The pure braid groups and the Milnor $\bar{\mu}$-invariants of links

Tetsusuke Ohkawa

(Received January 14, 1982)

1. The statement of results

In this note, we study a relation between the pure braid groups P_{n} and the Milnor $\bar{\mu}$-invariants of links, and shall prove the $\bmod p$ residual nilpotence of P_{n}. Let

$$
X_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \boldsymbol{C}^{n} \mid x_{i} \neq x_{j} \text { if } i \neq j\right\}
$$

be the configuration space of \boldsymbol{C}. Then the symmetric group S_{n} of degree n acts freely on X_{n} by the permutation of the coordinates. Let $Y_{n}=X_{n} / S_{n}$ be the quotient space by the action of S_{n}. Then we have

$$
\pi_{i}\left(X_{n}\right)=\pi_{i}\left(Y_{n}\right)=0 \quad(i \geq 2)
$$

and the exact sequence

$$
1 \longrightarrow \pi_{1}\left(X_{n}\right) \longrightarrow \pi_{1}\left(Y_{n}\right) \longrightarrow S_{n} \longrightarrow 1
$$

Definition 1. $\pi_{1}\left(Y_{n}\right)\left(\right.$ resp. $\left.\pi_{1}\left(X_{n}\right)\right)$ is said to be the braid group (resp. the pure braid group) of degree n, and is denoted by B_{n} (resp. P_{n}).

In fact, B_{n} coincides with Artin's braid group of the equivalence classes of braids (see [1]).

For any braid $b \in B_{n}$, let \hat{b} be the closed braid of b (see [1]). If $b \in P_{n}$, then \hat{b} is a link of n components in S^{3}.

Definition 2. Put

$$
\begin{aligned}
& P_{n, q}=\left\{b \in P_{n} \mid \bar{\mu}\left(i_{1} \cdots i_{k}\right)(\hat{b})=0 \quad \text { for any } \quad k \leq q\right\} \\
& P_{n, q}^{(p)}=\left\{b \in P_{n} \mid \bar{\mu}\left(i_{1} \cdots i_{k}\right)(\hat{b}) \equiv 0 \quad \bmod p \text { for any } k \leq q\right\}
\end{aligned}
$$

where $\bar{\mu}$ is the Milnor $\bar{\mu}$-invariant of links and p is a prime (see [2]).
Then we can prove the following
Theorem 1. (i) $P_{n, q}$ is a normal subgroup of B_{n} and therefore of P_{n}.
(ii) $\left[P_{n, q}, P_{n, r}\right] \subset P_{n, q+r}([$,$] denotes the commutator group)$.
(iii) $\cap_{q} P_{n, q}=\{1\}$.

THEOREM 2. (i) $P_{n, q}^{(p)}$ is a normal subgroup of B_{n} and therefore of P_{n}.
(ii) $\left[P_{n, q}^{(p)}, P_{n, r}^{(p)}\right] \subset P_{n, q+r}^{(p)}$.
(iii) $b \in P_{n, q}^{(p)} \Rightarrow b^{p} \in P_{n, p q}^{(p)}$.
(iv) $\cap_{q} P_{n, q}^{(p)}=\{1\}$.

By these theorems, we see immediately the following
COROLLARY. P_{n} is residually nilpotent and moreover, mod p residually nilpotent, i.e. $\quad P_{n}$ is embeddable into the product of finite p-groups for any prime p.

2. Some known results

Let F_{n} be the free group of rank n with free generators x_{1}, \ldots, x_{n}. Then
FACT 1. We have a monomorphism $\phi_{n}: B_{n} \rightarrow A u t\left(F_{n}\right)$ given by

$$
\begin{aligned}
& \phi_{n}\left(\sigma_{i}\right)\left(x_{i}\right)=x_{i+1}, \quad \phi_{n}\left(\sigma_{i}\right)\left(x_{i+1}\right)=x_{i+1}^{-1} x_{i} x_{i+1}, \\
& \phi_{n}\left(\sigma_{i}\right)\left(x_{j}\right)=x_{j} \quad(j \notin\{i, i+1\}),
\end{aligned}
$$

where $\sigma_{i}(1 \leq i \leq n-1)$ is the generator of B_{n} defined by the following braid

Definition 3. For a group G, let $\Gamma_{*} G\left(\operatorname{resp} . \Gamma_{*}^{(p)} G\right)$ be the ordinary (resp. mod p, or, restricted) lower central series of G (p : a prime). This sequence is characterized by the property that this is the minimal sequence $\left\{G_{i}\right\}$ of subgroups of G which satisfies the following conditions (i) and (ii) (resp. (i), (ii) and (iii)):

$$
\begin{aligned}
& \text { (i) } G_{1}=G, \quad \text { (ii) }\left[G_{m}, G_{n}\right] \subset G_{m+n} \\
& \text { (iii) } x \in G_{n} \Rightarrow x^{p} \in G_{n p} .
\end{aligned}
$$

FACT 2. For any $b \in P_{n}$ there are words $f_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right) \in F_{n}(i=1, \ldots, n)$ such that

$$
\phi_{n}(b)\left(x_{i}\right)=x_{i}^{f_{i}\left(x_{1}, \ldots, x_{n}\right)} \quad\left(x^{f}=f^{-1} x f\right)
$$

and the sum of the exponents of x_{i} in f_{i} is zero. Such an f_{i} is unique.

The above equality is called the "standard presentation" of b or $\phi_{n}(b)$. Moreover, for any $b \in P_{n}$,

$$
\begin{aligned}
& b \in P_{n, p} \Longleftrightarrow f_{i}\left(x_{1}, \ldots, x_{n}\right) \in \Gamma_{q} F_{n} \text { for any } i, \\
& b \in P_{n, q}^{(p)} \Longleftrightarrow f_{i}\left(x_{1}, \ldots, x_{n}\right) \in \Gamma_{q}^{(p)} F_{n} \text { for any i. }
\end{aligned}
$$

This follows from the definition of the $\bar{\mu}$-invariant since the link group $G=\pi_{1}\left(S^{3}-\hat{b}\right)$ for $b \in P_{n}$ has the presentation

$$
G=\left\{x_{1}, \ldots, x_{n} \mid\left(x_{i}, f_{i}\right)=1(i=1, \ldots, n)\right\}
$$

and x_{i} and f_{i} are the meridean and the longitude of the i-th component of b.
Let $Q=U\left(\boldsymbol{Z}_{p}\left[\left[\left[v_{1}, \ldots, v_{n}\right]\right]\right]\right)$ be the unit group of the non-commutative formal power series ring on variables v_{1}, \ldots, v_{n} over \boldsymbol{Z}_{p}, and $\Psi: F_{n} \rightarrow Q, \Psi\left(x_{i}\right)=1+v_{i}$, be the mod p-Magnus expansion. Then we see the following

Fact 3 (Zassenhaus [3]). For any $x \in F_{n}, x \in \Gamma_{q}^{(p)} F_{n} \Leftrightarrow \Psi(x)=1+($ terms of degree $\geq q$).

3. The proof of Theorems

We shall only prove Theorem 2 since the proof of Theorem 1 is similar to and more simpler than the proof of Theorem 2.

Proof of (i) in Theorem 2. The normality is clear since the closed braids of b and b^{a} are equivalent for any a and $b \in B_{n}$.

Let $b, c \in P_{n, q}^{(p)}, \phi_{n}(b)=B, \phi_{n}(c)=C$, and $B\left(x_{i}\right)=x_{i}^{f_{i}}, C\left(x_{i}\right)=x_{i}^{g_{i}}$ be the standard presentations of b and c. Then $B C\left(x_{i}\right)=B\left(x_{i}^{g_{i}}\right)=x_{i}^{f_{i} C\left(g_{i}\right)}$. The multiplicative closedness of $P_{n, q}^{(p)}$ follows from Facts 2 and 3 since $\Gamma_{q}^{(p)} G$ is a characteristic subgroup of G. Let $B^{-1}\left(x_{i}\right)=x_{i}^{h_{i}}$ be also the standard presentation. Then

$$
x_{i}=B B^{-1}\left(x_{i}\right)=x_{i}^{f_{i} B\left(h_{i}\right)}, \quad h_{i}=B^{-1}\left(f_{i}\right)
$$

and hence $b^{-1} \in P_{n, q}^{(p)}$.
Proof of (ii) of Theorem 2. Let $b \in P_{n, q}^{(p)}, c \in P_{n, r}^{(p)}$, and B, C, f_{i}, g_{i} be as above, and $(B, C)\left(x_{i}\right)=x_{i}^{h_{i}}$, where $(B, C)=B^{-1} C^{-1} B C$, be the standard presentation. Then we have

$$
x_{i}^{f_{i} B(g i)}=B\left(x_{i}^{g_{i}}\right)=B C\left(x_{i}\right)=C B\left(x_{i}^{h_{i}}\right)=C\left(x_{i}^{f_{i} B\left(h_{i}\right)}\right)=x_{i}^{g_{i} C\left(f_{i}\right) C B\left(h_{i}\right)},
$$

and hence $f_{i} B\left(g_{i}\right)=g_{i} C\left(f_{i}\right) C B\left(h_{i}\right)$,

$$
C B\left(h_{i}\right)=C\left(f_{i}^{-1}\right) g_{i}^{-1} f_{i} B\left(g_{i}\right)=C\left(f_{i}\right)^{-1} f_{i}\left(f_{i}, g_{i}\right) g_{i}^{-1} B\left(g_{i}\right)
$$

Since $\left(f_{i}, g_{i}\right) \in \Gamma_{q+r}^{(p)} F_{n}$, we have only to show that $C\left(f_{i}\right)^{-1} f_{i} \in \Gamma_{q+r}^{(p)} F_{n}$. Let \tilde{C} be a lifting of the automorphism C of F_{n} to a ring automorphism of the Magnus algebra $Z_{p}\left[\left[\left[v_{1}, \ldots, v_{n}\right]\right]\right]$. In fact, \widetilde{C} is a substitution of $v_{i}+($ terms of degree $\geq r+1)$ for v_{i}. Since $\Psi\left(f_{i}\right)=1+($ terms of degree $\geq q), \Psi\left(f_{i}\right) \equiv \Psi\left(C\left(f_{i}\right)\right) \equiv \widetilde{C}\left(\Psi\left(f_{i}\right)\right) \bmod (\mathrm{deg}$ $\geq q+r)$, and therefore $C\left(f_{i}\right)^{-1} f_{i} \in \Gamma_{q+r}^{(p)} F_{n}$.

Proof of (iii) in Theorem 2. For $b \in P_{n, q}^{(p)}$, let B and f_{i} be as above and let $B^{p}\left(x_{i}\right)=x_{i}^{g_{i}}$ be the standard presentation. Then we have the following by induction on j :

$$
B^{j}\left(x_{i}\right)=x_{i}^{f_{i} B\left(f_{i}\right) B^{2}\left(f_{i}\right) \cdots B^{j-1}\left(f_{i}\right)},
$$

which shows $g_{i}=f_{i} B\left(f_{i}\right) \cdots B^{p-1}\left(f_{i}\right)$. Therefore we have (iii) by the following implication:

$$
f_{i} \in \Gamma_{q}^{(p)} F_{n} \Longrightarrow g_{i} \in \Gamma_{p q}^{(p)} F_{n} .
$$

This is proved as follows: If \widetilde{B} is a lifting of B to the automorphism of the Magnus algebra, then we can show that

$$
\Psi\left(B^{j}\left(f_{i}\right)\right)=\widetilde{B}^{j}\left(\Psi\left(f_{i}\right)\right)=1+c_{1}+\binom{j}{1} c_{2}+\cdots+\binom{j}{j} c_{j+1} \quad\left(\operatorname{deg} c_{k} \geq q k\right),
$$

for $f_{i} \in \Gamma_{q}^{(p)} F_{n}$, by induction on j. Therefore the above implication follows from the following combinatorial lemma.

Lemma. Let c_{i} be a homogeneous element of degree i of a graded algebra over \boldsymbol{Z}_{p} (not necessarily commutative). Then the homogeneous part of degree $k(0<k<p)$ of

$$
\prod_{i=0}^{p=1}\left(1+c_{1}+\binom{i}{1} c_{2}+\cdots+\binom{i}{i} c_{i+1}\right)
$$

vanishes.
This lemma is proved by an elementary computation of binomial coefficients.

Proof of (iv) in Theorem 2. We shall prove (iv) by induction on n. It is true for $n=1$. Assume that it is true for $n-1$. For any $b \in \cap_{q} P_{n, q}^{(p)}$, let b_{0} be a restriction of b to P_{n-1}. By the inductive assumption, $b_{0}=1 \in P_{n-1}$ is clear. Then the n-th component of \hat{b} represents an element α of $\pi_{1}\left(S^{3}-\hat{b}_{0}\right) \approx$ F_{n-1}. If α is not straight, then there is some non-zero $\bmod p \bar{\mu}$-invariants since $\cap_{q} \Gamma_{q}^{(p)} F_{n-1}=\{1\}$. Therefore $\alpha=1$, and b is trivial.

References

[1] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Univ. Press, 1974.
[2] Milnor, J., Isotopy of links, Algebraic Geometry and Topology, A symposium in honor of Lefschetz, Princeton Univ. Press, 1957, 280-306.
[3] Zassenhaus, H., Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen, Abh. Math. Sem. Univ. Hamgurg 13 (1940), 200-207.

Department of Mathematics,
Faculty of Science, Hiroshima University

