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§ 1. Introduction

It is known that solutions of Cauchy problems for some semilinear evolution

equations may blow up in a finite time (or grow up to infinity as ί->oo) for some

initial values. There are several works concerning the asymptotic behavior of the

solution of the Cauchy problem for the equation

(1.1) T^w(*' x ) = A u ^ χ ) + d(u(t9 x))9 t>0,xeRN,

with the initial condition

(1.2) u(P,x) = a(x), xeRN.

The case when g(λ) = λ1+* (α>0) has been studied by H. Fujita [1], [2],

K. Hayakawa [3] and S. Sugitani [7]. Assume that the initial value a(x) is

non-negative bounded continuous. Then these results can be stated as follows;

(i) in case O<ocN<2, for any initial value a(x) not vanishing identically,

the solution u(t, x) of (1.1) with (1.2) blows up in a finite time, and

(ii) in case αiV>2, (a) for sufficiently small initial values a(x) ( # 0 ) the

solutions u(t, x) of (1.1) with (1.2) converge to 0 uniformly in x as ί->oo, and (b)

for sufficiently large initial values a(x) the solutions u(t, x) of (1.1) with (1.2)

blow up in a finite time.

For general /, there is a work of K. Kobayashi-T. Sirao-H. Tanaka [5].

Under what condition on the initial value a(x) does the solution u(t, x) of

(1.1) with (1.2) converge to 0 as ί-^oo in case odV>2? And, under what condition

on a(x) does the solution w(ί, x) blow up in a finite time in the same case?

In this paper we shall consider these kinds of problems for the equation (1.1)

replacing g by f defined as follows:

ί pλ- pq, λ> q,

[ 0, 0<λ<q,

where p and q are positive constants.

For any bounded continuous function a(x) on RN, it is known that the equa-
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tion (1.1) replacing g by/with (1.2) has a global solution, which is denoted by
u(t, x) or u(t, x; a9f)9 and that the following comparison theorem holds:

(1.4) a(x) < d(x) and a(x) ψ α(x) imply that

u(t,x;a,f)<u(t9x;ά,f) for t > 0.

In this paper we assume that the initial value a(x) is non-negative bounded con-
tinuous and^the dimension N is not less than 3. For these initial values a(x)
not vanishing identically the solutions u(ί, x; a,f) of the equation (1.1) replacing
g by f with (1.2) are positive global solutions, that is, u(t, x; a9f)>0 for any
ί>0 and XGRN. The positive global solution u(t, x; a, f) may grow up to
infinity as f->oo for some large initial value α(x), that is, for each positive constant
M and each compact set K in RN there exists T>0 such that *>Γand xeK
imply u(t, x; a,f)>M. We seek a sufficient condition on the initial value a(x)
under which the solution w(ί, x; a,f) grows up to inifinity as ί-*oo. For this
purpose we seek the stationary solutions of (1.1). The simplest stationary solu-
tions will be radially symmetric ones, that is, solutions u(x) of Au+f(u) = 0 that
depend only on |x|. To find such solutions u(|x|), we set |x| = r. Then u(r) satis-
fies the equation

d2u . N— \ du

iι(0)>0, - ^ - ( 0 ) = 0 .

It is obvious that for each £(0<£< q)9 u{r) = £ is a solution of (1.5) with 0<M(0) =
£<q. In Theorem 2.2 in §2, it is shown that for each £(0<£<q) there exists a
unique solution u^r) of (1.5) such that uΆ(Q)>q, u&(r)>£ for any r > 0 and
Ua(r) i £ as r-*co.

Consequently the non-negative radially symmetric stationary solutions of
(1.1) are constatns £(0<£<q) and positive functions u£(|x|) (0<£<q). Using
these stationary solutions we can obtain the following results for each 0<£<q
(see Theorem 3.1 in §3):

(a) In the case when £<a{x)<uί(\x\) and £φa{x)φuί(\x\)9 the solution
w(ί, x; a,f) greater than £ converges to £ uniformly in x as ί->oo.

(b) In the case when a(x)>uSί(\x\) and a(x)ψu!ί(\x\), the solution
u(t, x; a9f) grows up to infinity as ί->oo.

(c) In the case when a(x)>q and a(x)φq9 the solution u(t9 x; a9f) grows
up to infinity as ί->oo.

The author wishes to thank Professor H. Tanaka and Professor M. Mimura
for their helpful suggestions and advice.
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§2. On positive solutions of u" + (N- l)uf/r+f(u) = 0 , N>3

In order to study the existence of stationary solutions of the equation (1.1)

replacing g by/defined by (1.3), we shall consider the equation (1.5). If 0 < w(0) =

£<q, then u(r) = £ is the unique solution of (1.5). We shall seek the positive

solution of (1.5) with w(0) > q. Let ( )' = d( )/dr and first consider the following

equation

ί u" + (N-l)u'/r + pu - pq = 0, r > 0,
(2.1)

[ iι(0) = uo>q, u'(0) = 0.

Let J v (r) be a standard Bessel function, that is,

Jv(r) == Σ?=o(~l)fc(r/2)2k+v/fc!/Xv + /c+l).

It is known that the unique solution w(1)(r) of the above equation (2.1) is given by

LEMMA 2.1. The positive solution u(r) of (1.5) with u(0)>q, if it exists, is

strictly decreasing in r and converges to some non-negative constant £ less than

q as r->oo.

PROOF. First we note that u(r) satisfies the integral equation

Since u'(r)= —rx~N \ sN~1f(u(s))ds<09 u(r) is strictly decreasing in r. Suppose
Jo

that u(r) converges to £ > q as r-• oo. Then u(r) > q for r > 0, and hence f(u(r)) =
pu(r) — pq. Therefore the positive solution u(r) is equal to the solution u^(r)

of the equation (2.1) with wo = w(0). On the other hand, u(ί)(r) is smaller than q

for some r > 0 since J(N-2)/2(\fpr) has simple zeros in (0, oo). This contradiction

completes the proof of Lemma 2.1.

If u(r)<q, then/(w(r)) = 0. Therefore we next consider the equation u" +

(N-l)u'/r = 0. Foτ0<£<q,

M ( 2 )(r) = £ + mr2~N

9 m > 0

are the positive solutions of the equation

ί u" + (N-\)u'lr = 0, r >0,

{ li
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Choosing suitable constants u0 and m, and using a part of u(ί)(r) and a part

of M(2)(r), we can construct a positive solution u(r) of the equation (1.5) with

u(0)>q.

THEOREM 2.2. For each constant β with 0<£<q, there exists a positive

solution u(r) of (1.5) with u(0)>q such that u(r) is strictly decreasing in r and

converges to £ as r->oo.

PROOF. Let r 0 be the smallest positive zero of the Bessel function

), that is,

(2.3) r 0 = min {r > 0: κ ( 1 )(r) = q} .

Putting m = (q — £)r$~2, we have u(1)(ro) = q = u(2)(ro) Differentiating w(1)(r)

and U(2)(r) yields

) V V / V < 0,
and

0.

Therefore, we can choose uo>q such that W(1)(r0) = w/

(2)(r0). That is, putting

we obtain the positive solution

(2.4) uΆ(r)

0 < r < r0,

r2-N, r > rθ9

of (1.5) with u(0)>q and lim^oo u(r) = £.

EXAMPLE . When N = 3,

(q - £) sin yfpr/y/Jr + q, 0 < r< p~^2π,

§3. Asymptotic behavior of the solution u(t, x; a, f)

In the present section we consider the Cauchy problem for the semilinear

heat equation
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(3.1) J!*L = Au + f(μ), t>09xeRN,

with the initial condition

(3.2) tι(0, x) = α(x), xeR\

where/(A) is the function defined by (1.3) for the positive given numbers p and q,

a(x) is a non-negative bounded continuous function on RN and N is greater than

or equal to 3. For any non-negative bounded continuous initial value a(x) not

vanishing identically, the equation (3.1) with (3.2) has a unique positive global

solution u(t, x; a9f). There exist non-negative stationary solutions of (3.1) as

was seen in §2, that is, the non-negative bounded radially symmetric solutions of

Au+f(u) = Q are non-negative constants £(0<£<q) and u^Qx]) (0<£<q),

where «fi(r) is the positive solution of (1.5) with u(0)>q defined by (2.4) and

satisfying limΓ_>α0 ujί(r) = £. We denote w£(|x|) by u&(x) for simplicity through-

out this section.

THEOREM 3.1. Let £ be a constant with 0<£<q and suppose that α(x)

is a non-negative bounded continuous function.

(i) // £<a(x)<uSL(x) and a{x)φuί{x), then the solution u(ί, x; a, f) of

(3.1) with (3.2) converges to £ uniformly in x as ί->oo.

(ii) // a{x)>uί{x) and a(x)φuΆ(x), then the solution u(t, x; a,f) of (3.1)

with (3.2) grows up to infinity as ί-»oo.

When a(x)>£ and a(x)ψ£9 the comparison theorem (1.4) implies that

w(ί, x; a,f)>£ for any ί > 0 and xeRN. Therefore v(t, x) = u(ί, x; a, f)-£

is the positive solution of the following equation

dυ =Aυ+f&{v\ t>0,
dt

v(0, x) = a(x) - £,

where

pλ- p(q-£\ λ>q-£,

0, 0<λ<q-£.

Hence it is sufficient to show this theorem for any q>0 on the assumption £=0.

For proving this theorem we prepare several lemmas. We start with some

estimates on f(λ) defined by (1.3).

LEMMA 3.2. For each Λo>0, there exists a positive number α such that

(3.3) f(yλ) < 7 1 + 2 α/W for 0 < λ < λ0, 0 < γ < 1,
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and

(3.4) f(γλ) > yΐ+2"f(λ) for 0<γλ<λo,y>l.

PROOF. Since (3.4) follows from (3.3), we shall show (3.3). When yλ<q,

(3.3) holds for any α>0 since f(yλ) = 0. Therefore it is sufficient to show (3.3)

for qjy<λ<λ0 and 0<y< 1. For q<yλ<λ, we write

<3 5> TW =Ip^pf= " λ-7 =Λι-^{j-

Putting β= i/γ-1 >0 and A' = g/(l-g)>0 in (3.5), we have

l o J >
= , _MlL = = , _

logy -log(l+j?) log (1 + ̂ ) -

Because log(1 - λ ' β ) ^ - λ ' log(1+β), we have for λ<λ0

log{f(7λ)lf(λ)} > 1 + A , = 1 + ^ _ > 1 + g = 1 + 2α > 1,
logy 1 - ί Ao-ί

and hence

log {f{jλ)lf(λ)} < (1 +2α)log y for g/y < λ < λ0, 0 < γ < 1,

which completes the proof of Lemma 3.2.

The heat equation (3.1) with (3.2) is transformed into the integral equation

(3.6) u(t, x) = Hrfx) + [ H,-J(M(S, •))(x)ds,
Jo

where

Hta(x)=\RNH(t,x,y)a(y)dy,

H(t, x, y) = (4π0-N / 2exp(-|x-3; | 2/40.

We consider a class of monotone radially symmetric functions as follows:

Λ? = {ae C(RN): a(x) > 0, φ 0, a(x) > a(y) for |JC| < \y\}.

It is obvious that uo(x) belongs to s#'. Since / is non-decreasing, the following

lemma holds (see Lemma 3.2 in [5]).

LEMMA 3.3. // a(x)es/9 then Hta(x)esf and u(t, x; a,f)es/ for each

Let a(x) be an initial value satisfying the assumption in (i) of Theorem 3.1,

that is, a bounded continuous function with 0<a(x)<uo(x) and a(x)ψuo(x).
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Then, applying the comparison theorem (1.4) to the equation (3.1) with initial
values a(x) and uo(x)9 we have

0 < u(t, x; a, f) < u(t, x; ι/0, /) = uo(x) for t > 0.

Since uo(x) e sf, for each ί* >0 there exists a function α*(x) e stf such that

0 < u(t*9 x; aj) = a*(x) < a*(x) < uo(x),

for any xeRN. Applying the comparison theorem (1.4) to the equation (3.1)
with initial values a*(x), a*(x) and MO(X), we have

u(t, x; α*,/) < u(t, x\ α*,/) < u(t, x; M 0 , / ) ,

and hence

*, x; a,f) < u(t, x; a*,f) < uo(x),

for any t>0 and xeRN. Therefore it is sufficient to prove (i) of Theorem 3.1
for each initial value a(x)es/ satisfying 0 < a(x) < uo(x). Similarly, we have
only to prove (ii) of Theorem 3.1 for each initial value a{x)esέ satisfying a(x)>
uo(x).

We shall estimate the solution u(ί, x; a9f) of (3.1) with (3.2) using the station-
ary solution uo(x).

LEMMA 3.4. (i) // 0<a(x)<uo(x) for any xeRN, then for each r>r0

there exists a positive number γ<\ such that

u(t9 x; a,f) < yuo(x)

whenever t>0 and |x |<r, where r0 is the positive constant given by (2.3).
(ii) If a(x)>uo(x) for any xeRN, then for each r>r0 there exists a positive

number γ>l such that

u(t, x;a,f)> yuo(x)

whenever t>0 and \x\ <r.

PROOF. First, we note that the solution u(t, x; a,f) = u(t, x) of (3.6) and the
stationary solution uo(x) can be constructed by iteration as follows. Putting

, x) = Hta(x\

? χ ) = Hta{x) + (' ds f H(t_Sy X j y)f(μW(s9 y))dy, n = 0, 1, 2,...,
Jo JRN

, x) = HtuQ{x),

, x) = Htu0{x) +^ods^NH(t-s, x, y)f(ui'\s, y))dy, n=0, 1, 2,...,
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we have w(/I)(ί, x) | u(t9 x) and u(

o

n)(t, x) f uo(x) as n->oo. Let α be a positive

number defined in Lemma 3.2 for λ0 = 2 maxxeRN uo(x) = 2uo(0) and let β be such

that 0</?<2α/(l+2α). For arbitrarily fixed r>r0, we choose a constant qr so

that 0<^/<minj ; c |^ l.M0(x). Recall that uo(x) = q for |x| = r 0 and note q'<q.

Furthermore we define

(3.7) τ = inf {t: Htu0(x) < βq' for any x e RN} = inf {t: Hfwo(0) < βq'}.

Now we proceed with the proof of (i). Define a positive number

(3.8) y = maxo^^^i^{H ta(x)IH tu0(x)) v y0 < 1,

where α v ί? = max(α, 6) and y0 is the solution in (0, 1) of

Step 1 is to prove that

(3.9) ιι(»)(ί, x) < yuSw>(f, x), n = 0, 1, 2,...,

provided | x | < r and u(

o

n)(t, x)>q'. We shall show (3.9) by induction. Noting

that Htu0(x) e s/ and using the definition (3.7) of τ, we have for t > τ

Htu0(x) < Hτuo(0) = βq' < q' for any j c e β N .

Therefore, assuming that u(

0

0)(t, x) = Htu0(x)>q\ we get 0 < ί < τ , and hence by

the definition (3.8) of γ we have (3.9) for n = 0.

Next we shall show that (3.9) holds for n + 1 under the hypothesis that (3.9)

holds for n. Since w(fl)(s, y)<u(s, y)<uo(y)<q for \y\>r>rθ9 f(uin\s, y)) = 0

for \y\>r and hence

(3.10) «("+1)(ί, x) = Hta{x) + Γ ds[ H(t-s, x, y)f(u^(s9 y))dy.
Jo J\y\<>r

In the case when \y\<r and W[)M)(5, y)>^ ' , using the induction hypothesis, and

next using (3.3) of Lemma 3.2 with λ = u(

o

n)(s, y)<uo(y)<uo(0)<λo, we have

<">(s, y)) <f(yuk>\s, y)) < yι+2«f(ui»\s, y)).

While in the case when \y\<r and uty\s, y)<q\ noting w(w)(s, y)<u(

o

n)(s, y)<

q' <q, we have

/(w(n)(5, y)) = 0 = y1+2β/(ιιS»>(s, y)).

Therefore we get from (3.10)

(3.11) wC+1>(ί, x) < Hta(x) + y1+2a Γ rfs ί H ( ί - s , x, y)/(wί,n)(s,
Jo J\y\£r
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Hta(x) + y1+2* Γ ds { H(t-s, x, y)f(u^\s, y))dy.
JO JRN

Let us assume that | x | < r and u(

o

n+1\t, x)>q'. In case 0 < ί < τ , noting the

definition (3.8) of y, we get from (3.11)

, x) < yHtu0(x) + 7 1 + 2 α (' ds [ H(t-s, x, y)/(M^}(s, y))dy
JO JR*>

t, x).

Noting that Hta(x)<Htu0(x), we get from (3.11)

(3.12) u(n+1\U x) - yu(

o

n+1\t9 x)

< (i -y)Htu0(χ) + (y1+2"
JO JRN

^ -y) (q' -Htu0(x))

= (i-γ^*)H,u0(χ) + (yι+2*-yW,

where we have used the assumption u£>"+1)(ί, x)>q', that is,

' ds [ H(t-s, x, y)f(u<0»\s, y))dy > q'- H (

o JRN

in deriving the last inequality of the above. In case t>τ, noting the definition

(3.7) of τ, we get from (3.12)

, x) - yu(

o

n+ί\t, x) < (β-βy1+2« + y1+2«-y)qf = φ(y)q' < 0,

because φ(y)<0 for yo^V'^lj a n ( i hence we obtain (3.9).

Step 2. Here the proof of (i) will be completed as follows. Let a positive

number T be fixed. Since min ) : c |< rM0(x)>^' and w&π)(ί, x) converges to uo(x)

uniformly in (ί, x)e [0, T] xRN as n->oo, there exists a positive integer M such

that n>M implies that

u{

o

n\t, x) > q' for 0 < t < T and |x| < r.

Therefore, by Step 1, n>M implies that

u<<nXt, x) < yu{

Q

n\t, x) for 0 < t < T and |x| < r,

and hence

u(t9 x) < yuo(x) for 0 < t < T and |x| < r,

which establishes the proof of (i) since Tis arbitrary,

(ii) can be proved along similar lines to (i). Put
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(3.13) γ = mino^τM^r(Hta(x)IHtuo(x)) Λ 2 > 1,

where a A b = min(α, b). We shall prove

(3.14) «<»>(*, x) > yu<»>(r, x), n = 0, 1, 2,...,

provided \x\<r and M&B)(ί, x)>g', which yields (ii) similarly to (i). When n = 0,

(3.14) follows from the definition (3.13) of y. Suppose that (3.14) holds for n.

In the case when |j>| <r and u(

o

n\s, y)>q\ using the induction hypothesis and next

using (3.4) of Lemma 3.2 with λ = u(

o

n)(s, y)<(2lγ)uo(0) = λo/γ, we get

(3.15) /(u<»>(s, y)) > γί+2"f(u(

0»Xs, y)).

While in the case when \y\>r>r0 or u(

o

n)(s, y)<q'<q, (3.15) also holds since the

right hand side of (3.15) vanishes. Therefore we have

(3.16) W(«+1>(ί, x) > Hta(x) + y1+2* Γ ds [ H(t-s, x, y)f(u^\s, y))dy.
JO JjR*O

Assume that |x |<r and u(

o

n+1\t9 x)>q'. In case 0<ί<τ, it follows from (3.16)

that

ί, x) > yu(

o

n+1\t9 x)9

using the definition (3.13) of y. While in case t>τ, using the definition (3.7)

of τ, we have from (3.16)

u("+1>(ί, x) - yu(

o

n+1\t9 x) > (l-yi+2*)Htu0(x) + (y1+2«-y)qf > φ{y)q' > 0,

since φ(y)>0 for y> 1. Thus the proof of Lemma 3.4 is completed.

LEMMA 3.5. (i) If 0<a(x)<uo(x) for any xeRN, then for each r>r0

there exist positive numbers α>0, 0<y<l and an increasing sequence {tn}

with to = 0 such that

(3.17) u(t,x;aj)<y^nuo(x)

fort>tn, \x\<randn = 0, 1,2,....

(ii) Ifa(x)>uQ(x) for any xeRN, then for each r>r0 and M'>supxeRN a(x)

there exist positive numbers α>0, y>l and an increasing sequence {tn} with

to = 0 such that

(3.18) W(ί,x;α,/)>y( 1 + α)Mu 0(x)

for t>tn and |x |<r, provided

(3.19) y^^-'uoφ) < M'.

PROOF. Put u(t, x) = u(t, x; a9f) and let r>r0 be fixed.
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(i) Let γ be a positive number less than 1 defined in Lemma 3.4 for r, and

let α be a positive number defined in Lemma 3.2 for λo = uo(0). We shall prove

(3.17) by induction. When n = 0, (3.17) holds by (i) of Lemma 3.4. Suppose

(3.17) is true for n. Let t>tn. Since u(t9 x; a,f) = u(t — tn, x; u(tn, •)>/)> noting

that u(tn + s, y)<uo{y)<q namely f(u(tn4-s, y)) = 0 for | ^ | > r , we have

(3.20) u(t, x) = Ht_tnu(tn, x) +^tnds^RNH(t-tn-s, x, y)f(u(tn + s, y))dy

= Ht.tnu(tH9 x) + Γ" f n ds [ H(t-tn-s, x, y)f(u(tn + s, y))dy.
Jo J||<>Jo ||

Using the induction hypothesis and next applying (3.3) of Lemma 3.2 tof(yλ) with

0 < γ = γ(1+α)M < 1 and λ = uo(x) < uo(0) = λ0,

we have

f(u(tn + s9 y)) <fW1+*)nu0(y)) < f1+«^1+2«V(u0(y))

for M < r . Therefore, noting u(tn, x)<uo(x) for xeRN, we have from (3.20)

(3.21) u(t, x) < Ht-tnu0(x)

+ y(i+β)»(i+2«) p " ^ f H(t-tn-s, x, j ; ) / ( M o W ) ^ .
JO J Iy I ^ r

Since wo(3 ;)<^ namely/(wo(y)) = 0 for | y | > r > r o , noting that uo(x) is the solution

of the integral equation (3.6) replacing a(x) by uo(x), we have

H(t-tn-5, x,
o J I Ί ^

=\'o'"ds

Combining this with (3.21) yields

(3.22) u(ί, x) ^ iί f_ f nu0(x) + γV

Since Ht..tnuQ{x) converges to 0 uniformly in x as ί->oo, there exists a positive

number tn+ί greater than tn such that /„(!, x ) < 0 for any ί > ί π + i and | x | < r , and

hence by (3.22)

u(ί, x) < y<1+*>"+Iu0(x) for ί > ίn+1, |x| ^ r,
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which completes the proof of (i).

(ii) can be proved by induction in a similar way to (i). Let M' > supx e / e* a(x)

be fixed. Let y be a number greater than 1 defined in (ii) of Lemma 3.4 for r and

let α be a positive number defined in Lemma 3.2 for λo = M'. Since (3.18) is valid

for n = 0, we shall prove (3.18) for n +1 under the hypothesis that (3.18) holds for

n. Assume y ( 1 + α)Mw0(0)<M'. Then y^+^n~luo(0)<Mf, and hence using the

induction hypothesis we have

f(<tn+s, y)) >/(y<1+α>XO0) > ? ( 1 + α ) M ( 1 + 2 α )/(w0ω)

for 5 > 0 and | j | < r , where we have applied (3.4) of Lemma 3.2 to f(y(ί+a)nu0(y))

since y < 1 + α ) X ( y ) < y ( 1 + α ) X ( 0 ) < M ' = /lo and y<1 + β>">l. Consequently we

similarly obtain

u(t9 x) > Ht-tnu0(x) + y(1+α>"<1+2«> Γ~ ίn ds \ H(t-tn-s9 x9 y)f(uo(y))dy

and hence we can prove (ii) in a similar way to (i).

PROOF OF THEOREM 3.1. (i) By the remark we made just before Lemma

3.4 we may assume that a(x)es/ and 0<a(x)<uo(x). Since u(t, x; a9f)ejtf

by Lemma 3.3, (i) of Lemma 3.5 implies that there exist positive numbers α>0,

0 < y < l and a sequence {tn} such that

fi(f, x; aj) < u(t, 0; a,f) < y^nuo(0)

for t> tn9 xeRN and n = 0, 1, 2,..., which completes the proof of (i).

(ii) We may similarly assume that a(x)>uo(x). For any constants r>r0

and M > sup^ϋ* a(x), let |x r | = r and M' = {uo(Q)luo(xr)}M. Then the assumption

(3.19) is equivalent to the assumption 7 ( 1 + α ) M" 1M 0(x r)<M. Therefore, it follows

from (ii) of Lemma 3.5 that there exist α > 0 , y>\ and a sequence {tn} such that

iι(r, x; a,f) > y(1+α)nw0(x) > y(1+a)nu0(xr)

for t>tn and | x | < | x r | = r, provided 7 ( 1 + α ) n ~ 1 w 0 ( ^ r ) ^ ^ which implies (ii). Thus

the proof of Theorem 3.1 is completed.
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