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§1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the
node-arc incidence function and r be a strictly positive function on Y. The
quartet N={X, Y, K, r} is called an infinite network if the graph {X, Y, K} is
connected, locally finite and has no self loop. For notation and terminologies,
we mainly follow [4] and [5].

Let L(X) be the set of all real functions on X and L*(X) be the subset of
L(X) which consists of non-negative functions. For ue L(X), the Laplacian
Au € L(X) is defined by

AM(X) = - ZyEY K(X, J’)V(Y)—l Zzex K(Za y)u(z)
and the Dirichlet integral D(u) of u is defined by

D(u) = 3 yey r(0) 7 [ X wex K(x, p)u(x)1>.

Denote by D(N) the set of all u € L(X) such that D(u) < co.
For h e L(X), we denote by P,D(N) the set of all Dirichlet finite solutions u
of the discrete Poisson equation du=h, i.e.

P,D(N) = {ue D(N); Au = h}.

We say that h e L(X) is distinguished if h#0 and P,D(N)#¢. This notion
was introduced by M. Nakai and L. Sario [2] in order to study the existence of
Dirichlet finite non-harmonic biharmonic functions on Riemannian manifolds.
Our main purpose of this paper is to obtain discrete analogues of results in [2]
concerning conditions for a given h to be distinguished. We shall also show that
the distinguishedness of a given h € L(X) is related to the existence of flows with a
current source.

In §2 we recall some facts of discrete Green potentials which play important
roles in our study. Our main results are given in §3. Note that Theorem 3.4
has no counterpart in [2]. Relations between distinguishedness and existence of
flows are discussed in §4. Results in this section have no counterparts in [2]
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either. In §5, representations of the D-minimum solutions of given distinguished
functions are discussed.

§2. Green potentials

We first recall some facts from the theory of discrete Green potentials in [4]
and [5].

Let N'={X’, Y') be a finite subnetwork of N and let gY’ be the harmonic
Green function of N’ with pole at ae X', i.e., 4gY'(x)= —¢,(x) on X’ and g¥'(x)=0
on X — X', where ¢, € L(X) is defined by g,(a)=1 and ¢,(x)=0 if x#a.

For every fe L(X), the Green potential Gy.f and the energy Gy(f, f) of
f (with respect to gV') are defined by

Ghf(x) = Z.ex 97 (0)f(2),

Ghlf, ) = Zexr Zeoex 97 () (D) f ().
Then we have G.f(x)=0 on X — X’ and
2.1) AGyf(x) = — f(x) on X'.

For u, ve L(X), we consider the inner product

(4, 0) = Xyey T(N) [ Xzex K(z, Y)u(2)] [X:ex K (2, y)e(2)]

of u and v, if the sum is well defined.
We can easily prove

LEMMA 2.1. If ve L(X) vanishes on X — X', then (gY', v)=v(a).
COROLLARY 1. D(Gy.f)=GyAf, f)-
COROLLARY 2. If Gy(f, f)=0, then f=0 on X'.

Let Ly(X) be the set of all u € L(X) with finite support and denote by Dy(N)
the closure of Ly(X) in D(N) with respect to the norm |ul||=[D(u)+ u(x,)?]'/?
(xo € X). An infinite network N is said to be of hyperbolic (resp. parabolic) type
if there exists (resp. does not exist) the harmonic Green function g, of N with pole
at a, i.e., g,€ Dy(N) such that 4g,(x)= —¢,(x) on X. Denote by Oy the class of
parabolic infinite networks. Let {N,} be an exhaustion of N and let g{» be the
harmonic Green function of N, with pole at a. Then g <g{"*D. 1In case
NeO0g, gi"(x)- 0 as n—oo for each xe X. In case N¢Og, giP(x)—g,(x) for
each xe X and D(g{” —g,)—0 as n—oo.
In case N¢Og;, the Green potential Gf(x) and the energy G(f, f) of fe L(X)
are defined by
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Gf(X) = ZZEX gz(x)f(z) = z:ex gx(z)f(z) s
G(fs f) = erX ZZEX gx(z)f(x)f(z)

whenever they are well defined.

In case N € Ogz, we have D(N)=Dy(N). In case N ¢0, the Royden decom-
position reads

D(N) = Dy(N) + HD(N),

where HD(N)={ueD(N); Au=0} and the sum is the vector space direct sum
(cf. [5; Theorem 4.17]).

DEerFINITION 2.1. For a distinguished h, a function u in P,D(N) is called a
D-minimum solution if u € Dy(N).

By the above observation, we have

THEOREM 2.1. Let h be distinguished.

(i) If N¢Og, then there exists a unique D-minimum solution u, and
P,D(N)=HD(N)+u,.
(ii) If N € Og, then every u e P,D(N) is a D-minimum solution.

§3. Existence theorems

Denote by FS(N) the set of all finite subnetworks of N. As a discrete
analogue of [2; Theorem 1], we have

THEOREM 3.1. In order that he L(X) be distinguished it is necessary and
sufficient that

3.1 0 < sup {GyAh, h); N'e FS(N)} < o0.

Proor. First we assume that h is distinguished. Take u e P,D(N) and
N'=(X',Y'>eFS(N). Putv=u+Gyh. Then Av=4u—h=0 on X' and hence

D(u) = D(v—Gy-h) = D(v) + D(Gy-h) — 2 X ox [4v(x)] [Gy-h(x)]
= D(v) + D(Gy-h) > D(Gy-h),
Since Gy-he Ly(X). We have by Corollary 1 of Lemma 2.1
Gy(h, h) = D(Gy-h) < D(u) < .

Since h#0 on X, there exists N’ e FS(N) such that Gy.(h, h)>0 by Corollary 2
of Lemma 2.1. Thus (3.1) holds.
Conversely assume that (3.1) holds. Let {N,} (N,=<X,, Y,») be an ex-
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haustion of N and x,€ X, and put v,=— Gy h. We may assume that Gy, (h, h)
>0. Then h#0 on X,. For m>n, we have by (2.1) and Lemma 2.1

(U,,, Up) = — Ziex [4 Um(x)]un(x) = = Drex h(x)u,,(x)
= - erX [Avn(x)]vn(x) = D(vn) s

so that D(v,—v,)=D(v,)—D(v,). Put u,=v,—v,(x,). Then Au,=h on X, and
{u,} is a Cauchy sequence in the Hilbert space D(N) with the norm |lu|. Hence
there exists # € D(N) such that ||u,—#| —0 as n—oo. Then {u,(x)} converges to
i(x) for each xe X by [5; Lemma 1.1], and hence 4ii=h on X. Namely h is
distinguished.

By applying this theorem, we have
PROPOSITION 3.1. Let NeOg. Then any he L*(X) is not distinguished.

In case N ¢ 04, denote by E(G) the set of all fe L*(X) such that G(f, f)< .
Then we have

PROPOSITION 3.2. Let N¢O; and let he L*(X). Then h is distinguished
if and only if h#0 and he E(G).

COROLLARY 1. Let N¢Og; and h, and h, be elements of E(G) such that
h,#h,. Then h=h,—h, is distinguished.

Denote by O, the class of all infinite networks N for which {u € D(N); du= —1}
=@g. We proved in [7; Theorem 3.1] that N¢ O,y if and only if 1€ E(G).
Thus we can easily prove

COROLLARY 2. Let N¢Ogyp. If his nonzero and bounded on X, then h is
distinguished.

As a discrete analogue of [2; Theorem 2], we have

THEOREM 3.2. In order that he L(X) be distinguished it is necessary and
sufficient that

(3.2 0 < sup {[ X rex H(x)f(x)1*/D(f); f€ Lo(X), f # 0} < 0.
PrOOF. Assume that u € P,D(N). For any fe Ly(X), we have

Lxex h()f(X) = Tyex [Au(x)1f(x) = — (u, f),
so that
[Zxex ) f(X)]? = |(u, )I* < D)D(S).

Since h#0, there exists fe Ly(X) such that > ..y h(x)f(x)#0. Thus the sup-
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remum in (3.2) is positive and dominated by D(u).

Conversely assume that (3.2) holds. Let N'e FS(N) and put f=Gyh.
Then fe Ly(X) and

2 xex h(x)f(x)=Gy.(h, b)=D(f).
Thus (3.2) implies (3.1).

Now we shall give necessary conditions for h to be distinguished. A subset
B of X is said to be wide at the ideal boundary of N if there exists a sequence

{x,} of nodes in B such that x,¢ X(x,,)(i.e., K(x,, y)K(x,, y)=0 for all yeY)
if n#m and

(3.3) M SUp, oo 2L fet T ey 1K Gopr MIF() 117 = o0,
We have

THEOREM 3.3. If there exists a positive number ¢>0 such that {xe X;
h(x)>¢} is wide at the ideal boundary of N, then P,D(N)=g.

ProofF. Let B={xe€ X; h(x)>¢} and choose a sequence {x,} in B such that
x, & X(x,,) if n#m and (3.3) holds. Put f,=>7_,¢,. Then f,€LyX),
erX h(x)fn(x) = Zﬁ=1 h(xk) = ne,
D(f,) = Zk=1 D(ey,) = Ti=1 T yey IK(xp MIF(y)L.

It follows that

lim infn—voo [erx h(x)fn(x)]z/D (fn) > lim SUPp- w0 n282/D(fn) = 00.
Hence P,D(N)=¢ by Theorem 3.2.

LemMMA 3.1. Let NeOg and ueD(N). If Y .xl|ldu(x)|<co, then
erx Au(x)zo

Proor. Since N e Og, there exists a sequence {f,} in Ly(X) such that 0<
<1l on X and | f,—1||—»0 as n—oo (cf. [4; Theorem 3.1]). Then (u, f,)—
(u, 1)=0 as n—»oo. We may assume that Au#0. For any £¢>0, we can find a
finite subset X’ of X such that > . y_x |4du(x)|<e. Since {f,} converges point-
wise to 1, there exists no such that |f,(x)—1|<e¢/c on X' for all n>n, with c=
> cex 14u(x)]. We have

|2 xex Au(x) + (u, f)l = | X wex [du(x)] [1 = fu(x)]|
< Trex [4uL = ()] + 2 Egex - x- [4u(x)]
< Y ex |du(x)le/c + 2¢ < 3¢
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for all n>n,. Thus we have Y,y du(x)=0.
THEOREM 3.4. Let NeOg; and h be distinguished. If > ,.x|h(x)|<o0,
then Y, .x h(x)=0.

ProoOF. There exists u € D(N) such that Au=h on X. Our assertion is an
immediate consequence of the above lemma.

§4. Relations with a flow problem

Let us consider the following flow problem on an infinite network N=
{X, Y, K, r}:
(FP,) Given he L(X), find we L(Y) such that

Zer K(x’ y)W(y) = —'h(x) on X, H(W) = Zer "(}’)W(Y)Z < oo.

This problem was studied by H. Flanders [1] in the case where he Ly(X). In

[1], h is called a current source.
We have

THEOREM 4.1. If h is distinguished, then problem (FP,) has a solution.

Proor. Let ueP,D(N) and define we L(Y) by w(y)=r(y)~! X ,x K(x,
yu(x). Then we have H(w)=D(u) and

Zyer K(x, y)w(y) = —du(x) = — h(x).
Thus w is a solution of problem (FP,).

In order to study the converse of this theorem, we recall the notion of paths
defined in [3]. For a, xe X, a path P from a to x is the triple (Cx(P), Cy(P), p)
of a finite ordered set Cy(P)={x,, Xy,..., X,} of nodes, a finite ordered set Cy(P)=
{¥1> Y25--+» Y} Of arcs and a function p on Y called the path index of P such that

Xo = a4, Xy = X, X; # xk(i # k)’ e(yi) = {xi—l’ xi} H
p(y) = — K(x;-1, y) and p(y) =0 if y¢Cy(P).

THEOREM 4.2. If h#0 and problem (FP,) has a solution, then h is
distinguished.

ProoF. - Denote by F,(Y) the set of all solutions of problem (FP,) and
consider the following extremum problem: Minimize H(w) subject to w e F,(Y).
Let a be the value of this problem and let {w,} be a sequence in F,(Y) such
that H(w,)—o as n—oo. -Since (w,+w,,)/2 € F,(Y), we have
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a < H((Wy+w,)/2) SH(W, +Wp)[2) + H(W, — W,)/2) = [H(W,) + H(Wn)]/2,

so that H(w,—w,,)—0 as n, m—o0. By the relation
) WP = wan(P))? < HW,—w,,),

we see that {w,(»)} is a Cauchy sequence for each ye Y. Let w(y) be the limit of
{w,(»)}. Then it is easily seen that we F,(Y) and H(w)=a. Let w' eL(Y) be a
finite cycle, i.e., the support of w’ is a finite set and ¥,y K(x, y)w'(y)=0 on X.

For any real number ¢, we have w+tw’' e Fi(Y), so that Hw)<HW+1w'). It
follows that

4.1 Zyer MWW (y) = 0.
Let a, x € X and define @ € L(X) by

#a) =0 and u(x) = X,y r(PW(Y) (x # a),

where p(y) is the path index of a path P from a to x. By (4.1), we see that @ is

independent of the choice of P and uniquely determined by w. We shall prove
that

“4.2) 2 xex K(x, p)i(x) = r(y)W(y) on Y.

Let ye Yand e(y)={x,, x,}. Let P be a path from a to x,. In case x, € Cx(P),
we have p(y)=—K(xz, y)=K(x, y) and #(x,)=ii(x;)+r(y)p(y)w(y), so that

2 xex K(x, p)ii(x) = K(x,, y) [a(xy) —a(x,)] = r(y)w(y).

In case x, ¢ Cx(P), let P’ be the path from a to x, generated by the path P and the
arc y and let p’ be the path index of P’. Then p'(y)=—K(x,, y)=K(x,, »)
and #u(x,)=u(x,)+r(y)p'(»)w(y), so that (4.2) holds. It follows that D(#)=
H(w)< oo and du(x)=h(x) on X. Namely A is distinguished.

As an application of this result, we have

THEOREM 4.3. Let heLy(X), h#0 and Y .xh(x)=0. Then h is dis-
tinguished.

PrOOF. Let A be the support of h, i.e., A={xe€ X; h(x)#0} and let b¢ A.
Define w, € L(Y) by

Wb(y) = - ZXEA h(x)px(y) ’

where p, denotes the path index of a path from b to x (x#b). Since the support
of p, and the set A are finite sets, we have H(w,)< 0. Since ¥ .y K(z, y)p(y)=
(2) (z#Db), X,y K(b, y)p(y)=—1and ¥ ,x h(x)=0, we see that w, is a solu-
tion of problem (FP,). Thus h is distinguished by Theorem 4.2.
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§5. Representation of D-minimum solutions

In order to represent the D-minimum solution u, for a distinguished h as the
limit of {Gy h}, we first study the discrete analogue of harmonizable functions.

For fe L(X) and N'=(X’, Y'> e FS(N), let h}' =f+Gy(4f). This is the
unique function such that 4h}'(x)=0 on X’ and h¥'(x)=f(x) on X —X".

We say that fe L(X) is harmonizable if {h}~} is convergent for every ex-
haustion {N,} of N.

We have

LemMa 5.1. If N¢Og, then every fe Dy(N) is harmonizable and hi~(x)—0
as n— oo for every exhaustion {N,} of N.

Proor. Let N,=<X,, Y,> and put f,=h¥". Since f,=f+Gy(4f),f €
Dy(N). By an argument similar to the last half of the proof of Theorem 3.1,
we see that D(f,—f,,)—0 as n, m—oo. It follows from [5; Theorem 3.3] that
{f,} converges pointwise to a function v e Dy(N). Since 4f,=0 on X,, we have
Av=0on X. Thus, [5; Lemma 1.3] implies v=0.

The present proof of this lemma is due to Professor F-Y. Maeda of Hiro-
shima University.

COROLLARY. If N¢Og, then every fe D(N) is harmonizable.

ProOF. Let feD(N). There exist ue HD(N) and veDy(N) such that
f=u+v. For every exhaustion {N,} of N, we have by Lemma 5.1

hifn(x) = hii»(x) + hi"(x) = u(x) + hi(x) — u(x)
as n—oo.
THEOREM 5.1. Let N¢Og; and h be distinguished. Then the unique D-

minimum solution u, is given by u,= —lim,_,,, Gy h, where {N,} is an exhaustion
of N.
ProoF. Since hY¥»=u,+ Gy h and u,eDy(N), our assertion follows from

Lemma 5.1.

THEOREM 5.2. Let NeOg; and h be distinguished. For each ue P,D(N)
and an exhaustion {N,} of N, there is a sequence {c,} of real numbers such that
u=lim,, o (—Gyh+c,).

ProOF. Put u,=Gy h—Gy h(x,). Then there exists it D(N) such that
|u,—i|| =0 as n—oo (cf. the proof of Theorem 3.1). Let ue P,D(N). Since
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N € Og, we have u= —ii+c with a real constant ¢. Let us put ¢,=Gy_h(x,)+c.
Since {u,} converges pointwise to i, we have u(x)= —Ilim,_ . (— Gy, h(x)+c,).

In case N¢Og, we say that a function fe L(X) is G-absolute if G|f|(a)=

> xex 9a(X)| f(x)] < o0 at one and hence, by Harnack’s principle (cf. [6; Lemma
1.3]), atallae X.
We have

THEOREM 5.3. Let N¢O;. If h is distinguished and G-absolute, then
uh=“"Gh.

Proor. Since h is G-absolute, Gy |h|(x)<Glhl(x)<oc and uy(x)=
—lim,_, Gy h(x)= —Gh(x) by Theorem 5.1.

As a corollary, we have the following Riesz-type decomposition:

COROLLARY 1. Let N¢Og and ue D(N). If Au is G-absolute, then u is
decomposed in the form: u=mnu— Gh, where h=Au and nu is the harmonic part
of u in the Royden decomposition.

PrROOF. We may assume that h=A4u#0. Then h is distinguished. Let
v=u—nu. Then v is the D-minimum solution for h. Since h is G-absolute, we
have v= — Gh by Theorem 5.3.

Since any h € E(G) is G-absolute, we have by Proposition 3.2

COROLLARY 2. Let N¢O; and heL*(X). If h is distinguished, then
uh=_Gh.

Denote by Ogp the class of all infinite networks N for which {u e L*(X);
Au=—1}=¢. We proved in [7; Theorem 3.1] that N¢Ogp if and only if 1 is
G-absolute. Thus if N¢Oyp, then any bounded function h e L(X) is G-absolute.
In order to obtain a similar result in the case where h is not bounded, we study the
growth of a distinguished function.

LEMMA 5.2. Let N¢Og and let h be distinguished and he D(N). For any
e>0, put A,={ze X; |h(z)|>¢} and B,={z€e€ X; |h(z)|<e}. Then

(5.1) 2 zea. 9x(DI(2)| < o0,
(52 2 ze8. 9x(2h(2)* < 0

for some and hence for all xe X.

PrOOF. Let v(x)=min [max(h(x), —¢), €]. Then v is bounded and D(v)<
D(h)<oo. Note that v(x)h(x) is equal to ¢|h(x)| if x € A, and to h(x)? if x € B,.
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Let {N,} be an exhaustion of N and let g/ be the harmonic Green function of
N, with pole at x. Since g and g, are bounded, we see that g"v and g,v are
bounded and belong to D(N). Let u, be the D-minimum solution for h. Then
we have

(5.3) 3 cex 9(2(2)(2) = T 2ex 97(2)0(2) [Au(2)] = — (90, uy) -

There exists a constant ¢>0 independent of n such that D(g{"v)<c[D(g{)+
D(v)]. Since D(g{” —g,)—0 as n—>o0, {D(g{"v)} is bounded. By using the fact
that {g{v} converges pointwise to g,v and u, € Dy(N), we have

limn—*oo (g;n)u, uh) = (ng9 uh) .

Recall that vh>0 on X and {g{”} converges increasingly to g,. We have by
(5.3)

er.—'x gx(Z)U(Z)h(Z) = - (ng’ uh) .
From the relation

2 2ex I DU(DN(Z) = € 214, 9LDM(2)| + X e, 9(2)N(2)?,
our assertion follows.

THEOREM 5.4. Let N¢Oyp and h be distinguished. If he D(N), then h
is G-absolute, so that u,= — Gh.

PrOOF. Since N¢Oyp, we see by [4; Theorem 3.2] that N¢Os. Let
A, and B, be the same as in Lemma 5.2. We have

2 ze8, 9(DM(2)| < & X ep, 9(2) < €Gl(x) < o0.
It follows from (5.1) that 4 is G-absolute.
The above proof shows that we can slightly sharpen this result as follows:

THEOREM 5.5. Let N¢Og; and h be distinguished. If heD(N) and if
there exists €>0 such that 3, p, g.(z)< 0, then h is G-absolute.

Theorems 5.4 and 5.5 are discrete analogues of [2; Theorem 7].
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