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Introduction

The research of submanifolds in Kaehlerian and almost complex manifolds
is a wide and interesting branch of differential geometry and many differential
geometers have concerned themselves with it.

In 1955, J. A. Schouten and K. Yano [15, 16, 17] introduced the notion of
invariant (or holomorphic) submanifolds in an almost complex manifold and
proved that an invariant submanifold in a Kaehlerian manifold is itself Kaehlerian
and minimal. In 1963, Y. Tashiro [19] showed that a real hypersurface in an
almost complex manifold has an almost contact structure, and later [20] intro-
duced the notion of semi-invariant submanifolds.

D. E. Blair, G. D. Ludden and K. Yano [4] first studied, in 1970, the struc-
ture induced on certain submanifolds of codimension 2 in almost Hermitian mani-
folds or certain hypersurfaces in almost contact metric manifolds, which is
nowaday called an (/, g, u, v, λ)-structure. The structure have been researched in
the papers [3, 5, 6, 9, 10, 12, 25, 26, 30] of them and S. S. Eum, S. Goldberg,
S. Ishihara, U. -H. Ki and M. Okumura. K. Yano and U. -H. Ki [29] have
recently studied the (/, g, u, v, w, λ, μ, v)-structure induced on submanifolds of
codimension 3 in almost Hermitian manifolds. Submanifolds of other kinds in
almost Hermitian manifolds are anti-invariant (see K. Yano and M. Kon [27]),
generic (see K. Yano and M. Kon [28]) and CR-submanifolds (see A. Bejancu
[1], D. E. Blair and B. Y. Chen [2]).

In order to see the above-mentioned submanifolds from an integrated view-
point, Y. Tashiro and the present author [23] introduced the notion of metric
compound structure (/, g9 v9f

λ) on a Riemannian manifold, which is an abstrac-
tion of the structure induced on submanifolds in almost Hermitian manifolds.
Each of the structures is characterized by the rank r of the matrix v, or the dimen-
sion of the normal distribution Dr defined by v. In the previous paper, we proved
that, if r = l, the structure defines an almost contact metric one on the manifold,
and studied in details properties of submanifolds with such a structure in an even-
dimensional Euclidean space.

In the present paper, we shall see that some scalar fields are associated with a
metric compound structure of rank r and these scalar fields are used to classify
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invariant, anti-invariant, CR- and other submanifolds in almost Hermitian

manifolds. In the case of r = 2 , we shall define the structure (/, g, D2, λ), which

is equivalent to the (/, g, u, υ, A)-structure if λφ ± 1 almost everywhere. The

main purpose is to investigate geometric structures of Riemannian manifolds and

submanifolds of Kaehlerian manifolds with (/, g, D 2, 2)-structure satisfying some

additional properties. Conditions for such a manifold to be a warped product

having a contact metric or Sasakian part and to be a space of constant curvature

will be obtained in explicit ways using an adapted coordinate system.

We shall recall the notion of metric compound structures from [23] in Para-

graph 1. After giving a brief survey of metric compound structures of rank r

on Riemannian manifolds, we discuss conditions for the structures to induce (/,

g, D2

9 Λ,)-structures in Paragraph 2. In Paragraph 3, we shall treat λ-curves and

A-hypersurfaces of Riemannian manifolds admitting a general concircular scalar

field λ. In Paragraph 4, a Riemannian manifold with (/, g, D2

9 λ)-structure will

be dealt with and it will be shown that, under certain conditions, the manifold is a

space of constant curvature or a sphere. In Paragraph 5, we shall obtain funda-

mental formulas on submanifolds with (/, g, Z)2, X)-structure in Kaehlerian

manifolds and investigate properties of pseudo-umbilical, minimal and CR-

submanifolds. In Paragraph 6, we shall prove that any λ-hypersurface of a sub-

manifold with (/, g, D2, A)-structure is v4S-homothetic to Sasakian manifolds if

there is an umbilical 2-section and that under additional assumptions such a

submanifold is a warped product having a Sasakian part, a space of constant

curvature or a sphere. Paragraph 7 will be devoted to researches of properties

of submanifolds with normal (/, g, D2, Λ,)-structure.

Throughout this paper we assume that manifolds and quantities are differ-

entiable of class C00. Unless otherwise stated, indices run over the following

ranges

K, λ9 μ, v,... = 1, 2, 3, , m,

h, i, j9 fc,... = 1, 2, 3,...,n,

p, q9 r, 5,... = w + 1, n+2, . . . , m,

a, b9 c, </,... = 2, 3,...,n

respectively and summation convention is applied to repeated indices on their own

ranges.

The author would like to express his deep appreciation to Professor Y.

Tashiro who gave him extremely valuable suggestions and personal support during

his studies of these problems, and to Professor K. Okamoto who gave him con-

tinuous encouragements and advices to improve this paper.



Submanifolds of Kaehlerian manifolds and metric compound structures 403

1. Metric compound structures

Let $1 be an almost Hermitian manifold of dimension m with structure

(G, J), where G is the almost Hermitian metric tensor and J the almost complex

structure. The structure (G, J) satisfies the equation

J2 = - A

/ being the identity tensor field of fiϊ, and

(1.1) G(JX9JΫ) = G(X9 f ) ,

G(JX, Ϋ) + G(X, JΫ) = 0

for any vector fields X and f o n M.

Let M be a differentiable manifold of dimension n and * an immersion of

M into M. In terms of local coordinates (xh) of M and (yκ) of AΪ, the immersion

c is locally expressed by the parametric equations

yκ = yκ(χh).

If we put

then Bj = (Bjκ) are n local vector fields on M spanning the tangent space TX{M)

at every point x of M. A Riemannian metric tensor g=(gji) of M is naturally

induced from G of AΪ:

gJt = GλκBfBt«.

We can choose m — n mutually orthogonal unit normal vector fields CP = (CP

K)

to M. Then the vectors Bt and Cp span the tangent space TJJMί) of S/L at every

point x of M and the matrix

B = (JV, cyo

is regular. We have

/ βji °

V 0 δq

and δqp=zGλκCq

λCp

κ form the induced metric of the normal space NX(M) of M at

each point x. We put

(1.2)
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Then the map f=(fih) is an endomorphism of the tangent bundle of M and

f1 = (fqp) is that of the normal bundle of M. The matrix v = (υq

h) is a map of the

normal bundle into the tangent bundle of M, that is, vq

hNq for any vector N = (Nq)

normal to M are tangent components of JN. Since Jλκ is skew-symmetric, we

have the relations vpi = vp

hgih and the tensor fields

(1.3) fjΊ = G(JBj, Bt) = J^B/Bf, fqp = G(JCq, Cp) = JλκC/Cp«

are skew-symmetric in their indices.

The transforms of the tangent vectors Bt and the normal vectors Cp of M by

J are expressed in the form

(1.4) Jx'Bi^ffBf + ΌjCS

and

(1.5) Jλ

κC* = -vq

hBh«+fqpCp«

respectively. The matrix (1.2) satisfies F2=—I, and consequently the quantities

fih, vq

h &ndfqp do the relations

(1.6) fffih=-δ>} + υpjvp»,

(1-7) f/υpi= -Vqjfqp^fnVqj*

(1.8) V / i Λ = - Λ Λ \

(1.9) frqfqp = -δrp + vjv^,

where δ) and 5^p are components of I. The equation (1.1) is equivalent to

(1.10) 0kkfjkfih = Qji ~ VpjVpi-

We shall denote by N(M) the normal bundle of M and note here that the

components vq

h of v are regarded as components of m — n tangent vector fields or

those of n vector fields with respect to Cp in N(M) whether q or h is fixed. The

(m — n) (m — n —1)/2 scalar fields fqp on M are regarded as components of a tensor

field of type (0, 2) associated with the normal bundle N(M).

Now, removing the ambient manifold A?, we consider a Riemannian manifold

M of dimension n admitting a metric tensor g, a tensor field/=(/f

Λ) of type (1,1),

a set v = (vq

h) of m — n vector fields and a set f1 = (fqp) of (m — ή)(m — n — l)l2

scalar fields. If they satisfy the relations (1.6) to (1.10), then we say that M has

a, metric compound structure and the totality (/, g, υ, f1) a metric compound

structure on M. If we put
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ft" -»**\ fβjt 0
(1.11) F = [

\ fqp ) \ 0 δι

then the set (G, F) defines an almost Hermitian structure on the product manifold
MxRm~n of the manifold M and an (m — n)-dimensional Euclidean space Rm~n.

The Nijenhuis tensor S = [F, F] of a metric compound structure (/, g, v,/1)
is written as

(1.12) Sjt* -fjKdJf-dJ,*) -fWJf-djfS) + vpjdtvp* - vpiejVp\

(1.13) Sjip ^ffiβkVpi-diVpd -fik(dkvpj.-djVpk) - vqjdjqp + vqidjfqp,

(1.14) Syt * = - f/ekvq» + vftfJf-djfS) + fqpdjvp\

(1.15) Sy p β =fjkdkfqp + vq

k(dkvpj-djvpk) +fqsdjfsp,

(1.16) Srq

h = ι;r*βkι;β* - V δ Λ

Λ ,

see [23].

2. Metric compound structures of rank r

Let M be a Riemannian manifold of dimension n having a metric compound
structure (/, g, v, f 1 ) . We assume that the rank of v = (vq

h) is equal to r (0< r <
min {n, m — n}) almost everywhere on M, and call it a metric compound structure
of rank r. The phrase "almost everywhere on M " means "on the whole manifold
M except a border subset of M". There exist linearly independent non-vanishing
vector fields F ( α )=(ι^α )) on M and iV(α)=(iV(α)p) in R1"""11 such that

(2.1) h =

where α = l, 2,..., r. Moreover we may normalize the vector fields JV(α) in Rm~n

such as

(2.2) NWqN(m = δaβ.

If we put

(2.3) λ Λ β =fqpNWqNiβ)p,

then these are r(r —1)/2 scalar fields on M, and we have the relations

(2.4) ///,» = - 5 / + o(βW»{-β),

(2.5) fj'vw = ***(/»,
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(2.6) »{.,/,* = - VO),

(2.7) /„/„ = - δrp + N^N^X^v^,

by virtue of (1.6) to (1.9), (2.1) and (2.2).

We define the distributions Dr and D"~r of the tangent bundle T(M) of M by

D ' = span {F (1), F ( 2 ) , . . . , F ( P )},

which are orthogonal complementary to one another. The complex structure

F defined by (1.11) on the product manifold M x Rm~n is written as

/ fS -JWfc

\ N(a)pυ(a)i fqp

and hence the transform of any vector field X of M by F is expressed in the form

FX =fX + v(a)(X)N(a),

where ϋ ( α ) is the associated 1-form of F ( α ) for each α. For any vector field X e

Dn~r

9 we see that FX e Dn~r. Therefore Dn~r is a holomorphic distribution and

of even-dimension. Thus we have

THEOREM 2.1. If a Riemannian manifold M has a metric compound struc-

ture of rank r, then M is of even- or odd-dimension according as r is even or odd.

In the sequel we consider the case where r = 2 . For convenience sake, we

shall denote the vector fields F ( 1 ) , F ( 2 ) , iV(1) and JV(2) by l/ = (wfc), V=(vh), α = (αp)

and j3=(βp) respectively. Then the equation (2.4) is reduced to

(2.8) ///,* = - δhj + Ujuh + Vjvh,

or equivalently

(2.9) ft*///ι* = 0, . - «7«« - W

If we denote

(2.10) ^ = Ί i 2 = / β P « Λ '

then the equation (2.5) is reduced to

(2.11) fj% = λvp fj% = - λuj.

If λ5*0, then it follows from (2.11) that

(2.12) M,P* = 0,
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(2.13) 11,11' = Όfl*

because / J f are skew-symmetric in i and j . Moreover, by means of (2.8) and

(2.13), we have

(2.14) uίM
ί = v^ = 1 - λ2.

If A = 0, then it follows from (2.8) and (2.11) that

w fw
f = ViV1 = 1.

If a tensor field/ of type (1, 1), a metric g, two vector fields U and V and a

function λ on M satisfy the relations (2.8), (2.9), (2.11), (2.12) and (2.14), then the

totality of them is called an (/, g, u, υ, λ)-structure by K. Yano and M. Okumura

[30] (see, also [4]). The rank of / is equal to n or n — 2 whether the function

1 — λ2 vanishes or not. We can see that two vector fields V and V in D2 given by

(2.15) U = Ucos θ - Fsin 0, V = U sin θ + Fcos 0,

0 being a function, constitute the above-mentioned structure together with /, g

and λ. Therefore the structure is essentially concerned with the distribution D2

and the function λ9 and we shall call it an (/, g9 D2, λ)-structure. Two vector

fields having the same properties as U and V will be called a canonical pair of

the structure.

The relation (1.7) is rewritten as

iβP = ujfqpctq + vjfqpβq.

By use of (2.11), (2.12) and (2.14), it follows from this equation that

(2.16) fqpccp = - λβq9 f q p β p = λccq9

and from (2.7) that

(2-17) frqfqp = - δrp + (1

We now put

(2.18) u$ = (1 - λ2y2βp, i$ = (1 - p

and define a 2-plane section D% in the product M x β™-" by

D% = span {α, £} .

Then we see from the relations (2.16), (2.17) and (2.18) that the tensor field/1,

the metric g±=(δqp) and the vectors U1 and V1 define an (/ x , g1, D£, λ)-structure

in Rm~n at every point of M.
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Conversely we can prove that, if a metric compound structure (/, g, v9 f1)

defines an (f1, g1, Z)§, /l)-structure in Rm~n at every point of M, then the metric

compound structure introduces an (/, g, D2, A)-structure on M. Thus we have

the following

THEOREM 2.2. Let M be a Riemannian manifold of dimension n>2 having

a metric compound structure (/, g, v, f1). Then the following statements are

equivalent:

(1) M has a metric compound structure of rank 2,

(2) M admits an (/, g, D2, λ)structure,

(3) The Euclidean space Rm~n admits an (f1, g1, D%9 λ)-structure.

In the case of a metric compound structure of rank 2, the equation (1.12) is

rewritten as

(2.19) SjS =//(34/l*-aίΛ*) -fik(dkfj
h-djfk

h)

by a simple computation. Corresponding to the two vector fields Ό and V of

D2 given by (2.15), the vectors of the metric compound structure in Rm~n are

expressed by

ά = α cos θ — β sin θ, β = α sin θ + β cos θ.

We can prove that the tensor defined by (2.19) with respect to the vector fields

ϋ, V, α and β is identical with SjΊ

h. If SjΊ

h=0 identically, then the (/, g, D2, λ)-

structure on M is said to be normal. If we consider the metric compound struc-

ture of rank 2 on the product manifold MxR2 of the manifold M and a 2-dimen-

sional Euclidean space R2, and choose the vectors α and β such as

α = (l, 0) and j8 = (0, 1),

then our definition of the normality is the same due to K. Yano and M. Okumura

[30].

REMARK 2.3. Let M be a Riemannian manifold with metric compound

structure of rank r. If r = 0 , then the tensor field /itself is a complex structure

on M. Y. Tashiro and the author [23] have studied the case of r = l . In this

case, the function λxl vanishes identically and M admits an almost contact metric

structure. In the case where r = 3, by putting F ( 1 ) = I/, F ( 2 ) = F, V(3)=W, A32=A,

λ13=μ and λ2ί = v, we see that M admits the so-called (/, g, w, v9 w, Ά, μ, v)-

structure introduced by K. Yano and U. -H. Ki [29].
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3. ^-curves and Λ-hypersurfaces

For the sake of discussions in the later paragraphes, we consider here a

scalar field λ on a Riemannian manifold (M, g) such that the gradient vector field

of λ is a general concircular one and investigate properties of the scalar field λ

and the manifold M. The Riemannian connection of M will be denoted by F.

Let A be the gradient vector field of a scalar field λ. A point of M will be

called a stationary or ordinary point of λ whether A vanishes at the point or not.

If the vector field A satisfies the equation

ΓΛA=aA

with a scalar field α on M, then the trajectories of A are geodesic arcs in a neighbor-

hood of an ordinary point of λ. The connected component of a regular hyper-

surface defined by λ = constant will be called a λ-hy per surf ace and the geodesic

containing a trajectory of the vector field A a λ-curve.

Let W be a neighborhood of an ordinary point x of the scalar field λ

in M. Then we can choose a local coordinate system (xh) in W such that the

hyper surf aces defined by x x = constant are A-hyper surf aces and the curves defined

by the equations xa = constant are A-curves. With respect to such a coordinate

system (xΛ), we first have

(3.1) Λ i = 0 i α = O,

because A-curves are orthogonal to λ-hy per surfaces. Since the A-curves are ge-

odesies, we have the equations

dx1 dx1 Xjύ dx1 dx1 dx1

along the first coordinate curves, where {j\} indicates the Christoffel symbol

formed with the metric tensor gjΊ. It follows from this equation and dxh/dxί =

δ\ that

ί ί i ) = «δl

which is reduced to

Putting h = a in this equation, we see that gί± depends on x1 only. Therefore,

by a suitable choice of the first coordinate x1, we may suppose that

(3.2) β l l = 1
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in W. Hence we have α = 0 and x1 may be regarded as the arc length of λ-curves

in W. We shall call such a local coordinate system (x1, xa) an adapted one for

the scalar field λ9 and denote by prime the ordinary differentiation with respect

to the arc length x1.

A scalar field λ is said to be general concircular if the gradient vector field

A of λ satisfies the equation

(3.3) VXA = φX + ψg(X, Λ)Λ

for any vector field X and some functions φ and ψ on M ([14]). If the function

ψ in (3.3) vanishes identically, then λ is said to be concircular. Moreover, if the

equation (3.3) is expressed in the form

FXΛ = - kλX,

k being a constant, then λ is said to be special concircular with characteristic

constant k ([22], see also [11]).

Since the gradient vector field A of a general concircular scalar field λ on

M satisfies the equation

the trajectories of A are geodesic arcs. We shall prove

PROPOSITION 3.1. Let (M, g) be a Rίemannίan manifold of dimension n>2.

If M admits a general concircular scalar field λ9 then the underlying manifold

of M is locally the product RxM of a 1-dίmensional Euclidean space R and

an (n — 1)-dimensional Riemannian manifold M, and the metric form of M is

written as

(3.4) gjfdxtdx* = (dx1)2 + σ2gcbdxcdxb

with respect to an adapted coordinate system (x1, xa) in a neighborhood of

an ordinary point of λ, where gcbdxcdxb is the metric form of M and the func-

tion σ is given by

(3.5) σ =

PROOF. We put λj=Fjλ and λh = gihλh the components of the gradient

vector field A of λ. The equation (3.3) is then expressed as

(3.6) Fjλt = φgβ + ψλjλi

with respect to a local coordinate system (xh). Let E=(eh) be the unit vector

field in the direction of A and denote by μ the length of A. Then we have



Submanifolds of Kaehlerian manifolds and metric compound structures 411

(3.7) λh = μeK

Differentiating this equation covariantly, putting μ^V^μ and making use of

(3.6), we obtain

μjet + μVfii = φgβ + φμ^jβt

and, contracting this equation with eι

(3.8) μj = (φ + ψμ*)ej.

From these equations, we have the equation

(3.9) Γ,e,= -h(gβ-ejed9

where /i= — φ/μ. A unit vector field E satisfying the equation (3.9) is called a

locally symmetric vector field of the first order by A. G. Walker ([24]) if dim M >

4.

Let M(x) be the A-hypersurface through an ordinary point x of λ in a

neighborhood W of M. Then the A-hypersurface M(x) is regular in W and E

is the unit normal vector field of M(x) through any point of M(x). We take a

local coordinate system (xa) in M{x) such that M(x) is expressed by the paramet-

ric equations

xh = x\xa)

in W. Then the induced metric tensor g*b on M(x) is given by

where B ί,
i=5 f tx

i. The second fundamental tensor /ιc6 of M(x) is defined by

(3.10) hcb = ( W K = -BeJBbΨjei9

and the equation of Gauss is written as

(3.11) W = W + {fMBJ - {Λ} V = hcbe\

where Γ indicates the covariant differentiation of van der Waerden-Bortolotti

in M(x) and {<?&}* is the Christoffel symbol formed with the induced metric tensor

g*b. It follows from (3.9) and (3.10) that the second fundamental tensor hcb is

equal to

(3.12) hcb = hg*b.

Therefore each λ-hypersurface M(x) is totally umbilical and the mean curvature

is equal to /t/(n-l).
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Now, for the general concircular scalar field λ, we choose an adapted coordi-

nate system (x1, xa) in a neighborhood W of an ordinary point. The scalar

fields λ and μ are differentiable functions of the first coordinate x1 only. Since

the last n — 1 coordinates (xa) of (xh) is a local coordinate system of each λ-

hypersurface in W, it is clear that

J3J= <5g, eh = δ\ and g*b = gcb

on the A-hypersurface M(x), and hence the equation (3.11) is reduced to

(3.13) {Λ} - {Λ)*δi = hgcbδ\.

The equation (3.13) for h = 1 leads to

icb) = hgcb9

which is also reduced to

(3.14) di9cb = - 2hgcb.

Therefore, putting

(3.15) σ = exp(-Jfcdx1),

we see that the components gcb are written as

(3.16) gcb = σ2gcb,

where gcb are independent of x1 and form a metric tensor of an (n — l)-dimensional

manifold.

Since the length μ of the gradient vector field A of λ is constant on each λ-

hypersurface through an ordinary point, all points of a /l-hypersurface are ordinary,

that is, a /l-hypersurface is a closed submanifold. Let M be an (n — l)-dimensional

Riemannian manifold diffeomorphic to the /l-hypersurface M(x) and having gcb

as metric tensor. The manifold M is therefore locally diffeomorphic to the pro-

duct R x M of an open interval R with M, and the metric form of M is given by

(3.4).

It follows from the equations (3.6) and (3.7) that

> = μ, [ λ" = φ+:ψλ'\

and hence we obtain the relation

h = - . (Γβ') + ψλ'.

Substituting this relation into (3.15), we can derive the expression (3.5). This

completes the proof of Proposition 3.1.
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We notice that the function σ is dependent on all coordinates xh in general.

If the function ψ is dependent on the first coordinate x1 only, so is σ. Then the

manifold M and Λ-hypersurfaces are homothetic to each other. Moreover, by a

suitable choice of the arc length x1 such that λr>0, we may consider that σ is

a positive valued function on R. Therefore M is locally a warped product R x σM

of a 1-dimensional Euclidean space R and the (n — l)-dimensional Riemannian

manifold M, to which each A-hypersurface M(x) is homothetic.

Now we shall denote by {c

α

ft} the Christoffel symbol formed with gcb. Since

the metric form of M is given by (3.4), where the function σ depends on all coordi-

nates xh in general, we have the relations

{Λ> = {ft} = (A) = 0,

(3.17)

where σί=d1σ, σb = dbσ and σa = gaeσe.

Components of the curvature tensors of M and M will be denoted by Rkji
h

and Rdcb

a respectively, and the Riemannian connection of M with respect to g by

V. Then the curvature tensor of M has non-trivial components

(3.18)

where we have put

Rίcb

ι = - σσngcb9

- (2/σ)σcσb and σ% = geaσce.

Moreover, denoting by Rji and Rcb the components of the Ricci tensors of M

and M respectively, the Ricci tensor of M has non-trivial components

(3.19)

= - ( n - l ) σ n / σ ,

Rcί = (n -

- (n-2>)σcb[σ.

If M is an Einstein manifold, that is,

(3.20) # 7 , = ( n -
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then it follows from the second equation of (3.19) and (3.20) that σx\σ is a function

of the first coordinate x1 only and, consequently, from (3.5) that σ depends on

xι only. Therefore the first equation of (3.19) gives

(3.21) σ n = -/cσ,

and the third equation of (3.19) leads to

Rcb=(n-2)(σ2 + kσ2)gcb,

that is, M is also an Einstein manifold. The converse is true. A similar argument

can be developed in the case where M is a space of constant curvature by use of

(3.18). The equation (3.21) shows that σ is a special concircular scalar field with

characteristic constant k. Thus we have the following

LEMMA 3.2. Let M be an n(>2)-dimensional Riemannian manifold ad-

mitting a general concircular scalar field λ. Then M is an Einstein manifold

(resp. a space of constant curvature) if and only if the manifold M dijfeomorphic

to each λ-hy per surf ace is an Einstein manifold (resp. a space of constant curva-

ture), and the function σ given by (3.5) is a special concircular scalar field and

does not depend on M.

REMARK 3.3. In this lemma, if the scalar curvature of M is equal to a con-

stant k, then that of M is equal to the constant σ\ + kσ2 and vice versa. The

stationary points of a concircular scalar field σ are isolated and the number of

them is at most two. It is known (Y. Tashiro [21, 22]) that, in a neighborhood

of a stationary point of σ, M is isometric to an (n — l)-dimensional sphere and

M is a space of constant curvature.

4. Riemannian manifolds with (/, g9 D
2

9 ^-structures

In this paragraph we shall clarify the geometrical structure of a Riemannian

manifold with (/, g, D2, Λ)-structure having certain properties.

We first prove following

LEMMA 4.1. Let M be a Riemannian manifold of dimension n>2 with

(/, g, D2, λ)-structure. If a canonical pair U and V of D2 satisfy the relations

(4.1) FjUi - FiUj = 2τfJt

(4.2) Fjvt - rtυj = 2pfβ

with scalar fields τ and p, and p does not vanish on M, then τ = —kp, where

k is a constant.



Submanifolds of Kaehlerian manifolds and metric compound structures 415

PROOF. Differentiating (4.2) covariantly, we have

ipVJji + Ipjji = FkFjVi - FkFtΌj.

If we take the cyclic sum of this equation with respect to the indices i, j and k

and make use of Bianchi's identity, then we obtain

Similarly, from (4.1), we also obtain

ΛPJji+rjfik+rifkj

From these equations, we have

and, contracting this equation with fji and making use of (2.8), (2.12) and (2.14),

(4.3) p[(n - 4 + 2λ2)τk + 2(u%)uk + 2(t>'τ,)i; J

τ [ ( π 4 + 2λ)p 4 + 2 ( u P i K + 2 ( 1 ^ X 1 .

Moreover, contracting this equation with uk and vk, we can obtain p w ' τ ^

Tulpi and pviτi =τvipi respectively. Substituting these relations into (4.3), we find

which implies that τ = kρ9 k being a constant. This completes the proof.

If one of the scalar field τ and p is a constant, then so is the other and the

tensor field (fji) is a closed 2-form of M. We can see from (4.1) and (4.2) that

the set of all zero-points, if any, of the vector fields U and V is a border subset

of M. Therefore the function 1 — λ2 does not vanish almost everywhere on

M. We also prove the following

LEMMA 4.2. Suppose that the function λ does not vanish almost everywhere

on M in addition to the assumption of Lemma 4.1. Then the vector fields U

and V of a canonical pair are infinitesimal conformal transformations if and

only if they satisfy the equations

(4.4) Γy.Wί =

(4.5) ?jvt =

In this case we have the equation

(4.6) λ^
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PROOF. If the vector fields U and V are infinitesimal conformal transfor-

mations, then we have

(4.7) ΓjUt + Ftuj = 2γgJi9

(4.8) ΓjVt + Fflj = 2ζgJl9

where γ and ζ are scalar fields on M. Comparing (4.1) with (4.7) and (4.2) with

(4.8) and taking account of Lemma 4.1, we obtain the equations

(4.9) Fjut = kpfjt + ygJi9

(4.10) rjvι = pfjt + ζgjt,

respectively. On the other hand, differentiating (2.14) covariantly, we get

(4.11) uJFjUi = vJFjVi = - λλt

and, substituting (4.9) and (4.10) into this equation and making use of (2.11),

γuj + kpλvj = — pλUj + ζVj.

Since U and V are linearly independent, it follows from this equation that γ=—pλ

and ζ = kρλ. Thus the substitution of these relations into (4.9) and (4.10) yields

the equations (4.4) and (4.5). The converse is trivial. The equation (4.6) follows

also from (4.4) and (4.11). This completes the proof.

We define a vector field ξ=(ξh) on M by

(4.12) ξh

and denote the associated 1-from by η. Concerning the vector field ξ and the

gradient vector field A of λ, we have

THEOREM 4.3. Let M be a Rίemannian manifold of dimension n>2 with

(/, g, D2

9 λ)-structure, where λ does not vanish almost everywhere on M. Assume

that U and V of a canonical pair are infinitesimal conformal transformations

and satisfy the relations

FjUi - FtUj = 2τfJi9 FjVt - Fflj = 2pfμ

with scalar fields τ and p9 and p does not vanish. Then the vector fields

(1 + k2)~i/2 p~xA and (1 + k2)~1/2p~1ξ constitute a canonical pair of the structure,

and A and ξ satisfy the equations

(4.13) Fjλi = - (1 + k2)p2λgβ + (κ/p2)λjλi9

(4.14) Ffli = (l + k^λfji + (κlp2)λjηi9

where the scalar field K is given by
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(4.15) ie = (1 - λψWpi = - [fc(l - A 2 ) ] " 1 ^ .

PROOF. It follows from (2.12), (2.14), (4.6) and (4.12) that

(4.16) λ,? = λ% = 0,

(4.17) ^ = ^ = ( l + fe2)p2(l-A2),

(4.18) λjλ, + ηjη, = (l + k*)pKujU,+Ojvd.

By use of equation (2.11), we can verify the equations

(4.19) fj% = ληj, fj%=-λλj.

Comparing (2.8) and (2.9) with (4.18), we can obtain the equations

(4.20) ///,* = - δ) +

(4.21) fftt///f* = gβ -

Thus we see from (4.16), (4.17), (4.19), (4.20) and (4.21) that

and (l-\-k2)~1/2ρ~1ξ together with / and g constitute the (f,g,D2, A)-structure

and hence they form a canonical pair.

Differentiating (4.6) covariantly and making use of (4.4) and (4.5), we have

(4.22) Γjλt = p/μt - kvt) - j

Since Fjλt and gjΊ are symmetric in ί and j , the equation (4.22) implies that

Pj(Ui - kvt) = plUj - kvj).

This equation means that pj is proportional to Uj — kvj9 and we may put

(4.23) pj = κ(uj-kvj),

and the proportional factor K is given by (4.15). Substituting (4.23) into (4.22),

we have the equation (4.13). Similarly, differentiating (4.12) covariantly and

making use of (4.4) and (4.5), we have

Vfli = pj(kut + υd + (1 + k2)p2fjΊ

and this equation substituted with (4.23) is equivalent to (4.14). This completes

the proof of Theorem 4.3.

The equation (4.13) shows that the function λ is a general concircular scalar

field on M. Thus, by Proposition 3.1, the underlying manifold of M is locally

the product i ? x M of a 1-dimensional Euclidean space R and an (n — ̂ -di-

mensional Riemannian manifold M and the metric tensor g of M is given by
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1 0

0 σ2gcb

with respect to an adapted coordinate system (x1, xα) for A, where the function σ

is expressed by

(4.24) σ = λ' exp ( - {(κ/p2)λ'dxΛ

by virtue of (4.13). Now we prove the following

LEMMA 4.4. Under the assumptions of Theorem 4.3, the manifold M is

locally a warped product R x βM of a l-dimensional Euclidean space R and the

manifold M homothetic to λ-hypersurfaces, where σ is a function on R given

PROOF. We shall prove that the function κjp2 in the integrand of (4.24) is

dependent only on the first coordinate x1. Since λ depends only on x1, it follows

from (4.6) that

(4.25) λ'= fa-kvj

and λa = 0. Consequently we see that

(4.26) ua = kva

and from (4.16) that

(4.27) ξ1 = ηx = 0.

It follows therefore from (4.17) that

(4.28) λ'2 =

(4.29) ^ « =

Since the function l—λ2 does not vanish almost everywhere on M, the scalar

field p depends only on the first coordinate x 1 by virtue of (4.28).

The derivative of (4.28) in x 1 gives the equation

(4.30) (1 + k2)pp' = λ'λ"H\ - λ2) + λλ'3/(l - A2)2.

It follows from (4.12) and (4.27) that

(4.31) kux + Ό± = 0.

Comparing (4.25) with (4.31), we have the equations

(4.32) (l4-fe2)pM1 = A/ and (1 + k2)pvί = - kλ\
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which shows that the first components of the vectors U and V are dependent on
the first coordinate x1 only. Substituting (4.30) and (4.32) into (4.15), we have
the expression

(l + k2)κ = λ"/(l -λ2) + λλ'2/(l -λ2)2

and K depends on x1 only. Consequently, comparing this expression with (4.28),
we have

(4.33) κ/p2 = λ"M'2 + A/(l - λ2),

which shows that the function κ/p2 is dependent only on x1. Thus, as seen in
the previous paragraph, M is locally a warped product RxσM. Substituting
(4.33) into (4.24), we can obtain the expression

(4.34) σ = (l-A 2) 1/ 2,

and this completes the proof.

From (3.17) and (4.34), the non-trivial components of the Christoffel symbol
of M are given by

(4.35) {/,} = -[^7(1-A 2 )]«S, l\} = λλ'gcb, {Λ} = {A}

By use of these expressions, we can prove the following

LEMMA 4.5. Under the assumptions of Theorem 4.3, the (n — l)-dimensional
manifold M is homothetic to a contact metric manifold.

PROOF. Since Λα = 0 and ηx =0, it follows from (4.19) that

(4.36) Λ 1 = (λlλ')ηb,

(4.37) fb°ηa = 0.

The equation (4.17) is now reduced to

(4.38) ηaξ° = λ'\

By means of (4.28), (4.33) and (4.36), the equation (4.14) splits into

(4.39) Fιηb = (λ"lλ')ηb,

(4.40) Γ A = [λ'2/(l

The equation (4.39) is expressed as
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and, substituting (4.35), we have the equation

The integration of this equation gives

(4.41) ηb = λ'(l

where ηb are dependent on M only and regarded as components of a 1-form of
M. Since gcb = (1 - λ2)gcb, it follows from (4.41) that

We now put

= gabηb.

Then f = ( | Λ ) is a vector field on M and satisfies

(4.42) ηjξ* = 1

by virtue of (4.38). The equation (4.40) is expressed as

and, substituting (4.35) and (4.41), we have the equation

(4.43) ΓA = [A7(l-A2)3/2]/Λ. '

We define a tensor field / on M by

(4.44) ΓΛb^Λ*.

Then the tensor field fb

a=fbcg
ca satisfies the relation

(4.45) Λ = [(1-A2)1/2/^]/^.

Substituting (4.41) and (4.45) into (4.37), we see that

(4.46) ηJb*=Jbaξi> = 0.

The equation (4.20) for h = a and j = c is equivalent to

which is reduced to

(4.47) [(1 - λ*)/λ'2]/c*Λ- = - 5 - + ηcξ°

by means of (4.28), (4.36), (4.41) and (4.45). Similarly the equation (4.21) implies
that
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By the independency of the function λ on M, it follows from (4.47) or (4.48)

that (1— λ2)jλ'2 is a constant on M, say c~2 (c>0). Therefore we easily verify

from (4.42), (4.44), (4.46), (4.47) and (4.48) that the totality (c/, c2g, c^ξ, cη)

constitutes a contact metric structure on the (n — l)-dimensional manifold homo-

thetic to M. This completes the proof.

Combining Lemma 4.4 with Lemma 4.5 and rewriting c2gcb in place of gcb

on M, we can state the following

THEOREM 4.6. Let M be a Riemannian manifold of dimension n>2 with

(/, g, D2, λ)-structure, where the function λ does not vanish almost everywhere

on M. Assume that U and V of a canonical pair are infinitesimal conformal

transformations and satisfy the relations

PjUi - ΓiUj = 2τfJi9 PjVi - PiVj = 2pfβ

with scalar fields τ and p, and p does not vanish. Then M is locally a warped

product R x σM of a 1-dimensional Euclidean space R and an (n — ϊ)-dimensional

contact metric manifold M with the scalar field σ = (l— λ2)1!2. Each λ-hyper-

surface of M is homothetic to M.

We see from (4.28) and (4.47) that (l + /c2)/?2 = c2. Choosing suitably the

arc-length x 1 of A-curves, the solution of (4.28) is given by

λ = cos ex1,

and hence σ is expressed as

σ = sin ex1.

Therefore both λ and σ are special concircular scalar fields with characteristic

constant c2. The zero points of σ are those of \-λ2. Thus the following

theorem follows from Lemma 3.2 and Remark 3.3.

THEOREM 4.7. Let M be a Riemannian manifold of dimension n>2 with

(/, g, D2, λ)-structure, where λ does not vanish almost everywhere on M. Assume

that U and V of a canonical pair are infinitesimal conformal transformations

and satisfy the relations

PjUi - PtUj = 2τfjh PjVi - PiVj = 2pfjt

with scalar fields τ and p, and p does not vanish. If there is a point of M where

λ= + 1 , then M is a space of positive constant curvature.

If M is complete, then σ=sinex1 has stationary points corresponding to
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xx=0 and xι = π/c. Therefore, by use of a theorem due to Y. Tashiro [21, 22],

We can state

THEOREM 4.8. Let Mbea complete Rίemannian manifold of dimension n>2

with (/, g9 D
2, λ)-structure9 where λ does not vanish almost everywhere on M.

Assume that U and V of a canonical pair are infinitesimal conformal transfor-

mations and satisfy the relations

FjUi - Vμj = 2τfjh ψp% - Fflj = 2pfjU

with the scalar fields τ and p, and p does not vanish. Then the manifold M is

a sphere.

5. Submanifolds with induced metric compound structures of rank 2

Let M be a differentiable manifold of dimension n > 2 and c an immersion of

M into an m-dimensional almost Hermitian manifold M (m —n;>2). As stated

in Paragraph 1, the n vectors Bt and m — n mutually orthogonal unit normal vectors

Cq span the tangent space TX(M) of Λ? at any point x of M. A metric compound

structure (f,g,v,fλ) is naturally induced on M from the almost Hermitian

structure (G, J) of M. We assume that the structure is of rank 2. Then, by

Theorem 2.2, the submanifold M admits an (/, g, D2, λ)-structure and the normal

bundle N(M) of M an (f1, g1, D%, 2)-structure.

Since the components v\ of v are expressed in the form

vq

h = <xqu
h + βqv

h,

the transforms (1.4) and (1.5) are reduced to

(5.1) Jλ

κBS

and

(5.2) /A«CV = qp

For any vector field X belonging to the orthogonal complement Dn"2 of D2, it

follows from (5.1) that

JfVBf =fi»XiBh«.

For the vector fields U = (uh) and V=(vh) as a canonical pair of the (/, g, D2, A)-

structure on M, we have the expressions

Jx^Bt* = - λυkBk« + ( l - Λ 2 ) α p C / ,

t* = λu»Bh« + (1 -λ2)βpCp«
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by virtue of (2.11), (2.12) and (2.14). From these expressions, we see that D2 is

anti-invariant and hence M is the so-called CR-submanifold of Si (see [1] and

[2], as to CR-submanifolds) if and only if λ vanishes identically. Thus we have

the following

LEMMA 5.1. Let M be a submanifold with (/, g, D2, λ)-structure in an

almost Hermitian manifold. Then M is a CR-submanifold if and only if the

function λ vanishes identically.

On a submanifold M of an almost Hermitian manifold M, the van der

Waerden-Bortolotti covariant differentiation Fj is defined by

ΓjBf = djBf + Γ«μλB/BS - *»«{/,},

where Γ*λ and {/J are the Christoffel symbols of Si and M respectively. Since

VjBf is normal to M for fixed i and j , we have the equation of Gauss

(5.3) FjBf = hJipCp«,

where hjip is the second fundamental tensor of the immersion e. The equation

of Weingarten is given by

(5-4) ΓjC,'=-hj'tBt' + lJtpC,*,

where we have put

VjC« = djC* + Γ«μλB/C,\ hj\ = gihhjhq9

and ljqp is the third fundamental tensor of the immersion c and called the induced

normal connection of M. A normal vector field N = γpCp

κ is called a normal

section on M and a subbundle of the normal bundle N(M) spanned by two linearly

independent normal vector fields a normal 2-section on M. The tensor hjipyp

is called the second fundamental tensor belonging to the normal section N. The

covariant differentiation Γ 1 with respect to the normal connection is defined by

and we have

ΓjN* = - V Λ A * +

The normal vector field

H = HpCp\ Hp = (lln)gJ*hJip9

is Called the mean curvature vector field of M. If, for a normal vector field JV,

the relation
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is satisfied with a function p on M, then N is called an umbilical section on M, or

M is said to be umbilical with respect to N. If N is a unit normal vector field,

then the function p = hi

i

pypjn is called the mean curvature belonging to N. If

p = 0 identically, then N is called a geodesic section on M, or M is said to be

geodesic with respect to N. If M is umbilical (resp. geodesic) with respect to

every local normal section on M, then M is said to be totally umbilical (resp.

geodesic). The normal section N is said to be parallel in the normal bundle if

FjNκ is tangent to M, that is, Fjyp = O. Moreover N is said to be concurrent

along M if N is an umbilical (not geodesic) section and parallel in the normal

bundle. The submanifold M is said to be pseudo-umbilical if M is umbilical

with respect to the mean curvature vector field H.

Now we assume that the ambient manifold fiϊ is Kaehlerian. Differentiating

(5.1) covariantly along M and making use of (5.1) to (5.4), we have

- (uhhjipocp+vhhjipβp)Bh« + hjtJnC*

and, comparing the tangential and normal components, the equations

(5.5) PJfi = uihjh

pctp-u' lijil,<xp + vihj>>pβp-vhhjipβp,

(5.6) αpΓ,«, + β/jVi = hJiqfqp - tfhjt, - ufjot,, - υtF}βr

Contracting (5.6) with αp and βp and making use of (2.2) and (2.16), we have

(5-7) FjUi = - λhjipβp - / , V , + v,βpP}xp

and

(5.8) P,», = λhJtιμp - fihhJhpβp - u,βpFj«p

respectively. Substituting (5.7) and (5.8) into (5.6), we also have

(5.9) hJiqfqp - tfhJhp - UiFjap - ViFjβp = λhJiq(xqβp - α / , )

Contracting (5.7) with uι or (5.8) with υ\ we obtain

(5.10) λj = u'hjipβp - »'Λy ι Λ-

by use of UΨJU-^VΨJV^ —λλj. Differentiating (5.2) covariantly along M and

making use of (5.1) to (5.4), we have
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+ (djfqp-u%ip*q-v%iqβp+fqrljrp)C«,

from which we obtain the equation (5.6) again and

(5.11) Fjfqp = u ' ( f c , l Λ - f t J l Λ ) + vKhjipβq-hjiqβp).

If Fjfqp = O identically, then fL is said to be parallel in the normal bundle.

If both the vector fields α and β of the (f1, g1, D%, A)-structure are umbilical sec-

tions on M and one of them is not a geodesic section, then the subbundle D% is

called an umbilical 2-section on M. If both α and β are geodesic sections on M,

then D% is called a geodesic 2-section on M. If both α and β are parallel in the

normal bundle (resp. concurrent along M), then D% is called a parallel (resp.

concurrent) 2-section on M. The following lemma is easily seen and justifies the

above terminologies of 2-sections.

LEMMA 5.2. Let y be any vector field in the subbundle D%.

(1) If both the orthonormal vector fields α and β are umbilical sections on

M, then so is y.

(2) If both the orthonormal vector fields cc and β are parallel in the normal

bundle, then Fλy belongs to D%.

We shall denote by τ and p the mean curvatures belonging to α and β respec-

tively, that is,

τ = Hp(xp and p = Hpβp.

The sum of the squared mean curvatures belonging to two orthonormal vector

fields in D% is independent of the choice of the vector fields in D^. We shall call

it the sum of two squared mean curvatures of D% and denote it by v2 = τ 2 + p 2 .

We prove the following

LEMMA 5.3. Let M be a submanifold with (/, g, D2, λystructure in a

Kaehlerian manifold. If the codimension of M is equal to 2 or the subbundle

Djf is a parallel 2-section on M, then the mean curvature vector field H of M is

given by

(5.12) H = m + pβ.

PROOF. If D% is a parallel 2-section on M, then it follows from (5.9) that

(5.13) hjiqfqp - ffhjhp = λhjiq(<xqβp-*pβq)- fS

and, contracting this equation with gji,
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because fJihJip = O. Transvecting this equation with fpr and making use of (2.16)

and (2.17), we have the relation (5.12). In the case where the codimension is

equal to 2, it is obvious. This completes the proof.

By virtue of Lemmas 5.1 and 5.3, we can prove

THEOREM 5.4. Let M be a submanifold with (/, g, D2, λ)-structure in a

Kaehlerian manifold. If the subbundle D% is a concurrent 2-section on M,

then M is either a CR-submanifold or a pseudo-umbilical submanifold.

PROOF. If the function λ vanishes identically, then M is a CR-submanifold

by Lemma 5.1. Assume that λ does not vanish. Since D% is a concurrent 2-

section on M, that is,

(5.14) hjiqocq = τgjh hjiqβq=: pgβ and Pjocp = Fjβp = 0,

it follows from Lemma 5.3 that

hjipHp = v2gji9

and hence M is pseudo-umbilical.

We can state the following

THEOREM 5.5. Let M be a submanifold with (/, g, D2, ^-structure in a

Kaehlerian manifold. If the subbundle D% is a concurrent 2-section on M and

the tensor field f1 is parallel in the normal bundle, then M is either a CR-sub-

manifold or minimal.

PROOF. If Dl is a concurrent 2-section on M, it follows from (5.13) and

(5.14) that

hjiqfqp -fihhjhp = - KpKp-τβpϊQji + (™p + pβp)fjΊ.

Contracting this equation with u\ we obtain

(5.15) "'/ί .Λp + λυ%ip = - λ(pxp-τβp)uj + λ{mp + pβp)Vj.

On the other hand, if the tensor field f1 is parallel in the normal bundle, the

equation (5.11) is reduced to

- u%iqocp + υihμpβq - υihMβp = 0.

Contracting this equation with ocq and βq9 we have

(5.16) u'hjtp^τiWj + βpVJ)
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and

(5.17) υ%ip = p(apuj+βpvj)

respectively. Substituting (5.16) and (5.17) into (5.15), we obtain

Since α and β are linearly independent, the above equation shows that τ = p = 0

if λ does not vanish. By means of Lemma 5.2, we see that H = 0 and hence the

submanifold M is minimal. The remaining part of the statements follows from

Lemma 5.1.

6. Submanifolds with induced (/, g9 D
2

9 i)-structure

In this paragraph we consider submanifolds of dimension n>2 having um-

bilical 2-sections in an m-dimensional Kaehlerian manifold iCf (m — n > 2 ) .

If the subbundle Dfi of the normal bundle N(M) is an umbilical 2-section on

a submanifold M of 70", then the equations (5.5), (5.7), (5.8) and (5.10) are reduced

to

(6.1) PJji = τ(ujgki - u{gkj) + p(υsgki - vfaj),

(6.2) FjUi = τfJt - λPgji + ljVh

(6.3) FjVi = pfβ + λτgβ - ljut

and

(6.4) λt = pui - τvi

respectively, where τ and p are the mean curvatures belonging to the vector fields

α and β respectively and we have put

(6.5) lj = β/}<xp.

We prove the following

LEMMA 6.1. Let M be a submanifold of dimension n>2 with induced (/,

g, D2, λ)-structure in a Kaehlerian manifold. If the subbundle D% is an umbili-

cal 2-section on M, then we have

(6.6) pj 4- τlj = Λup τs - ρlj = - Aυj9

(6.7) Γjλi = ΛiujUi + VjVi) - λv2gn,

where v2 is the sum of two squared mean curvatures of Djf and

(6.8) A = uι(pt+τlt)l(ί -λ*)=- »'(τ,-
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PROOF. It follows from (6.1), (6.2) and (6.3) that

(6-9) rjjt j u

(6.10) Fjui-Pίuj = 2τfJi+ 1^-10^

(6.11) Fjv, - FiVj = 2pfj, - lju, + /eu, .

Differentiating (6.10) covariantly, we have

FkFjUt - FjFkUi = 2τkfβ + 2τFJβ + (Fklj)vt - (FJfrj + l/tfiι - WV>/

If we take the cyclic sum of this equation with respect to i, j and k and making

use of (6.9), (6.11) and Bianchi's identity, then we have

i + 2(τJ-plj)fik

By contraction of this equation with fj\ we obtain

\n-4+2λ2)(τk-plk)

Contracting the last equation with uk and vk

9 we have

(6.12) κ'(τ i -p/ i ) = 0

and

(6.13) ( n ^ M τ

respectively. Similarly it follows from the covariant differentiation of the equation

(6.11) that

(6.14) vKPi + τld = 0,

(6.15) (n^MA + τ/,) = - λiVjl^V^u^ + (l-λ*)fJψjlt.

Comparing (6.13) with (6.15), we have

(6.16) ϋ'(τ |-p/|) + ul{pi + xld = 0.

On the other hand, differentiating (6.4) covariantly and making use of (6.2)

and (6.3), we have

(6.17) Fjλi = (pj + τlj)^ -{Xj^pl^ - λυ2gji9

which implies the equation

(Pj +τlM - (Pi•+ τlt)Uj = (xj - plj)vt - (τt - pφj.
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By virtue of (6.12), (6.14) and (6.16), we can obtain the equation (6.6) from the

contractions of the above equation with uf and vK Substituting (6.6) into (6.17),

we obtain the equation (6.7). This completes the proof.

The gradient vector field of the function λ will be denoted by Λ. We also

define a vector field ξ on M by

(6.18) ξh = τuh + pυh

and denote by η the associated 1-form of ξ. Then we can state the following

THEOREM 6.2. Let M be a submanifold of dimension n>2 with induced

(/, g, D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. Assume that the subbundle D% is an umbilical 2-section on

M. Then the vector fields v~ίΛ and v'^^ξform a canonical pair of the structure,

and A and ξ satisfy the the equations

(6-19) VJji = ηsgki - ηakj9

(6.20) Vjλt

(6.21) Vjr\i

where ψ = Alv2.

PROOF. From (2.8), (2.9), (2.11), (2.12), (2.14), (6.4) and (6.18), we have the

relations

(6.22)

(6.23)

(6.24)

(6.25)

///» = -δjh + v •

fj% = ληP fj% =

χ.ξi = η.χi = 0, λiλ* =

βkhfjkfih = ββ - v"

ι(λjλk + ηjξh),

- λλp

η.ξi = v*(l-

Kλjλi+ηjηt),

and hence v~ιA and v~1ξ are a canonical pair of the structure. See also the proof

of Theorem 4.3.

It follows from (2.9) and (6.25) that

hλi t W = ^(MjUi + ΌjΌt).

Comparing this equation with (6.7), we have the equation (6,20). DiflFerentiating

(6.18) covariantly and making use of (6.2) and (6.3), we can obtain the equation

(6.21). The equation (6.19) follows from (6.1) and (6.18). This completes the

proof.

The equation (6.21) shows that the vector field ξ is a Killing one on M.
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It follows from (6.6) that

τxj + ppj = Aλj,

or equivalently

(6.26) Fjv2 = 2v2ψλj.

From (6.20) and (6.24) we obtain the equation

χj Vjλi = [,4(1 - λ2) - λv2~]λi,

which shows that trajectories of the gradient vector field A of λ are geodesic arcs

in M. As seen in Paragraph 3, the submanifold M is locally diffeomorphic to

the product R x M of a 1-dimensional manifold R and an (n — l)-dimensional

manifold M. We can choose an adapted coordinate system (x\ xa) for the func-

tion λ in a neighborhood W, with respect to which components of the metric

tensor g of M are equal to

011 = 1> 9b\ = 9\a = 0

and the first coordinate x1 is the arc-length of λ-curves.

In terms of such a coordinate system (x1, xα), it follows from (6.24) that

(6.27) v2 = λ'2/(l-λ2).

Taking account of (6.26) and (6.27), we have

(6.28) ψ = λ"lλ'2

The equations (6.27) and (6.28) show that v2 and φ are functions of the first coodi-

nate x1 only. From the first equation of (6.23) we obtain

(6.29) fb

ι={λβ')ηb.

Putting j = b and ί = l in (6.21) and making use of (6.27) to (6.29), we have the

equation

Γ Λ l = -{λ"lλ')ηb.

Since the component {£x} of the Christoffel symbol and ηί vanish identically,

this equation is reduced to

Putting j = ί and i = a in (6.21) again, we also obtain
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By these two equations we have

BtηΛ = 2(λ"lλ')ηa

and we may put

(6.30) η. = λ'*η.,

where ηa depend only on xa and define a 1-form on M.

Since ξ is a Killing vector field on M, we have

£ξ9ji = ζhdh9ji + (djξh)ghi + (d£h)gjh = 0,

where £ξ is the operator of Lie differentiation with respect to the vector field ξ.

Putting j = b and i = 1 in the above equation, we obtain (di£α)ftβ = 0, which implies

that δ1£
α = 0. Therefore the vector ξ is independent of x1. Since ξ 1 = θ , ξ is

regarded as a vector field on M. Moreover we see from (6.24), (6.27) and (6.30)

that

(6.31) ήaξ
a = I-

Putting j = b and i = a in (6.20) and making use of (6.27), (6.28) and (6.30),

we have the equation

rbλa - - iλλ'η(i-λ>κgba + iλ'*λ- + λλ'*i{i

Since the left term of the equation is written as

with respect to the adapted coordinate system, we have the linear differential equa-

tion

ba = 2[_λ'λ" + A A ' 3 / ( I _

in each components 0ftfl of the metric tensor g of M. The solutions of these

equations are given by

(6.32) 9ba = (i-λ2)gϊa + λ'2wβ,

where g%a depend on xa only. Since ξ is a unit vector field on M and ηb=gbaζ
a>

it follows from (6.30) and (6.32) that

(6.33)

Now we put

(6.34)

gW

9ba — 9ba

= 0.

+ Ma-
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Then we can easily verify the positive definiteness of g. Let the (n — l)-dimensional
manifold M be a Riemannian one endowed with the metric tensor g. From (6.32)
and (6.34) we have the relations

(6.35) 0>α = (l->

The contravariant components of g are then given by

Now we denote by ξ the restriction of ξ on a λ-hypersurface M(x) through an
ordinary point x of λ, which is regarded as a vector field on M. Then we have

Since ξ is a Killing vector field on M, we have

έξtJi = QΰjΆi + (^iζj)r1j = 0.

Putting i = a in this equation, we obtain the equation

ξ*deηa + ηedaξ
e = O.

Let V be the Riemannian connection with respect to g of M. Then it follows
from the above equation that

(6.36) ξψerja = η/aξ
e = 0

because ξ is a unit vector field on M. By use of (6.36), the Christoffel symbol
{$} of M splits into the components

U) = (A) = (Λ> = o,
{Λ} = - ίλλ'Kl—λZΏδ" + ΓλλΊίl —

(6.37)

From (6.19), we see that F1fb

a=0. The second equation of (6.23) implies
that fe

aξe = ηefb
e=O' Therefore we can verify that dJb

a = 0. This shows that
fb

a do not depend on the first coordinate x1 and hence define a tensor field of
type (1, 1) on M, which will be denoted by /=(Λ α ). Then we have the equation

(6.38) Jeaξe=fjJbe = 0.

By means of (6.35), the covariant components fba — 9ealbe o n M are related to
those of / on M by
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It follows from the equations (6.22) and (6.25) that the tensor field / satisfies

(6.39) fb

eJea=-δ°b + ηbξ
a

or equivalently

(6.40) gdJbdJaC=Sta-mVa<

Putting 7 = 6 and ί = a in (6.21) and making use of the expressions (6.37),

we have

(6.41) Ua=ha and fbf\a = fba.

Putting k = c9 j = b and i = a in (6.19), we have

On the other hand, by taking account of the expression

Vcha = Scfba - {c%}fea - {c'a}fbe - {c\}fla - {Λ>Λl

and the equations (6.29), (6.30) and (6.37), we obtain

Kha = (X-^)Vjba + (l-λ2)(λ'2-l)(ηbgca - ηagcb).

Consequently these equations give

(6-42) Γjba = ηbgca - ήagcb.

Hence the equations (6.38) to (6.42) show that the totality (/, g, ξ, ή) constitutes

a Sasakian structure on M.

The restrictions fb

a, gba9 ξa and ηb of/, g, ξ and η of M on each A-hypersurface

M(x) form a tensor field, an induced metric tensor, a vector field and a 1-form

of M{x) respectively. From the equations (6.22) to (6.25), (6.27) and (6.29),

we have

fcbfb" = - <5? + (lβ'*)ηcξ°, ηjb" =fb°ξ» = 0,

with respect to the adapted coordinate system (x1, x"). If we denote by F the

covariant differentiation with respect to the induced metric gba, then it follows

from (6.19) to (6.21) that

hr\a = [ A ' 2 / ( l - λ 2 m b a , Kfba = [1/(1 -A 2)](η bg c a - nagcb)

on M(x), by use of (6.27) and (6.29). Since λ and λ' are constants on each M(x),

we consider a vector field ζa and a 1-form ήb defined by ξa=λ'ζa and ηb=λ'ήb
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on M(x). Then we see that the totality (/, g9 | , ή) constitutes an almost contact

metric structure on M(x). The last two equations are rewritten as

K - A2)] (ήhgca - ήagcb).

The normality of an almost contact metric structure (/, g9 ξ, η) is defined

by the Nijenhuis tensor of the structure, that is,

Ncb

a =fc\vdfh° - Γ J / ) -fb\rjca - rc/,-) + ijΛί - *Λίβ = °>

see [13, 20]. By means of the above equations, it can be verified that the almost

contact metric structure (/, g9 | , ή) on M(x) is normal.

To speak in general, we suppose that an almost contact metric structure (/,

g, ξ9 η) on a manifold satisfies the relations

(6.43) Fbηa = (p/q)fba, VJba = (p/q) (ηbgca - ηagcb),

p(> 0) and q( φ 0) being constants. If we define a structure (/, g,ζ9ή) by

(6.44) ξ°=(llq)ξ°, fjb = qηb9 Jb

a=fb

a, gba = pgba + (q2-p)ηbηa>

then we see that the structure (/, g9 ξ9 ή) is Sasakian. Such a deformation from a

normal almost contact metric structure to a Sasakian one defined by (6.44) will

be said to be AS-homothetic. An v4S-homothetic deformation is reduced to a

D-homothetic one introduced by S. Tanno [18] if and only if p = q.

Summing up our arguments stated above, we see that each 2-hypersurface

M(x) is AS-homothetic to M. Thus we have

THEOREM 6.3. Let M be a submanifold of dimension n>2 with (/, g9 D2

9λ)-

structure in a Kaehlerian manifold, where λ does not vanish almost everywhere

on M. // the subbundle D% of the normal bundle is an umbilical 2-section

on M, then each λ-hypersurface is AS-homothetic to a Sasakian manifold M.

By a straighforward computation from (6.39), the components of the curvature

tensor RkJi

h of M are given by

(6.45)
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χf2 χχ" λ2λ'2 \ ( λ'2 λλ" λ2λ'2 λ"\- -

where Rdcb

a are components of the curvature tensor of M.

If the submanifold M is a space of constant curvature k, that is,

(6.46) Rkji
h=k(δh

kgji-δ)gki),

then, comparing the second equation of (6.45) with (6.46), we have

(6.47) A/2/(l-/l2) = v2 = /c,

which shows that k is positive. Since λ" = — kλ from (6.47), the last equation

of (6.45) is written as

(6.48) Rdcb° = k(δίgch-δ'gib) - (k-l)(δ°dηcηb-δ°cηdηb

+ 9cbrjdξ
a - 9ihη£a ~ haJci> + J c

ah

by taking account of (6.35) and (6.46). The equation (6.48) shows that the

manifold M is a Sasakian space form, that is, a space of constant /-sectional

curvature.

Conversely, if (6.47) and (6.48) are satisfied, then we can verify that the

submanifold M is a space of constant curvature k. Thus we have

THEOREM 6.4. Let M be a submanifold of dimension n>2 with (/, g, D 2 ,

λ)-structure in a Kaehlerian manifold, where λ does not vanish almost every-

where on M. Assume that the subbundle D% is an umbilical 2-section on M.

Then M is a space of constant curvature if and only if the manifold M AS-

homothetic to each λ-hy per surf ace is a Sasakian space form and the sum of

two squared mean curvatures of D% is a constant.

If the subbundle D% of the normal bundle N(M) is a concurrent 2-section

on M, then we have lj = 0 by (6.5). Therefore the assumptions of Lemma 4.1

are satisfied by the equations (6.2) and (6.3) and hence we have τ = kp, k being

a constant. From this fact and the equation (6.6), we see that τ and p are con-
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stants. Thus the following is immediately obtained from Theorem 6.4.

COROLLARY 6.5. Let M be a submanίfold of dimension n>2 with (/, g9

D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. Assume that the subbundle D% of the normal bundle is a

concurrent 2-section on M. Then M is a space of constant curvature if and

only if the manifold M AS-homothetic to each λ-hy per surf ace is a Sasakian

space form.

In the case where the submanifold M is of codimension 2 in M, the assump-

tions of Theorem 6.4 show that M is a non-minimal totally umbilical submanifold.

The squared mean curvature ||if||2 of M is expressed as | |//| |2 = v2 by Lemma

5.3. Therefore the sum of two squared mean curvatures of D% is a constant if the

mean curvature vector field H of M is parallel in the normal bundle. By

means of Theorem 6.4, we have the following

COROLLARY 6.6. Let M be an n(>2)-dimensional non-minimal totally

umbilical submanifold of codimension 2 in a Kaehlerian manifold. Then

M is a space of constant curvature if and only if the manifold M AS-homothetic

to each λ-hypersurface is a Sasakian space form and the mean curvature vector

field H is parallel in the normal bundle.

In the remaining of this Paragraph, we assume that the sum of two squared

mean curvatures of D^, v2, is a constant, say c2, in addition to the assumptions of

Theorem 6.3. Then the equation (6.26) gives φ = 0 and hence the equation (6.20)

is reduced to

(6.49) Γjλt = - c2λgjU

which shows that A is a special concircular scalar field with characteristic con-

stant c2. As we have already seen in Paragraph 3, the submanifold M is locally

a warped product RxσM of a 1-dimensional Euclidean space R and (n —1)-

dimensional Riemannian manifold M, to which each A-hypersurface M(x) is

homothetic. With respect to an adapted coordinate system (x1, xa) for λ, it

follows from (3.4), (3.5) and (6.49) that

(6.50) σ = λ\

and the metric form of M is given by

gjtdx'dx* = (dx 1) 2 + λr2gcbdxcdx\

where gcb is the metric tensor of M. It follows from (6.24) that ηt = ξ1 = 0, λa = 0

and λ'2/(l— λ2) = c2. From (3.17) and (6.50), the non-trivial components of the

Christoίfel symbol {/J are expressed by
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(6.51) {Λ} = (λ"/λ')δ°c, {}„} = - λ'λ"gcb, {c%} = {£}.

It is obvious that the equations (6.29) and (6.30) are satisfied. Putting k=ί,

j=b and i=a in (6.19) and using (6.51), we obtain

(6.52) Λ . = *'2Λ.,

where fba depend on M only and form a 2-form on M. Moreover we see from

(6.19) and (6.21) that fb

a and ξa are independent of x1, which will be denoted by

fb

a and ξa respectively. Making use of (6.22) to (6.25), (6.29) and (6.30), we can

verify that the totality (/, g, ξ, ή) constitutes an almost contact metric structure on

M. By means of (6.21), (6.30), (6.51) and (6.52), we have

hna = c2fba.

Putting k = c, j = b and i = a in (6.19) again, we can obtain

KJba = c2(ήbgca -rjadcb)-

Taking account of the last two equations, we can verify that M is a normal almost

contact metric manifold. If c2 = l, then we see that M is a Sasakian manifold.

Thus we can state the following

THEOREM 6.7. Let M be a submanίfold of dimension n>2 with (/, g, D2,

λ)-structure in a Kaehlerian manifold, where λ does not vanish almost every-

where on M. If the subbundle D% of the normal bundle is an umbilical 2-

section on M, and if the sum of two squared mean curvatures of D% is a constant,

then M is locally a warped product R x λM of a 1-dimensional Euclidean space

R and an (n — i)-dimensional normal almost contact metric manifold M, and

each λ-hy per surf ace is homothetίc to M. In the case where the sum of two

squared mean curvatures of D% is equal to 1, M is a Sasakian manifold.

If the subbundle D% of the normal bundle is a concurrent 2-section on M,

then lj = 0 and τ and p are constants. Moreover it follows from (6.2) and (6.3)

that the assumptions of Theorem 4.6 are satisfied. By Theorem 4.6, the function

σ is equal to (1— λ2)1/2. Therefore we have c2 = l by (6.50). Combining this

fact with Theorem 6.7, we can state the following

THEOREM 6.8. Let M be a submanifold of dimension n>2 with (fg,

D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost every-

where on M. If the subbundle D^ is a concurrent 2-sectίon on M, then M is

locally a warped product Rxλ,M of a 1-dίmensional Euclidean space R and

an (n — l)-dimensional Sasakian manifold M, and each λ-hy per surf ace is

homothetic to M.
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The solution of λ'2 = c2(l — λ2) along a A-curve is given by

λ = sin ex1.

Therefore, if M is complete, λ has stationary points corresponding to x1 = 0 and

x1=π/c. Thus, by use of a theorem due to Y. Tashiro ([21, 22]), we can state

THEOREM 6.9. Let M be a complete submanifold of dimension n>2 with

(/, g, D2, λ)structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. If the subbundle D% of the normal bundle is an umbilical

2-section on M, and if the sum of two squared mean curvatures of D^ is a con-

stant, then M is a sphere.

By an argument similar to Corollary 6.6, we have immediately, from Theorem

6.9, the following corollary first due to M. Okumura [12].

COROLLARY 6.10. Let M be an n(>2)-dimensional complete non-minimal

totally umbilical submanifold of codimension 2 in a Kaehlerian manifold.

If the mean curvature vector field of M is parallel in the normal bundle, then

M is a sphere.

7. Submanifolds with induced normal (/, g9 Z>2, ̂ -structures

In this Paragraph we consider a submanifold M of dimension n>2 with

induced normal (/, g9 D2, A)-structure in an m-dimensional Kaehlerian manifold

M ( m - n > 2 ) .

If we put

= HJt> hJiPβp = KJi a n d

then the equations (5.5), (5.7), (5.8) and (5.10) are written as

(7.1) PJji = UjHkι - UiHkj + VjKki - υiKkj9

(7.2) Fjut = -λKjt - f^Hjh + ljvi9

(7.3) ΓjΌ^

(7.4) λj =

on the submanifold M. We shall prove the following

LEMMA 7.1. Let M be a submanifold with induced (/, g, D2, λ)-structure

in a Kaehlerian manifold. Then the distribution D2 is involutive if and only

if the following is satisfied:

(7.5) fjhvιHih + Xu*Hji - (fjWKn-λΌ'Kjd + Auj + BVj = 0
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with scalar fields A and B on M.

PROOF. If D2 is involutive, then we have the equation

[17, Vγ =Auh + Bvh,

where A and B are scalar fields on M. Putting A^Ά + uHi and B = B + viii9

this equation is reduced to (7.5) by virtue of (7.2) and (7.3). The converse is

trivial.

If we substitute (7.1) to (7.3) into (2.19), then we have

(7.6) Sjt» = (ffHS-fSHtfut -

- {fikKkk-fkhKtk)vj +

where we have put Li = acqβpliqp. The normal connection restricted on the sub-

bundle Djf of the normal bundle is said to be flat if Lf = 0 identically. We prove

the following

LEMMA 7.2. Let M be a submanifold with normal (/, g9 D
2, λ)-structure in

a Kaelerian manifold. If the distribution D2 is involutive and the normal

connection restricted on the subbundle D2^ is flat9 then we have the relations

(7.7) (l

(7.8) (1 -λ^Hji = uWHnUj + vlvhHihvp

(7.9) (1 -λ*)u*Kn = uWK^Uj +

(7.10) (1 -λWKfl = uWK^Uj +

(7.11) u j j fl j ^ μ

PROOF. Under the assumptions of the lemma, it follows from (7.6) that

(7.12) (ffHS-fSHtfUi - (fW-fSHftuj 4-

Contracting this equation with uh and substituting (7.5), we have

(7.13) (fjkuhHkh-XvkHkj)Ui - (ft*uhHkh-λΌkHkt)uj

and, contracting this equation with u\

(l-λ2)(fjkuhHkh-λvkHkj) + 2λu*v*HihUj - λ(u*ul>Hih-v*v*Hίk)vJ

- A(l-λ2)vj = 0 .
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Contracting this equation with vJ\ we have Λ = 0 and

(7.14) (l-λ2)(fjkuhHkh-λvkHkj) = -2λuiυhEihuj +

Substituting (7.14) into (7.13), we can obtain the equation

(7.15) (l-λ2)(fjkvhHkh + λukHkJ) = MμWHn-Ό'Ό-Hώuj + 2λuivhHihvj.

If we substitute (7.14) into the contraction of (7.15) with / / , then we have the re-

lations (7.7) and (7.8). Similarly, from the contraction of (7.12) with vh, we see

that B = 0 and obtain the relations (7.9) and (7.10). Since A = B = 0, we also have

the relation (7.11) by taking account of the equations (7.5) and (7.7) to (7.10).

This completes the proof.

We also prove the following

LEMMA 7.3. In addition to the assumptions of Lemma 7.2, we assume that

one of two orthonormal vector fields in D% is an umbilical (not geodesic) section

on M. Then the subbundle D% is an umbilical 2-section on M.

PROOF. If α is an umbilical section on M, that is,

(7.16) HΊl = τgji9

τ being the mean curvature belonging to α, then it follows from (7.11) that

From (7.9), (7.10) and (7.16), we obtain

(7.17) utKji = puj and u'X,, = τvj9

where p = u ^ i X i l / ( l - A 2 ) . By virtue of (7.12), (7.16) and (7.17), we have the

equation

(7.18) fjkKk

h=fk

hKjk.

It follows from (7.4), (7.16) and (7.17) that

Differentiating this equation covariantly and making use of (7.2) and (7.3), we

obtain

Fjλi = pjUi - TjVi + τpfβ - λpKβ + τfihKJh - λτ2gβ.

If we take the skew-symmetric parts of this equation and make use of (7.18), then

we have

(7.19) pjut - PtUj - τjΌt + τivj + 2τpfβ + 2τf?Kjh = 0,
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and, contracting this equation with ul and making use of (7.17),

(7.20) pi = aui + bυi9

where a = uίpil(ί—λ2) and b=—uiτil(\—λ2). Similarly, from (7.19), we can

obtain

(7.21) τ, = - but + cυi9

where c = viτil(l-λ2). Moreover, substituting (7.20) and (7.21) into (7.19), we

have the equation

fjhKίh = pfβ.

Consequently, contracting this equation with fk

J and making use of (7.17), we have

(7.22) Kβ = p9ji

and this completes the proof.

Combining Lemma 7.3 and Theorem 6.3, we can state

THEOREM 7.4. Let M be a submanifold of dimension n>2 with normal

(/, g, D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. Assume that the distribution D2 is involutive and the normal

connection restricted on the subbundle D2^ is flat. If one of two orthonormal

vector fields in D^ is an umbilical (not geodesic) section on M, then each λ-

hypersurface is AS-homothetic to a Sasakian manifold M.

The following theorem is a combination of Lemma 7.3 with Theorem 6.4.

THEOREM 7.5. Let M be a submanifold of dimension n>2 with normal

(f, g, D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. Assume that the distribution D2 is involutive, the normal

connection restricted on the subbundle D2^ is flat, and one of two orthonormal

vector fields in D2^ is an umbilical (not geodesic) section on M. Then M is a

space of constant curvature if and only if the manifold M AS-homothetic to each

λ-hy per surface is a Sasakian space form and the sum of two squared mean cur-

vatures of D% is a constant.

Under the assumptions of Lemma 7.2, if one of two orthonormal vector

fields α and β in D% is concurrent along M, then we see that lj = 0 and the relations

(7.16) and (7.22) are valid, that is, the subbundle D^ is an umbilical 2-section on

M. It follows from (7.2) and (7.3) that the vector fields U and Fare infinitesimal

conformal transformations and satisfy the relations (4.1) and (4.2). By Lemmas

4.1 and 6.1, both the mean curvatures belonging to α and β are constants. There-
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fore, by Theorems 4.6 and 6.7, we see that the submanifold M is locally a warped

product R x σM of a 1-dimensional Euclidean space R and an (n — l)-dimensional

Sasakian manifold M, to which each Λ-hypersurface is homothetic. Thus we state

THEOREM 7.6. Let M be a submanifold of dimension n>2 with normal

(/, g, D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish almost

everywhere on M. Assume that the distribution D2 is involutive and the normal

connection restricted on the subbundle D% is flat. If one of two orthonormal

vector fields in D% is concurrent along M, then M is locally a warped product

RxrM of a 1-dίmensional Euclidean space R and an (n — ΐ)-dimensional

Sasakian manifold M.

The following theorem follows from Theorem 4.8 or 6.9.

THEOREM 7.7. Let M be a complete submanifold of dimension n>2 with

normal (/, g, D2, λ)-structure in a Kaehlerian manifold, where λ does not vanish

almost everywhere on M. Assume that the distribution D2 is involutive and

the normal connection restricted on the subbundle Dft is flat. If one of two

orthonormal vector fields in D% is concurrent along M, then M is a sphere.
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