HIROSHIMA MATH. J. 13 (1983), 101–108

Finitely generated subalgebras of generalized solvable Lie algebras

Naoki KAWAMOTO (Received August 18, 1982)

Introduction

Recently many authors considered several conditions under which a subalgebra of a Lie algebra is a subideal or an ascendant subalgebra. Such conditions have been also investigated for groups. Especially Peng [4] and Whitehead [5] presented some criteria for a finitely generated subgroup to be subnormal.

In this paper we shall give several conditions which ensure that a finitely generated subalgebra of a Lie algebra is a subideal or an ascendant subalgebra. The following is our main result: When L is a solvable Lie algebra of not necessarily finite dimension over a field of characteristic zero, any subalgebra H of L generated by $\{h_1, \ldots, h_n\}$ is a subideal of L if and only if there exists an integer $m \ge 0$ such that $L(ad h_i)^m \subseteq H$ for $1 \le i \le n$ (Theorem 1(a)). Conditions for a finitely generated subalgebra to be an ascendant subalgebra are also given (Theorem 1(b) and Theorem 2).

1. Preliminaries

Throughout this paper L will denote a Lie algebra of not necessarily finite dimension over a field t of characteristic zero. We shall follow [1] for notation and terminology. In particular, $H \sin L$, $H \csc L$, and $H \lhd ^{\omega}L$ mean respectively that H is a subideal, an ascendant subalgebra, and an ω -step ascendant subalgebra of L, where ω is the first infinite ordinal. Triangular brackets $\langle \rangle$ denote the subalgebra of L generated by elements inside them.

 $\mathfrak{F}, \mathfrak{N}, \mathfrak{E}\mathfrak{A}$ denote respectively the classes of finite dimensional, nilpotent, and solvable Lie algebras. A Lie algebra L belongs to the class $\mathfrak{E}\mathfrak{A}$ if there is an ordinal λ and an ascending series $(L_{\alpha})_{\alpha \leq \lambda}$ of L whose factors $L_{\alpha+1}/L_{\alpha}$ are abelian. If in addition each L_{α} is an ideal of L, then L belongs to the class $\mathfrak{E}(\lhd)\mathfrak{A}$.

For $x, y \in L$ and an integer $n \ge 0$, we write $[x, {}_{n}y] = x(\text{ad } y)^{n}$. The similar notation is used for subspaces. A derivation d of L is nil if for any finite dimensional subspace M of L there is an integer $n = n(M) \ge 0$ such that $Md^{n} = 0$. We denote by [End(V)] the Lie algebra of all linear endomorphisms of a vector space V over \mathfrak{k} .

We begin with the following

Naoki Kawamoto

LEMMA 1. Let $H = \langle h_1, ..., h_n \rangle$ be a subalgebra of a Lie algebra L.

(a) Suppose that L is solvable. If ad $h_1, ..., ad h_n$ are nilpotent derivations of L, then H is a subideal of L.

(b) Suppose that $L \in \mathfrak{M}$. If ad $h_1, \ldots, ad h_n$ are nil derivations of L, then H is an ascendant subalgebra of L.

PROOF. (a) Let $m \ge 0$ be an integer such that $L(\operatorname{ad} h_i)^m = 0$ for $1 \le i \le n$. Then by Amayo and Stewart [1, Theorem 16.4.2(b)] $\langle h_i \rangle$ are subideals of L. Since the class $\mathfrak{N} \cap \mathfrak{F}$ is coalescent (see [1, Theorem 3.2.4]), $H = \langle \langle h_1 \rangle, ..., \langle h_n \rangle \rangle$ is a subideal of L.

(b) Since ad $h_1,...,$ ad h_n are nil, for any element $x \in L$ there exists an integer $m = m(x) \ge 0$ such that $x(ad h_i)^m = 0$ for $1 \le i \le n$. Then it follows by an argument similar to the above that $H = \langle h_1,...,h_n \rangle$ asc L.

The following lemma is well-known [2, p. 38] and we omit its proof.

LEMMA 2. Let x, y be elements of a Lie algebra L. Then for any integer $n \ge 0$,

$$(ad x)^n ad y = \sum_{i=0}^n (-1)^i \binom{n}{i} (ad [y, ix]) (ad x)^{n-i}.$$

2. Subideals

We consider finitely generated subalgebras of a Lie algebra in the class EA or $\acute{E}(\lhd)$ A. To this end we consider nilpotent endomorphisms of a vector space in the following

PROPOSITION 1. Let V be a not necessarily finite dimensional vector space over \mathfrak{k} . Let f_1, \ldots, f_n be nilpotent endomorphisms of V and $H = \langle f_1, \ldots, f_n \rangle$ a subalgebra of [End(V)].

(a) If H is solvable, then there exists an integer k>0 such that $g_1 \cdots g_k = 0$ for any $g_1, \ldots, g_k \in H$.

(b) If $H \in \mathfrak{L}\mathfrak{A}$, then for any $x \in V$ there exists an integer k = k(x) > 0 such that $xg_1 \cdots g_k = 0$ for any $g_1, \ldots, g_k \in H$.

PROOF. We consider V as an abelian Lie algebra. Then [End(V)] = Der(V) and H is a subalgebra of Der(V). Hence we can form the split extension.

$$L = V \dotplus H, \quad V \lhd L.$$

By hypothesis there exists an integer l>0 such that $f_i^l=0$ for $1 \le i \le n$, so that

$$V(\operatorname{ad} f_i)^l = V f_i^l = 0.$$

Let $g \in H$. Then by induction on m we have

$$g(\operatorname{ad} f_i)^m = \sum_{j=0}^m (-1)^j \binom{m}{j} f_i^j g f_i^{m-j} \qquad (1 \le i \le n) \,.$$

Put m=2l-1 so that $f_i^j=0$ or $f_i^{m-j}=0$, whence $g(ad f_i)^m=0$. Thus $H(ad f_i)^m=0$, and therefore

$$L(ad f_i)^m = 0$$
 $(1 \le i \le n).$ (*)

(a) Since L is solvable, by Lemma 1(a) it follows from (*) that H si L. Hence there exists an integer k>0 such that $[L, {}_{k}H] \subseteq H$, and therefore

$$Vg_1 \cdots g_k = V(\text{ad } g_1) \cdots (\text{ad } g_k) \subseteq [V, {}_kH] \subseteq V \cap H = 0$$

for any $g_1, \ldots, g_k \in H$. Thus $g_1 \cdots g_k = 0$.

(b) Clearly $L \in \pounds \mathfrak{A}$. Hence by (*) and Lemma 1(b) we have $H \operatorname{asc} L$. Now the argument before Theorem 3.2.5 of [1] shows that for any $x \in V$ there exists an integer k = k(x) > 0 such that

$$xg_1 \cdots g_k \in [x, {}_kH] \subseteq V \cap H = 0$$

for any $g_1, \ldots, g_k \in H$.

We consider some special cases which will be useful to use induction later.

LEMMA 3. Let $H = \langle h_1, ..., h_n \rangle$ be a subalgebra of a Lie algebra L and A an abelian ideal of L. Suppose that there exists an integer $m \ge 0$ such that $A(ad h_i)^m \subseteq H$ for $1 \le i \le n$.

(a) If H is solvable, then $H ext{ si } A + H$.

(b) If $H \in i\mathfrak{A}$, then $H \triangleleft^{\omega} A + H$.

PROOF. Let m > 0. Since $A \cap H \lhd A + H$, we may assume that $A \cap H = 0$. Then

$$A(\text{ad } h_i)^m \subseteq A \cap H = 0 \qquad (1 \le i \le n),$$

whence $ad_A h_i$ are nilpotent derivations of A. Let $\varphi: H \rightarrow Der(A)$ be a homomorphism such that $\varphi(h) = ad_A h$ for $h \in H$. Then

$$\varphi(H) = \langle \operatorname{ad}_{\mathcal{A}} h_i | i = 1, \dots, n \rangle$$

is a subalgebra of Der(A) = [End(A)].

(a) Clearly $\varphi(H)$ is solvable. Hence by Proposition 1(a) there is an integer k>0 such that

$$[A, _kH] = A\varphi(H)^k = 0.$$

Therefore by [3, Lemma 3(a)] we have $H ext{ si } A + H$.

(b) It is clear that $\varphi(H)$ is an $\notin \mathfrak{A}$ -subalgebra of $[\operatorname{End}(A)]$. Hence by Proposition 1(b) for any $a \in A$ there is an integer k = k(a) > 0 such that

$$[a, {}_kH] = a\varphi(H)^k = 0.$$

By [3, Lemma 3(b)] we have $H \triangleleft \omega A + H$.

Now we obtain the following

THEOREM 1. Let L be a Lie algebra and $H = \langle h_1, ..., h_n \rangle$ a finitely generated subalgebra of L.

(a) Suppose that L is solvable. Then H is a subideal of L if and only if there exists an integer $m \ge 0$ such that $L(ad h_i)^m \subseteq H$ for $1 \le i \le n$.

(b) Suppose that L belongs to the class $\not{E}(\neg)\mathfrak{A}$. If there exists an integer $m \ge 0$ such that $L(\operatorname{ad} h_i)^m \subseteq H$ for $1 \le i \le n$, then H is an ascendant subalgebra of L.

PROOF. (a) Let $m \ge 0$ be an integer such that $L(\operatorname{ad} h_i)^m \subseteq H$ for $1 \le i \le n$. Since L is solvable, there is a finite abelian series $(L_j)_{0\le j\le k}$ of ideals of L. Let $\overline{L}=L/L_j$ and put bars for images under the natural homomorphism $L \to L/L_j$ $(0\le j< k)$. Then $\overline{H} = \langle \overline{h}_1, \ldots, \overline{h}_n \rangle$ is a solvable subalgebra of \overline{L} and \overline{L}_{j+1} is an abelian ideal of \overline{L} . Clearly

$$\overline{L}_{i+1}$$
 (ad \overline{h}_i)^m $\subseteq \overline{H}$ (1 $\leq i \leq n$).

Hence by Lemma 3(a) we have

$$\overline{H} \operatorname{si} \overline{L}_{i+1} + \overline{H} \qquad (0 \le j < k).$$

Thus we conclude that

$$H = L_0 + H \operatorname{si} L_k + H = L.$$

The converse is clear.

(b) Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of ideals of L, where λ is an ordinal. Then by using Lemma 3(b) we have

$$L_{\alpha} + H \lhd \omega L_{\alpha+1} + H$$

for any $\alpha < \lambda$. Therefore

$$H = L_0 + H \operatorname{asc} L_1 + H = L.$$

104

3. Ascendant subalgebras

PROPOSITION 2. Let x be an element of a Lie algebra L. If there exists an integer $n \ge 0$ such that $\langle L(\operatorname{ad} x)^n \rangle = \langle L(\operatorname{ad} x)^{n+r} \rangle$ for any integer $r \ge 0$, then $\langle L(\operatorname{ad} x)^n \rangle$ is an ideal of L.

PROOF. Take any element $a \in L(ad x)^{3n}$. Then $a = b(ad x)^{3n}$ for some $b \in L$. By using Lemma 2 we have for any $y \in L$,

a ad $y = [b, x](ad x)^{2n} ad y$

$$= \sum_{i=0}^{2n} (-1)^{i} {\binom{2n}{i}} [b, _{n}x] (\mathrm{ad} [y, _{i}x]) (\mathrm{ad} x)^{2n-i}.$$

If i=0,...,n, since $2n-i \ge n$ we have

$$[b, {}_{n}x](ad [y, {}_{i}x])(ad x)^{2n-i} \in L(ad x)^{n},$$

and if i = n + 1, ..., 2n, since $[y, ix] \in L(ad x)^n$ we obtain

$$[b, {}_{n}x](ad [y, {}_{i}x])(ad x)^{2n-i}$$

$$\in [L(ad x)^{n}, L(ad x)^{n}](ad x)^{2n-i}$$

$$\subseteq (L(ad x)^{n})^{(1)}.$$

Consequently a ad $y \in \langle L(ad x)^n \rangle$, and therefore

 $\langle L(\operatorname{ad} x)^n \rangle$ ad $y = \langle L(\operatorname{ad} x)^{3n} \rangle$ ad $y \subseteq \langle L(\operatorname{ad} x)^n \rangle$.

For any element $x \in L$ let $L_0(x)$ and $L_1(x)$ be Fitting zero and one components of L with respect to ad x. In the above proposition $\langle L_1(x) \rangle$ is not necessarily an ideal of L, which will be shown later in Example 2. However if there is an integer $n \ge 0$ such that $L(\operatorname{ad} x)^n = L(\operatorname{ad} x)^{n+1}$, then it is known that $L = L_0(x) + L_1(x)$ ([1, Lemma 12.2.6]). In this case we have the following

COROLLARY. Let x be an element of a Lie algebra L. If there exists an integer $n \ge 0$ such that $L(ad x)^n = L(ad x)^{n+1}$, then $\langle L_1(x) \rangle$ is an ideal of L.

It is to be noted that Proposition 2 and its corollary hold for Lie algebras over a field of characteristic p>0.

Now we obtain the following

THEOREM 2. Let L be a Lie algebra in the class $improx \mathfrak{A}^n$ and $H = \langle h_1, ..., h_n \rangle$ a finitely generated subalgebra of L. Suppose that there exists an integer $k \ge 0$ such that $\langle H(\operatorname{ad} h_i)^k \rangle = \langle H(\operatorname{ad} h_i)^{k+r} \rangle$ for any integers $r \ge 0$ and $1 \le i \le n$. If there exists an integer $m \ge 0$ such that $L(\operatorname{ad} h_i)^m \subseteq H$ for $1 \le i \le n$, then H is an ascendant subalgebra of L.

PROOF. Let $m \ge 0$ be an integer such that $L(\operatorname{ad} h_i)^m \subseteq H$ for $1 \le i \le n$. Then we have

$$\cdots \subseteq H(\text{ad } h_i)^{2m+k} \subseteq L(\text{ad } h_i)^{2m+k} \subseteq H(\text{ad } h_i)^{m+k}$$
$$\subseteq L(\text{ad } h_i)^{m+k} \subseteq H(\text{ad } h_i)^k \subseteq \cdots .$$

Since $\langle H(ad h_i)^k \rangle = \langle H(ad h_i)^{k+r} \rangle$ for $r \ge 0$, it follows that

$$\langle L(\text{ad } h_i)^{m+k} \rangle = \langle L(\text{ad } h_i)^{m+k+r} \rangle$$

for $r \ge 0$. Put

$$I = \sum_{i=1}^{n} \langle L(\text{ad } h_i)^{m+k} \rangle$$

Then I is an ideal of L by Proposition 2. Since $I \subseteq H$, we may assume that I=0. Then we have

$$L(ad h_i)^{m+k} = 0$$
 $(1 \le i \le n).$

Therefore by Lemma 1(b) we obtain that H asc L.

COROLLARY. Let L be a Lie algebra in the class $\notin \mathfrak{A}$ and $H = \langle h_1, ..., h_n \rangle$ a finite dimensional subalgebra of L. If there exists an integer $m \ge 0$ such that $L(\operatorname{ad} h_i)^m \subseteq H$ for $1 \le i \le n$, then H asc L.

4. Examples

In this section we give some remarks and examples.

At first we notice that Theorems 1 and 2 do not hold for Lie algebras over a field of characteristic p>0. This will be shown by Hartley's example [1, Lemma 3.1.1].

Secondly we cannot expect that Theorems 1 and 2 hold for residually solvable Lie algebras. This is shown by the following

EXAMPLE 1. Let A be the vector space over t with basis $\{a_i, b_i | i \in \mathbb{N}\}$, where N is the set of nonnegative integers. We define linear endomorphisms x_n, y_n , z_n $(n \in \mathbb{N})$ of A by the following: For any $n, i \in \mathbb{N}$,

Finitely generated subalgebras of Lie algebras

$$\begin{aligned} x_n \colon a_i \longmapsto (-2)^n b_{i+n}, \quad b_i \longmapsto 0, \\ y_n \colon a_i \longmapsto 0, \qquad b_i \longmapsto 2^n a_{i+n+1}, \\ z_n \colon a_i \longmapsto (-2)^n a_{i+n+1}, \quad b_i \longmapsto -(-2)^n b_{i+n+1}. \end{aligned}$$

Then it is easy to verify that

$$\begin{bmatrix} x_n, y_m \end{bmatrix} = (-1)^m z_{n+m}, \quad \begin{bmatrix} x_n, z_m \end{bmatrix} = x_{n+m+1}, \quad \begin{bmatrix} y_n, z_m \end{bmatrix} = (-1)^m y_{n+m+1},$$
$$\begin{bmatrix} x_n, x_m \end{bmatrix} = \begin{bmatrix} y_n, y_m \end{bmatrix} = \begin{bmatrix} z_n, z_m \end{bmatrix} = 0,$$

for any $n, m \in \mathbb{N}$. Let H be the subspace of End(A) spanned by $\{x_n, y_n, z_n | n \in \mathbb{N}\}$. Clearly H is a subalgebra of [End(A)]. Consider A as an abelian Lie algebra, so that $H \subseteq Der(A)$. Hence we can form the split extension

$$L = A \stackrel{.}{+} H, \quad A \lhd L.$$

It is not hard to see that

$$H^{(\omega)} = \bigcap_{n \in \mathbb{N}} H^{(n)} = 0, \quad L^{(\omega)} = 0,$$

whence L is residually solvable. Clearly H is generated by x_0 , y_0 and

$$L(\text{ad } x_0)^2 \subseteq H, \quad L(\text{ad } y_0)^2 \subseteq H,$$

 $L(\text{ad } x_0)^3 = 0, \quad L(\text{ad } y_0)^3 = 0.$

However for any $n \in \mathbb{N}$

$$A(\text{ad } z_0)^n = (a_{n+i}, b_{n+i} | i \in \mathbb{N}) \notin H.$$

Therefore $L_L(H) = H$, and H is neither a subideal nor an ascendant subalgebra of L, as desired.

Finally we show in the following that $\langle L_1(x) \rangle$ is not necessarily an ideal of L even if $\langle L(\operatorname{ad} x) \rangle = \langle L(\operatorname{ad} x)^n \rangle$ for any integer n > 0.

EXAMPLE 2. Let A be the vector space over t with basis $\{a_i | i \in \mathbb{N}\}$, and let x, $y_n (n \in \mathbb{N})$ be linear endomorphisms of A defined as follows: For any $n, i \in \mathbb{N}$,

$$x: a_i \longmapsto (i+1)a_{i+1},$$

$$y_n: a_i \longmapsto \begin{cases} a_{i-n} & \text{if } i-n \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Consider A as an abelial Lie algebra, then x and y_n $(n \in \mathbb{N})$ are derivations of A. It is easily seen that for any $n, m \in \mathbb{N}$,

$$[x, y_n] = ny_{n-1} (n > 0), \quad [x, y_0] = [y_n, y_m] = 0.$$

Let Y be the subspace of Der(A) spanned by $\{y_n | n \in \mathbb{N}\}$, and form the split extension

$$L = A \dotplus (Y + \langle x \rangle), \quad A \lhd L.$$

Then we clearly have $\langle L(ad x)^n \rangle = A + Y$ for n > 0. However

$$\bigcap_{n\in\mathbb{N}} L(\text{ad } x)^n = Y.$$

Thus $\langle L_1(x) \rangle = Y$ is not an ideal of L.

References

- [1] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] N. Jacobson: Lie Algebras, Interscience, New York, 1962.
- [3] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiroshima Math. J. 9 (1979), 701-716.
- [4] T. A. Peng: A note on subnormality, Bull. Austral. Math. Soc. 15 (1976), 59-64.
- [5] J. Whitehead: On certain properties of subnormal subgroups, Canad. J. Math. 30 (1978), 573-582.

Department of Mathematics, Faculty of Science, Hiroshima University

108