The pure braid groups and the Milnor $\bar{\mu}$ -invariants of links

Tetsusuke OHKAWA

(Received January 14, 1982)

1. The statement of results

In this note, we study a relation between the pure braid groups P_n and the Milnor $\bar{\mu}$ -invariants of links, and shall prove the mod p residual nilpotence of P_n . Let

$$X_n = \{ (x_1, ..., x_n) \in \mathbb{C}^n \mid x_i \neq x_j \text{ if } i \neq j \}$$

be the configuration space of C. Then the symmetric group S_n of degree n acts freely on X_n by the permutation of the coordinates. Let $Y_n = X_n/S_n$ be the quotient space by the action of S_n . Then we have

$$\pi_i(X_n) = \pi_i(Y_n) = 0 \quad (i \ge 2)$$

and the exact sequence

$$1 \longrightarrow \pi_1(X_n) \longrightarrow \pi_1(Y_n) \longrightarrow S_n \longrightarrow 1.$$

DEFINITION 1. $\pi_1(Y_n)$ (resp. $\pi_1(X_n)$) is said to be the braid group (resp. the pure braid group) of degree n, and is denoted by B_n (resp. P_n).

In fact, B_n coincides with Artin's braid group of the equivalence classes of braids (see [1]).

For any braid $b \in B_n$, let \hat{b} be the closed braid of b (see [1]). If $b \in P_n$, then \hat{b} is a link of *n* components in S^3 .

DEFINITION 2. Put

$$P_{n,q} = \{ b \in P_n \mid \overline{\mu}(i_1 \cdots i_k)(\hat{b}) = 0 \text{ for any } k \le q \},$$

$$P_{n,q}^{(p)} = \{ b \in P_n \mid \overline{\mu}(i_1 \cdots i_k)(\hat{b}) \equiv 0 \mod p \text{ for any } k \le q \}$$

where $\bar{\mu}$ is the Milnor $\bar{\mu}$ -invariant of links and p is a prime (see [2]).

Then we can prove the following

THEOREM 1. (i) $P_{n,q}$ is a normal subgroup of B_n and therefore of P_n .

- (ii) $[P_{n,q}, P_{n,r}] \subset P_{n,q+r}([,])$ denotes the commutator group).
- (iii) $\bigcap_{a} P_{n,a} = \{1\}.$

THEOREM 2. (i) $P_{n,q}^{(p)}$ is a normal subgroup of B_n and therefore of P_n .

(ii)
$$[P_{n,q}^{(p)}, P_{n,r}^{(p)}] \subset P_{n,q+r}^{(p)}$$
.

(iii)
$$b \in P_{n,q}^{(p)} \Rightarrow b^p \in P_{n,pq}^{(p)}$$
.

(iv)
$$\bigcap_{q} P_{n,q}^{(p)} = \{1\}.$$

By these theorems, we see immediately the following

COROLLARY. P_n is residually nilpotent and moreover, mod p residually nilpotent, i.e. P_n is embeddable into the product of finite p-groups for any prime p.

2. Some known results

Let F_n be the free group of rank *n* with free generators $x_1, ..., x_n$. Then FACT 1. We have a monomorphism $\phi_n : B_n \rightarrow Aut(F_n)$ given by

$$\phi_n(\sigma_i)(x_i) = x_{i+1}, \qquad \phi_n(\sigma_i)(x_{i+1}) = x_{i+1}^{-1} x_i x_{i+1},$$

$$\phi_n(\sigma_i)(x_i) = x_i \quad (j \notin \{i, i+1\}),$$

where $\sigma_i (1 \le i \le n-1)$ is the generator of B_n defined by the following braid

DEFINITION 3. For a group G, let Γ_*G (resp. $\Gamma_*^{(p)}G$) be the ordinary (resp. mod p, or, restricted) lower central series of G (p: a prime). This sequence is characterized by the property that this is the minimal sequence $\{G_i\}$ of subgroups of G which satisfies the following conditions (i) and (ii) (resp. (i), (ii) and (iii)):

(i) $G_1 = G$, (ii) $[G_m, G_n] \subset G_{m+n}$, (iii) $x \in G_n \Rightarrow x^p \in G_{nn}$.

FACT 2. For any $b \in P_n$ there are words $f_i = f_i(x_1, ..., x_n) \in F_n$ (i = 1, ..., n) such that

$$\phi_n(b)(x_i) = x_i^{f_i(x_1,...,x_n)} \quad (x^f = f^{-1}xf)$$

and the sum of the exponents of x_i in f_i is zero. Such an f_i is unique.

486

The above equality is called the "standard presentation" of b or $\phi_n(b)$. Moreover, for any $b \in P_n$,

$$b \in P_{n,p} \longleftrightarrow f_i(x_1,...,x_n) \in \Gamma_q F_n \text{ for any } i,$$

$$b \in P_{n,q}^{(p)} \longleftrightarrow f_i(x_1,...,x_n) \in \Gamma_q^{(p)} F_n \text{ for any } i.$$

This follows from the definition of the $\bar{\mu}$ -invariant since the link group $G = \pi_1(S^3 - \hat{b})$ for $b \in P_n$ has the presentation

$$G = \{x_1, \dots, x_n | (x_i, f_i) = 1 \ (i = 1, \dots, n)\}$$

and x_i and f_i are the meridean and the longitude of the *i*-th component of *b*.

Let $Q = U(\mathbf{Z}_p[[[v_1,...,v_n]]])$ be the unit group of the non-commutative formal power series ring on variables $v_1,...,v_n$ over \mathbf{Z}_p , and $\Psi: F_n \rightarrow Q, \Psi(x_i) = 1 + v_i$, be the *mod p*-Magnus expansion. Then we see the following

FACT 3 (Zassenhaus [3]). For any $x \in F_n$, $x \in \Gamma_q^{(p)} F_n \Leftrightarrow \Psi(x) = 1 + (terms of degree \ge q)$.

3. The proof of Theorems

We shall only prove Theorem 2 since the proof of Theorem 1 is similar to and more simpler than the proof of Theorem 2.

PROOF OF (i) IN THEOREM 2. The normality is clear since the closed braids of b and b^a are equivalent for any a and $b \in B_n$.

Let $b, c \in P_{n,q}^{(p)}, \phi_n(b) = B, \phi_n(c) = C$, and $B(x_i) = x_i^{f_i}, C(x_i) = x_i^{g_i}$ be the standard presentations of b and c. Then $BC(x_i) = B(x_i^{g_i}) = x_i^{f_iC(g_i)}$. The multiplicative closedness of $P_{n,q}^{(p)}$ follows from Facts 2 and 3 since $\Gamma_q^{(p)}G$ is a characteristic subgroup of G. Let $B^{-1}(x_i) = x_i^{h_i}$ be also the standard presentation. Then

$$x_i = BB^{-1}(x_i) = x_i^{f_i B(h_i)}, \quad h_i = B^{-1}(f_i)$$

and hence $b^{-1} \in P_{n,q}^{(p)}$.

PROOF OF (ii) OF THEOREM 2. Let $b \in P_{n,q}^{(p)}$, $c \in P_{n,r}^{(p)}$, and B, C, f_i , g_i be as above, and $(B, C)(x_i) = x_i^{h_i}$, where $(B, C) = B^{-1}C^{-1}BC$, be the standard presentation. Then we have

$$x_i^{f_i B(gi)} = B(x_i^{g_i}) = BC(x_i) = CB(x_i^{h_i}) = C(x_i^{f_i B(h_i)}) = x_i^{g_i C(f_i) C B(h_i)},$$

and hence $f_i B(g_i) = g_i C(f_i) C B(h_i)$,

$$CB(h_i) = C(f_i^{-1})g_i^{-1}f_iB(g_i) = C(f_i)^{-1}f_i(f_i, g_i)g_i^{-1}B(g_i)$$

Since $(f_i, g_i) \in \Gamma_{q+r}^{(p)} F_n$, we have only to show that $C(f_i)^{-1} f_i \in \Gamma_{q+r}^{(p)} F_n$. Let \tilde{C} be a lifting of the automorphism C of F_n to a ring automorphism of the Magnus algebra $\mathbb{Z}_p[[[v_1, ..., v_n]]]$. In fact, \tilde{C} is a substitution of $v_i + (\text{terms of degree} \ge r+1)$ for v_i . Since $\Psi(f_i) = 1 + (\text{terms of degree} \ge q), \Psi(f_i) \equiv \Psi(C(f_i)) \equiv \tilde{C}(\Psi(f_i)) \mod (\text{deg} \ge q+r)$, and therefore $C(f_i)^{-1} f_i \in \Gamma_{q+r}^{(p)} F_n$.

PROOF OF (iii) IN THEOREM 2. For $b \in P_{n,q}^{(p)}$, let B and f_i be as above and let $B^p(x_i) = x_i^{q_i}$ be the standard presentation. Then we have the following by induction on j:

$$B^{j}(x_{i}) = x_{i}^{f_{i}B(f_{i})B^{2}(f_{i})\cdots B^{j-1}(f_{i})},$$

which shows $g_i = f_i B(f_i) \cdots B^{p-1}(f_i)$. Therefore we have (iii) by the following implication:

$$f_i \in \Gamma_q^{(p)} F_n \Longrightarrow g_i \in \Gamma_{pq}^{(p)} F_n.$$

This is proved as follows: If \tilde{B} is a lifting of B to the automorphism of the Magnus algebra, then we can show that

$$\Psi(B^{j}(f_{i})) = \tilde{B}^{j}(\Psi(f_{i})) = 1 + c_{1} + \binom{j}{1}c_{2} + \dots + \binom{j}{j}c_{j+1} \quad (\deg c_{k} \ge qk),$$

for $f_i \in \Gamma_q^{(p)} F_n$, by induction on *j*. Therefore the above implication follows from the following combinatorial lemma.

LEMMA. Let c_i be a homogeneous element of degree i of a graded algebra over \mathbf{Z}_p (not necessarily commutative). Then the homogeneous part of degree k (0 < k < p) of

$$\prod_{i=0}^{p-1} \left(1 + c_1 + \binom{i}{1} c_2 + \dots + \binom{i}{i} c_{i+1} \right)$$

vanishes.

This lemma is proved by an elementary computation of binomial coefficients.

PROOF OF (iv) IN THEOREM 2. We shall prove (iv) by induction on *n*. It is true for n=1. Assume that it is true for n-1. For any $b \in \bigcap_q P_{n,q}^{(p)}$, let b_0 be a restriction of *b* to P_{n-1} . By the inductive assumption, $b_0 = 1 \in P_{n-1}$ is clear. Then the *n*-th component of \hat{b} represents an element α of $\pi_1(S^3 - \hat{b}_0) \approx$ F_{n-1} . If α is not straight, then there is some non-zero mod $p \bar{\mu}$ -invariants since $\bigcap_q \Gamma_q^{(p)} F_{n-1} = \{1\}$. Therefore $\alpha = 1$, and *b* is trivial.

488

References

- [1] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Univ. Press, 1974.
- [2] Milnor, J., Isotopy of links, Algebraic Geometry and Topology, A symposium in honor of Lefschetz, Princeton Univ. Press, 1957, 280–306.
- [3] Zassenhaus, H., Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen, Abh. Math. Sem. Univ. Hamgurg 13 (1940), 200-207.

Department of Mathematics, Faculty of Science, Hiroshima University