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1. Introduction

In the present paper will denote by R the real line, by Rn the n-dimensional
Euclidean space, and by | | one of the norms usually considered in Rn.

Let J be an interval of the real line R with zero at its right end-point, which
belongs to J. The linear space C*(J) of all continuous and bounded functions on
J with values in Rn is considered endowed with the norm || | |j defined by the
folmula :

\\φ\\j = supMeJ|φ(w)|

which, as it is easily virified, makes it a complete metric space, i.e. a Banach space.
Let x: I-+R" be a continuous function, where / is an interval of the real

line R. If tel with Jt = {ξeR: ξ-te J}£/, then the function xt: J^Rn

defined by the formula :

xt(u) = x(t + M), u e J,

is called the "past history" of x at t.
This paper is concerned wit the existence of solutions of the two point bound-

ary value problem

(1)

(2) x0 = 9, x(T) = η,

where the function /is defined on the set

[0, T] x D x Rn, D s C*(J), T> 0,

(φ, η) is a point of DxR" and p(f) is a positive continuous function defined on

[0, T].
Our results generalize previous ones due to Sficas [7] and have their origin

from well known results for ordinary differential equations (cf. [1], [4], [5]). In

* This paper is a part of my Doctoral Thesis submitted to the Department of Mathematics of
the University of loannina.
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the special case when p(t) = 1 the result of the first section is related to known
results due to Grimm and Schmitt [3] for equations of mixed type (see also
Bernfeld and Lakshmikantham [2]).

Finally we note that the result concerning the existence of solutions of
equation (1), which are defined in an interval [α, oo) (Theorem 4), is very useful
in other branches of the quantitative theory of differential equations, for example
in oscillation theory where it is assumed the existence of solutions defined for
all large t (see for example Y. Kitamura and T. Kusano [6]).

2. Fixed point method

In this section we deal with the boundary value problem (l)-(2) by using the
fixed point technique. In order to applying this technique we need a lemma.

LEMMA 1. Let the differential equation

(3) (P(0/(0)' = ω(ί)

where ω: [0, T]-»jR" is a continuous function and ρ(i) is as in equation (1).
Ifξ, ηeR", then there exists exactly one solution y of (3) with y(Q) = ξ and y(T) =
η, which is given by:

XO = - (1-Λ<HO) φ(s)ω(S)ds

(4) r

A(η-ξ)φ(t) + ξ

where φ(t)=\ p(s)~1ds, A = φ(T)~1. Moreover this solution satisfies the re-
Jo

lations :

(5) IXOI ^ KI max0έsSΓ|ω(S)| + \η-ξ\ + \ξ\,

(6) |/(ί)| ^ K2 maxo^gr Γ|ω(s)| + Ar~ί\η-ξ\

rτ-AΦ(T) CT
where r = min0^ί^τp(ί), K1= \ φ(s)ds, Φ(T)= \ φ(s)ds and

K2 = r-1ma\ {T-A Φ(Γ), AΦ(T)}.°

PROOF. Differentiating (4) we can easily verify, that y(t) is a solution of (3).
Also it is readily seen that y(Q) = ξ and y(T) = η. We will show the relations (5)
and (6). The relation (4) can be abbreviated to

(7) XO = - Γ G(ί, s)ω(S)rfs + A(η -
Jo

ξ
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where G(f, s) is the Green function with respect to the boundary value problem

(P(0/(0)' = 0, y(0) = 0, XT) = 0

which is given by the formula

(l-Aφ(t))φ(s), O ^ s ^ ί ^ Γ ,
(8) G(ί, 5) =

φ(t)(\-Aφ(s)\ O ^ ί ^ s ^ Γ,

(see, e.g. Hartman [4], pp. 325-328 and 418-422).

Now, we shall prove that:

(9) max0<^r Γ <% s)ds = K^
Jo

and

(10) max0<^Γ Γ \dG(t, s)/dt\ds = K2.Jo

By (8) we obtain

(11) Λ(ί) = Γ G(ί, s)^s = (1 -Aφ(t) [ φ(s)ds + φ(t) Γ (1 -
Jo Jo Jί

The maximum of h(t) is attained at a point ί* such that:

-Aφ'(t) φ(s)ds + (T- ί)φ'(ί) = 0 or ί* = T -
Jo Jo

Then, by (11), we obtain

G(ί, s)ds = G(ί*,
o Jo

φ(s)ds + φ(
Jo

φ(s)rfs + φ(ί*)A Γ ̂ (s)rfs ~ ^φ(ί*) Γ
Jo Jί*

(ί* ΓT-AΦ(T)
= \ φ(s)ds — \ φ(s)ds = K±.

Jo Jo

In order to prove (10) we observe that

h'(f) = \ (dG(t, s)/dt)ds = -Aφ'(t) \ φ(s)ds + (T-i)φ'(ί)
Jo Jo

i.e. p(t)h'(t) =-A(Tφ(s)ds + T-1.
Jo
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CT
Notice that ρ(tW(t) is a decreasing function. Moreover since T— A \ φ(s)ds

Jo
^ T- Aφ(T) T= 0, we have

maxo^T Γ \dG(t, s)/dt\ds = r^max {T- AΦ(T), AΦ(T)} = K2.Jo

Relations (5) and (6) follow now easily from (7) by using (9) and (10).

REMARK. In the special case where p(t) = l we have A = T~1

9 φ(t) = t, r = l,
X1 = T2/8 and K2 = T/2 and therfore the formulas (5) and (6) lead to some well
known formulas for ordinary differential equations (see, e.g. Hartman [4], p. 422,
or Jackson [5], p. 101). It is noteworthy that the bounds designated for the
solutions y of (3) with y(0) = ξ and y(T) = η and its derivative seem to be the small-
est which can be found. This fact plays an important role in the conditions
stated in Theorem 1.

THEOREM 1. (Existence and uniqueness) Let f be continuous on the set

E = [0, T] x C*(J)xRn

and satisfy on E a Lipschίtz condition of the form

(12) |/(ί, φ, 0 -/(f, φ, ζ\ ί£ Θ0\\φ-φ\\j + β^-fl

with Lipschitz constants Θ0 and θί such that:

(13) ΘCK1 + Θ1K2<1

and the numbers K1 and K2 are as in Lemma 1. Then, for every (φ, η) e C%7) x
Rn there exists exactly one solution of the boundary value problem (l)-(2).

PROOF. Let (φ, η) e C*(J) x Rn. Consider the set X of all continuous func-
tions x: J U [0, T]->/?M which are continuously differentiate on [0, T] and such
that x0 = φ for any x e X. The formula

(14) δ(x, y) = max(maxίe[0,Γ] |x(f)-XOI, (^ι/^2)max/eEO,Γ] |x'(f)-

defines in X a metric, which makes it a complete metric space.
Let x e X. Consider the differential equation

which is of the form (3) with ω(ί)=/(ί, xr, '̂(0) and hence, by Lemma 1, there
exists exactly one solution y with y(Q) = φ(0) = ξ and y(T) = η.
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Consider now the function x, where

ί φ(t\ teJ,
x(0 =

1X0, *6(0, T].

Evidently x e X. Thus by the formula

x > x, x = 5(x),

a mapping S of X into itself is defined for which it holds:

x0 = φ, x(T) = η and (ρ(t)x'(t)y =/(*, xί? x
;(0) for every t e [0, T] .

Moreover S is a contraction. In fact let xί9 x2 e X. We notice that the function

v(f) = xj(ί) - x2(ί), t e J U [0, T],

is a solution of the equation

where

e[0, T],

and therefore by (5), (6) and (12) we have:

S(x2)) = δ(xl9 Jc2)

= max(maxίε[0>Γ] Ix^O-^OI, (K^X^

^maxίKi maxίe[0jΓ] |/(ί, x l f, xi(ί))-/(

(KίIK2)K2maxtel0ίT}\f(t, χlt, xi(0)-

= «! maxί6[0>Γ] |/(ί, χ l f >

0,T] Ix^ί) - x2(ί)| + (Θ.K^K^ (KJK2) maxxίe[0,Γ]

Consequently by (13) the mapping S is a contraction and therfore there exists
exactly one x e X with S(x) = x. It is obvious that x is a solution of the boundary

value problem (l)-(2).

THEOREM 2. (Existence) Let f be continuous and bounded on the set £ =

[0, T] x C*(J) x Rn. Then for every (φ, ή) e C*(J) x Rn there exists at least
one solution of the boundary value problem (l)-(2).

PROOF. Let (φ, ή) e C*(J) x Rn and m a bound of/ in E. Consider the set

C*!l(J)> 1 = J U [0, T] of all continuous and bounded functions x: I^Rn having
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continuous first derviatives on [0, T]. The formula:

(15) ||x||? = max (Ml,, (

defines in C***(I) a norm, which makes it a Banach space.

Let Y be the set of all x e C* K/) with

(i) x0 = φ,
(ii) \x(t)\^Kίm + \η-ξ\ + \ξ\ forevery ίe[0, T],

(iii) Ix'COI^^w + Ar-1!!?-^ for every ίe[0, T] ,
(iv) \p(t)x'(ή-p(t)x'(J)\^m\t-J\ forevery *ε[0, T] ,

where £ = <^(0). This set is not empty, because it contains the function

f φ(t\ teJ,
x(0 =

( φ(0), ίe(0, T],

and moreover this set is convex. Also the set Y is compact, because by the
uniform continuity of p, the condition (iv) implies that the derivatives of functions

x e Y are equicontinuous, while by (iii) they are uniformly bounded.
According to Lemma 1 for any x e Y, there exists exactly one solution of the

equation :

with y(ty = φ(Q) = ξ and y(T) = η.

Consider the function x with

f φ(t\ teJ,

i X O , fe(0,T].

It is clear that x e Y. Thus by the formula :

x-^x, Jc = P(x),

is defined a mapping P of Y into itself is defined for which it holds :

x0 = φ, x(T) = η,

(p(t)x'(t))f = f ( t , xt, x'(ί))> for every t e [0, T] .

The mapping P is continuous. In fact as it is easily verified, the set

Eγ = {(t9xt,x'(ty) xeY, fe[0, T]}

is a compact subset of E. On the other hand by (15) and (5), (6), for every xl9

x2 e Y we have :
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(16) \\P(Xl)-P(X2)\\ΐ = max (maxt€[0)T] |P(x1(ί))-P(x2(0)l,

(KJKJ maxte[0,T] IPWO)

^ max(e[0)T1 |/(ί, xlt, xi(

Also, by the uniform continuity of/ on the set Eγ we have :

(Vε>0) (3,5(ε) >0)(V{(ί, z, ζ) and (ί, z, £)} on fi^z-fll, < «5(ε)

and IC-f l <5(β))=> |/(f, z, Q-/0, 2, Dl <«/Xi-

But, for XL *2e 7 with ||x1-x2||f<min(δ(8), (X2/X1)δ(e))Ξδ*(ε) it holds

ll*ir-*2(L«500 and |xΊ(ί)-*2(OI < S(β) for every ίe[0, T].

Hence, we have

(Vβ>0)(3δ*(β)>0)(Vx1,x26 with ||x1-x2||J'<δ*(8)) =Φ||P(x1)-P(x2)||?<ε,

and therefore P is continuous. By Schauder's fixed point theorem we can now
derive that there exists at least one x e Y with x = P(x). It is obvious that x is a
solution of the boundary value problem (l)-(2).

3. A priori bounds method

In this section we study again the boundary value problem (l)-(2) by using the
method of a priori bounds (cf. Hartman [4]). In what follows we assume that the
function p appeared in (1) is positive and continuously differentiate on [0, T].
Also we use the notations: || ||, || ||j to denote the Euclidean norm in Rn and
respectively the sup-norm defined by it in C*(J).

We need the following lemmas :

LEMMA 2 (Hartman [4]). Let q(s), 0^s< H-oo be a positive continuous
function satisfying

= + 00.

Let also a*, k, b*, T be nonnegative constants. Then there exists a number
M>0 (depending only on q, α*5 fo*, T, fe) with the following property:

Ifv is a vector function of class C2 for O^t^T satisfying

a)
b)
c)

where r(t)=\\v(i)\\2, then for every ίe[0, Γ] it holds:
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IKOII ^ M.

LEMMA 3. Let q(s), θ5Ξs< + oo be a continuous function as in the Lemma 2.
Let also, a, k, b, The nonegatiυe constants. Then, there exists a M>0 (depend-
ing only on q, a, b, k, T and the function p) with the property:

If x is a vector function of class C2 for O^t^T satisfying:

a)* WOII £&,

b)* ||G*0*'(0)ΊI ^ β(/*OII*'(OII), o ̂  t g r,
c)* llXOxWII ^ «S"(0 + fc,

w/iere θ(0= W0p(0~ x(s)p'(s)ds||2, ffcen:
Jo

(17) /*OII*'(OII ^ M /or erery ίe[0, T] .

PROOF. It is sufficient to prove that a)*, b)*, c)* lead to the assumptions
a), b), c) of Lemma 2 for the function

v(t) = p(t)x(t) - [ x(S)p'(s)ds, f e [0, Γ] .
Jo

In fact for every t e [0, T] we have :

^ 6 max p(t) + b

and hence a) and b) hold. Also,

S'(f) = 2 I x

5"(0 = 2{p2(ί)||x'(OII2

and consequently

ιi(p(ίχω)Ίi= uncoil ^αn

i.e. c) holds with K0= KOII2 and α* = α.

LEMMA 4. Let f:E(T, b)->Rn, E(T, fe) = [0, T] x E7(0, 6)xΛ», t7(0, 6) =

{φeC*(J): || φ || j^ ft} fo^ α continuous function. If

β =
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and ά>0 are such that l—2άbβ>Q, then the condition

(18) ||/(ί,z,OII;g2<!{z(0)/(ί,z,ζ)

+ PWIICII 2 } + k*, k* 1 0, (f, z, ζ)e£(Γ, ft),

implies that

(19) II /(/,*„*'(/)) II

/or ei erμ function xeC(J U [0, T]) n C^O, Γ] wiί/i ||x(||j^fc, ίe[0, Γ] and for
every ίe[0, T].

PROOF. Let x be a continuous function on J U [0, T] with continuous first
derivative for O^f^Twith \\x,\\j^b, ίe[0, Γ]. Then by (18) we have:

, Xf, x'(ί))ll ^ 2ά{f(t, x'(

**, /e[0, Γ] .

and consequently

- 2άbβ)\\f(t, xt, X'(ί))\\ ^ 2ά {/(ί, x,, Λ '

i.e. the relation (19).

LEMMA 5. Let f : E(T, b)-+R" be a continuous function such that:
(I) z(0)/(ί, z,0 + p(OI|ζ||2>0/or every (ί, z, Q e E(Γ, 6) wiί/t z(0)ζ

(II) For some nonnegative constants k* and a it holds:

\\f(t, z, Oil g 2a{z(0)/(ί, z, 0 + p(OIIC||2} +
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(III) H/(f, z, Oil ̂  ί(rtOIICII) for every (t, z, ζ) e E(T, b) where the function
q is as in the Lemmas 2 and 3.

Then for any M>0 there exists a continuous bounded function g: [0, Γ] x

C*(J)xR"^R" Such that:
(Γ) z(Q)g(t, z, 0+p(ί)IKII2>0 for every (t, z, Qe[0, Γ] x C%7) x R" with

z(0)ί=0, Uzll^b, ||z(0)||>0.

(IF) ll^ί, z, Oil ^2a{z(OMί,z,0+p(ί)||C||2} + fc* for every (ί,z,Qe

[0, Γ]xC*(J)x«".
(ΠΓ) \\g(t, z, OH ̂ q(p(t)\\ζ\\)for every (t, z, ζ)e [0, Γ] x C%7) xΛ».
(IV) f(t,z,ζ) = g(t,z,ζ) for every (t, z, ζ)eE(T, b) with p(t)\\ζ£M,

PROOF. We obtain such a function g as follows :
Let δ(s), where Ogs< + 00, be a continuous real- valued function satisfying

<5(s) = 1, 0 ̂  s ̂  M,

0 < (5(s) < 1, M < s ̂  2M,

<5(s) = 0, 2M < s < + oo.

Put

(20) g(t, z, 0 = I ί, (/> Λ z s cχ for o g ̂  r, H z l l , ̂
l l z l l j l l 2!!/

We show that g fulfills the properties (Γ)-(ΠΓ).
Consider first the case where \\z\\j^b i.e. (ί, z, Qe£(Γ, fc). Then, by the

obvious identity on E(T, b)

z(Q)g(t, z, 0 +

=δ(P(f)\\ζ\\)(z(Q)f(t, z, 0 + rtOIICII2 + [l-«5(p(ί)IICII)MOIICII ,

we immediately conclude that (Γ) holds. For (II') we have

ί, z, Oil = ll<5(p(i)IKII)/0, z, Oil ^ *rtOIICII)ll/(f, z, Oil

ί, z, 0+P(OIICI!2} + fc*]

ί, z, 0

f, z,

and therefore (II') holds.
For (III') we notice that

, z, C l l = ||<5(p(f)||CII)/(f, z, Oil = <5(p«llίll)ll/(ί, z, Oil ^
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and hence (ΠΓ) is valid.
Consider any zeC*(J) with \\z\\ j>b. Then, the conditions (Γ), (IF), (III')

are obtained correspondingly from (I), (II), (III) if z is replaced by (b/||z||j)z.
Finally (IV7) is an immediate consequence of formula (20).

The main result of this section is the following:

THEOREM 3. Let f be a continuous function on the set E(T, b) satisfying
the conditions:

(i) z(0)/(ί,z,ζ) + p(OIICII 2^0 for every (f, z, ζ)eE(T, b) with z(0)ζ = 0

and \\z\\j~b.
(ii) i/a>0 is such that 1 — 2abjβ>0 (where β is defined in Lemma 4) and

fc*>0, then the following holds:

H/α z, on ^ 2ft{z(θ)/(ί, z, o + p(OIICII 2} + fc*

for every (t, z, Qe£(Γ, b).

(iii) ||/(ί, z, Oil ^(P(OIKII) /or «*ry (ί, z, ζ)eE(T, 6) w/zere 9 is α /unc-
cίion as in Lemma 2.

Then, for every (φ, 77) e 17(0, b)xRn with \\η\\^b, t/zere exists at least one
solution of the boundary value problem (l)-(2).

PROOF. The proof will be given first for the case where / satisfies the con-
dition (I) of Lemma 5 instead of (i). Let M be a constant supplied by Lemma 3

with α = α/(minfe[0>T]/9(0)-1, a' = ΛI(l-2άbβ), k = k*/(l-2abβ) and g the
associated to M function of Lemma 5. Because g is continuous and bounded
on the set [0, T] x C*(J) x Rn, by Theorem 2, the equation

(p(0x'«)' = 9(t, xf, x'(0)

has at least one solution x with x0 = φ and x(T) = η. We show that this solution
x satisfies the assumptions of Lemma 3. To do this we put

r(0 = WOP

when we have :

(p(ί)r'(O)' = 2(p(ί>XO)rxί(0) + 2p(OI|x'(OII2

and consequently, because p(ί)>0, the conditions r'(ί) = 2xί(0)x'(0 = 0 and
r(ί)^h2 imply, by (Γ), r"(f)>0. Hence r(t) does not take its maximum at any
point ί 6(0, T) with r(t)^b2. Since r(0)= ||φ(0)||2^fc2, r(T)= ||^||2^b2 it follows

that r(t)^b2 i.e.
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(21) WOII ^&, for every ίe[0, Γ].

The condition b)* of Lemma 3 is fulfilled by (ΠΓ) of Lemma 5. We are
going now to prove c)*. From the equality

(p(0*W = 0(t, *t, *'«),

and by applying Lemma 4 to function g we have :

= \\g(t, χt, χ'(0)ll

2*' 0(f, x,, *'(o)'*(o- pco-1 *(Φ'ω<fe + p(oιι*'(oιι2} + *

p2(OII*'(OII2} + fc

= a'p(t)-W(t) + fc ̂  aθ"(f) + fc.

Hence

p(OI|x'(OII ^ Aί, for every t e [0, T] .

By the last relation, (IV) and (21) we have

g(t, xt9 x'(t)) = /(ί, xw x'(0), for every ί e [0, T] ,

and therefore the function x is a solution of the boundary value problem (l)-(2).
For the proof of the Theorem in the general case when (i) holds, we note

that for every ε: 0<ε^l the function /(ί, z, £) + εz(0) satisfies (I) of Lemma 5
(ii) and (iii) if fc* and q are replaced by fc* + εί>, q + εb respectively.

Hence the equation

(21). (P(t)χ'(t)y = f(t, χt, *'(0) + β*(θ

has a solution xε with xε>0 = Φ and xε(T) = η. By Lemma 3 there exists a constant
M* (independent of ε) such that :

p(OII*;(OII ^ ̂ ί*9 for every t e [0, T] .

Consequently if JV = max0^s^M* g(s) + b then

||p(0*;(OΊI ^ N, for every ί e [0, T] .

Thus, the functions px'ε, 0<εgl are uniformly bounded and equicontinuous
on the interval [0, T]. Hence, because p(f) is a positive bounded function on
[0, T], there exists a sequence επ: n = l, 2,..., 0<εM^l with limπ_» + 00 εn = 0 and a
function yeC^O, Γ] such that lim,,.̂  x'Bn = y' and lim,,^ xεn = y uniformly on

[o, rj.
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Consider now the function

f φ(t), teJ,
x(ί) =

, ίe(0, T].

Evidently || ||j— lim^^x^^x, uniformly on [0, T]. Furthermore, by
(2ϊ)ε we have :

{f(s, xεn,s, xo

where

By Lebesque convergence Theorem we conclude that lim,,^ xβn(ί) = x(0»
t e J U [0, T] and hence x is a solution of the boundary value problem (l)-(2).

EXAMPLE 1. Consider the differential equation

(22) ((i + ίχ(θ)' = ιι(θχ(oιι*riι j +
where w(ί)^0, μ(ί)>0 are continuous on [0, oo) and moreover the function μ is
such that

For any T>0 we consider a b :

0<b<min{(Γ+l)Γ- 1, &- 1}

and furthermore the corresponding set £(T, b).
We shall show that for equation (22) the conditions (i), (ii), (iii) of Theorem 3

are fulfilled on E(T, b). Here it is ρ(f) = 1 + 1 and

/(f, z, 0 = u(t)z(0)\\z\\j +

In fact for (i) we notice that:

z(θ)/(ί, z, o + P(OIICII 2

since z(0)C = 0.
We shall show that (ii) holds for a = 1/2 and a proper choice of fc*. First
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of all notice that 1 - 2abβ > 0, because :

β = supίe[0,τ] (1 + Γ)-1 £ <fe = supf6[0>Γ]

and by the assumption we have b <(T+ 1)!*"1. It is enough

n(OKO) ||z||, + XOIICII 2 ^ «(OWO)H2Nlj + XO*(0)IICIIC + (l + O I I C I I 2 +

or

fc* + M(ί)||z(θ)|| llzii/iizίO)!!-!) + KOIIfll(Cz(0)-IICII) + (l + O I I C I I 2 ^ o

for every (ί, z, Qe£(Γ, 6).
We choose fe* > 0 such that

(23) fc* - w(0&2(& + 1) ^ 0 for every ί e [0, T] .

Thus, it is sufficient to show that

μ(ί)| |CIICz(0)-μ(OIICII2 + (l + O I I C I I 2 ^ 0 for every (ί, z, ζ) e £(Γ, 6)

or (l + O I I C I I 2 -

or l lζpti + ί

or 1 + t - μ(t)(b + l) ^ 0 => fe ̂  (ί+l)/μ(ί) - 1

which hold by the assumption that b<9 — 1.

Finally, for (iii) we notice that

ί, z, Oil ^ "«Z>2 + rtOIICII2 = u(t)b2 + WO/P2(0)P2(OIICII

and if we put

we have

It is clear that, for the function q

q(s) = λ^2 + λ2, 0 g s < oo,

it holds

^°(slq(s)ds = ^(s/λίS

2 + λ2))ds = oo.

Hence by Theorem 3 we conclude that for every (φ, η) e E7(0, b) x Rn with
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| ̂ b the boundary value problem

((i +0*W = «(0*(OII*fllj + μ(0*'(OII*'(OII, *o = 9, χ(T) = n,

has at least one solution.

The following theorem is a criterion for the existence of a solution of (1)

with + oo as the right and end-point of its interval of definition.

THEOREM 4. Suppose that f is continuous on the set

E(b) = [0, oo) x Ϊ7(0, b) x Rn

and moreover that for any T>0, / satisfies the conditions of Theorem 3, where

the constants a, fe* and the function q can depend on T. Then, for every φ e

17(0, b) the equation

(P(t)χ'(t)γ=f(t,xt,x'(t))

has at least one solution x: J U [0, <x))-+Rn with x0 = φ.

PROOF. According to Theorem 3 for every m = 1, 2,..., there exists a solution

xm of (1) with xm>0 = φ and xm(m) = 0. We notice that, if Tis any positive number,

in view of Lemma 3 there exists a M > 0 (depending only on T) such that :

P(OII*m(OII ^ M, for every t e [0, T] and for every m ̂  T.

Also,

ll(p(ίK(0)ΊI gmaxo^MΦ), for every ίe[0, Γ] and for every m ̂  Γ

where q is the function corresponding to T.

From these relations it is clear that the sequence ρx'm, m ̂  Tis equicontinuous

and uniformly bounded on [0, T]. Hence, there exists a subsequence τxπ, n =

1, 2,..., of xm, m = l, 2,..., and a function τy: [0, T]-^RΠ such that:

lim^ τxn = τy, lim^ Γx; = /

uniformly on [0, T].

As in the proof of Theorem 3, we can derive that the function

I τy(t\ ίe(0, T],

is a solution of (1) on [0, T] with xQ = φ. Evidently lim,,.̂  τxn = τx and

lim,,^^ τx'n = τx' on J U [0, T].
By Arzela-Ascoli's Theorem and the diagonization Theorem we conclude that
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we conclude that there exists a subsequence of functions xm, w = l, 2,... which
converges for every t e [0, oo) and defines a limit-function x, which is a solution
of (1) with x0 = <p.

EXAMPLE 2. Consider the same equation as in Example 1, where we now
choose b so that

b <min{l, S - 1}.

Furthermore suppose that the function u(t)9 f ^ O is bounded (then always there
exists a /c*>0 so that (23) holds).

It is now clear that the conditions of Theorem 4 are satisfied and therfore
the equation (22) has a solution x defined on J U [0, oo) and such that x0 =

, b).
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