..., B, of R’ such that R'[1/a]=R[1/a]e;+ -+
R[1/a]ag and R'[1/b]=R[1/b]B, +---+ R[1/b]B,. Let B=R[a,,..., &, By,..., B
Then B is a finite R-module, and we have R'[1/a]< B[1/a] and R'[1/b]< B[1/b].
Hence, for any element x of R’, there exists a positive integer n such that a"xe B
and b"x e B. Then we have (a+ b)?"xe B, whence xe€ B[1/(a+b)]. Therefore
we have R'[1/(a+ b)]=B[1/(a+ b)], and hence R'[1/(a+ b)] is a finite R[1/(a + b)]-
module, i.e., a+ b e F(R). Thus F(R) is an ideal of R, and F(R) is a radical ideal
by Lemma 2.1.

(2): By Lemma 2.1, it suffices to show that V(F(R))<=4x(R). Let p be an
element of V(F(R)) and suppose that p& 4g(R). Then we have R, e [F], hence
the integral closure R, of R, in its quotient field is a finite R,-module. Thus
there exist elements aj,..., o, of R’ such that Rj=R,x;+--+R,a,. Let C=
R[ay,..., ). Then Cis a finite R-module and we have R;=C,. Let Py,..., P, e
Spec C be all the minimal elements of 4,(C), and let p;=P;nNR for 1ZiZn.
We shall show that p, n---np,%p. In fact, if p,n---Np,Sp then we have

;Sp for some i. Since P,nR=p;Sp and C,=R; is integrally closed, we see
that C,, is also integrally closed. Hence we have P;¢& 4,(C), which is a con-
tradiction. Let x be an element of p; n--- N p,\p, and let P be a prime ideal of
C with x¢z P. Then we have P, n--- n P, P, whence we have P& 4,(C) because
P,,..., P, are all the minimal elements of 4,(C). Thus C, is integrally closed,
and hence we see that C[1/x] is also integrally closed. Therefore the integral
closure of R[1/x] in its quotient field coincides with C[1/x]. Since C[1/x] is a
finite R[1/x]-module, we have x € F(R), whence F(R)%Zp. Thus we have p&
V(F(R)), which is a contradiction. Hence we have p € 4z(R), and V(F(R))<
4x(R). Q.E.D.

By virtue of Proposition 2.4 and Corollary 2.3, we have the following:

THEOREM 2.5. Let R be a noetherian subring of an affine domain over k
and let R' be the integral closure of R in its quotient field. Then R’ is a finite
R-module if and only if R}, is a finite R, -module for any maximal ideal m of R.

3. Affineness of noetherian subrings of an affine domain

In this section we shall prove that a noetherian subring R of an affine domain
over k will be an affine domain over k provided the integral closure R’ of R in its
quotient field is equidimensional. For the proof we need the following:
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THEOREM 3.1. Let R be a d-dimensional subring of an affine domain over k
and let R’ be the integral closure of R in its quotient field K. LetIM be
a maximal ideal of R’ with ht M =d. If R is noetherian then Ry, is a locality
over k.

PrOOF. Let m=Mn R. Since R is noetherian, m is finitely generated, say
m=(x,,..., x)R. Let B be an affine domain over k contained in R such that R
and B are birational and x,,..., x,e B. Let M=mnB. Then we have x,,..., x,€
M and hence MR=m. Since ht M=d and tr.deg, R’ /M <tr. deg, R’ —ht M, we
have tr. deg, B/M <tr.deg, R'/9=0. Thus B/M is algebraic over k, hence B/M
is a field and M is a maximal ideal of B. Let B’ be the integral closure of B in K
and let R=R[B’]. Since B is an affine domain over k, B’ is a finite B-module.
Whence R is a finite R-module, especially R is noetherian. Let =M n R and
let M'=9nB’. Since R’ is integral over R, we have ht R=ht M=d, hence we
have ht t=d. On the other hand, B’ is integral over B and M’ lies over the
maximal ideal M of B. Hence M’ is a maximal ideal of B’, and we have ht M'=d
because B’ is an affine domain over k. Thus we have dim Bj;. =dim Ry. Notice
that M'Rya2 MRy=mRy, and mRy, is a RNRy-primary ideal. Therefore there
exists a positive integer r such that MRy M’'Ry,. Let k'=B’'/M’ and let
L=R/M. Then we have length,. Ry/M’'Ry <(length,. L)(lengthg R/9"). Since
ht R =d, we have tr. deg, R/M =0, and hence L= R/9t is a subfield of a certain affine
domain over k (cf. [7, Theorem 2]). Thus L is a finite algebraic extension field
of k, whence length, L is finite, a fortiori, length,. L is finite. On the other hand,
since R is noetherian, we have lengthg R/" is finite. Thus we have length, Rg/
M'R,, is finite. Moreover, since B’ is a normal affine domain, Bj,. is analytically
normal by Theorem (37.5) in [6], and obviously R; and Bj),. are birational.
Hence we have B),. = Ry, by Theorem (37.4) in [6]. Thus Ry, is integrally closed,
whence we have Ry, = Rj, because R}, is integral and birational over Ry,. Therefore
Rj, is a local ring, and hence we have Ry =Ry,. Whence we have Ry, =B),. and
Ry, is a locality over k. Q.E.D.

THEOREM 3.2. Let R be a d-dimensional subring of an affine domain over k
and let R’ be the integral closure of R in its quotient field. If R is noetherian
and R’ is equidimensional, that is, dim Ry =d for any maximal ideal M of R’,
then R is an affine domain over k.

PrOOF. Since R’ is equidimensional, Rgy is a locality over k for any maximal
ideal 9 of R’ by Theorem 3.1. Thus R’ is an affine domain over k by Theorem
1.6, and hence R is also an affine domain over k by Lemma 1.4. Q.E.D.

Recall that a ring R is called catenary if, for any pair of prime ideals p, q
with p2q, we have ht p=ht q+ht(p/q). A ring R is called universally catenary
if R is noetherian and if every R-algebra of finite type is catenary (cf. [4, (14.B)]).
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COROLLARY 3.3. Let R be a subring of an affine domain over k.  If R is
universally catenary and equidimensional then R is an affine domain over k.

PrROOF. Let m=(xy,..., Xx,)R be an arbitrary maximal ideal of R and let B
be an affine domain over k contained in R such that R and B are birational and
Xy,..., X, € B. Let B’ be the integral closure of B in its quotient field and let
R=R[B’]. Then R is a finite R-module. Let M,,..., M, be all the maximal
ideals of R lying over m. Since R is universally catenary and R is a finite R-
module, the dimension formula holds between R and R, whence we have ht ;=
htm for each i (cf. [4, (14.C)]). Thus, as is shown in the proof of Theorem 3.1,
we have Ry, = Bj),, for each i, where M;=9;n B’. Therefore Ry, is integrally
closed for each i, hence R, is integrally closed. Thus the integral closure of R,
in its quotient field is equal to R, which is a finite R, -module. Whence, by
Theorem 2.5, the integral closure R’ of R in its quotient field is a finite R-module,
and hence the dimension formula holds between R and R’. Since R is equidi-
mensional, we see that R’ is also equidimensional. Thus the assertion follows
from Theorem 3.2. Q.E.D.
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