Orbits on affine symmetric spaces under the action of parabolic subgroups

Toshihiko Matsuki
(Received December 17, 1981)

Introduction

Let G be a connected Lie group, σ an involutive automorphism of G and H a subgroup of G satisfying $\left(G_{\sigma}\right)_{0} \subset H \subset G_{\sigma}$ where $G_{\sigma}=\{x \in G \mid \sigma(x)=x\}$ and $\left(G_{\sigma}\right)_{0}$ is the identity component of G_{σ}. Then the triple (G, H, σ) is called an affine symmetric space. We assume that G is real semisimple throughout this paper.

Let P be a minimal parabolic subgroup of G. Then the double coset decomposition $H \backslash G / P$ is studied in [3] and [4]. Let P^{\prime} be an arbitrary parabolic subgroup of G containing P. Then we have a canonical surjection

$$
f: H \backslash G / P \longrightarrow H \backslash G / P^{\prime} .
$$

The purpose of this paper is to determine $f^{-1}(\mathcal{O})$ for an arbitrary double coset \mathcal{O} in $H \backslash G / P^{\prime}$.

When G is a complex semisimple Lie group and H is a real form of G, the double coset decomposition $H \backslash G / P$ is studied in [1] and [7] and structures of H-orbits on G / P^{\prime} are studied in [7].

When G is a complex semisimple Lie group, H is a complex subgroup of G and P^{\prime} is a parabolic subgroup of G corresponding to a simple root, the structure of $f^{-1}(\mathcal{O})$ is determined for an arbitrary double coset \mathcal{O} in $H \backslash G / P^{\prime}$ in [5], p. 29, Lemma 5.2.

The results of this paper are as follows. Let \mathfrak{g} and \mathfrak{b} be the Lie algebras of G and H respectively, and the automorphism σ of g be the one induced from the automorphism σ of G. Let θ be a Cartan involution of \mathfrak{g} such that $\sigma \theta=\theta \sigma$. Let $\mathfrak{g}=\mathfrak{b}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$) be the decomposition of \mathfrak{g} into the +1 and -1 eigenspaces for σ (resp. θ).

Let P^{0} be a minimal parabolic subgroup of G. Then the factor space G / P^{0} is identified with the set of minimal parabolic subalgebras of \mathfrak{g}. By Theorem 1 of [3], every H-conjugacy class of minimal parabolic subalgebras of \mathfrak{g} contains a minimal parabolic subalgebra of the form $\mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$where \mathfrak{a} is a σ-stable maximal abelian subspace of $\mathfrak{p}, \Sigma(\mathfrak{a})^{+}$is a positive system of the root system $\Sigma(\mathfrak{a})$ of the pair $(\mathfrak{g}, \mathfrak{a})$ and $\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}$ is the corresponding minimal parabolic subalgebra of \mathfrak{g}.

Thus the problem is reduced to the following. Fix a σ-stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} and a minimal parabolic subalgebra $\mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$. Let \mathfrak{P}^{\prime} be an arbitrary parabolic subalgebra of \mathfrak{g} containing \mathfrak{P} and P^{\prime} the corresponding parabolic subgroup of G. Then we have only to determine the double coset decomposition

$$
H \backslash H P^{\prime} / P
$$

Since there is a canonical bijection $H \cap P^{\prime} \backslash P^{\prime}\left|P \rightrightarrows H \backslash H P^{\prime}\right| P$ and since the factor space $P^{\prime} \mid P$ is identified with the set of minimal parabolic subalgebras of g contained in \mathfrak{P}^{\prime}, we have only to consider $H \cap P^{\prime}$-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} contained in \mathfrak{P}^{\prime}. Let $\mathfrak{P}^{\prime}=\mathfrak{m}^{\prime}+\mathfrak{a}^{\prime}+\mathfrak{n}^{\prime}$ be the Langlands decomposition of \mathfrak{P}^{\prime} such that $\mathfrak{a}^{\prime} \subset \mathfrak{a}$. A subset $\mathfrak{a}_{+}^{\prime}$ of \mathfrak{a}^{\prime} is defined by $\mathfrak{a}_{+}^{\prime}=\left\{Y \in \mathfrak{a}^{\prime} \mid\right.$ $\alpha(Y)>0$ for all $\alpha \in \Sigma(\mathfrak{a})$ satisfying $\left.\mathfrak{g}(\mathfrak{a} ; \alpha) \subset \mathfrak{n}^{\prime}\right\}(\mathfrak{g}(\mathfrak{a} ; \alpha)=\{X \in \mathfrak{g} \mid[Y, X]=\alpha(Y) X$ for all $Y \in \mathfrak{a}\}$). Now we can state the main result of this paper as follows.

Theorem. Every minimal parabolic subalgebra of \mathfrak{g} contained in \mathfrak{P}^{\prime} is $H \cap P^{\prime}$-conjugate to a minimal parabolic subalgebra \mathfrak{P}_{1} of \mathfrak{g} of the form

$$
\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)
$$

where \mathfrak{a}_{1} is a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{1} \supset \mathfrak{a}^{\prime}$ and $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$ satisfies $\left\langle\Sigma\left(\mathfrak{a}_{1}\right)^{+}, \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}(=\{t \in \boldsymbol{R} \mid t \geq 0\})$.

Let $\mathcal{Z}_{\mathfrak{8}}\left(\mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}\right)$ denote the centralizer of $\mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}$ and \mathcal{Z} the center of $\boldsymbol{3}_{8}\left(\mathfrak{a}^{\prime}+\right.$ $\left.\sigma \mathfrak{a}^{\prime}\right)$. Define a subalgebra $\mathrm{m}^{\prime \prime}$ of $\mathbf{3}_{9}\left(\mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}\right)$ by $\mathfrak{m}^{\prime \prime}=\left\{X \in \mathbf{3}_{\mathfrak{g}}\left(\mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}\right) \mid B(X\right.$, $3 \cap \mathfrak{a})=\{0\}\}$ where $B($,$) is the Killing form of \mathfrak{g}$. Then a subspace \mathfrak{a}_{1} of \mathfrak{p} satisfying the condition of Theorem contains $\mathcal{B} \cap \mathfrak{a}$. For such a subspace \mathfrak{a}_{1} of \mathfrak{p}, define subsets $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathfrak{m}^{\prime}}$ and $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}$ of $\Sigma\left(\mathfrak{a}_{1}\right)$ by

$$
\Sigma\left(\mathfrak{a}_{1}\right)_{\mathfrak{m}^{\prime}}=\left\{\alpha \in \Sigma\left(\mathfrak{a}_{1}\right) \mid\left\langle\alpha, \mathfrak{a}^{\prime}\right\rangle=\{0\}\right\}
$$

and

$$
\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}=\left\{\alpha \in \Sigma\left(\mathfrak{a}_{1}\right) \mid\left\langle\alpha, \mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}\right\rangle=\{0\}\right\} .
$$

We consider closed H-orbits and open H-orbits on $H P^{\prime} \mid P$ with respect to the topology of $H P^{\prime} \mid P$.

Corollary 1. (a) A minimal parabolic subalgebra $\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$ satisfying the conditions of Theorem is contained in a closed H-orbit on $H P^{\prime} \mid P$ (here we identified \mathfrak{P}_{1} with a point in $P^{\prime} \mid P$) if and only if the following three conditions are satisfied:
(i) $\left\langle\Sigma\left(\mathfrak{a}_{1}\right)_{\mathfrak{m}^{\prime}}^{+}, \sigma \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$where $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}^{+}=\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}} \cap \Sigma\left(\mathfrak{a}_{1}\right)^{+}$,
(ii) $\Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime \prime}}^{+\prime}$ is σ-compatible (i.e. $\left.\alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime \prime}}^{+\prime},\left.\alpha\right|_{m^{\prime \prime} \cap a_{1} \cap q} \neq 0 \Rightarrow \sigma \alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime \prime}}^{+}\right)$ where $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}=\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}} \cap \Sigma\left(\mathfrak{a}_{1}\right)^{+}$,
(iii) $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{b}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{h}$.
(b) A minimal parabolic subalgebra $\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$satisfying the conditions of Theorem is contained in an open H-orbit on $H P^{\prime} \mid P$ if and only if the following three conditions are satisfied:
(i) $\left\langle\Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime}}^{+}, \sigma \theta \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$,
(ii) $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}^{+}$is $\sigma \theta$-compatible (i.e. $\left.\alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+},\left.\alpha\right|_{\mathrm{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{q}} \neq 0 \Rightarrow \sigma \theta \alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}\right)$,
(iii) $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{q}$.

For an affine symmetric space (G, H, σ), the associated affine symmetric space $\left(G, H^{\prime}, \sigma \theta\right)$ is defined by $H^{\prime}=(K \cap H) \exp (\mathfrak{p} \cap \mathfrak{q})$. Then there exists a one-to-one correspondence between the double coset decompositions $H \backslash G / P$ and $H^{\prime} \backslash G / P$. If \mathfrak{a} is a σ-stable maximal abelian subspace of \mathfrak{p}, then the H-orbit containing $\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$corresponds to the H^{\prime}-orbit containing the same $\mathfrak{P}(\mathfrak{a}$, $\left.\Sigma(\mathfrak{a})^{+}\right)([3]$, Corollary 2 of Theorem 1).

Corollary 2. (a) In the above correspondence between $H \backslash G / P$ and $H^{\prime} \backslash G / P, H \backslash H P^{\prime} / P$ corresponds to $H^{\prime} \backslash H^{\prime} P^{\prime} \mid P$. Moreover closed H-orbits on $H P^{\prime} \mid P$ correspond to open H^{\prime}-orbits on $H^{\prime} P^{\prime} \mid P$ and open ones to closed ones.
(b) Let $P^{\prime \prime}$ be a parabolic subgroup of G containing P^{\prime}. Then there is a one-to-one correspondence between $H \backslash H P^{\prime \prime} \mid P^{\prime}$ and $H^{\prime} \backslash H^{\prime} P^{\prime \prime} \mid P^{\prime}$. In this correspondence closed H-orbits on $H P^{\prime \prime} \mid P^{\prime}$ correspond to open H^{\prime}-orbits on $H^{\prime} P^{\prime \prime} \mid P^{\prime}$ and open ones to closed ones.

Lastly we state an explicit formula for the decomposition $H \backslash H P^{\prime} / P$ applying the method used in $\S 2$ of [3]. Let \mathfrak{a}_{0} be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{0} \subset \mathfrak{a}^{\prime}$ and that $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{0} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{b}$. Fix a positive system $\Sigma\left(\mathfrak{a}_{0}\right)^{+}$of $\Sigma\left(\mathfrak{a}_{0}\right)$ such that $\left\langle\Sigma\left(\mathfrak{a}_{0}\right)^{+}, \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$. Then $\mathfrak{P}_{(0)}=$ $\mathfrak{P}\left(\mathfrak{a}_{0}, \Sigma\left(\mathfrak{a}_{0}\right)^{+}\right)$is contained in \mathfrak{P}^{\prime}. Let $P_{(0)}$ be the corresponding minimal parabolic subgroup of G.

Let $\overline{\mathfrak{a}}$ be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\overline{\mathfrak{a}} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{b}, \overline{\mathfrak{a}} \cap \mathfrak{h} \supset \mathfrak{a}_{0} \cap \mathfrak{h}$ and $\overline{\mathfrak{a}} \cap \mathfrak{q} \subset \mathfrak{a}_{0} \cap \mathfrak{q}$. Put $\mathfrak{r}=\left\{Y \in \overline{\mathfrak{a}} \cap \mathfrak{b} \mid B\left(Y, \mathfrak{a}_{0} \cap \mathfrak{b}\right)=\right.$ $\{0\}\}$. Put $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathfrak{m}^{\prime \prime}}=\left\{\alpha \in \Sigma\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}} \mid H_{\alpha} \in \mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{0} \cap \mathfrak{b}\right\}$ where $H_{\alpha} \in \mathfrak{a}_{0}$ is defined by $B\left(H_{\alpha}, Y\right)=\alpha(Y)$ for $Y \in \mathfrak{a}_{0}$. Then a set of root vectors $Q=\left\{X_{\alpha_{1}}, \ldots, X_{\alpha_{k}}\right\}$ is said to be a \mathfrak{q}-orthogonal system of $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}}$ if the following two conditions are satisfied:
(i) $\alpha_{i} \in \Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}}$ and $X_{\alpha_{i}} \in \mathfrak{g}\left(\mathfrak{a}_{0} ; \alpha_{i}\right) \cap \mathfrak{q}-\{0\}$ for $i=1, \ldots, k$,
(ii) $\left[X_{\alpha_{i}}, X_{\alpha_{j}}\right]=\left[X_{\alpha_{i}}, \theta X_{\alpha,}\right]=0$ for $i \neq j$.

We normalize $X_{\alpha_{i}}, i=1, \ldots, k$ so that $2 \alpha_{i}\left(H_{\alpha_{i}}\right) B\left(X_{\alpha_{i}}, \theta X_{\alpha_{i}}\right)=-1$. Define an element $c(Q)$ of $M_{0}^{\prime \prime}$ by

$$
c(Q)=\exp (\pi / 2)\left(X_{\alpha_{1}}+\theta X_{\alpha_{1}}\right) \cdots \exp (\pi / 2)\left(X_{\alpha_{k}}+\theta X_{\alpha_{k}}\right) .
$$

Then $\mathfrak{a}^{1}=\operatorname{Ad}(c(Q)) \mathfrak{a}_{0}$ is a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^{\prime} \subset \mathfrak{a}^{1}$.
Let $\left\{Q_{0}, \ldots, Q_{n}\right\}\left(Q_{0}=\varnothing\right)$ be a complete set of representatives of q-orthogonal systems of $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}}$ with respect to the following equivalence relation \sim. For two \mathfrak{q}-orthogonal systems $Q=\left\{X_{\alpha_{1}}, \ldots, X_{\alpha_{k}}\right\}$ and $Q^{\prime}=\left\{X_{\beta_{1}}, \ldots, X_{\beta_{k}}\right\}$ of $\Sigma_{\mathfrak{h}}\left(a_{0}\right)_{m^{\prime \prime}}$, $Q \sim Q^{\prime}$ if and only if there exists a $w \in W_{K \cap H}(\overline{\mathfrak{a}})\left(=N_{K \cap H}(\overline{\mathfrak{a}}) / Z_{K \cap H}(\overline{\mathfrak{a}})\right)$ such that

$$
w\left(\mathfrak{r}+\sum_{j=1}^{k} H_{\alpha_{j}}\right)=\mathfrak{r}+\sum_{j=1}^{k_{j}^{\prime}} H_{\beta,} .
$$

Put $\mathfrak{a}_{i}=\operatorname{Ad}\left(c\left(Q_{i}\right)\right) \mathfrak{a}_{0}, i=1, \ldots, n$. Then we have the following corollary.
Corollary 3. $H P^{\prime}=\cup_{i=0}^{n} \cup_{j=1}^{m(i)} H w_{j}^{i} c\left(Q_{i}\right) P_{(0)}$ (disjoint union) where $\left\{w_{1}^{i}, \ldots, w_{m(i)}^{i}\right\}$ is a complete set of representatives of $W_{K \cap H}\left(\mathfrak{a}_{i}\right) \cap W\left(\mathfrak{a}_{i}\right)_{\mathrm{m}^{\prime}} \backslash W\left(\mathfrak{a}_{i}\right)_{\mathrm{m}^{\prime}}$, in $N_{K \cap M^{\prime}}\left(\mathfrak{a}_{i}\right)\left(W\left(\mathfrak{a}_{i}\right)_{\mathfrak{m}^{\prime}}=N_{K \cap M^{\prime}}\left(\mathfrak{a}_{i}\right) / Z_{K \cap M^{\prime}}\left(\mathfrak{a}_{i}\right)\right)$. Moreover we have

$$
\left.H^{\prime} P^{\prime}=\cup_{i=0}^{n} \cup_{j=1}^{m(i)} H^{\prime} w_{j}^{i} c\left(Q_{i}\right) P_{(0)} \quad \text { (disjoint union }\right)
$$

§ 1. Notations and preliminaries

Let \boldsymbol{R} denote the set of real numbers and \boldsymbol{R}_{+}the subset of \boldsymbol{R} defined by $\boldsymbol{R}_{+}=\{t \in \boldsymbol{R} \mid t \geq 0\}$. Let G be a Lie group with Lie algebra \mathfrak{g}. For subsets \mathfrak{s} and t in \mathfrak{g} and a subset S in $G, \mathcal{Z}_{\mathfrak{s}}(\mathrm{t}), Z_{S}(\mathrm{t})$ and $N_{S}(\mathrm{t})$ are the subsets of \mathfrak{g}, G and G defined by

$$
\begin{aligned}
& \mathcal{Z}_{\mathfrak{s}}(\mathrm{t})=\{X \in \mathfrak{s} \mid[X, Y]=0 \text { for all } \quad Y \in \mathfrak{t}\}, \\
& Z_{s}(\mathrm{t})=\{x \in S \mid \operatorname{Ad}(x) Y=Y \text { for all } \\
& Y \in \mathfrak{t}\}
\end{aligned}
$$

and

$$
N_{s}(\mathrm{t})=\{x \in S \mid \operatorname{Ad}(x) \mathrm{t}=\mathrm{t}\},
$$

respectively.
Let G be a connected real semisimple Lie group, σ an involutive automorphism of G (i.e. $\sigma^{2}=$ identity) and H a subgroup of G satisfying $\left(G_{\sigma}\right)_{0} \subset H \subset G_{\sigma}$ where $G_{\sigma}=\{x \in G \mid \sigma(x)=x\}$ and $\left(G_{\sigma}\right)_{0}$ is the identity component of G_{σ}. Then the triple (G, H, σ) is an affine symmetric space such that G is real semisimple.

Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of G and H respectively, and the automorphism σ of \mathfrak{g} be the one induced from the automorphism σ of G. There exists a Cartan involution θ of g such that $\sigma \theta=\theta \sigma$ ([2], cf. Lemmas 3 and 4 in [3]). Fix such a Cartan involution θ of \mathfrak{g}. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ). Then we have the following direct sum decomposition

$$
\mathfrak{g}=\mathfrak{f} \cap \mathfrak{b}+\mathfrak{f} \cap \mathfrak{q}+\mathfrak{p} \cap \mathfrak{b}+\mathfrak{p} \cap \mathfrak{q}
$$

of g. Let K denote the analytic subgroup of G for \neq.

Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}. Then the space of real linear forms on \mathfrak{a} is denoted by \mathfrak{a}^{*}. For an $\alpha \in \mathfrak{a}^{*}$, let $\mathfrak{g}(\mathfrak{a} ; \alpha)$ denote the subspace of \mathfrak{g} defined by

$$
\mathfrak{g}(\mathfrak{a} ; \alpha)=\{X \in \mathfrak{g} \mid[Y, X]=\alpha(Y) X \quad \text { for all } \quad Y \in \mathfrak{a}\} .
$$

Then the root system $\Sigma(\mathfrak{a})$ of the pair $(\mathfrak{g}, \mathfrak{a})$ is the finite subset of \mathfrak{a}^{*} defined by

$$
\Sigma(\mathfrak{a})=\left\{\alpha \in \mathfrak{a}^{*}-\{0\} \mid \mathfrak{g}(\mathfrak{a} ; \alpha) \neq\{0\}\right\} .
$$

Let $\Sigma(\mathfrak{a})^{+}$be a positive system of $\Sigma(\mathfrak{a})$. Then we can define a minimal parabolic

$$
\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}
$$

and

$$
P\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)=M A N,
$$

respectively, where $\mathfrak{m}=3_{\mathfrak{t}}(\mathfrak{a}), M=Z_{K}(\mathfrak{a}), A=\exp \mathfrak{a}, \mathfrak{n}=\sum_{\alpha \in \Sigma(\mathfrak{a})} \mathfrak{g}(\mathfrak{a}, \alpha)$ and $N=$ $\exp \mathrm{n}$.

Let \mathfrak{P}^{\prime} be an arbitrary parabolic subalgebra of \mathfrak{g} containing $\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$and P^{\prime} the corresponding parabolic subgroup of G. Then there is a unique Langlands decomposition

$$
\mathfrak{P}^{\prime}=\mathfrak{m}^{\prime}+\mathfrak{a}^{\prime}+\mathfrak{n}^{\prime}
$$

of \mathfrak{P}^{\prime} such that $\mathfrak{a}^{\prime} \subset \mathfrak{a}$. Let $\mathfrak{a}_{+}^{\prime}$ denote the subset of \mathfrak{a} defined by

$$
\mathfrak{a}_{+}^{\prime}=\left\{Y \in \mathfrak{a}^{\prime} \mid \alpha(Y)>0 \quad \text { for all } \alpha \in \Sigma(\mathfrak{a}) \text { such that } \mathfrak{g}(\mathfrak{a} ; \alpha) \subset \mathfrak{n}^{\prime}\right\} .
$$

The corresponding Langlands decomposition of P^{\prime} is denoted by $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$.
Let P^{0} be a minimal parabolic subgroup of G and \mathfrak{P}^{0} the corresponding minimal parabolic subalgebra of \mathfrak{g}. Then the factor space G / P^{0} is identified with the set of minimal parabolic subalgebras of g by the correspondence $x P^{0} \mapsto$ $\operatorname{Ad}(x) \mathfrak{P}^{0}, x \in G$. Thus the H-orbits on G / P^{0} are identified with the H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g}.

Here we review a main result of [3]. Let $\left\{a_{i} \mid i \in I\right\}$ be a complete set of representatives of the $K \cap H$-conjugacy classes of σ-stable maximal abelian subspace of \mathfrak{p}. Let $W\left(\mathfrak{a}_{i}\right)=N_{K}\left(\mathfrak{a}_{i}\right) / Z_{K}\left(\mathfrak{a}_{i}\right)$ be the Weyl group of $\Sigma\left(\mathfrak{a}_{i}\right)$ and $W_{K \cap H}\left(\mathfrak{a}_{i}\right)$ the subgroup of $W\left(\mathfrak{a}_{i}\right)$ defined by

$$
W_{K \cap H}\left(\mathfrak{a}_{i}\right)=N_{K \cap H}\left(\mathfrak{a}_{i}\right) / Z_{K \cap H}\left(\mathfrak{a}_{i}\right) .
$$

Proposition (Corollary 1 of Theorem 1 in [3]). There is a one-to-one correspondence between the set of H-conjugacy classes of minimal parabolic subalgebras of g and the set $\cup_{i \in I} W_{K \cap H}\left(\mathfrak{a}_{i}\right) \backslash W\left(\mathfrak{a}_{i}\right)$ (disjoint union). Fix a positive
system $\Sigma\left(\mathfrak{a}_{i}\right)^{+}$of $\Sigma\left(\mathfrak{a}_{i}\right)$ for each $i \in I$. Then $W_{K \cap H}\left(\mathfrak{a}_{i}\right) w \in W_{K \cap H}\left(\mathfrak{a}_{i}\right) \backslash W\left(\mathfrak{a}_{i}\right)$ corresponds to the H-conjugacy class of minimal parabolic subalgebras of \mathfrak{g} containing $\mathfrak{P}\left(\mathfrak{a}_{i}, w \Sigma\left(\mathfrak{a}_{i}\right)^{+}\right)$.

§ 2. Theorem and its corollaries

Let $\mathfrak{P}^{0 \prime}$ be an arbitrary parabolic subalgebra of \mathfrak{g} containing \mathfrak{B}^{0} and $P^{0 \prime}$ the corresponding parabolic subgroup of G. Then we have a canonical surjection

$$
f: H \backslash G / P^{0} \longrightarrow H \backslash G / P^{0^{\prime}} .
$$

For every double coset $\mathcal{O}=H x P^{0^{\prime}} \in H \backslash G / P^{0^{\prime}}(x \in G)$, we want to study $f^{-1}(\mathcal{O})=$ $H \backslash H x P^{0^{\prime}} / P^{0}$. It follows from Proposition in $\S 1$ that there exist an $h \in H$, a σ stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} and a positive system $\Sigma(\mathfrak{a})^{+}$of $\Sigma(\mathfrak{a})$ such that $\operatorname{Ad}(h x) \mathfrak{P}^{0}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$. Thus we have only to study the double coset decomposition $H \backslash H P^{\prime} / P$ for such a minimal parabolic subalgebra $\mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$ where P is the minimal parabolic subgroup corresponding to \mathfrak{P} and $P^{\prime}=$ $h x P^{0 \prime} x^{-1} h^{-1}$.

Therefore we fix a σ-stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} and a positive system $\Sigma(\mathfrak{a})^{+}$of $\Sigma(\mathfrak{a})$. Put $\mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$and let \mathfrak{P}^{\prime} be the parabolic subalgebra of \mathfrak{g} which is conjugate to \mathfrak{P}^{0} and contains \mathfrak{P}. Notations $\mathfrak{P}=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}, P=$ MAN, $\mathfrak{P}^{\prime}=\mathfrak{m}^{\prime}+\mathfrak{a}^{\prime}+\mathfrak{n}^{\prime}, P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$ and $\mathfrak{a}_{+}^{\prime}$ are the same as in $\S 1$.

Since $H \backslash H P^{\prime}$ is isomorphic to $H \cap P^{\prime} \backslash P^{\prime}$, there is a canonical bijection

$$
\begin{equation*}
H \cap P^{\prime} \backslash P^{\prime}\left|P \simeq H \backslash H P^{\prime}\right| P \tag{2.1}
\end{equation*}
$$

Then the following theorem gives standard representatives for $H \cap P^{\prime} \backslash P^{\prime} \mid P$ since P^{\prime} / P is identified with the set of minimal parabolic subalgebras of \mathfrak{g} contained in \mathfrak{P}^{\prime}.

Theorem. Every minimal parabolic subalgebra of \mathfrak{g} contained in \mathfrak{P}^{\prime} is $H \cap P^{\prime}$-conjugate to a minimal parabolic subalgebra \mathfrak{P}_{1} of \mathfrak{g} of the form

$$
\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)
$$

where \mathfrak{a}_{1} is a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{1} \supset \mathfrak{a}^{\prime}$ and $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$is a positive system of $\Sigma\left(\mathfrak{a}_{1}\right)$ such that

$$
\left\langle\Sigma\left(\mathfrak{a}_{1}\right)^{+}, \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+} .
$$

Remark. Conversely if \mathfrak{a}_{1} and $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$satisfy the conditions in Theorem, then $\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$is contained in \mathfrak{P}^{\prime}. In fact, write $\mathfrak{P}_{1}=\mathfrak{m}_{1}+\mathfrak{a}_{1}+\mathfrak{n}_{1}$ where $\mathfrak{m}_{1}=\mathfrak{3}_{t}\left(\mathfrak{a}_{1}\right)$ and $\mathfrak{n}_{1}=\sum_{\alpha \in \Sigma\left(a_{1}\right)} \mathfrak{g}\left(\mathfrak{a}_{1} ; \alpha\right)$. Note that

$$
\left.\mathfrak{P}^{\prime}=\sum_{\alpha} \mathfrak{g}\left(\mathfrak{a}^{\prime} ; \alpha\right) \text { (the sum is taken over all } \alpha \in\left(\mathfrak{a}^{\prime}\right)^{*} \text { such that }\left\langle\alpha, \mathfrak{a}_{+}^{\prime}\right\rangle \supset \boldsymbol{R}_{+}\right)
$$

where $\left(\mathfrak{a}^{\prime}\right)^{*}$ is the space of real linear forms on \mathfrak{a}^{\prime} and $\mathfrak{g}\left(\mathfrak{a}^{\prime} ; \alpha\right)=\{X \in \mathfrak{g} \mid[Y, X]=$ $\alpha(Y) X\}$. Then it follows from the condition for \mathfrak{a}_{1} that $\mathfrak{m}_{1}+\mathfrak{a}_{1} \subset \mathfrak{g}\left(\mathfrak{a}^{\prime} ; 0\right)$. On the other hand it follows from the condition for $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$that $\mathfrak{g}\left(\mathfrak{a}_{1} ; \alpha\right) \subset \mathfrak{g}\left(\mathfrak{a}^{\prime} ;\left.\alpha\right|_{\mathfrak{a}^{\prime}}\right) \subset$ \mathfrak{P}^{\prime} for $\alpha \in \Sigma\left(\mathfrak{a}_{1}\right)^{+}$. Thus we have $\mathfrak{P}_{1} \subset \mathfrak{F}^{\prime}$.

We use the following method of Lusztig and Vogan ([5], p. 29, Lemma 5.2). Let $\pi: P^{\prime} \rightarrow M^{\prime}$ be the projection with respect to the Langlands decomposition $P^{\prime}=M^{\prime} A^{\prime} N^{\prime}$. Then π is a group homomorphism and induces an isomorphism of $P^{\prime} \mid P$ onto $M^{\prime} \mid M^{\prime} \cap P$. Put $J=\pi\left(H \cap P^{\prime}\right)$. Then there is a canonical bijection

$$
\begin{equation*}
H \cap P^{\prime} \backslash P^{\prime} \mid P \simeq J \backslash M^{\prime} / M^{\prime} \cap P \tag{2.2}
\end{equation*}
$$

(In [5], G and H are complex groups and P^{\prime} is a parabolic subgroup of G corresponding to a simple root of $\Sigma(\mathfrak{a})^{+}$.)

Let J_{0} and M_{0}^{\prime} be the identity components of J and M^{\prime} respectively. Since $M^{\prime} \cap P \supset M$, every connected component of M^{\prime} has a non-trivial intersection with $M^{\prime} \cap P$. Thus $M^{\prime} / M^{\prime} \cap P$ is isomorphic to $M_{0}^{\prime} / M_{0}^{\prime} \cap P$ and we have a canonical surjection

$$
\begin{equation*}
J_{0} \backslash M_{0}^{\prime} / M_{0}^{\prime} \cap P \longrightarrow J \backslash M^{\prime} / M^{\prime} \cap P \tag{2.3}
\end{equation*}
$$

It is clear that the subalgebras $m^{\prime} \cap \mathfrak{B}$ and $m^{\prime} \cap \sigma \mathfrak{B}^{\prime}$ are a minimal parabolic subalgebra and a parabolic subalgebra of m^{\prime} respectively. Let $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}}$ and $\Sigma(\mathfrak{a})_{n^{\prime}}$, be the subsets of $\Sigma(\mathfrak{a})$ defined by $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}}=\left\{\alpha \in \Sigma(\mathfrak{a}) \mid\left\langle\alpha, \mathfrak{a}^{\prime}\right\rangle=\{0\}\right\}$ and $\Sigma(\mathfrak{a})_{\mathbf{n}^{\prime}}=$ $\left\{\alpha \in \Sigma(\mathfrak{a}) \mid\left\langle\alpha, \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}-\{0\}\right\}$ respectively. Then

$$
\mathfrak{m}^{\prime}+\mathfrak{a}^{\prime}=\mathfrak{m}+\mathfrak{a}+\sum_{\alpha \in \Sigma(a) \mathfrak{m}^{\prime}} \mathfrak{g}(\mathfrak{a} ; \alpha)
$$

and

$$
\mathfrak{n}^{\prime}=\sum_{\alpha \in \Sigma(\mathfrak{a})_{n^{\prime}}} \mathfrak{g}(\mathfrak{a} ; \alpha)
$$

Let

$$
\mathfrak{m}^{\prime} \cap \sigma \mathfrak{B}^{\prime}=\mathfrak{m}^{\prime \prime}+\mathfrak{a}^{\prime \prime}+\mathfrak{n}^{\prime \prime}
$$

be the Langlands decomposition of $\mathfrak{m}^{\prime} \cap \sigma \mathfrak{B}^{\prime}$ such that $\mathfrak{a}^{\prime \prime} \subset \mathfrak{a}$. Let $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime \prime}}$ and $\Sigma(\mathfrak{a})_{n^{\prime \prime}}$ be the subsets of $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}}$ defined by $\Sigma(\mathfrak{a})_{\mathrm{m}^{\prime \prime}}=\left\{\alpha \in \Sigma(\mathfrak{a}) \mid\left\langle\alpha, \mathfrak{a}^{\prime}+\sigma \mathfrak{a}^{\prime}\right\rangle=\{0\}\right\}$ and $\Sigma(\mathfrak{a})_{\mathfrak{n}^{\prime \prime}}=\left\{\alpha \in \Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}} \mid\left\langle\alpha, \sigma \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}-\{0\}\right\}$ respectively. Then we have

$$
\mathrm{mi}^{\prime \prime}+\mathfrak{a}^{\prime \prime}+\mathfrak{a}^{\prime}=\mathfrak{m}+\mathfrak{a}+\sum_{\alpha \in \Sigma(\mathfrak{a})_{\mathrm{m}^{\prime \prime}}} \mathfrak{g}(\mathfrak{a} ; \alpha)
$$

and

$$
\mathfrak{n}^{\prime \prime}=\sum_{\alpha \in \Sigma(a)_{n^{\prime \prime}}} \mathfrak{g}(\mathfrak{a} ; \alpha) .
$$

Lemma. Let \mathfrak{j} be the Lie algebra of J and $\mathfrak{a}_{\mathrm{i}}^{\prime \prime}$ be the subspace of $\mathrm{a}^{\prime \prime}$ given by $\mathfrak{a}_{\mathfrak{i}}^{\prime \prime}=\pi\left(\left(\mathfrak{a}^{\prime}+\mathfrak{a}^{\prime \prime}\right) \cap \mathfrak{b}\right)$. Then

$$
\mathfrak{i}=\mathfrak{m}^{\prime} \cap \mathfrak{h}+\mathfrak{a}_{\mathfrak{i}}^{\prime \prime}+\mathfrak{n}^{\prime \prime} .
$$

Proof. Put $A_{1}=\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}} \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}}=\Sigma(\mathfrak{a})_{\mathrm{m}^{\prime \prime}}, A_{2}=\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}} \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{n}^{\prime}}=\Sigma(\mathfrak{a})_{\mathrm{n}^{\prime \prime}}$ and $A_{3}=\Sigma(\mathfrak{a})_{\mathfrak{n}}, \cap \sigma \Sigma(\mathfrak{a})_{\mathfrak{n}^{\prime}}$, and set

$$
\mathfrak{M}_{i}=\sum_{\alpha \in A_{i}}(\mathfrak{g}(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ; \sigma \alpha)) \cap \mathfrak{b} \quad(i=1,2,3)
$$

Then

$$
\mathfrak{P}^{\prime} \cap \mathfrak{h}=\mathfrak{P}^{\prime} \cap \sigma \mathfrak{P}^{\prime} \cap \mathfrak{h}=\mathfrak{m} \cap \mathfrak{b}+\mathfrak{a} \cap \mathfrak{h}+\mathfrak{A}_{1}+\mathfrak{A}_{2}+\mathfrak{A}_{3} .
$$

Since $\pi: \mathfrak{P}^{\prime} \rightarrow \mathfrak{m}^{\prime}$ is the projection with respect to the decomposition $\mathfrak{P}^{\prime}=\mathfrak{m}^{\prime}+$ $\mathfrak{a}^{\prime}+\mathfrak{n}^{\prime}$, we have

$$
\begin{aligned}
\mathfrak{i} & =\pi\left(\mathfrak{P}^{\prime} \cap \mathfrak{b}\right)=\mathfrak{m} \cap \mathfrak{h}+\pi(\mathfrak{a} \cap \mathfrak{b})+\mathfrak{A}_{1}+\sum_{\alpha \in A_{2}} \mathfrak{g}(\mathfrak{a} ; \alpha) \\
& =\mathfrak{m} \cap \mathfrak{h}+\mathfrak{m}^{\prime \prime} \cap \mathfrak{a} \cap \mathfrak{h}+\mathfrak{a}_{\mathfrak{i}}^{\prime \prime}+\mathfrak{A}_{1}+\mathfrak{n}^{\prime \prime}=\mathfrak{m}^{\prime \prime} \cap \mathfrak{b}+\mathfrak{a}_{i}^{\prime \prime}+\mathfrak{n}^{\prime \prime} .
\end{aligned}
$$

q. e.d.

Let $W(\mathfrak{a})_{\mathfrak{m}^{\prime}}$ and $W(\mathfrak{a})_{\mathbf{m}^{\prime \prime}}$ denote the subgroups of $W(\mathfrak{a})$ generated by the reflections with respect to the roots of $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime}}$ and $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime \prime}}$ respectively.

Proof of Theorem. We have only to find a set of standard representatives $S \subset M_{0}^{\prime}$ of $J_{0} \backslash M_{0}^{\prime} / M_{0}^{\prime} \cap P$ since the set S becomes a set of representatives of $H \backslash H P^{\prime} / P$ in view of the above arguments.
$M_{0}^{\prime} \cap P$ is a minimal parabolic subgroup of M_{0}^{\prime} since $\mathfrak{m}^{\prime} \cap \mathfrak{P}$ is a minimal parabolic subalgebra of \mathfrak{m}^{\prime} and since $Z_{K \cap M_{0}^{\prime}}(\mathfrak{a})=M_{0}^{\prime} \cap M$ is contained in $M_{0}^{\prime} \cap P$. In the same way $M_{0}^{\prime} \cap \sigma P^{\prime}$ is proved to be a parabolic subgroup of M_{0}^{\prime}. Thus we have the Bruhat decomposition

$$
M_{0}^{\prime}=\cup_{w \in W_{1}}\left(M_{0}^{\prime} \cap \sigma P^{\prime}\right) w\left(M_{0}^{\prime} \cap P\right)
$$

where W_{1} is a complete set of representatives of $W(\mathfrak{a})_{\mathfrak{m}^{\prime \prime}} \backslash W(\mathfrak{a})_{\mathfrak{m}^{\prime}}$ in $N_{K \cap M_{\dot{\mathfrak{j}}}}(\mathfrak{a})$.
Let $M_{0}^{\prime} \cap \sigma P^{\prime}=M^{\prime \prime} A^{\prime \prime} N^{\prime \prime}$ be the Langlands decomposition of $M_{0}^{\prime} \cap \sigma P^{\prime}$ corresponding to $\mathfrak{m}^{\prime} \cap \sigma \mathfrak{P}^{\prime}=\mathfrak{m}^{\prime \prime}+\mathfrak{a}^{\prime \prime}+\mathfrak{n}^{\prime}$. Then it follows from Lemma that

$$
\left(M_{0}^{\prime} \cap \sigma P^{\prime}\right) w\left(M_{0}^{\prime} \cap P\right)=J_{0} M^{\prime \prime} A^{\prime \prime} w\left(M_{0}^{\prime} \cap P\right)
$$

for every $w \in W_{1}$. Therefore we have only to study the decomposition

$$
J_{0} \cap M^{\prime \prime} A^{\prime \prime} \backslash M^{\prime \prime} A^{\prime \prime} / w P w^{-1} \cap M^{\prime \prime} A^{\prime \prime}
$$

Since $M^{\prime \prime} A^{\prime \prime} / w P w^{-1} \cap M^{\prime \prime} A^{\prime \prime}$ is isomorphic to $M_{0}^{\prime \prime} / w P w^{-1} \cap M_{0}^{\prime \prime}\left(M_{0}^{\prime \prime}\right.$ is the identity component of $M^{\prime \prime}$) and since $J_{0} \cap M^{\prime \prime} A^{\prime \prime}=\left(M^{\prime \prime} \cap H\right)_{0} \exp \mathfrak{a}_{\mathrm{i}}^{\prime \prime}$ (Lemma), there is a canonical bijection

$$
\begin{equation*}
\left(M^{\prime \prime} \cap H\right)_{0} \backslash M_{0}^{\prime \prime} / w P w^{-1} \cap M_{0}^{\prime \prime} \simeq J_{0} \cap M^{\prime \prime} A^{\prime \prime} \backslash M^{\prime \prime} A^{\prime \prime} / w P w^{-1} \cap M^{\prime \prime} A^{\prime \prime} \tag{2.4}
\end{equation*}
$$

Here we note that $M_{0}^{\prime \prime}$ is σ-stable. Thus the triple $\left(M_{0}^{\prime \prime},\left(M^{\prime \prime} \cap H\right)_{0}, \sigma\right)$ is an affine symmetric space such that $M_{0}^{\prime \prime}$ is a connected real reductive Lie group. Moreover $w P w^{-1} \cap M_{0}^{\prime \prime}$ is a minimal parabolic subgroup of $M_{0}^{\prime \prime}$. Therefore the result of [3] can be applied to the left hand side of (2.4). For every $x \in M_{0}^{\prime \prime}$ there is a $y \in\left(M^{\prime \prime} \cap H\right)_{0} x\left(w P w^{-1} \cap M_{0}^{\prime \prime}\right)$ such that $\mathfrak{a}_{1}^{\prime \prime}=\operatorname{Ad}(y)\left(\mathfrak{a} \cap \mathfrak{m}^{\prime \prime}\right)$ is a σ-stable maximal abelian subspace of $m^{\prime \prime} \cap \mathfrak{p}$ (Proposition in §1).

Thus we have proved the following. For an arbitrary $x \in H P^{\prime}$ there exists a $w \in W_{1}$ and a $y \in M_{0}^{\prime \prime}$ such that $\mathfrak{a}_{1}=\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable and that $y w \in H x P$. Then it is clear that \mathfrak{a}_{1} and $\mathfrak{P}_{1}=\operatorname{Ad}(y w) \mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$satisfy the conditions of the theorem. Hence the theorem is proved.
q.e.d.

For a σ-stable maximal abelian subspace \mathfrak{a}_{1} of \mathfrak{p} satisfying $\mathfrak{a}_{1} \supset \mathfrak{a}^{\prime}$, we can define subsets $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}$ and $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}$ of $\Sigma\left(\mathfrak{a}_{1}\right)$ in the same manner as $\Sigma(\mathfrak{a})_{\mathbf{m}^{\prime}}$ and $\Sigma(\mathfrak{a})_{\mathfrak{m}^{\prime \prime}}$. If $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$is a positive system of $\Sigma\left(\mathfrak{a}_{1}\right)$, then $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}^{+}$and $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}$are defined by $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}^{+}=\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}} \cap \Sigma\left(\mathfrak{a}_{1}\right)^{+}$and $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}=\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}} \cap \Sigma\left(\mathfrak{a}_{1}\right)^{+}$respectively.

Now we consider closed H-orbits and open H-orbits on $H P^{\prime} \mid P$ with respect to the topology of $H P^{\prime} / P$.

Corollary 1. Retain the notations in Theorem.
(a) A minimal parabolic subalgebra $\mathfrak{P}_{1}=\mathfrak{B}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$satisfying the conditions of Theorem is contained in a closed H-orbit on $H P^{\prime} \mid P\left(P_{1}\right.$ is identified with a point in $\left.P^{\prime} \mid P\right)$ if and only if the following three conditions are satisfied:
(i) $\left\langle\Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime}}^{+}, \sigma \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$,
(ii) $\Sigma\left(\mathfrak{a}_{1}\right)_{m^{\prime \prime}}^{+}$is σ-compatible (i.e. $\alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+},\left.\alpha\right|_{\mathrm{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{q}} \neq 0 \Rightarrow \sigma \alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}$),
(iii) $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{b}$.
(b) A minimal parabolic subalgebra $\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$satisfying the conditions of Theorem is contained in an open H-orbit on $H P^{\prime} \mid P$ if and only if the following three conditions are satisfied:
(i) $\left\langle\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime}}^{+}, \sigma \theta \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$,
(ii) $\Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}$is $\sigma \theta$-compatible (i.e. $\alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+},\left.\alpha\right|_{\mathrm{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{h}} \neq 0 \Rightarrow \sigma \theta \alpha \in \Sigma\left(\mathfrak{a}_{1}\right)_{\mathrm{m}^{\prime \prime}}^{+}$),
(iii) $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{1} \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{q}$.

Proof. Since the bijections (2.1) and (2.2) come from the topological isomorphisms $H \cap P^{\prime} \backslash P^{\prime} \leftrightharpoons H \backslash H P^{\prime}$ and $P^{\prime}\left|P \leftrightharpoons M^{\prime}\right| M^{\prime} \cap P$ respectively, we have only to consider closed double cosets and open double cosets in the decomposition

$$
J \backslash M^{\prime} \mid M^{\prime} \cap P
$$

For $x \in M^{\prime}$ and $y \in J$, we have $J_{0} y x\left(M^{\prime} \cap P\right)=y J_{0} x\left(M^{\prime} \cap P\right)$. Hence $J x\left(M^{\prime} \cap P\right)$ is closed (resp. open) in M^{\prime} if and only if $J_{0} x\left(M^{\prime} \cap P\right)$ is closed (resp. open) in M^{\prime} and therefore we have only to consider closed double cosets and open double cosets in the decomposition

$$
J_{0} \backslash M_{0}^{\prime} / M_{0}^{\prime} \cap P .
$$

Consider the decomposition

$$
M_{0}^{\prime}=\cup_{w \in W_{1}} J_{0} M^{\prime \prime} A^{\prime \prime} w\left(M_{0}^{\prime} \cap P\right) .
$$

Then open double cosets in $J_{0} \backslash M_{0}^{\prime} / M_{0}^{\prime} \cap P$ are contained in

$$
J_{0} M^{\prime \prime} A^{\prime \prime} w_{2}\left(M_{0}^{\prime} \cap P\right)=\left(M_{0}^{\prime} \cap \sigma P^{\prime}\right) w_{2}\left(M_{0}^{\prime} \cap P\right)
$$

where w_{2} is the unique element in W_{1} satisfying

$$
\begin{equation*}
\left(\mathfrak{m}^{\prime} \cap \sigma \mathfrak{P}^{\prime}\right)+\operatorname{Ad}\left(w_{2}\right)\left(\mathfrak{m}^{\prime} \cap \mathfrak{P}\right)=\mathfrak{m}^{\prime} . \tag{2.5}
\end{equation*}
$$

On the other hand closed double cosets in $J_{0} \backslash M_{0}^{\prime} / M_{0}^{\prime} \cap P$ are contained in

$$
J_{0} M^{\prime \prime} A^{\prime \prime} w_{1}\left(M_{0}^{\prime} \cap P\right)
$$

where w_{1} is the unique element in W_{1} satisfying

$$
\begin{equation*}
\operatorname{Ad}\left(w_{1}\right)\left(\mathfrak{m}^{\prime} \cap \mathfrak{P}\right) \supset \mathfrak{n}^{\prime \prime} . \tag{2.6}
\end{equation*}
$$

This is proved as follows. Let $g: J_{0} \rightarrow M^{\prime \prime} A^{\prime \prime} \cap J_{0}$ be the projection with respect to the decomposition $J_{0}=\left(M^{\prime \prime} A^{\prime \prime} \cap J_{0}\right) N^{\prime \prime}$. For $x \in M^{\prime \prime} A^{\prime \prime}$ and $w \in W_{1}$, we have

$$
J_{0} x w\left(M_{0}^{\prime} \cap P\right) / M_{0}^{\prime} \cap P \cong J_{0} / J_{0} \cap x w\left(M_{0}^{\prime} \cap P\right) w^{-1} x^{-1} .
$$

Then the map g induces a projection

$$
J_{0} / J_{0} \cap x w\left(M_{0}^{\prime} \cap P\right) w^{-1} x^{-1} \longrightarrow\left(M^{\prime \prime} A^{\prime \prime} \cap J_{0}\right) / g\left(J_{0} \cap x w\left(M_{0}^{\prime} \cap P\right) w^{-1} x^{-1}\right)
$$

with fibres isomorphic to $F=N^{\prime \prime} \mid N^{\prime \prime} \cap x w\left(M_{0}^{\prime} \cap P\right) w^{-1} x^{-1}$. Since $x^{-1} N^{\prime \prime} x=N^{\prime \prime}$, we have $F \cong N^{\prime \prime} \mid N^{\prime \prime} \cap w\left(M_{0}^{\prime} \cap P\right) w^{-1}$. If we apply Lemma 1.1.4.1 in [6] to $\mathfrak{n}^{\prime \prime}$ and $\mathfrak{n}^{\prime \prime} \cap \operatorname{Ad}(w)\left(\mathfrak{m}^{\prime} \cap \mathfrak{P}\right)$, it follows easily that F is topologically isomorphic to \boldsymbol{R}^{k} where $k=\operatorname{dim} \mathfrak{n}^{\prime \prime}-\operatorname{dim}\left(\mathfrak{n}^{\prime \prime} \cap \operatorname{Ad}(w)\left(\mathfrak{m}^{\prime} \cap \mathfrak{P}\right)\right)$. If the double coset $J_{0} x w\left(M_{0}^{\prime} \cap\right.$ $P)$ is closed in M_{0}^{\prime}, then $J_{0} x w\left(M_{0}^{\prime} \cap P\right) /\left(M_{0}^{\prime} \cap P\right)$ is compact and therefore $k=0$. Hence $\operatorname{Ad}(w)\left(\mathfrak{m}^{\prime} \cap \mathfrak{P}\right) \supset \mathfrak{n}^{\prime \prime}$ and $w=w_{1}$.

The assertion (a) is proved as follows. Since the canonical map

$$
M_{0}^{\prime \prime} / w_{1} P w_{1}^{-1} \cap M_{0}^{\prime \prime} \longrightarrow M^{\prime \prime} A^{\prime \prime} / w_{1} P w_{1}^{-1} \cap M^{\prime \prime} A^{\prime \prime}
$$

is a topological isomorphism and since (2.5) is a bijection, we have only to consider closed double cosets in

$$
\begin{equation*}
\left(M^{\prime \prime} \cap H\right)_{0} \backslash M_{0}^{\prime \prime} / w_{1} P w_{1}^{-1} \cap M_{0}^{\prime \prime} . \tag{2.7}
\end{equation*}
$$

For each double coset in (2.7), take a representative $x \in M_{0}^{\prime \prime}$ so that $\operatorname{Ad}(x)\left(\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}\right)$ $=\mathfrak{a}_{1}^{\prime \prime}$ is σ-stable. Then x is contained in a closed double coset in (2.7) if and only
if $\mathfrak{a}_{1}^{\prime \prime} \cap \mathfrak{b}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{h}$ and the positive system $\Sigma\left(\mathfrak{a}_{1}^{\prime \prime}\right)^{+}$of $\Sigma\left(\mathfrak{a}_{1}^{\prime \prime}\right)$ corresponding to $x w_{1} P w_{1}^{-1} x^{-1} \cap M_{0}^{\prime \prime}$ is σ-compatible ([3], §3, Proposition 2). Put $\mathfrak{a}_{1}=\operatorname{Ad}(x) \mathfrak{a}$ and $\mathfrak{P}_{1}=\operatorname{Ad}\left(x w_{1}\right) \mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$. Then it is clear that (2.6) is equivalent to the condition (i) in (a) and that the above conditions for $\mathfrak{a}_{1}^{\prime \prime}\left(=\mathfrak{a}_{1} \cap \mathrm{~m}^{\prime \prime}\right)$ and $\Sigma\left(\mathfrak{a}_{1}^{\prime \prime}\right)^{+}$are equivalent to the conditions (ii) and (iii) in (a). Hence the assertion (a) is proved.

The assertion (b) is proved by a similar argument using (2.5) and Proposition 1 in [3].
q.e.d.

For an affine symmetric space (G, H, σ) such that G is semisimple, the associated affine symmetric space $\left(G, H^{\prime}, \sigma \theta\right)$ is defined by $H^{\prime}=(K \cap H) \exp (\mathfrak{p} \cap \mathfrak{q})$. Then there exists a one-to-one correspondence between the double coset decompositions $H \backslash G / P$ and $H^{\prime} \backslash G / P$. If \mathfrak{a} is a σ-stable maximal abelian subspace of \mathfrak{p}, an H-orbit containing $\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$corresponds to the H^{\prime}-orbit containing the same $\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)([3]$, Corollary 2 of Theorem 1).

Corollary 2. (a) In this correspondence, $H \backslash H P^{\prime} \mid P$ corresponds to $H^{\prime} \backslash$ $H^{\prime} P^{\prime} \mid P$. Moreover closed H-orbits on $H P^{\prime} / P$ correspond to open H^{\prime}-orbits on $H^{\prime} P^{\prime} \mid P$ and open ones to closed ones.
(b) Let $P^{\prime \prime}$ be a parabolic subgroup of G containing P^{\prime}. Then there is a one-to-one correspondence between $H \backslash H P^{\prime \prime} \mid P^{\prime}$ and $H^{\prime} \backslash H^{\prime} P^{\prime \prime} \mid P^{\prime}$ which is compatible with the canonical surjections $f: H \backslash H P^{\prime \prime}\left|P \rightarrow H \backslash H P^{\prime \prime}\right| P^{\prime}$ and $f^{\prime}: H^{\prime} \backslash H^{\prime} P^{\prime \prime} \mid P \rightarrow$ $H^{\prime} \backslash H^{\prime} P^{\prime \prime} \mid P^{\prime}$ and with the correspondence $H \backslash H P^{\prime \prime}\left|P \leftrightharpoons H^{\prime} \backslash H^{\prime} P^{\prime \prime}\right| P$. In this correspondence closed H-orbits on $H P^{\prime \prime} \mid P^{\prime}$ correspond to open H^{\prime}-obrits on $H^{\prime} P^{\prime \prime} \mid P^{\prime}$ and open ones to closed ones.

Proof. The first assertion in (a) is clear from Theorem. The second assertion in (a) is clear from Corollary 1. Since a double coset $H x P^{\prime}$ in $H P^{\prime \prime}$ is closed (resp. open) in $H P^{\prime \prime}$ if and only if $H x P^{\prime}$ contains a closed (resp. open) double coset $H y P$ in $H P^{\prime \prime}$, and since the same holds for H^{\prime}, the assertions in (b) are clear from (a).
q.e.d.

Remark. Let \mathfrak{a}^{o} be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^{o} \cap \mathfrak{q}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{q}$ and let $\Sigma\left(\mathfrak{a}^{o}\right)^{+}$be a $\sigma \theta$-compatible positive system of $\Sigma\left(\mathfrak{a}^{o}\right)$. Then $\mathfrak{P}^{0}=\mathfrak{P}\left(\mathfrak{a}^{o}, \Sigma\left(\mathfrak{a}^{o}\right)^{+}\right)$is contained in an open H-orbit on G / P. Let $\mathfrak{P}^{\prime o}$ be a parabolic subalgebra of \mathfrak{g} containing \mathfrak{P}^{o} and $W_{\mathfrak{B}}^{o}$, the subgroup of $W\left(\mathfrak{a}^{o}\right)$ corresponding to \mathfrak{P}^{\prime}. Then it follows easily from Theorem and [3], Proposition 1 that there is a one-to-one correspondence between the set of open double cosets in $H \backslash G / P^{\prime o}$ and

$$
W_{K \cap H}\left(\mathfrak{a}^{o}\right) \backslash W_{\sigma}\left(\mathfrak{a}^{o}\right) / W_{\sigma}\left(\mathfrak{a}^{o}\right) \cap W_{\mathfrak{B}}^{o},
$$

where $W_{\sigma}\left(\mathfrak{a}^{o}\right)=\left\{w \in W\left(\mathfrak{a}^{o}\right) \mid w \sigma=\sigma w\right\}$. This fact is also proved in [4], Corollary 16.

Let \mathfrak{a}^{c} be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^{c} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$ and let $\Sigma\left(\mathfrak{a}^{c}\right)^{+}$be a σ-compatible positive system of $\Sigma\left(\mathfrak{a}^{c}\right)$. Let $\mathfrak{P}^{\prime c}$ be a parabolic subalgebra of \mathfrak{g} containing $\mathfrak{P}^{c}=\mathfrak{P}\left(\mathfrak{a}^{c}, \Sigma\left(\mathfrak{a}^{c}\right)^{+}\right)$and $W_{\mathfrak{B}}^{c}$, the subgroup of $W\left(\mathfrak{a}^{c}\right)$ corresponding to $\mathfrak{P}^{\prime c}$. Then there is a one-to-one correspondence between the set of closed double cosets in $H \backslash G / P^{\prime}$ and

$$
W_{K \cap H}\left(\mathfrak{a}^{c}\right) \backslash W_{\sigma}\left(\mathfrak{a}^{c}\right) / W_{\sigma}\left(\mathfrak{a}^{c}\right) \cap W_{\mathfrak{\beta}}^{c},
$$

where $W_{\sigma}\left(\mathfrak{a}^{c}\right)=\left\{w \in W\left(\mathfrak{a}^{c}\right) \mid w \sigma=\sigma w\right\}$ (Theorem and [3], Proposition 2).
In the following we shall give an explicit formula for the decomposition $H \backslash H P^{\prime} \mid P$ applying the method used in $\S 2$ of [3]. Let \mathfrak{a}_{0} be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{0} \supset \mathfrak{a}^{\prime}$ and that $\mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{0} \cap \mathfrak{l}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{b}$. Such a subspace \mathfrak{a}_{0} of \mathfrak{p} is constructed as follows. Let $\mathfrak{a}_{0+}^{\prime \prime}$ be a maximal abelian subspace of $m^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{h}$ and $\mathfrak{a}_{0}^{\prime \prime}$ a maximal abelian subspace of $\mathrm{m}^{\prime \prime} \cap \mathfrak{p}$ containing $\mathfrak{a}_{0+}^{\prime \prime}$. Then $\mathfrak{a}_{0}=\mathfrak{a}_{0}^{\prime \prime}+\mathfrak{a}^{\prime \prime}+\mathfrak{a}^{\prime}$ is a desired one. By [3], p. 341, Lemma 7, all the maximal abelian subspace $\mathfrak{a}^{\prime \prime}$ of $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p}$ such that $\mathfrak{a}^{\prime \prime} \cap \mathfrak{b}$ is maximal abelian in $\mathfrak{m}^{\prime \prime} \cap \mathfrak{p} \cap \mathfrak{h}$ are mutually $\left(M^{\prime \prime} \cap H\right)_{0}$-conjugate. Thus the choice of \mathfrak{a}_{0} is unique up to $\left(M^{\prime \prime} \cap H\right)_{0}$-conjugacy. Fix a positive system $\Sigma\left(\mathfrak{a}_{0}\right)^{+}$ of $\Sigma\left(\mathfrak{a}_{0}\right)$ such that $\left\langle\Sigma\left(\mathfrak{a}_{0}\right)^{+}, \mathfrak{a}_{+}^{\prime}\right\rangle \subset \boldsymbol{R}_{+}$. Then $\mathfrak{B}_{(0)}=\mathfrak{P}\left(\mathfrak{a}_{0}, \Sigma\left(\mathfrak{a}_{0}\right)^{+}\right)$is contained in \mathfrak{P}^{\prime}. Let $P_{(0)}$ be the corresponding minimal parabolic subgroup of G.

Let $\overline{\mathfrak{a}}$ be a σ-stable maximal abelian subspace of \mathfrak{p} such that $\overline{\mathfrak{a}} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{b}, \overline{\mathfrak{a}} \cap \mathfrak{b} \supset \mathfrak{a}_{0} \cap \mathfrak{h}$ and $\overline{\mathfrak{a}} \cap \mathfrak{q} \subset \mathfrak{a}_{0} \cap \mathfrak{q}$. The existence of such a subspace $\overline{\mathfrak{a}}$ of \mathfrak{p} is an easy consequence of [3], p. 342, Lemma 8. Put $\mathfrak{r}=\{Y \in \overline{\mathfrak{a}} \cap \mathfrak{h} \mid B(Y$, $\left.\left.\mathfrak{a}_{0} \cap \mathfrak{b}\right)=\{0\}\right\}$. Then $\overline{\mathfrak{a}} \cap \mathfrak{h}=\mathfrak{a}_{0} \cap \mathfrak{h}+\mathfrak{r}$ (direct sum).

Put $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathfrak{m}^{\prime \prime}}=\left\{\alpha \in \Sigma\left(\mathfrak{a}_{0}\right)_{\mathfrak{m}^{\prime \prime}} \mid H_{\alpha} \in \mathfrak{m}^{\prime \prime} \cap \mathfrak{a}_{0} \cap \mathfrak{b}\right\}$ where $H_{\alpha} \in \mathfrak{a}_{0}$ is defined by $B\left(H_{\alpha}, Y\right)=\alpha(Y)$ for all $Y \in \mathfrak{a}_{0}$. Then a set of root vectors $Q=\left\{Y_{\alpha_{1}}, \ldots, X_{\alpha_{k}}\right\}$ is said to be a \mathfrak{q}-orthogonal system of $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}}$ if the following two conditions are satisfied:
(i) $\alpha_{i} \in \sum_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{\mathrm{m}^{\prime \prime}}$ and $X_{\alpha_{i}} \in \mathfrak{g}\left(\mathfrak{a}_{0} ; \alpha_{i}\right) \cap \mathfrak{q}-\{0\}$ for $i=1, \ldots, k$,
(ii) $\left[X_{\alpha_{i}}, X_{\alpha_{j}}\right]=\left[X_{\alpha_{i}}, \theta X_{\alpha_{j}}\right]=0$ for $i \neq j$.

We normalize $X_{\alpha_{i}}, i=1, \ldots, k$ so that $2 \alpha_{i}\left(H_{\alpha_{i}}\right) B\left(X_{\alpha_{i}}, \theta X_{\alpha_{i}}\right)=-1$. Define an element $c(Q)$ of $M_{0}^{\prime \prime}$ by

$$
c(Q)=\exp (\pi / 2)\left(X_{\alpha_{1}}+\theta X_{\alpha_{1}}\right) \cdots \exp (\pi / 2)\left(X_{\alpha_{k}}+\theta X_{\alpha_{k}}\right) .
$$

Then $\mathfrak{a}^{1}=\operatorname{Ad}(c(Q)) \mathfrak{a}_{0}$ is a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}^{1} \supset \mathfrak{a}^{\prime}$.

Let $\left\{Q_{0}, \ldots, Q_{n}\right\}\left(Q_{0}=\phi\right)$ be a complete set of representatives of \mathfrak{q}-orthogonal
systems of $\Sigma_{\mathfrak{h}}\left(\mathfrak{a}_{0}\right)_{m^{\prime \prime}}$ with respect to the following equivalence relation \sim. For two \mathfrak{q}-orthogonal systems $Q=\left\{X_{\alpha_{1}}, \ldots, X_{\alpha_{k}}\right\}$ and $Q^{\prime}=\left\{X_{\beta_{1}}, \ldots, X_{\beta_{k^{\prime}}}\right\}$ of $\Sigma_{\emptyset}\left(a_{0}\right)_{m^{\prime \prime}}$, $Q \sim Q^{\prime}$ if and only if there exists a $w \in W_{K \cap H}(\overline{\mathfrak{a}})\left(=N_{K \cap H}(\overline{\mathfrak{a}}) / Z_{K \cap H}(\overline{\mathfrak{a}})\right)$ such that

$$
w\left(\mathfrak{r}+\sum_{j=1}^{k} H_{\alpha_{j}}\right)=\mathfrak{r}+\sum_{j=1}^{k_{j}^{\prime}} H_{\beta,} .
$$

Put $\mathfrak{a}_{i}=\operatorname{Ad}\left(c\left(Q_{i}\right)\right) \mathfrak{a}_{0}, i=1, \ldots, n$. Then the following is a trivial consequence of Theorem in this paper, Corollary 1 of Theorem 1 in [3] (Proposition in §1) and Theorem 2 in [3].

Corollary 3. $H P^{\prime}=\cup_{i=0}^{n} \cup_{j=1}^{m(i)} H w_{j}^{i} c\left(Q_{i}\right) P_{(0)} \quad$ (disjoint union) where $\left\{w_{1}^{i}, \ldots, w_{m(i)}^{i}\right\}$ is a complete set of representatives of $W_{K \cap H}\left(\mathfrak{a}_{i}\right) \cap W\left(\mathfrak{a}_{i}\right)_{m^{\prime}}, \backslash\left(\mathfrak{a}_{i}\right)_{\mathrm{m}^{\prime}}$, in $N_{K \cap M^{\prime}}\left(\mathfrak{a}_{i}\right)$. Moreover we have

$$
H^{\prime} P^{\prime}=\cup_{i=0}^{n} \cup_{j=1}^{m(i)} H^{\prime} w_{j}^{i} c\left(Q_{i}\right) P_{(0)}(\text { disjoint union }) .
$$

Example 1. Suppose that $G=G_{1} \times G_{1}$ where G_{1} is a connected real semisimple Lie group with Lie algebra \mathfrak{g}_{1} and that $H=\Delta G_{1}=\left\{(x, x) \in G \mid x \in G_{1}\right\}$. Let $\mathfrak{g}_{1}=\mathfrak{f}_{1}+\mathfrak{p}_{1}$ be a Cartan decomposition of \mathfrak{g}_{1} and put $\mathfrak{f}=\mathfrak{f}_{1}+\mathfrak{f}_{1}$ and $\mathfrak{p}=\mathfrak{p}_{1}+\mathfrak{p}_{1}$. Then a σ-stable maximal abelian subspace \mathfrak{a} of \mathfrak{p} is of the form $\mathfrak{a}=\mathfrak{a}_{1}+\mathfrak{a}_{1}$ where \mathfrak{a}_{1} is a maximal abelian subspace of \mathfrak{p}_{1}. Let \mathfrak{p}^{0} be a minimal parabolic subalgebra of \mathfrak{g} of the form $\mathfrak{P}^{0}=\mathfrak{P}_{1}+\mathfrak{P}_{1}$ where $\mathfrak{P}_{1}=\mathfrak{P}\left(\mathfrak{a}_{1}, \Sigma\left(\mathfrak{a}_{1}\right)^{+}\right)$for some positive system $\Sigma\left(\mathfrak{a}_{1}\right)^{+}$of $\Sigma\left(\mathfrak{a}_{1}\right)$. Then there is a one-to-one correspondence

$$
\Delta W\left(\mathfrak{a}_{1}\right) \backslash W\left(\mathfrak{a}_{1}\right) \times W\left(\mathfrak{a}_{1}\right) \simeq H \backslash G / P^{0}
$$

which is induced by the map $\left(w_{1}, w_{2}\right) \mapsto \operatorname{Ad}\left(w_{1}\right) \mathfrak{P}_{1}+\operatorname{Ad}\left(w_{2}\right) \mathfrak{P}_{1}\left(w_{1}, w_{2} \in W\left(\mathfrak{a}_{1}\right)\right)$ where $\Delta W\left(\mathfrak{a}_{1}\right)=\left\{(w, w) \in W\left(\mathfrak{a}_{1}\right) \times W\left(\mathfrak{a}_{1}\right) \mid w \in W\left(\mathfrak{a}_{1}\right)\right\}$. If we identify $H \backslash G$ with G_{1} by the map $(x, y) \mapsto x^{-1} y\left(x, y \in G_{1}\right)$, the decomposition $H \backslash G / P^{0}$ is equivalent to the Bruhat decomposition

$$
P_{1} \backslash G_{1} / P_{1} \cong W\left(\mathfrak{a}_{1}\right)
$$

Fix $\left(w_{1}, w_{2}\right) \in W(\mathfrak{a})\left(=W\left(\mathfrak{a}_{1}\right) \times W\left(\mathfrak{a}_{1}\right)\right)$ and put $\mathfrak{P}=\operatorname{Ad}\left(w_{1}\right) \mathfrak{P}_{1}+\operatorname{Ad}\left(w_{2}\right) \mathfrak{P}_{1}$. Let $\mathfrak{P}^{0 \prime}=\mathfrak{P}_{1}^{\prime}+\mathfrak{P}_{1}^{\prime \prime}$ be an arbitrary parabolic subalgebra of \mathfrak{g} containing \mathfrak{P}^{0} and let $W_{\mathfrak{F}_{1}^{\prime}}$ and $W_{\mathfrak{F}_{1}^{\prime \prime}}$ be the subgroups of $W\left(\mathfrak{a}_{1}\right)$ corresponding to $\mathfrak{P}_{1}^{\prime}$ and $\mathfrak{P}_{1}^{\prime \prime}$ respectively. The parabolic subalgebra $\mathfrak{P}^{\prime}=\operatorname{Ad}\left(w_{1}\right) \mathfrak{P}_{1}^{\prime}+\operatorname{Ad}\left(w_{2}\right) \mathfrak{P}_{1}^{\prime \prime}$ contains \mathfrak{P} and then $W(\mathfrak{a})_{\mathbf{m}^{\prime}}=w_{1} W_{\mathfrak{F}_{1}} w_{1}^{-1} \times w_{2} W_{\mathfrak{P}_{1}^{\prime \prime}} w_{2}^{-1}$. Thus the minimal parabolic subalgebras of \mathfrak{g} given in Theorem are of the form $\operatorname{Ad}\left(w_{1} w_{1}^{\prime}\right) \mathfrak{P}_{1}+\operatorname{Ad}\left(w_{2} w_{2}^{\prime}\right) \mathfrak{P}_{1}\left(w_{1}^{\prime} \in W_{\mathfrak{F}_{1}}\right.$, $w_{2}^{\prime} \in W_{\mathfrak{P}_{1}^{\prime \prime}}$. Hence there is a bijection

$$
\Delta W\left(\mathfrak{a}_{1}\right) \backslash W\left(\mathfrak{a}_{1}\right) \times W\left(\mathfrak{a}_{1}\right) / W_{\mathfrak{R}_{1}^{\prime}} \times W_{\mathfrak{R}_{1}^{\prime \prime}} \simeq H \backslash G / P^{0^{\prime}} .
$$

If we identify $H \backslash G$ with G_{1}, the above decomposition $H \backslash G / P^{0}$ is equivalent to the well-known decomposition

$$
P_{1}^{\prime} \backslash G_{1} / P_{1}^{\prime \prime} \cong W_{\mathfrak{F}_{1}^{\prime}} \mid W\left(\mathfrak{a}_{1}\right) / W_{\Re_{1}^{\prime \prime}} .
$$

Example 2 ([5], p. 29, Lemma 5.2). Let G be a connected complex semisimple Lie group and σ a complex linear involution of G. Then H is a complex subgroup of G. A Cartan involution θ is a conjugation of \mathfrak{g} with respect to a compact real form \mathfrak{f} of \mathfrak{g} and $\mathfrak{p}=(-1)^{1 / 2} \mathfrak{f}$. Let \mathfrak{a} be a σ-stable maximal abelian subspace of \mathfrak{p} and $\Sigma(\mathfrak{a})^{+}$a positive system of $\Sigma(\mathfrak{a})$. Then $\mathfrak{P}=\mathfrak{P}\left(\mathfrak{a}, \Sigma(\mathfrak{a})^{+}\right)$is a Borel subalgebra of \mathfrak{g}. Let \mathfrak{P}^{\prime} be a parabolic subalgebra of \mathfrak{g} corresponding to a simple root α of $\Sigma(\mathfrak{a})^{+}$. Then the simple root α is called (i) compact imaginary if $\mathfrak{g}(\mathfrak{a} ; \alpha) \subset \mathfrak{h}$, (ii) non-compact imaginary if $\mathfrak{g}(\mathfrak{a} ; \alpha) \subset \mathfrak{q}$, (iii) real if $\sigma \alpha=-\alpha$ and (iv) complex if $\sigma \alpha \neq \pm \alpha$. In [5], $H \backslash H P^{\prime} \mid P \subset H \backslash G / P$ is determined in each case (i) (iv). Therefore $f^{-1}(f(\mathcal{O}))$ is determined for an arbitrary $\mathcal{O} \in H \backslash G / P$ if P^{\prime} is a parabolic subgroup of G corresponding to a simple root.

References

[1] K. Aomoto, On some double coset decompositions of complex semi-simple Lie groups, J. Math. Soc. Japan, 18 (1966), 1-44.
[2] M. Berger, Les espace symétriques non compacts, Ann. Sci. École Norm. Sup., 74 (1957), 85-177.
[3] T. Matsuki, The orbits of affne symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
[4] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math., 31 (1979), 157-180.
[5] D. Vogan, Irreducible characters of semisimple Lie groups III. Proof of the KazhdanLusztig conjectures in the integral case, preprint.
[6] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[7] J. Wolf, The action of a real semi-simple group on a complex flag manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), 11211237.

Department of Mathmatics, Faculty of Science, Hiroshima University*)

[^0]
[^0]: *) The current adress of the author is as follows: Faculty of General Education, Tottori University.

