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1. Introduction

In the present paper will denote by R the real line, by R” the n-dimensional
Euclidean space, and by |- | one of the norms usually considered in R".

Let J be an interval of the real line R with zero at its right end-point, which
belongs to J. The linear space C*(J) of all continuous and bounded functions on
J with values in R" is considered endowed with the norm | -||; defined by the
folmula:

”‘P”J = SUPyes |§0(u)|

which, as it is easily virified, makes it a complete metric space, i.e. a Banach space.

Let x: I-R" be a continuous function, where I is an interval of the real
line R. If tel with J,={{eR:¢—teJ}<I, then the function x,: J>R"
defined by the formula:

x(u) = x(t + u), uel,

is called the “past history”’ of x at t.

This paper is concerned wit the existence of solutions of the two point bound-
ary value problem

M (p()x'(®) = f(t, x;, X'(1),
) Xo = @, X(T) =1,
where the function f is defined on the set
[0, T] x D x R", D < C*(J), T> 0,

(o, n) is a point of D x R" and p(t) is a positive continuous function defined on
[o, T1.

Our results generalize previous ones due to Sficas [7] and have their origin
from well known results for ordinary differential equations (cf. [1], [4], [5]). In

* This paper is a part of my Doctoral Thesis submitted to the Department of Mathematics of
the University of Ioannina.
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the special case when p(f)=1 the result of the first section is related to known
results due to Grimm and Schmitt [3] for equations of mixed type (see also
Bernfeld and Lakshmikantham [2]).

Finally we note that the result concerning the existence of solutions of
equation (1), which are defined in an interval [«, c0) (Theorem 4), is very useful
in other branches of the qualititative theory of differential equations, for example
in oscillation theory where it is assumed the existence of solutions defined for
all large ¢ (see for example Y. Kitamura and T. Kusano [6]).

2. Fixed point method
In this section we deal with the boundary value problem (1)—(2) by using the
fixed point technique. In order to applying this technique we need a lemma.

LeMMA 1. Let the differential equation
3) Py’ (D) = (1)

where w: [0, T]->R" is a continuous function and p(t) is as in equation (1).
If &, ne R", then there exists exactly one solution y of (3) with y(0)=¢ and y(T)=
n, which is given by:

50 = = {(1=40) | o)

@
+60) | (1-ApE)oEds) + An—De() + ¢

where go(t)=$t p(s)~lds, A=q@(T)~1. Moreover this solution satisfies the re-
0

lations:
(5) [y(®)| £ K; maxg < <r|a(s)] + [n—¢&] + [&],
(6) [Y'(®] £ K, maxog,<r Tloxs)| + Ar-t|n—¢|
T—A®(T) T
where r=ming<,<rp(), K;= S o(s)yds, d(T)= S o(s)ds and
== 0 0

K,=r"'max {T—A ®(T), AD(T)}.

Proor. Differentiating (4) we can easily verify, that y(¢) is a solution of (3).
Also it is readily seen that y(0)=¢ and y(T)=n. We will show the relations (5)
and (6). The relation (4) can be abbreviated to

™ 90 = = 6(t, Jo(s)ds + A —2o(0) + &
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where G(t, s) is the Green function with respect to the boundary value problem

(p(®)y'(®) =0, y(0) = 0, ¥(T) =0

which is given by the formula

(1-A4p)e(s), 0=s=<t=T,
® G(t, s) = {
e()(1—A4¢(s)), 0St<s=<T,

(see, e.g. Hartman [4], pp. 325-328 and 418-422).
Now, we shall prove that:

T
©) maXogisr |, G 9ds = K,
- 0
and
(10) maxos,STST 10G(1, 5)/ot|ds = K.
- 0

By (8) we obtain

A1) k() = SZ G(t, s)ds = (1— Ag(t) g;qo(s)ds + o) StT(l—Aq)(s))ds

The maximum of h(t) is attained at a point t* such that:
T
—A(p’(t)g o()ds + (T—-t)p'(t1) =0 or t*=T—-A4 ST o(s)ds.
(1] 0

Then, by (11), we obtain
maXog <t SZ G(t, s)ds = S: G(t*, s)ds
= S: @(s)ds — Ap(t*) S: @(s)ds + o(t*)(T—1t*) — Ag(t*) S; o(s)ds
= S; @(s)ds — Ap(t*) S; o(s)ds + o(t*)4 g: o(s)ds — Ap(t%) S:T o(s)ds

ST——A(D(T)

:S” @(s)ds = @(s)ds = K.
0 0

In order to prove (10) we observe that

W(t) = S:(&G(I, $)/ot)ds = — A'(t) SZ o(s)ds + (T—1)p'(t)

ie. p(OI(H)=—A g: o(s)ds + T—t.
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T
Notice that p(#)h’(t) is a decreasing function. Moreover since T— A4 S o(s)ds
0
=T—-Ap(T)- T=0, we have

maXp<, <7 S: 10G(t, s)/0tlds = rmax {T — A(T), AP(T)} = K,.

Relations (5) and (6) follow now easily from (7) by using (9) and (10).

RemARK. In the special case where p(f)=1we have A=T"1, ¢(t)=t, r=1,
K,=T?/8 and K,=T)/2 and therfore the formulas (5) and (6) lead to some well
known formulas for ordinary differential equations (see, e.g. Hartman [4], p. 422,
or Jackson [5], p. 101). It is noteworthy that the bounds designated for the
solutions y of (3) with y(0)=¢ and y(T)=n and its derivative seem to be the small-
est which can be found. This fact plays an important role in the conditions
stated in Theorem 1.

THEOREM 1. (Existence and uniqueness) Let f be continuous on the set
E=[0,T] x C¥(J)xR"
and satisfy on E a Lipschitz condition of the form
(12) Lf(t, 0, 0) = f(t, 3, L1 < Oollo—ll, + 0,1
with Lipschitz constants 0y and 0, such that:
(13) 0.K; +6,K, <1

and the numbers K, and K, are as in Lemma 1. Then, for every (¢, n) € C*(J) X
R" there exists exactly one solution of the boundary value problem (1)—(2).

ProOF. Let (¢, n)e C*(J)x R". Consider the set X of all continuous func-
tions x: J U [0, T]—R" which are continuously differentiable on [0, T] and such
that x,=¢ for any xe X. The formula

(14) 6(x, y) = max (max,go,11 1X(t) — (O], (K{/K;) max,go 5 X' (0)—y' (1))

defines in X a metric, which makes it a complete metric space.
Let xe X. Consider the differential equation

ey = f(t, x,, X'(1))

which is of the form (3) with w(f)=f(t, x,, x'(¥)) and hence, by Lemma 1, there
exists exactly one solution y with y(0)=¢(0)=¢& and y(T)=n.
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Consider now the function %, where
o), teld,
0 = {

y(@®), te(, T].

Evidently X € X. Thus by the formula
x5, X, X = S(x),
a mapping S of X into itself is defined for which it holds:
Xo=0,%(T)=n and (p(O)X'()) =f(t, x, x'(t)) for every te[0, T].
Moreover S is a contraction. In fact let x;, x,e X. We notice that the function
u(t) = X,() — X,(t), teJ U [0, T],

is a solution of the equation

(' (D)) = o(t)

where
o(t) = f(t, x4 x1(1) — (&, X2 x5(1)), 1[0, T],
and therefore by (5), (6) and (12) we have:
8(S(x1), S(x3)) = 6(%y, £2)
=max (maXo,ry |%1(1) — X2(0), (K1/K3) maxgo,ry [X1(1) — X))
smax (K max,go,r1| f (8, X1 X1(D) —f(, X20, x2(D)],
(K1 /K)K, max,epo, 1 [ f(t, X4 X1(D) =S (2, X2 X2(D)])
=K maxeo,r1 | f(8 X160 X{(O) = (2, %20 x5())]
S K [0o max,o,rq %1, — X2[l; 4+ 6y maXio,7y [%1() — x2(D)]
=K[0o max,o,r1 X1 () — X2()] + (0, K2/K) (K /K) max o, 1y [¥1() — x2(0)]
<0(xq, x9)K[00+(0:K,/K )] = 8(xy, x3){0,K;1+60,K,}.
Consequently by (13) the mapping S is a contraction and therfore there exists

exactly one x € X with S(x)=x. Itis obvious that x is a solution of the boundary
value problem (1)-(2).

THEOREM 2. (Existence) Let f be continuous and bounded on the set E=
[0, TIx C*(J)x R". Then for every (¢, n)eC*(J)x R" there exists at least
one solution of the boundary value problem (1)-(2).

Proor. Let (¢, n)e C¥(J)x R" and m a bound of fin E. Consider the set
C*(I), I=J U [0, T] of all continuous and bounded functions x: [-»R" having
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continuous first derviatives on [0, T]. The formula:
(15) IxlIF = max (|x]|, (K1/K2) maxo g, <7 [X' (D))

defines in C*-1(I) a norm, which makes it a Banach space.
Let Y be the set of all x e C*-1(I) with

(1) Xo =0,
(i) Ix(I=Kym+In—&l+ [ for every te[0, T],
(ii)) |[x'(O|=K,m+Ar-ln—¢| for every te[0, T],

i) lp@Ox'(O)—p(Dx' D <m|t—7|  for every te[0, T],
where £ =¢(0). This set is not empty, because it contains the function

o), tel,
¢(0), te(0, T],

and moreover this set is convex. Also the set Y is compact, because by the
uniform continuity of p, the condition (iv) implies that the derivatives of functions
x € Y are equicontinuous, while by (iii) they are uniformly bounded.

According to Lemma 1 for any x € Y, there exists exactly one solution of the
equation:

x(t) =

(p()y' (1) = 1(t, x,, X'(1))

with y(0)=¢@(0)=¢ and y(T)=n.
Consider the function X with

o), teld,
y(®), te(0, T].

It is clear that X € Y. Thus by the formula:

(1) =

x 2. % =Py,
is defined a mapping P of Y into itself is defined for which it holds:
Yo =0, XT)=n,
(p(OX'(t)) = f(t, x,, x'(t)), forevery te[0, T].
The mapping P is continuous. In fact as it is easily verified, the set
Ey ={(t, x,, x'(t)): x€ Y, te [0, T]}

is a compact subset of E. On the other hand by (15) and (5), (6), for every x,,
X, €Y we have:
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(16) | P(x;)— P(x,)||¥ = max (maxte[O,T] |P(x(£)) — P(x(D)],
(K/K,) max,go, 1y |[P'(x1(8)) — P'(x2(0))
:<—_K1 maxts[O,T] If(t3 X1t xll(t)) _f(ts X2t xé(t))l .

Also, by the uniform continuity of f on the set E, we have:
(Ve>0)(33(e)>0)(V{(t, z, ) and (t, 2,0)} on Ey)(|z—2|; < ()
and |{-{I<d(@)=|f(t, z, O)—f(, Z, D) <¢/K;.
But, for x,, x, € Y with ||x; —x,[|¥ <min (6(¢), (K,/K)d(e))=*(¢) it holds
%1, — X2 ly;<6(e) and |xi(t)—x5()| < d(e) for every te[O, T].

Hence, we have
(Ve>0)(30*(e)>0) (Vx4, x5 € with [x; —x,[ T <8*(e)) =>[P(x1)—P(x)|f <s,

and therefore P is continuous. By Schauder’s fixed point theorem we can now
derive that there exists at least one x € Y with x=P(x). It is obvious that x is a
solution of the boundary value problem (1)—(2).

3. A priori bounds method

In this section we study again the boundary value problem (1)-(2) by using the
method of a priori bounds (cf. Hartman [4]). In what follows we assume that the
function p appeared in (1) is positive and continuously differentiable on [0, T7].
Also we use the notations: ||-|, || - ||, to denote the Euclidean norm in R” and
respectively the sup-norm defined by it in C*(J).

We need the following lemmas:

LemMMA 2 (Hartman [4]). Let q(s), 0Ss<+ oo be a positive continuous
function satisfying

® sds
243 = + 0.
S q(s)
Let also a*, k, b*, T be nonnegative constants. Then there exists a number
M >0 (depending only on q, a*, b*, T, k) with the following property:
If v is a vector function of class C* for 0=t=<T satisfying

a) (v =b*
b) "I =q(lv'®I), 0=t=T,
o [ =a*r"(+k,

where r(t)=|v(t)||2, then for every te[0, T] it holds:
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Il = M.

LeMMA 3. Let q(s), 0=<s< + o0 be a continuous function as in the Lemma 2.
Let also, a, k, b, T be nonegative constants. Then, there exists a M >0 (depend-
ing only on q, a, b, k, T and the function p) with the property:

If x is a vector function of class C? for 0<t< T satisfying :

a)* [x()l =b,

b* (X' @)Y = 9(pIX'®I), 0=t < T,

o* p®dx' )l = ad"(®) + k,

where 3(f)= || x()p(f) — S; X(s)p'(s)ds||2, then:
17 pOIX' I = M for every te[0, T].

Proor. It is sufficient to prove that a)*, b)*, c)* lead to the assumptions
a), b), ¢) of Lemma 2 for the function

o(t) = p(Ox(8) - " x(6)p'()ds, 1[0, 71,
In fact for every t [0, T] we have:

lo()ll < bmax p(t) + b § Ip/(9)lds = b{ max p(t) + So IP(s)ds} = b*,
IO = (@Y < ae®IXOI) = allo' B,
and hence a) and b) hold. Also,

90 = 2{x0p) - [ xp' s | (03’0,
30 = 2{pOlx O + [ x0p) - [ x0p'ds |(e0x 0]

and consequently
IO @Y =100 S a8") + k
=2a{p0lx'0) 12 + | xOp0- [ x©p'©ds (ox @)} + k
=2a{[|v'®]* + v(OV" (O} + k = a*r"(t) + k

i.e. ¢) holds with r(t)=||v(¢)||? and a*=a.

Lemma 4. Let f: E(T, b)—R*, E(T, b)=[0, T]1x U(0, b)xR", U(0, b)=
{p e C*(J): |l@ll;=b} be a continuous function. If

t
B = subugor P07 | P(S)lds
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and 4>0 are such that 1—2abB >0, then the condition
(18) 1@, z, Ol = 2a{z(0)f(¢, z, {)
+ p(OILIZ} + k*, k* 2 0, (8, z, {) e E(T, b),

implies that

(19) I @ x, x' @)

< g 1 @ 5 ¥ O 20 -0~ 50)p'@ps |

+ PO O} + ar

for every function xe C(J U [0, T]) n C'[0, T] with ||x];<b, te[0, T] and for
every te[0, T].

ProoF. Let x be a continuous function on J U [0, T] with continuous first

derivative for 0<t< T with |x,|;=b, t€[0, T]. Then by (18) we have:

11t %0 X)) < 28(f(t, X)X + pOIXOIZ} + k*
=28{ 1, 5 ¥ @) ][50 = p® [ x(5)p'(5) ds

+p@7 || 20/ @ds [+ p @l @12} + *
0
<20 {7 50 ¥ @) [ 30 - 00 x9)p'(5)ds + p@)1x0) 17}

+ 24\ £ @, x., X" @) IO + k*, 1[0, T] .
and consequently

(1 = 28BB)L1 & %y @) S 28 {£ @, 3 ¥ @) | 20— O || x(9)p'(5)ds |

+ pOIX O} + k2, te [0, T1,
i.e. the relation (19).

LEMMA 5. Let f: E(T, b)—>R" be a continuous function such that:
@ 201, z, O)+p®ILI>>0 for every (1, z, {)e E(T, b) with z(0){=0
and ||z|;=b, ||z(0)|| >0.

(II) For some nonnegative constants k* and a it holds:

I, 2, Ol < 28{z(0)f(t, z, O) + p(DILI?} + k*
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A 1@, z, O £q(p®OIL|) for every (t, z, {) € E(T, b) where the function
q is as in the Lemmas 2 and 3.
Then for any M >0 there exists a continuous bounded function g: [0, T] x
C*(J)x R">R" such that:
Ty z(0)g(t, z, O+ p@®)|C|I>>0 for every (t, z, {) € [0, T]x C*(J) x R" with
z(0)(=0, |lz]l;2 b, ||z(0)|| >0.
ar) g, z, HI =2a{z(0)g(t, z, )+ pMILI?} +k* for every (1,2, )€
[0, T] x C*(J) x R".
A1) lg(t, z, I =q(p()IL]) for every (1, z, {) € [0, T]1x C*(J) x R".
AV @, 2, 0)=g(t, 2z, () for every (t,z, )eE(T,b) with p()|{=M,
0<t=T, |z|,<b.

PrOOF. We obtain such a function g as follows:
Let d(s), where 0<s< + o0, be a continuous real-valued function satisfying

os)=1, 0=s=M,
0<d(s) <1, M<s=2M,
o(s)=0, 2M <s < +o0.
Put
d(p@ILI) f @, z, {) on E(T, b),

20 t,z, () =
( ) g( : C) —b—g(lgb#ac)a fOl'OétéT, ”Z”J%b, CeRn.

2115 2115

We show that g fulfills the properties (I')-(III").
Consider first the case where ||z]|;<b i.e. (¢, z, {)€ E(T, b). Then, by the
obvious identity on E(T, b)
2(0)g(t, z, ) + p(DIILII?
=d(pILI) (z(0)f (2, z, O) + p(OILI* + [1=6(p(DILINIPDILI,
we immediately conclude that (I’) holds. For (II") we have
lg(t, z, Ol = 116(eOILINLE, 2z, DIl = 5(eOILDIS(2, 2, DI
< 3(pILI) [2a{z(0)f (2, z, D)+ pOILI*} + k*]
= 24z(0)3(p()IEINS (s z, ) + 28p()5(pDICIDICI + k*o(p()ILI)
£24{z(0)g(t, z, O +p(MICII?} + k*

and therefore (II') holds.
For (IIT") we notice that

lg(t, z, I = 16(pIENS (s 2, DIl = S(eOILDISE, 2z, DIl = a(p®ILI)
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and hence (IIT') is valid.
Consider any z € C*(J) with ||z|;>b. Then, the conditions (I'), (II"), (IIT")
are obtained correspondingly from (I), (II), (III) if z is replaced by (b/|z|,)z.
Finally (IV’) is an immediate consequence of formula (20).

The main result of this section is the following:

THEOREM 3. Let f be a continuous function on the set E(T, b) satisfying
the conditions:

@D 20)f(t, z, O+ pOILI>Z0 for every (t, z, {)€E(T, b) with z(0){=0
and ||z|;=0b.

(i) If 4>0 is such that 1 —2abf>0 (where B is defined in Lemma 4) and
k*>0, then the following holds:

17t z, Ol = 28{z(0)f (1, z, ) + p(DILII*} + k*

for every (t, z, {) € E(T, b).

@) [If(t, z, DI =)L) for every (1, z, {) € E(T, b) where q is a func-
ction as in Lemma 2.

Then, for every (o, n)e€ U(0, b) x R" with ||| £b, there exists at least one
solution of the boundary value problem (1)—(2).

ProOF. The proof will be given first for the case where f satisfies the con-
dition (I) of Lemma 5 instead of (). Let M be a constant supplied by Lemma 3
with a=a'(min,go ry (1)}, a'=a/(1-2abp), k=k*/(1—2abp) and g the
associated to M function of Lemma 5. Because g is continuous and bounded
on the set [0, T] x C*(J) x R", by Theorem 2, the equation

(p(x'(1) = g(t, x,, x'(2))

has at least one solution x with x,=¢ and x(T)=#n. We show that this solution
x satisfies the assumptions of Lemma 3. To do this we put

r(®) = [x())?
when we have:
r'(t) =2x'(t)x(t) = 2x'(t)x,0),
(p(yr' () = 2p()x"(1))'xA0) + 2p(D) 1 x'(D)]?
=2(x0)g(t, x,, x'(1) + p(DIIx"(D|?)

and consequently, because p(t)>0, the conditions r'(f)=2x,0)x'(t)=0 and
r(f)= b? imply, by (I'), r"(£)>0. Hence r(f) does not take its maximum at any
point t € (0, T) with r(f)=b2. Since r(0)= | (0)||2= b2, r(T)=n||> < b? it follows
that (1)< b? i.e.
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21) Ix(®] £ b, forevery te[0, T].

The condition b)* of Lemma 3 is fulfilled by (III') of Lemma 5. We are
going now to prove c)*. From the equality

(bOX @) = g(t, %, @), 1[0, T],
and by applying Lemma 4 to function g we have:
I@OX @Y = llgtt, %, X @)
< 20’ {g(t, 50 XY xO— p071 || (' ©)ds |+ @I DI} + k

= 2000 {(pOx ) x0p(®) — [ x0p'0)ds |+ POl 12} + k

=a'p(t)~10"(t) + k < ab"(t) + k.
Hence
pOx' M| = M, forevery tel0, T].
By the last relation, (IV’) and (21) we have
g(, x,, x'(1)) = f(t, x,, x'(t)), for every te[0, T],

and therefore the function x is a solution of the boundary value problem (1)-(2).
For the proof of the Theorem in the general case when (i) holds, we note
that for every &: 0<e=1 the function f(t, z, {) +&z(0) satisfies (I) of Lemma 5
(ii) and (iii) if k* and q are replaced by k* + &b, q + b respectively.
Hence the equation

(1), (p@)x'(®)) = f(t, x,, x'(1)) + ex(t)

has a solution x, with x, o=¢ and x,(T)=#. By Lemma 3 there exists a constant
M* (independent of ¢) such that:

pMx (Ol < M*, for every te[0, T].
Consequently if N=max,,<ysq(s)+b then
lo(®)x, (0’| = N, forevery te[0, T].

Thus, the functions px, 0<e<1 are uniformly bounded and equicontinuous
on the interval [0, T]. Hence, because p(¢) is a positive bounded function on
[0, T1, there exists a sequence ¢,: n=1, 2,..., 0<¢,<1 with lim,_, , , §,=0 and a
function y e C'[0, T] such that lim,. , x; =y’ and lim,_, ., x,, =y uniformly on
[0, T].
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Consider now the function
o), ted,
x(t) =
), te(0, T].

Evidently | .|;—lim,,, X, ,=x, uniformly on [0, T]. Furthermore, by
(21), we have:

PO (D = &y + ({05, Yoy XD F 013, (5))ds

where
e === p0 (" (s o 3D+ 91 s ds, [ )71

and &=¢(0).
By Lebesque convergence Theorem we conclude that lim,. ., x, (£)=x(%),
teJ U [0, T] and hence x is a solution of the boundary value problem (1)-(2).

ExaMpLE 1. Consider the differential equation

(22) ((A+x' () = u@®x® x|y + pOX'Ox' O

where u(f)=0, u(f)>0 are continuous on [0, c0) and moreover the function u is
such that

3 = infte[o,oo (1+t)/l't(t) >1.
For any T>0 we consider a b:
0<b<min{(T+DT", 9 — 1}

and furthermore the corresponding set E(T, b).
We shall show that for equation (22) the conditions (i), (ii), (iii) of Theorem 3
are fulfilled on E(T, b). Here itis p(t)=1+t and

f@ 2,0 = u®zQ)zll; + u@®ICIL.

In fact for (i) we notice that:

z(0)f(t, z, §) + p(®)ILII?
= u(@®)] 2012 zll; + n@®zOXICI + A +IL)2
=u(®)2(0*|1z]; + (1 +D[{]1* 20

since z(0){=0.
We shall show that (ii) holds for 4=1/2 and a proper choice of k*. First
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of all notice that 1—2abf>0, because:
B = supyo,r(1+ 7)1 S; ds = sup,go,r t(1+0)7' = T(T+1)™*

and by the assumption we have b<(T+1)T-'. It is enough
u(®)200) [1z]l; + wOICN? < u@®)|2(0)|2]zl; + p®O2O)ICIL + (L +)ILI* + k*
or
k* + u@®)zO)| 2]l ,(12Q)[ = 1) + u®ICIC2O) = L) + (L+1)ILI* = 0

for every (t, z, {) € E(T, b).
We choose k* >0 such that

(23) k* — u(®)b*(b+1) = 0 forevery te[0, T].
Thus, it is sufficient to show that

HOILNE2(0) — wOILNI? + L+0ILI> 2 0 for every (¢, z, {) € E(T, b)
or (L+9)[LlIZ — pMICI*A+12(0)[) =0
or [{IP{1+t—p(®(b+1)} 20
or 1+t—pu@®)(b+1)=20=>b=(+D/u@® -1

which hold by the assumption that b<39—1.
Finally, for (iii) we notice that

11, z, Ol < u(@®b* + u®ILI? = u®)b? + (u®/P*NP* DI
and if we put
Ay = maxg<,<r (14+8)72u(t), A, = b2maxg<,<ru(),
we have
1 z, Ol = A1p2OICI* + 2.
It is clear that, for the function g
q(s) = 2152 + 4,, 0=s< o0,

it holds
Sw (s/q(s)ds = g“’ (s/A 52+ A,)ds = co.

Hence by Theorem 3 we conclude that for every (¢, ) e U(0, b) x R* with
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lln|l £b the boundary value problem

(A +x' () = u@x@®lxl; + pOXOIX' O, xo = @, x(T) =n,

has at least one solution.

The following theorem is a criterion for the existence of a solution of (1)
with + oo as the right and end-point of its interval of definition.

THEOREM 4. Suppose that f is continuous on the set
E(b) = [0, o) x U(0, b) x R"

and moreover that for any T>O0, f satisfies the conditions of Theorem 3, where

the constants 4, k* and the function q can depend on T. Then, for every @€
U(0, b) the equation

(p(Ox'(1)) = f(t, x,, x'(1))

has at least one solution x: J U [0, 00)—>R" with x,=¢.

PrOOF. According to Theorem 3 for every m=1, 2,..., there exists a solution
X, of (1) with x,, y=¢ and x,(m)=0. We notice that, if T'is any positive number,
in view of Lemma 3 there exists a M >0 (depending only on T) such that:

pMx(DO] £ M, forevery te[0, T] and forevery m = T.
Also,

[(p()xn(®)' || S maxo<s<m q(s), forevery te[0, T] and foreverym =T

where q is the function corresponding to T.

From these relations it is clear that the sequence px/,, m = Tis equicontinuous
and uniformly bounded on [0, T]. Hence, there exists a subsequence rx,, n=
1, 2,...,of x,,, m=1, 2,..., and a function ;y: [0, T]—R" such that:

lim, o 1%, = ¢y, lim,., 7x, =)'
uniformly on [0, T].
As in the proof of Theorem 3, we can derive that the function
@), teld,
ry(®), t€(0, T],

is a solution of (1) on [0, T] with x,=¢. Evidently lim,,, rx,=rx and
lim,_, , rx,=7x" on J U [0, T].
By Arzela-Ascoli’s Theorem and the diagonization Theorem we conclude that

x(f) =
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we conclude that there exists a subsequence of functions x,,, m=1, 2,... which
converges for every te [0, c0) and defines a limit-function x, which is a solution
of (1) with x,=0¢.

ExampLE 2. Consider the same equation as in Example 1, where we now
choose b so that

b <min{l, § —1}.

Furthermore suppose that the function u(z), t=0 is bounded (then always there
exists a k*>0 so that (23) holds).

It is now clear that the conditions of Theorem 4 are satisfied and therfore
the equation (22) has a solution x defined on J U [0, c0) and such that x,=
o, 0 U(0, b).
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