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Introduction

Recently many authors considered several conditions under which a sub-

algebra of a Lie algebra is a subideal or an ascendant subalgebra. Such conditions

have been also investigated for groups. Especially Peng [4] and Whitehead

[5] presented some criteria for a finitely generated subgroup to be subnormal.

In this paper we shall give several conditions which ensure that a finitely

generated subalgebra of a Lie algebra is a subideal or an ascendant subalgebra.

The following is our main result: When L is a solvable Lie algebra of not neces-

sarily finite dimension over a field of characteristic zero, any subalgebra H of L

generated by {ftl5..., hn} is a subideal of L if and only if there exists an integer

ra>0 such that L(adhi)m^H for l < ΐ < n (Theorem l(a)). Conditions for a

finitely generated subalgebra to be an ascendant subalgebra are also given

(Theorem l(b) and Theorem 2).

1. Preliminaries

Throughout this paper L will denote a Lie algebra of not necessarily finite

dimension over a field I of characteristic zero. We shall follow [1] for notation

and terminology. In particular, H si L , H asc L, and H < ω L mean respectively

that H is a subideal, an ascendant subalgebra, and an ω-step ascendant sub-

algebra of L, where ω is the first infinite ordinal. Triangular brackets < > denote

the subalgebra of L generated by elements inside them.

3, 91, E2X denote respectively the classes of finite dimensional, nilpotent,

and solvable Lie algebras. A Lie algebra L belongs to the class έ$ϊ if there is an

ordinal λ and an ascending series (Lα)α^ λ of L whose factors La + l/La are abelian.

If in addition each Lα is an ideal of L, then L belongs to the class έ(<i)2ϊ.

For x, yeL and an integer rc>0, we write [x, My] = x(ad);)n. The similar

notation is used for subspaces. A derivation d of L is nil if for any finite dimen-

sional subspace M of L there is an integer n = n(M)>0 such that Mdn = 0. We

denote by [End(F)] the Lie algebra of all linear endomorphisms of a vector

space V over!.

We begin with the following
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LEMMA 1. Let H = (hu..., hny be a subalgebra of a Lie algebra L.

(a) Suppose that L is solvable, //ad ftlv.., ad hn are nilpotent derivations

of L, then H is a subideal of L.

(b) Suppose that LeέSί. // ad Λ l v.., ad hn are nil derivations of L, then

H is an ascendant subalgebra of L.

PROOF, (a) Let m>0 be an integer such that L(ad/zί)
m = O for

Then by Amayo and Stewart [1, Theorem 16.4.2(b)] </if> are subideals of L.

Since the class 91 Π g is coalescent (see [1,'Theorem 3.2.4]), i ί = «/ι1>,..., </ιπ»

is a subideal of L.

(b) Since adh u . . . , adh n are nil, for any element xeLthere exists an integer

m = m(x) > 0 such that x(ad ft,-)1" = 0 for 1 < ί < n. Then it follows by an argument

similar to the above that # = </il5..., hn} ascL.

The following lemma is well-known [2, p. 38] and we omit its proof.

LEMMA 2. Let x9y be elements of a Lie algebra L. Then for any integer

n>0,

(ad x)» ad y = Σ?=o (-1)1' (J)(ad [y, 4x])(ad JC)»"*.

2. Subideals

We consider finitely generated subalgebras of a Lie algebra in the class

E21 or έ(<])91. TO this end we consider nilpotent endomorphisms of a vector

space in the following

PROPOSITION 1. Let V be a not necessarily finite dimensional vector space

over ϊ. Let fi,...9fn be nilpotent endomorphisms of V and H = (fί,...,fny a

subalgebra of [End(F)].

(a) If H is solvable, then there exists an integer k>0 such that gγ--gk =

Ofor any gu...,gkeH.

(b) If Hei%, then for any xeV there exists an integer k = k(x)>0 such

that xg^'-g^Ofor any gί9..., gkeH.

PROOF. We consider V as an abelian Lie algebra. Then [End(F)] =

Der(F) and H is a subalgebra of Der(F). Hence we can form the split extension.

By hypothesis there exists an integer7>0 such that//=O for l < i < n , so that
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Let g e H. Then by induction on m we have

• g(*dft)m=Σ7-o(-i)J(j)f{gfr! 0 < / < * ) .

Put m = 2/ - 1 so that// = 0 or /,"»-•/ = 0, whence ^(ad/ f)
m = 0. Thus H(ad/ f)

m = 0,

and therefore

(a) Since L is solvable, by Lemma l(a) it follows from (*) that H si L.

Hence there exists an integer k > 0 such that [L, fcH] c # , and therefore

for any gu...9 gkeH. Thus g^ -g^O.

(b) Clearly L e έ9I. Hence by (*) and Lemma l(b) we have H asc L. Now

the argument before Theorem 3.2.5 of [1] shows that for any xe V there exists

an integer k — k(x) > 0 such that

for any gu...,gkeH.

We consider some special cases which will be useful to use induction later.

LEMMA 3. Let H = (hu..., hny be α subαlgebrα of α Lie algebra Land A

an abelian ideal of L. Suppose that there exists an integer m > 0 such that

i)mciίfor l<i<n.

(a) // H is solvable, then H si A + H.

(b) If He E2T, then H^ °>A + H.

P R O O F . L e t ra>0. S i n c e A{\H<\A + H, w e m a y a s s u m e t h a t A(]H = 0.

T h e n

A(ad ht)
m c A ΓΊ H = 0 (1 < i < n),

whence adΛ/i; are nilpotent derivations of A. Let φ : H->Der(^4) be a homo-

morphism such that φ(h) = adA h for Λ eH. Then

is a subalgebra of Der(/1) = [End(^4)].

(a) Clearly φ(H) is solvable. Hence by Proposition l(a) there is an integer

fc>0 such that

IA, kHl = Aφ(H)k = 0.
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Therefore by [3, Lemma 3(a)] we have H si A + H.

(b) It is clear that φ(H) is an έ^ί-subalgebra of [End(^4)]. Hence by

Proposition l(b) for any aeA there is an integer k = k(a)>0 such that

[α, *fl] = aφ(H)k = 0.

By [3, Lemma 3(b)] we have H^ωA-\-H.

Now we obtain the following

THEOREM 1. Let Lbe a Lie algebra and H = (hl9..., hn} a finitely generated

subalgebra of L.

(a) Suppose that L is solvable. Then H is a subideal of L if and only if

there exists an integer m>0 such that L(ad h^m<^H for \<i<n.

(b) Suppose that L belongs to the class έ(<ι)2l. if there exists an integer

m>0 such that L(sLdhi)m^H for l<i<n, then H is an ascendant subalgebra

ofL.

PROOF, (a) Let m>0 be an integer such that L(sLdhi)m^H for l < i < n .

Since L is solvable, there is a finite abelian series (Lj)0^j^k of ideals of L. Let

L = LjLj and put bars for images under the natural homomorphism L^LjLj

( 0 ^ j</c). Then H = (hu...9 En} is a solvable subalgebra of L and Lj+i is an

abelian ideal of L. Clearly

Hence by Lemma 3(a) we have

HsiLj+ί+H (0<j<k).

Thus we conclude that

H = Lo + H si Lk + H = L.

The converse is clear.

(b) Let (Lα)α<λ be an ascending abelian series of ideals of L, where λ is an

ordinal. Then by using Lemma 3(b) we have

for any α<λ. Therefore

H = Lo + ifascLΛ 4- H = L.
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3. Ascendant subalgebras

In this section we consider finitely generated subalgebras of a Lie algebra

which is in the class E2I.

PROPOSITION 2. Let x be an element of a Lie algebra L. If there exists

an integer n>0 such that <L(adx)π> = <L(adx)n + r> for any integer r > 0 , then

<L(adx)π> is an ideal of L.

PROOF. Take any element α e l ( a d x ) 3 " . Then α = ft(adx)3π for some

b e L. By using Lemma 2 we have for any yeL,

a ad y — [ft, wx] (ad x)2n ad y

b, »x](ad|>, ,*]) (ad *)*»-'.

If ί = 0,..., n, since 2n — i>n we have

[ft, nx] (ad ly, fx])(ad x)2^ e L(ad x)»9

and if i = n + 1 , . . . , 2n, since [y, fx] e L(ad x)M we obtain

[L(ad x)M, L(ad x)w] (ad

Conseqeuntly a ad y e <L(ad x)π>, and therefore

<L(ad x)">ad y = <L(ad x)3rt>ad y c <L(ad x)w>.

For any element x e L let L0(x) and L t(x) be Fitting zero and one components

of L with respect to adx. In the above proposition <Li(x)> is not necessarily

an ideal of L, which will be shown later in Example 2. However if there is an

integer n > 0 such that L(adx)" = L(adx) n + 1 , then it is known that L = L0(x) +

L t(x) ([1, Lemma 12.2.6]). In this case we have the following

COROLLARY. Let x be an element of a Lie algebra L. If there exists an

integer n>0 such that L(adx)w = L(ad x) n + 1 , then <Lx(x)> is an ideal of L.

It is to be noted that Proposition 2 and its corollary hold for Lie algebras over

a field of characteristic p>0.

Now we obtain the following



106 Naoki KAWAMOTO

THEOREM 2. Let L be a Lie algebra in the class E$l and H = (hu..., hn}

a finitely generated subalgebra of L. Suppose that there exists an integer fc>0

such that (H(2Lάhi)
ky = (H(2Ldhi)

k+ry for any integers r > 0 and l<i<n.

If there exists an integer m > 0 such that L(ad/ir)
m g: if for l < ι < n , then H is

an ascendant subalgebra of L.

PROOF. Let m > 0 be an integer such that L(ad / z ί )
m g H f o r l < i < n . Then

we have

••• ς= if (ad hi)
2m+k c L(ad h^2m+k <= if (ad ht)

m+k

<Ξ L(ad hi)m+k c

Since <#(ad /zί)
fc> = <H(ad hdk+r> for r > 0 , it follows that

<L(ad ht)
m+ky = <L(ad Λ/)

m+fe+r>

f o r r > 0 . Put

Then / is an ideal of L by Proposition 2. Since / ̂  if, we may assume that

7 = 0. Then we have

dm+k = 0 (1 < i < n ) .

Therefore by Lemma l(b) we obtain that H asc L.

COROLLARY. Let Lbe a Lie algebra in the class έ2ϊ and if ==</z1,..., hn}

a finite dimensional subalgebra of L. If there exists an integer m > 0 such that

L(ad hi)m ^H for 1 < Ϊ < n, then H asc L.

4. Examples

In this section we give some remarks and examples.

At first we notice that Theorems 1 and 2 do not hold for Lie algebras over a

field of characteristic p > 0. This will be shown by Hartley's example [1, Lemma

3.1.1].

Secondly we cannot expect that Theorems 1 and 2 hold for residually solvable

Lie algebras. This is shown by the following

EXAMPLE 1. Let A be the vector space over f with basis {ah bt\ i eN}, where

N is the set of nonnegative integers. We define linear endomorphisms xn, yH,

zn (n e N) of A by the following: For any n, i e-N,
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JV β|l • 0 , & f ι > 2 " f l J + B + 1 ,

Then it is easy to verify that

[X, *m] = Lyn> yml = [>«> zm\ = o,

for any n, m e N . Let i/ be the subspace of End(/1) spanned by {xM, ym zn\ne

N } . Clearly H is a subalgebra of [End(^4)]. Consider A as an abelian Lie

algebra, so that H^ΌQΪ(A). Hence we can form the split extension

L = A + H, A^L.

It is not hard to see that

whence L is residually solvable. Clearly H is generated by x0, y0 and

L(adx o ) 3 = 0,

However for any n e N

Therefore LL(if) = if, and H is neither a subideal nor an ascendant subalgebra of

L, as desired.

Finally we show in the following that (L^x)} is not necessarily an ideal of

L even if <L(ad x)> = <L(ad x)n} for any integer n >0.

EXAMPLE 2. Let A be the vector space over I with basis {at\ ieN}, and let

x, >>„ (n e N) be linear endomorphisms of A defined as follows: For any n, i e N,

x: at\ >(i

[ α, _n if ΐ - n > 0,
JV fli1 •

[ 0 otherwise.

Consider A as an abelial Lie algebra, then x and yn (n e N ) are derivations of A.

It is easily seen that for any n, m e N,

[x, yn~\ = nyn_ί (n > 0), [x, yo~] = [yni ym~\ = 0.
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Let Ybe the subspace of Der(>4) spanned by {yn\neN}9 and form the split ex-

tension

Then we clearly have <L(ad x)n} = A + Yfor n > 0. However

O,6NL(adx)« = Y.

Thus <Lx(x)> = Yis not an ideal of L.
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