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§1. Introduction

It is known that solutions of Cauchy problems for some semilinear evolution
equations may blow up in a finite time (or grow up to infinity as t—o0) for some
initial values. There are several works concerning the asymptotic behavior of the
solution of the Cauchy problem for the equation

(1.1 %“(t’ x) = Adu(t, x) + g(u(t, x)), t>0, xeRV,

with the initial condition
(1.2) u(0, x) = a(x), xeRV.

The case when g(1)=A'** («>0) has been studied by H. Fujita [1], [2],
K. Hayakawa [3] and S. Sugitani [7]. Assume that the initial value a(x) is
non-negative bounded continuous. Then these results can be stated as follows;

(i) in case 0<aN <2, for any initial value a(x) not vanishing identically,
the solution u(t, x) of (1.1) with (1.2) blows up in a finite time, and

(i) in case aN>2, (a) for sufficiently small initial values a(x) (#£0) the
solutions u(t, x) of (1.1) with (1.2) converge to 0 uniformly in x as t— o0, and (b)
for sufficiently large initial values a(x) the solutions u(t, x) of (1.1) with (1.2)
blow up in a finite time.

For general f, there is a work of K. Kobayashi-T. Sirao-H. Tanaka [5].

Under what condition on the initial value a(x) does the solution u(t, x) of
(1.1) with (1.2) converge to 0 as t— o0 in case «N>2? And, under what condition
on a(x) does the solution u(t, x) blow up in a finite time in the same case?

In this paper we shall consider these kinds of problems for the equation (1.1)
replacing g by f defined as follows:

pA—pq, A=gq,

1.3 A) =
(1.3) fA 0 0<i<a,

where p and g are positive constants.
For any bounded continuous function a(x) on RV, it is known that the equa-



40 Kusuo KoBAYASHI

tion (1.1) replacing g by f with (1.2) has a global solution, which is denoted by
u(t, x) or u(t, x; a, f), and that the following comparison theorem holds:

(1.4) a(x) < da(x) and a(x) # d(x) imply that
u(t, x; a, f) <u(t, x; a,f) for t>0.

In this paper we assume that the initial value a(x) is non-negative bounded con-
tinuous and_ the dimension N is not less than 3. For these initial values a(x)
not vanishing identically the solutions u(t, x; a, f) of the equation (1.1) replacing
g by f with (1.2) are positive global solutions, that is, u(t, x; a, f)>0 for any
t>0 and xeRY. The positive global solution u(t, x; a, f) may grow up to
infinity as t— oo for some large initial value a(x), that is, for each positive constant
M and each compact set K in RN there exists T>0 such that t>T and xe K
imply u(t, x; a, f)>M. We seek a sufficient condition on the initial value a(x)
under which the solution u(t, x; a, f) grows up to inifinity as t—oo0. For this
purpose we seek the stationary solutions of (1.1). The simplest stationary solu-
tions will be radially symmetric ones, that is, solutions u(x) of Au+f(u)=0 that
depend only on |x]. To find such solutions u(|x|), we set |x|=r. Then u(r) satis-
fies the equation

d’u 4 N—1 du

g — G 4 fw) =0, r>0,

(1.5)
u(©) >0, 2% 0)=0.

It is obvious that for each 4(0< ¢ < q), u(r)= ¢ is a solution of (1.5) with 0<u(0)=
4<q. In Theorem 2.2 in §2, it is shown that for each £(0< ¢ <q) there exists a
unique solution u,(r) of (1.5) such that u,(0)>gq, uy,(r)>¢ for any r>0 and
u,(r) | ¢ as r-oo.

Consequently the non-negative radially symmetric stationary solutions of
(1.1) are constatns £(0< ¢ <q) and positive functions u,(|x]) (0<£<gq). Using
these stationary solutions we can obtain the following results for each 0</4<gq
(see Theorem 3.1 in §3):

(a) In the case when ¢<a(x)<u,(|x|]) and ¢za(x)#u,(|x|), the solution
u(t, x; a, f) greater than ¢ converges to ¢ uniformly in x as t—o0.

(b) In the case when a(x)>u,(|x]) and a(x)#u,(|x|), the solution
u(t, x; a, f) grows up to infinity as t—oo.

(¢) In the case when a(x)>g and a(x)=q, the solution u(t, x; a, f) grows
up to infinity as t—co.

The author wishes to thank Professor H. Tanaka and Professor M, Mimura
for their helpful suggestions and advice.
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§2. On positive solutions of "+ (N—1)u'/r+f(u)=0, N>3

In order to study the existence of stationary solutions of the equation (1.1)
replacing g by fdefined by (1.3), we shall consider the equation (1.5). If 0<u(0)=
£<q, then u(r)=2¢ is the unique solution of (1.5). We shall seek the positive
solution of (1.5) with u(0)>q. Let (-)' =d(-)/dr and first consider the following
equation

u' +(N—-Du'[r+pu—pg=0, r>0,
u(0) =uy >q, u'(0)=0.

2.1)

Let J,(r) be a standard Bessel function, that is,
J,(r) = X0 (—D*(r[2)2* > [kIT(v+k+1).
It is known that the unique solution u,(r) of the above equation (2.1) is given by
uy(r) = (uo—q)I'(N/2) (ﬁr/z)(z_N)”J(N—2)/2(\/—1;") +gq.

LEMMA 2.1. The positive solution u(r) of (1.5) with u(0)>gq, if it exists, is
strictly decreasing in r and converges to some non-negative constant ¢ less than
q as r—oo.

Proor. First we note that u(r) satisfies the integral equation

u() = u(©) + iy [ 2= 2t u(s))ds.

Since u'(r)= —r1-¥ S; s¥1f(u(s))ds <0, u(r) is strictly decreasing in r. Suppose
that u(r) converges to £ >gq as r—»oo. Then u(r)>q for r>0, and hence f(u(r))=
pu(r)—pq. Therefore the positive solution u(r) is equal to the solution uy,(r)
of the equation (2.1) with uo=u(0). On the other hand, u,(r) is smaller than g

for some r>0 since Jy_,, /2(\/51‘) has simple zeros in (0, c0). This contradiction
completes the proof of Lemma 2.1.

If u(r)<gq, then f(u(r))=0. Therefore we next consider the equation u” +
(N—=-Du'[r=0. For0<¢<gq,

uy(r)=£¢+ mr2¥ m >0
are the positive solutions of the equation

u' +(N=-Du'lr=0, r>0,
(22) .
lim,_ , u(r) = £.
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Choosing suitable constants u, and m, and using a part of u,)(r) and a part
of u(,y(r), we can construct a positive solution u(r) of the equation (1.5) with
u(0)>q.

THEOREM 2.2. For each constant ¢ with 0<{4<gq, there exists a positive
solution u(r) of (1.5) with u(0)>gq such that u(r) is strictly decreasing in r and
converges to £ as r—co.

PrROOF. Let r, be the smallest positive zero of the Bessel function
Jn=2y2(y/pr), that is,
(2.3) ro = min {r > 0: u,;(r) = q}.

Putting m=(q—¢)r{=2, we have u(ro)=g=u,(ro). Differentiating um(r)
and u,)(r) yields

u(yy(ro) = —(uo— q)I"(N/Z)\/E(\/irOﬂ)(Z*N)/2JN/2(\/ErO) <0,
and

uy(ro) = mQ—=N)yri™ = 2—N)(g—£&)r5* < 0.
Therefore, we can choose uy>q such that u()(ro)=u,)(ry). That is, putting

o = q + (N=2)(q—&)r5" {T(N/2)\/p(\/Pro/D*M/2] y )(\/Pro)} > 4,

we obtain the positive solution

2.4 u(r)
(N_z)(q—5)(r/"o)(Z_N)/ZJ(N—z)/z(\/;’)/\/;’OJN/z(\/P_’o) + g,
= 0<r<rg,
4+ (g—86)ry=2r27N, r>ro,

of (1.5) with u(0)>g and lim,_,,, u(r)= 4.
EXAMPLE. When N =3,
" (q—¢)sin/pr/\/pr + q, 0<r< p /g,
uy(r) = _
! ¢+ (q—-9K/p)n, r> p~1/2g,
§3. Asymptotic behavior of the solution (¢, x; a, f)

In the present section we consider the Cauchy problem for the semilinear
heat equation
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3.1) _"6% — Au+ f(u), t>0,xeRY,

with the initial condition
3.2 u(0, x) = a(x), xeRN,

where f(4) is the function defined by (1.3) for the positive given numbers p and g,
a(x) is a non-negative bounded continuous function on RY and N is greater than
or equal to 3. For any non-negative bounded continuous initial value a(x) not
vanishing identically, the equation (3.1) with (3.2) has a unique positive global
solution u(t, x; a, f). There exist non-negative stationary solutions of (3.1) as
was seen in §2, that is, the non-negative bounded radially symmetric solutions of
Au+f(u)=0 are non-negative constants 4(0<£<q) and u,(|x|]) (0<4<9),
where u,(r) is the positive solution of (1.5) with u(0)>q defined by (2.4) and
satisfying lim,, ., u,(r)=¢. We denote u,(|x]) by u,(x) for simplicity through-
out this section.

THEOREM 3.1. Let ¢ be a constant with 0<£<gq and suppose that a(x)
is a non-negative bounded continuous function.

() If ¢<a(x)<uy(x) and a(x)£u,(x), then the solution u(t, x; a, f) of
(3.1) with (3.2) converges to ¢ uniformly in x as t—oco.

(i) If a(x)=uy(x) and a(x)Fu,(x), then the solution u(t, x; a, f) of (3.1)
with (3.2) grows up to infinity as t— 0.

When a(x)>¢ and a(x)#¢, the comparison theorem (1.4) implies that
u(t, x; a, f)>¢ for any t>0 and xeRM. Therefore v(t, x)=u(t, x; a, f)—¢
is the positive solution of the following equation

v _
& = 4v + fy(v), t>0,

v(0, x) = a(x) — ¢,
where
pA—plg—4), L2=q-¢,
0, 0<i<qg-—¢.

fid) =

Hence it is sufficient to show this theorem for any ¢ >0 on the assumption £ =0.

For proving this theorem we prepare several lemmas. We start with some
estimates on f(1) defined by (1.3).

LEMMA 3.2. For each 1,>0, there exists a positive number o such that

(3.3) SOH <A for 0<A< 0, 0<y <,
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and
3.4 f(yd) > yt*2ef(Q) for 0<yA<ig,y=> 1.

Proor. Since (3.4) follows from (3.3), we shall show (3.3). When yA<g,
(3.3) holds for any «>0 since f(yA)=0. Therefore it is sufficient to show (3.3)
for g/y<A<l,and O<y<1. For g<yi<A, we write

SOWA) _ pyi—-pqg _ y(A—q)—q(1—7y) _ __4q (1_
(3.5) f@ ~ pA-pg A—gq _y{l ”i—q(? 1>}

Putting f=1/y—1>0 and A'=q/(A—¢q)>0 in (3.5), we have

log {f(yA)/f(A)} _ —log(1+p) +1log(1-A'B) _ , _ log(1—-Ap)
logy —log (1+P) log(1+p8) °

Because log (1—4'8)< — A’ log (1+ ), we have for A<,

log (fODI@} 514y t4 9 14— 9 =1+2>1,
log y - A—q lo—q

and hence
log {f(yA)/f (1)} < (1+2a)logy for gy <A<l 0<y<l,
which completes the proof of Lemma 3.2.

The heat equation (3.1) with (3.2) is transformed into the integral equation

(3.6) u(t, x) = H,a(x) +S; H,_ f(u(s, -))(x)ds,
where
Ha() ={_ HG x yam)dy,
H(t, x, y) = (4nt)™N/2exp (—|x— y|?/41).
We consider a class of monotone radially symmetric functions as follows:

& ={aeCRN): a(x) >0, #0, a(x) > a(y) for |x] < |yl}.

It is obvious that uy(x) belongs to «. Since f is non-decreasing, the following
lemma holds (see Lemma 3.2 in [5]).

Lemma 3.3. If a(x)e s/, then H,a(x)e s/ and u(t, x; a, f)€ £ for each
t>0.

Let a(x) be an initial value satisfying the assumption in (i) of Theorem 3.1,
that is, a bounded continuous function with 0<a(x)<uy(x) and a(x)=uy(x).
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Then, applying the comparison theorem (1.4) to the equation (3.1) with initial
values a(x) and uy(x), we have

0<u(t, x;a, f) <u(t, x; ug, f) = up(x) for t>0.
Since uy(x) € &7, for each t, >0 there exists a function a*(x) € & such that
0 < u(t*9 X; a, f) = a*(x) < a*(x) < uo(x),

for any xe R¥. Applying the comparison theorem (1.4) to the equation (3.1)
with initial values a,(x), a*(x) and uy(x), we have

u(t, X3 a*;f) S u(t, X5 a*af) < u(t’ X3 uOsf)a
and hence
u(t+t*1 X5 aaf) < u(ta X, a*$f) < uO(x)9

for any t>0 and xeRN. Therefore it is sufficient to prove (i) of Theorem 3.1
for each initial value a(x)e ./ satisfying 0<a(x)<uy(x). Similarly, we have
only to prove (ii) of Theorem 3.1 for each initial value a(x) € o satisfying a(x)>
uo(x).

We shall estimate the solution u(t, x; a, f) of (3.1) with (3.2) using the station-
ary solution uy(x).

LemMaA 3.4. () If 0<a(x)<uy(x) for any xeRN, then for each r>r,
there exists a positive number y<1 such that

u(t, x; a, f) < yuo(x)

whenever t>0 and |x|<r, where rq is the positive constant given by (2.3).
(i) If a(x)>uy(x) for any x € RV, then for each r>r, there exists a positive
number y>1 such that

u(ts X, a, f) = ')’“o(x)

whenever t>0 and |x|<r.

ProoF. First, we note that the solution u(t, x; a, f)=u(t, x) of (3.6) and the
stationary solution uy(x) can be constructed by iteration as follows. Putting

wOx, x) = Ha(),

ure(t, x) = Ha(o) + (| ds(  H@=s, %, »f@es, ydy, n=0,1,2,..,
RN

ufP(t, x) = Haolx),

u$rt(t, x) = H,uo(x) +S; ds SRN H(t—s, x, ) fu(s, y)dy, n=0, 1, 2,...,
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we have u(™(t, x) 1 u(t, x) and u§”(t, x) 1 uy(x) as n—»co. Let a be a positive
number defined in Lemma 3.2 for 1, =2 max, g~ ug(x)=2uy(0) and let § be such
that 0<f<2a/(1+2a). For arbitrarily fixed r>r,, we choose a constant g’ so
that 0<gq’'<min, <, uo(x). Recall that uy(x)=gq for |x|=r, and note q'<gq.
Furthermore we define

(3.7 t=inf{t: Huy(x) < Bq’ forany xeRN} =inf{t: Huy0) < Bq'}.
Now we proceed with the proof of (i). Define a positive number
(3.8) Y = MaXogrc, 1x)<r (Hia(x)[Huo(x)) v yo < 1,
where a v b=max(a, b) and 7, is the solution in (0, 1) of
@) = (1—-By'*?* —y + p=0.
Step 1 is to prove that
(3.9) um(t, x) < yul’(t, x), n=01,2,...,

provided |x|<r and u{”(t, x)>q’. We shall show (3.9) by induction. Noting
that H,uy(x) € o and using the definition (3.7) of 7, we have for t>7

Huo(x) < Huy0) =g’ < q’ for any xeRN.

Therefore, assuming that u{®(¢, x)=H,u,(x)>q’, we get 0<t<t, and hence by
the definition (3.8) of y we have (3.9) for n=0.

Next we shall show that (3.9) holds for n+1 under the hypothesis that (3.9)
holds for n. Since u™(s, y)<u(s, y)<uy(y)<gq for |y|>r>rq, fu™(s, y))=0
for |y|>r and hence

(3.10)  utmi, x)=H,a(x)+S;dsS _ H(=5, %, )f @, y)dy.

ly

In the case when |y|<r and u{"’(s, y)>gq’, using the induction hypothesis, and
next using (3.3) of Lemma 3.2 with A=u{"(s, y) <uq(y) <uy(0)<4,, we have

F@™(s, y)) < fQui?(s, y)) < y+2f (ug”(s, ¥)).

While in the case when |y|<r and u{"(s, y)<q’, noting u((s, y)<u{(s, y)<
q' <q, we have

Su(s, y)) =0 = y1+24f(uf(s, y)).

Therefore we get from (3.10)

G wer i, x) < HaGx) + 002 (| ds| _ H(=s, %, )15, )y

ly
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< Ha() + 72 " ds | H—s, % 9@ ).
RN

Let us assume that |x|<r and u{"*1)(t, x)>¢q'. In case 0<t<1, noting the
definition (3.8) of y, we get from (3.11)

w1, x) < pHao(x) + 72 (" ds | H(t—s, x, ) @l )y
< pulrti(t, x).
Noting that H,a(x) < H,uy(x), we get from (3.11)
(3.12)  u*D(t, x) — yulr+(t, x)
< (I =pHuo(x) + (y'+2*—y) g; ds SRN H(t—s, x, y)f(ug”(s, y)dy
< (1=p)Huo(x) + ('*2*—y)(¢' — Huo(x))
= (1=y""29)Huq(x) + ('*2*—7)q’,

where we have used the assumption u{"t1(¢t, x)>q’, that is,
t
[\ ds|  Ha=s,x @G, )y > 4 = Huo®)

in deriving the last inequality of the above. In case t>7t, noting the definition
(3.7) of 7, we get from (3.12)

umO(t, x) — pulr (e, x) < (B—Bytt2E 491422 g’ = o(y)q’ < 0,

because ¢(y) <0 for y,<y<1, and hence we obtain (3.9).

Step 2. Here the proof of (i) will be completed as follows. Let a positive
number T be fixed. Since min, <, uo(X)>q’ and u§”(t, x) converges to uy(x)
uniformly in (¢, x) € [0, T] x RN as n— o0, there exists a positive integer M such
that n> M implies that

ul(t, x) > q' for 0<t< Tand |x| <.
Therefore, by Step 1, n> M implies that
um(t, x) < yul(t,x) for0<t< Tand |x| <,
and hence
u(t, x) < yuo(x) for 0<t<Tand x| <,

which establishes the proof of (i) since T is arbitrary.
(ii) can be proved along similar lines to (i). Put
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(3.13) Y= minOStSt,lxlSr (Ha(x)[Huo(x)) A 2 > 1,
where a A b=min(a, b). We shall prove
(3.14) um(t, x) > yulP(t,x), n=0,1,2,...,

provided |x|<r and u{"(t, x)>q’, which yields (ii) similarly to (i). When n=0,
(3.14) follows from the definition (3.13) of y. Suppose that (3.14) holds for n.
In the case when |y| <r and u$’(s, y)>q’, using the induction hypothesis and next
using (3.4) of Lemma 3.2 with A=u{”(s, ) <(2/y)uo(0)=2,/y, we get

(3.15) F@™(s, y)) > y'*22f (ul(s, y)).
While in the case when |y|>r>r, or ul(s, y)<q’ <gq, (3.15) also holds since the
right hand side of (3.15) vanishes. Therefore we have

(16)  uer(t, %) 2 Hatx) + 92 [ a5 H—s, % )1t )y,

Assume that |x|<r and u{"*1(t, x)>q’. In case 0<t<r, it follows from (3.16)
that
um(t, x) > yuit(t, x),

using the definition (3.13) of y. While in case t>7, using the definition (3.7)
of 1, we have from (3.16)

umD(1, x) — yufO(, x) = (1=y"*29)Hue(x) + (y'*2*=9)q’ = ¢(1)q’ > 0,
since @(y)>0 for y>1. Thus the proof of Lemma 3.4 is completed.

LemMA 3.5. (i) If 0<a(x)<uy(x) for any xeRN, then for each r>r,
there exist positive numbers 0>0,0<y<1 and an increasing sequence {t,}
with t,=0 such that

(3.17) u(t, x; a, f) <y ug(x)

fort>t,, |x|<r and n=0, 1, 2,....

(i) If a(x)>uy(x) for any x € RN, then for each r>r, and M’ >sup, g~ a(x)
there exist positive numbers >0, y>1 and an increasing sequence {t,} with
to=0 such that

(3.18) u(t, x; a, f) = y+® uy(x)
for t>t, and |x|<r, provided
(3.19) p+an=ly (0) < M'.

PrOOF. Put u(t, x)=u(t, x; a, f) and let r>r, be fixed.
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(i) Let y be a positive number less than 1 defined in Lemma 3.4 for r, and
let a be a positive number defined in Lemma 3.2 for 1o=uy(0). We shall prove
(3.17) by induction. When n=0, (3.17) holds by (i) of Lemma 3.4. Suppose
(3.17) is true for n. Let t>1t,. Since u(t, x; a, f)=u(t—t,, x; u(t,, ), f), noting
that u(t,+s, y)<uo(y)<q namely f(u(t,+s, y))=0 for |y|>r, we have

(3200 ult, x) = Hyylty )+ " ds | H=t,=s, %, fiutt+s, )y

= Heguty 9+ (a5 | HO=t,-5 % S +s, ).

lyl<r
Using the induction hypothesis and next applying (3.3) of Lemma 3.2 to f(§1) with
0 < ')7 = v(l+a)” < l and l = uo(x) S uo(o) = Ao,
we have

fQu(ty+s, y)) <FOUFDug(y)) < yI+O" 0201 (u(y))

for |y|<r. Therefore, noting u(t,, x)<uo(x) for x e R¥, we have from (3.20)

3.21)  u(t, x) < H,_, up(x)

t—=tn
tyroramn (g H b, 5, ) (0(2)dy.

Since u4(y) <q namely f(uq(y))=0 for |y|>r>r,, noting that uy(x) is the solution
of the integral equation (3.6) replacing a(x) by uy(x), we have

S'_'" dsg H(t—t,—s, X, Y)f(uo(»)dy
Iyl<sr

0

=S’—'”ds SRN H(t—t,—s, x, ) f(uo(y)dy = ug(x) — H,_, uo(x).

0
Combining this with (3.21) yields
(3.22) u(t, x) < Hy-puo(x) + y+9"U+208y(x) — H,_, ug(x)}
= pArO" iy (x)
+ {1 — y(1+a)"(l+2a)}Ht_t"u0(x) + v(1+a)”+l{,y(l+a)"u — l}uo(x)
= pAra) iy (x) + 1,(2, x).
Since H,_, uo(x) converges to 0 uniformly in x as t—oo, there exists a positive

number ¢, , greater than t, such that I (¢, x)<O0 for any ¢t>t,,, and |x|<r, and
hence by (3.22)

u(t, x) <y M ug(x)  for >ty Ixl <,
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which completes the proof of (i).

(ii) can be proved by induction in a similar way to (i). Let M’ >sup, g~ a(x)
be fixed. Let y be a number greater than 1 defined in (ii) of Lemma 3.4 for r and
let a be a positive number defined in Lemma 3.2 for A,=M’. Since (3.18) is valid
for n=0, we shall prove (3.18) for n+ 1 under the hypothesis that (3.18) holds for
n. Assume pA+®)"y (0)<M’. Then p(1+®)" 'y (0)<M’, and hence using the
induction hypothesis we have

SQu(tyts, ) 2 fOFDug(y)) = yU+om 0 20f (ug(y))

for s>0 and |y| <r, where we have applied (3.4) of Lemma 3.2 to f(y***)"uy(y))
since p(I+e)"y (y)<yW*rO"y (0)<M’'=1, and y*®">1. Consequently we
similarly obtain

ult, ) 2 Hegyuo(x) + 9007020 ("0 a5 | pie—t,—5, %, y) f(uo()dy

=yt iy (x)

+ {1 —y@tanG20b | uo(x) + prant {yd+arne —1}y,(x),
and hence we can prove (ii) in a similar way to (i).

PrOOF OF THEOREM 3.1. (i) By the remark we made just before Lemma
3.4 we may assume that a(x) e and 0<a(x)<uy(x). Since u(t, x; a, f)e s
by Lemma 3.3, (i) of Lemma 3.5 implies that there exist positive numbers « >0,
0<y<1 and a sequence {t,} such that ‘

u(t, x; a, f) < u(t, 0; a, f) < yA+a)™y(0)

for t>t,, xe RN and n=0, 1, 2,..., which completes the proof of (i).

(i) We may similarly assume that a(x)>uy(x). For any constants r>r,
and M > sup,g~ a(x), let |x,|=r and M’ ={uy(0)/uo(x,)}M. Then the assumption
(3.19) is equivalent to the assumption y(1*®)" "'y (x,)<M. Therefore, it follows
from (ii) of Lemma 3.5 that there exist >0, y>1 and a sequence {t,} such that

u(t, x; a, f) =y ug(x) =y ug(x,)

for t>t, and |x| <|x,|=r, provided y1+®)" 'y (x,) <M, which implies (ii). Thus
the proof of Theorem 3.1 is completed.
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