Continuous measure representations on harmonic spaces

Ursula SCHIRMEIER

(Received August 23, 1982)

In a series of papers ([7], [8], [9], [10], [11]) F-Y. Maeda has developed a theory of Dirichlet integrals on those harmonic spaces X which admit a so-called measure representation.

By definition (see [11], p. 33) a measure representation is a homomorphism $\sigma = (\sigma_U)_{U \in \mathfrak{U}}$ of the sheaf $\mathscr{R} = (\mathscr{R}(U))_{U \in \mathfrak{U}}$ into the sheaf $\mathscr{M} = (\mathscr{M}(U))_{U \in \mathfrak{U}}$ of all signed Radon measures, such that

 $\sigma_{\mathcal{U}}(f) \ge 0 \iff f \text{ is superharmonic on } U \quad (f \in \mathcal{R}(U), U \in \mathfrak{U}).$

Here, $\mathscr{R}(U)$ denotes the set of all functions $f: U \to \mathscr{R}$, which are locally representable as differences of continuous superharmonic functions, and \mathfrak{U} is the system of all open subsets of X.

In the special case where X is an open subset of \mathbb{R}^n and the function 1 as well as the coordinate functionals π_1, \ldots, π_n belong to $\mathscr{R}(X)$, F-Y. Maeda was able (again using the hypothesis of the existence of a measure representation) to associate a differential operator L to the given harmonic space. The coefficients of this operator are measures on X and the following property holds:

 $L(h) = 0 \iff h \text{ is harmonic on } U \quad (h \in \mathscr{C}^2(U), U \in \mathfrak{U}).$

This note consists in the proof of the following

THEOREM. Every harmonic space (see [1] or [5]) with a countable base of its topology admits a measure representation.

Moreover, there exists a measure representation σ with the following continuity property: the restriction of σ_U to the space $\mathscr{S}_c(U)$ of all continuous superharmonic functions on $U \in \mathfrak{U}$ is continuous with respect to the topology of local uniform convergence on $\mathscr{S}_c(U)$ and the vague topology on $\mathscr{M}(U)$.

The proof of the existence of σ essentially relies on the results of N. Boboc, Gh. Bucur and A. Cornea concerning the carrier theory in standard *H*-cones (see [2]). In the first part of this paper we mainly compile those results in [2], which are important for our purposes. In the second and the third part, the existence of a measure representation and its continuity property will be proved.

In general the notations of [2] and [5] are used. In addition, $\mathscr{S}_c(U) := \mathscr{S}(U) \cap \mathscr{C}(U)$ denotes the set of all continuous superharmonic functions on $U \in \mathscr{S}(U)$

Ursula SCHIRMEIER

 \mathfrak{U} , and $\mathscr{P}_c(U) := \mathscr{P}(U) \cap \mathscr{C}(U)$ and $\mathscr{P}_0(U)$ denote respectively the set of all continuous potentials on U and that of all continuous potentials on U with compact superharmonic support. For $p \in \mathscr{P}(U)$ and a bounded Borel measurable function f on U

$$V_p(f) = f \odot p$$

is the specific product of f and p (as defined for example in [5], p. 196). $\mathscr{K}(U)$ denotes the set of all continuous functions on U having compact support.

§1. Representation measures for continuous potentials with compact superharmonic support

In this section let (X, \mathcal{H}^*) denote a \mathfrak{P} -harmonic space with a countable base of its topology and $1 \in \mathcal{H}^*(X)$. We fix a (positive) Radon measure $\overline{\mu}$ on X such that

$$0 < \int p \, d\bar{\mu} < \infty$$
 for all $p \in \mathcal{P}_0(X), p \neq 0$.

(1.1) REMARKS.

1) A measure $\bar{\mu}$ with the above properties always exists; take for example

$$\bar{\mu}:=\sum_{n=1}^{\infty}\frac{1}{2^n}\varepsilon_{x_n},$$

where $\{x_n : n \in \mathbb{N}\}$ is a countable dense subset of X.

2) Every positive hyperharmonic function h being a limit of an increasing sequence $(p_n)_{n \in \mathbb{N}}$ in $\mathcal{P}_0(X)$, we have

$$\int h \, d\bar{\mu} = 0 \quad \Longleftrightarrow \quad h = 0.$$

3) A first step towards proving the existence of a measure representation consists in assigning to each potential $p \in \mathscr{P}_0(X)$ in a "reasonable way" a measure μ_p . Obviously a measure μ_p —even for arbitrary potentials p—can be defined by

$$\mu_p(f) := \int f \odot p \, d\bar{\mu} \quad (f \in \mathcal{K}(X)),$$

i.e. the $\bar{\mu}$ -integral of the specific product of f and p, provided that this integral exists for all $f \in \mathscr{K}(X)$. First difficulties arise then in proving the following property of measure representations:

$$\mu_{p_1} - \mu_{p_2} \ge 0 \implies p_1 - p_2 \in \mathscr{S}(X);$$

328

in other words, the injectivity of the map $p \mapsto \mu_p$ on suitable subcones of $\mathscr{P}(X)$.

(1.2) EXAMPLE. Let X =]-1, +1[and $\overline{\mu}$ the Lebesgue measure on X. For every open interval $U \subset X$ let $\mathscr{H}(U)$ denote the vector space of all continuous functions $f: U \to \mathbf{R}$ such that

1) f is locally affine on $U \setminus \{0\}$;

2) f is constant on $U \cap [-1, 0]$, provided that $0 \in U$

(see [5], Exercise 3.1.7). The corresponding harmonic structure possesses two non-proportional potentials with the same superharmonic support $\{0\}$, namely

 $p_1: x \longmapsto 1 - |x|, \quad p_2: x \longmapsto 1_{]0,1[}(x)(1-x).$

Using the above notations we get $\mu_{p_1} = \varepsilon_0$, $\mu_{p_2} = (1/2)\varepsilon_0$, and hence $\mu_{p_1} - \mu_{p_2} \ge 0$, but $p_1 - p_2 \in \mathscr{S}(X)$.

As demonstrated in [2] such problems cannot occur to representations of continuous potentials.

(1.3) The cone $S := \overline{\mathscr{P}}_+(X)$ of all positive hyperharmonic functions on X which are finite on a dense set, is a standard H-cone of functions on X such that $S \cong S^{**}$.

PROOF: By [3], Théorème 5, S is an H-cone which is canonically isomorphic to its bidual S^{**} . (In the cited theorem "superharmonic" means "hyperharmonic and finite on a dense set". Hence the cone \mathscr{S} of [3], Théorème 5, coincides with our cone S). The proof of this theorem shows that there exists an absolutely continuous resolvent \mathscr{V} such that S coincides with the cone of all \mathscr{V} -excessive functions. Hence, by [2], Example 3 on p. 113, S is a standard H-cone.

(1.4) The set $K^* := \{s \in S : \overline{\mu}(s) \le 1\}$ is a compact metrizable Choquet simplex with respect to the natural topology; K^* is a cap of the cone S ([2], Proposition 4.2.4, remark after Corollary 4.2.5. The fact that $\overline{\mu}$ is a weak unit in S* follows from (1.1), property 2, and from the remark at the end of p. 96 in [2]). Hence each $s \in S$ such that $\overline{\mu}(s) < \infty$ admits a representation

$$s(x) = \int_{X^*} s'(x) \mu(ds') \quad (x \in X),$$

where μ is a finite positive measure carried by the set X^* of all non-zero extreme points of K^* .

(1.5) There exists a semipolar subset S_X of X and a measurable map Θ_X^* from $E_X := X \setminus S_X$ into X* such that the following properties hold:

i) The carrier of the function $p_x := \Theta_X^*(x)$, $\operatorname{carr}_X p_x := \{y \in X : \hat{R}_{p_x}^X \cup \neq p_x \text{ for every neighbourhood } U \text{ of } y\}$, is the one-point set $\{x\}$, $x \in E_X$. (If p_x is superharmonic, then $\operatorname{carr}_X p_x$ coincides with the usual superharmonic

Ursula SCHIRMEIER

monic support, as defined for example in [1], p. 163.)

ii) To each $p \in \mathscr{P}_0(X)$ there exists a unique finite Borel measure μ_p on E_x such that

$$p(y) = \int_{E_X} \mathcal{O}_X^*(z)(y) \mu_p(dz) \quad \text{for all} \quad y \in X.$$

PROOF. Let X' denote the set of all non-zero extreme points of the cap $K := \{\mu \in S^* : \mu(1) \le 1\}$ (S* denotes the dual H-cone, see [2]). X can be viewed as a subspace of X' via the embedding $x \mapsto \varepsilon_x$. By [2], p. 194, there exists a Borel measurable subset E of X', a Borel measurable subset E^* of X* and a bijection $\Theta^* : E \to E^*$ such that

- (1) The sets $X' \setminus E$ and $X^* \setminus E^*$ both are semipolar;
- (2) carr_{$\overline{X'}$} $\Theta^*(x) = \{x\}$ for all $x \in E$, where $\overline{X'}$ denotes the closure of X' in K;
- (3) Both Θ^* and its inverse $\Theta: E^* \to E$ are Borel measurable.

The notion of "carr" is introduced in [2], §3.4. It is easy to see that the usual superharmonic support S(p) of $p \in \mathcal{P}_0(X)$ coincides with $\operatorname{carr}_{\overline{X'}} p$ and that

$$\operatorname{carr}_{\overline{X'}} \Theta^*(x) = \operatorname{carr}_X \Theta^*(x) \quad \text{for} \quad x \in E \cap X.$$

By (1.4) each $p \in \mathscr{P}_0(X)$ is representable by a measure μ'_p on X^* . Since p is universally continuous (see [2], p. 97/98) the semipolar set $X^* \setminus E^*$ has μ'_p -measure zero; i.e. μ'_p is carried by E^* ([2], p. 197). If μ_p denotes the image measure of μ'_p under the Borel measurable bijection $\Theta: E^* \to E$, then

$$p(y) = \int_E \Theta^*(z)(y) \,\mu_p(dz) \quad \text{for all} \quad y \in X.$$

Since μ_p is carried by the compact set $\operatorname{carr}_{\overline{X'}} p = S(p) \subset X$, we can take

$$E_X := E \cap X$$

(as a subset of $X' \setminus E$ the set $S_X := X \setminus E$ is semipolar) and

$$\Theta_X^* := \Theta^* | E_X.$$

(1.6) **Remarks**.

1) The measure μ_p introduced in (1.5) for $p \in \mathscr{P}_0(X)$ and regarded as a Radon measure on X coincides with the measure defined in (1.1.3), since

$$p(\cdot) = \int \Theta_X^*(z)(\cdot) \,\mu_p(dz), \quad f \odot p(\cdot) = \int \Theta_X^*(z)(\cdot) f(z) \,\mu_p(dz),$$

and hence

$$\bar{\mu}(f \odot p) = \iint \Theta_X^*(z)(y) \,\bar{\mu}(dy) f(z) \,\mu_p(dz) = \int f(z) \,\mu_p(dz)$$

for every $f \in \mathscr{K}_+(X)$.

2) The map

 $p \longmapsto \mu_p$, where $\mu_p(f) = \overline{\mu}(f \odot p), f \in \mathscr{K}_+(X),$

is one-to-one on $\mathcal{P}_0(X)$, since each $p \in \mathcal{P}_0(X)$ is representable as

$$p(\cdot) = \int \Theta_X^*(z)(\cdot) \,\mu_p(dz).$$

The injectivity assertion still remains true even in the case when $1 \in \mathscr{H}^*(X)$.

For later purposes we provide the following preparative

(1.7) LEMMA. Let $U \subset X$ be open. For $p, p' \in \mathcal{P}_0(X)$ the following properties are equivalent:

- 1) p-p' is harmonic on U;
- 2) $1_U \odot p = 1_U \odot p';$
- 3) the representation measures μ_p and $\mu_{p'}$ coincide on U.

PROOF. The representation measure μ_{p_v} of $p_U:=1_U \odot p$ is the measure $1_U \mu_p$. Hence 2) and 3) are equivalent. The equality $1_U \odot p = 1_U \odot p'$ implies $p - p' = 1_{X \setminus U} \odot p - 1_{X \setminus U} \odot p'$, and hence $(p - p')|_U \in \mathscr{H}(U)$ (property 1).

Suppose now conversely that property 1) holds. The potential $1_U \odot p$ is the specific restriction of p with respect to U; hence it depends only on the potential part of the superharmonic function $p|_U$ (see [1], pp. 153–157). Analogously $1_U \odot p'$ only depends on the potential part of $p'|_U$. By condition 1) these two potential parts coincide. Hence $1_U \odot p'$.

(1.8) COROLLARY. Suppose that the restriction of $\mu_p - \mu_{p'}$ to U is a positive measure. Then there exists a superharmonic function s on U such that

$$p = p' + s$$
 on U .

PROOF. Let $\mu := 1_U(\mu_p - \mu_{p'}) \ge 0$. Then

$$q(\,\cdot\,):=\int \Theta_X^*(z)(\,\cdot\,)\,\mu(dz)$$

defines a positive hyperharmonic function q on X. The equality

$$q + 1_U \odot p' = 1_U \odot p$$

shows that $q \in \mathcal{P}_0(X)$. An application of (1.7), 3) \Rightarrow 1), to the potentials p and q + p' then finishes the proof.

§ 2. The existence of a measure representation

For an open subset U of a harmonic space X let $\mathscr{R}(U)$ denote the set of all functions $f: U \to \mathbf{R}$ which are locally representable as differences of continuous superharmonic functions:

For each $x \in U$ there exists an open neighbourhood V_x and $f_1, f_2 \in \mathscr{S}_c(V_x)$ such that $f=f_1-f_2$ on V_x .

If X is a \mathfrak{P} -harmonic space, then (according to the extension theorem, see [1], p. 159, or [5], p. 46)

 $s \in \mathscr{R}(U) \Leftrightarrow s$ is locally representable as a difference of globally defind continuous potentials with compact support.

(2.1) **THEOREM.** Every harmonic space with a countable base admits a measure representation.

PROOF. First step: Suppose first that (X, \mathcal{H}^*) is a \mathfrak{P} -harmonic space. Dividing the sheaf \mathcal{H}^* by a strictly positive continuous superharmonic function, we can assume without loss of generality that $1 \in \mathcal{H}^*(X)$ (see [11], p. 33).

Let $f \in \mathscr{R}(U)$, $U \in \mathfrak{U}$. If f = p - p' on some open subset $V \subset U$ with $p, p' \in \mathscr{P}_0(X)$, then we define the restriction of the measure $\sigma_U(f)$ to V by $(\mu_p - \mu_p)|_V$. Then:

1) $\sigma_U(f)$ is well-defined: Suppose that $f = p_1 - p'_1$ on some open set $V_1 \subset U$, $p_1, p'_1 \in \mathcal{P}_0(X)$. Then

$$p + p'_1 = p' + p_1$$
 on $V \cap V_1$,

and hence by (1.7)

 $\mu_p + \mu_{p'_1} = \mu_{p'} + \mu_{p_1}, \quad \mu_p - \mu_{p'} = \mu_{p_1} - \mu_{p'_1} \quad \text{on} \quad V \cap V_1.$

2) $\sigma_U(f)$ belongs to $\mathscr{M}(U)$, since the measures μ_p , $p \in \mathscr{P}_0(X)$, are finite Radon measures.

3) $\sigma = (\sigma_U)_{U \in \mathbb{U}}$ is a measure representation: Obviously σ is a homomorphism of the sheaf \mathscr{R} into the sheaf \mathscr{M} . By (1.8) $\sigma_U(f)$ is positive iff f is super-harmonic on $U \in \mathfrak{U}$.

Second step: Let (X, \mathcal{H}^*) be a harmonic space with a countable base of its topology. Then there exists a locally finite covering $(U_i)_{i\in I}$ of X consisting of \mathfrak{P} -sets and a subordinate continuous partition (φ_i) of the function 1. By the first step each of the harmonic spaces $(U_i, \mathcal{H}^*|_{U_i})$ admits a measure representation σ^i . Obviously

$$\sigma := \sum_{i \in I} \varphi_i \sigma^i$$

(i.e. $\sigma_U(f)(g) = \sum_{i \in I} \sigma_{U \cap U_i}^i(f)(\varphi_i g), g \in \mathscr{K}(U), f \in \mathscr{R}(U), U \in \mathfrak{U}$) is a measure representation for (X, \mathscr{H}^*) .

(2.2) EXAMPLES.

1) Let X =]-1, +1[, endowed with the harmonic structure of the solutions of the equation u'' = 0, and $\bar{\mu}$ the restriction of the Lebesgue measure on X. For every potential $p \in \mathscr{P}(X)$ the measure μ_p satisfies the condition

$$p(\cdot) = \int G(\cdot, y) \mu_p(dy),$$

where

$$G(x, y) = \min\left(\frac{1+x}{1+y}, \frac{1-x}{1-y}\right), \quad x, y \in X,$$

denotes the Green function (normed by $\overline{\mu}(G(\cdot, y)) = 1$ for $y \in X$). For $f \in \mathscr{R}(U)$, $U \in \mathfrak{U}$, we get

$$\sigma_U(f) = -\frac{1-x^2}{2}f''$$
 (in the distribution sense).

2) Let (X, \mathcal{H}^*) be the harmonic space considered in (1.2), and $\overline{\mu}$ the restriction of the Lebesgue measure to X =]-1, +1[. Then

$$\sigma_U(f) = -\varphi f'' + f'_{-}(0)\varepsilon_0.$$

Here, $f'_{-}(0)$ denotes the left derivative of f at 0, ε_0 is the Dirac measure at 0, f'' denotes the second derivative in the distribution sense of f on $X \setminus \{0\}$ and $\varphi \colon X \to \mathbf{R}$ is defined by

$$\varphi(y) = \begin{cases} \left(1 - \frac{y}{2}\right)(1 + y), & y < 0\\ \\ \frac{y}{2}(1 - y), & y \ge 0. \end{cases}$$

(A similar measure representation was considered by F-Y. Maeda in [11], Example 3.3).

(2.3) Without going into details we remark:

1) Let (X, \mathcal{H}^*) be an abelian harmonic group with a countable base. Starting from a translation invariant compatible family of strict continuous potentials (see [13], VI) a translation invariant measure representation can be constructed.

2) In [4], A. Boukricha and W. Hansen study perturbations of harmonic spaces. These perturbations can be characterized with the help of measure representations: Let (X, \mathcal{H}) be a Bauer space with a countable base and let σ be a measure representation. For a sheaf \mathcal{H}' of continuous functions on X the

Ursula SCHIRMEIER

following conditions are equivalent:

- (1) \mathscr{H}' is obtained by a perturbation of \mathscr{H} .
- (2) $\mathscr{H}' = [\sigma + \mu = 0]$ (i.e. $\mathscr{H}'(U) = \{f \in \mathscr{R}(U) : \sigma_U(f) + f\mu|_U = 0\}, U \in \mathfrak{U}\}$, where μ is the image with respect to σ of a compatible family ([4], p. 78) of continuous potentials (p_U) (i.e. $\mu|_U = \sigma_U(p_U)$), and \mathscr{R} denotes the sheaf of local differences of continuous superharmonic functions with respect to the given harmonic structure \mathscr{H} .

§3. Continuity of the measure representation

In §2 we showed that there exists a measure representation σ on a \mathfrak{P} -harmonic space (X, \mathcal{H}^*) such that

$$\sigma_{X}(p_{0})(f) = \bar{\mu}(f \odot p_{0}) \quad \text{for every} \quad p_{0} \in \mathscr{P}_{0}, f \in \mathscr{K}_{+}(X).$$

For the study of continuity properties of this measure representation we need the following preparations.

(3.1) LEMMA (Hansen). Let (X, \mathscr{H}^*) be a \mathfrak{P} -harmonic space with a countable base. For every $p \in \mathscr{P}_0(U)$, $U \in \mathfrak{U}$, there exists a unique $\tilde{p} \in \mathscr{P}_0(X)$ such that

 $R_{\tilde{p}}^{X \setminus U} + p = \tilde{p}$ on U and $S(p) = S(\tilde{p})$.

The extension map $p \mapsto \tilde{p}$ is increasing.

For the proof see [6].

(3.2) LEMMA. Suppose that $(s_n)_{n \in \mathbb{N}}$ is a sequence in $\mathscr{S}_{c+}(U)$ converging locally uniformly to some $s_0 \in \mathscr{S}_c(U)$ and let K be a compact subset of U. Then there exists a sequence $(\tilde{p}_n)_{n \in \mathbb{N}}$ in $\mathscr{P}_0(X)$ such that

1) $(\tilde{p}_n)_{n \in \mathbb{N}}$ converges locally uniformly to some $\tilde{p}_0 \in \mathscr{P}_0(X)$ and

$$\bar{\mu}(\tilde{p}_0) = \lim_{n \to \infty} \bar{\mu}(\tilde{p}_n),$$

- 2) $\tilde{p}_n s_n$ is harmonic on some neighbourhood of K, $n \ge 0$,
- 3) $\sigma_X(\tilde{p}_n)|_K = \sigma_U(s_n)|_K, n \ge 0.$

PROOF. We choose a function $\varphi \in \mathscr{K}(U)$ such that $0 \le \varphi \le 1$, $\varphi = 1$ on some neighbourhood of K, and apply (3.1) to the potentials $p_n := {}^{U}R_{\varphi s_n}$ (^UR denotes the reduced function with respect to U). Obviously the extended potentials \tilde{p}_n satisfy condition 2); property 3) is an immediate consequence of 2) and (1.7).

For the proof of 1) let $p' \in \mathscr{P}_0(U)$ such that $p' \ge 1$ on the compact set $L := \operatorname{supp}(\varphi)$. Then for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in N$ such that

$$s_n \leq s_0 + \varepsilon$$
, $s_0 \leq s_n + \varepsilon$ on L ,

334

for every $n \ge N_{\epsilon}$. Hence

$$\begin{split} \varphi s_n &\leq \varphi s_0 + \varepsilon p', \quad \varphi s_0 \leq \varphi s_n + \varepsilon p', \\ {}^{U}R_{\varphi s_n} &\leq {}^{U}R_{\varphi s_0} + \varepsilon p', \quad {}^{U}R_{\varphi s_0} \leq {}^{U}R_{\varphi s_n} + \varepsilon p' \end{split}$$

i.e. $p_n \le p_0 + \varepsilon p'$, $p_0 \le p_n + \varepsilon p'$ for every $n \ge N_{\varepsilon}$. The monotonicity and additivity of the extension map then imply

$$\tilde{p}_n \leq \tilde{p}_0 + \varepsilon \tilde{p}', \quad \tilde{p}_0 \leq \tilde{p}_n + \varepsilon \tilde{p}' \quad \text{for} \quad n \geq N_{\varepsilon}.$$

Consequently the sequence $(\tilde{p}_n)_{n \in \mathbb{N}}$ converges locally uniformly to \tilde{p}_0 . By Lebesgue's dominated convergence theorem

$$\bar{\mu}(\tilde{p}_0) = \lim_{n \to \infty} \bar{\mu}(\tilde{p}_n).$$

(3.3) LEMMA. Let $(\tilde{p}_n)_{n\in\mathbb{N}}$ be a sequence in $\mathscr{P}_0(X)$ converging locally uniformly to $\tilde{p}_0 \in \mathscr{P}_0(X)$ such that $\bar{\mu}(\tilde{p}_0) = \lim_{n \to \infty} \bar{\mu}(\tilde{p}_n)$. Then the sequence of measures $(\sigma_X(\tilde{p}_n))_{n\in\mathbb{N}}$ converges vaguely to $\sigma_X(\tilde{p}_0)$.

PROOF. The locally uniformly convergent sequence $(\tilde{p}_n)_{n \in N}$ satisfies the assumptions of [12], (4.4) and (4.5) (applied to Y = X) concerning continuity properties of the specific multiplication. Consequently the sequence $(f \odot \tilde{p}_n)_{n \in N}$ converges to $f \odot \tilde{p}_0$ with respect to the natural topology of the standard *H*-cone $S = \bar{\mathscr{P}}_+(X)$ for every bounded continuous function $f: X \to \mathbb{R}_+$. From

$$\liminf_{n \to \infty} \bar{\mu}(f \odot \tilde{p}_n) \ge \bar{\mu}(f \odot \tilde{p}_0),$$

$$\liminf_{n \to \infty} \bar{\mu}((1 - f) \odot \tilde{p}_n) \ge \bar{\mu}((1 - f) \odot \tilde{p}_0), f \in \mathscr{C}(X), 0 \le f \le 1,$$

and

$$\lim_{n\to\infty}\bar{\mu}(\tilde{p}_n)=\bar{\mu}(\tilde{p}_0),$$

we conclude

$$\lim_{n\to\infty}\sigma_X(\tilde{p}_n)(f) = \lim_{n\to\infty}\bar{\mu}(f\odot\tilde{p}_n) = \bar{\mu}(f\odot\tilde{p}_0) = \sigma_X(\tilde{p}_0)(f). \quad \Box$$

(3.4) COROLLARY. Let $(s_n)_{n \in \mathbb{N}}$ be a sequence in $\mathscr{S}_c(U)$ converging locally uniformly to $s \in \mathscr{S}_c(U)$. Then the sequence $(\sigma_U(s_n))_{n \in \mathbb{N}}$ of Radon measures converges vaguely to $\sigma_U(s)$.

PROOF. Let $K \subset U$ be a compact set. After adding a fixed positive superharmonic function $s' \in \mathscr{P}_c(U)$ we may assume that $s_n \ge 0$ on some fixed neighbourhood U' of K. The assertion follows now from (3.2) and (3.3), applied to the sequence $(s_n|_{U'})_{n\in\mathbb{N}}$ and the fact that $\sigma_U(s_n)|_K = \sigma_{U'}(s_n)|_K$.

(3.5) THEOREM. Let (X, \mathcal{H}^*) be a harmonic space with a countable base of its topology and σ the measure representation on X given in (2.1). Then for

every $U \in \mathfrak{U}$

$$\sigma_U \colon \mathscr{S}_c(U) \longrightarrow \mathscr{M}_+(U)$$

is continuous with respect to the topology of locally uniform convergence on $\mathscr{G}_{c}(U)$ and the vague topology on $\mathscr{M}_{+}(U)$.

PROOF. The measure representation σ given in (2.1) is of the form

$$\sigma = \sum_{i \in I} \varphi_i \sigma^i,$$

where each σ^i denotes a "local" measure representation on some \mathfrak{P} -set U_i , the family $(U_i)_{i\in I}$ being a locally finite covering of X and $(\varphi_i)_{i\in I}$ a subordinate partition of the constant function one.

To each σ^i the results of (3.4) can be applied. Let now $(s_n)_{n \in \mathbb{N}}$ be a sequence in $\mathscr{S}_c(U)$ converging locally uniformly to some $s \in \mathscr{S}_c(U)$, and let $f \in \mathscr{K}_+(U)$. Then there exists a finite subset $J \subset I$ such that

$$\overline{U}_i \cap \operatorname{supp}(f) = \emptyset$$
 for all $i \in I \setminus J$.

For $i \in J$ the function $\varphi_i f$ is continuous with compact support; hence by (3.4)

$$\sigma_{U}(s)(f) = \sum_{i \in J} \sigma_{U \cap U_{i}}^{i}(s)(\varphi_{i}f)$$

= $\lim_{n \to \infty} \sum_{i \in J} \sigma_{U \cap U_{i}}^{i}(s_{n})(\varphi_{i}f) = \lim_{n \to \infty} \sigma_{U}(s_{n})(f).$

The following example shows that in general σ is not continuous on \mathcal{R} .

(3.6) EXAMPLE. Let (X, \mathcal{H}^*) be the harmonic space of the solutions of the equation u''=0 on X=]-1, +1[and σ the measure representation defined by

 $\sigma_U(f) := -f''$ (in the distribution sense, $f \in \mathscr{R}(U)$).

For each $n \in N$, $x \in]-1$, +1[, let

$$p_n(x) := n(1 - |x|), \quad q_n(x) := \min\left(p_n(x), n - \frac{1}{n}\right).$$

Then $s_n := p_n - q_n \in \mathscr{R}(X)$. Since $0 \le s_n \le 1/n$, the sequence $(s_n)_{n \in \mathbb{N}}$ converges uniformly to 0, but the sequence of measures $(\sigma_X(s_n))_{n \in \mathbb{N}}$ is not vaguely convergent.

Bibliography

- [1] H. Bauer: Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Berlin-Heidelberg-New York: Springer 1966.
- [2] N. Boboc, Gh. Bucur and A. Cornea: Order and convexity in potential theory: H-cones, Lecture Notes in Math. 853, Berlin-Heidelberg-New York: Springer 1981.
- [3] N. Boboc and A. Cornea: Cônes convexes ordonnés. H-cônes et biadjoints des H-cônes, C. R. Acad. Sci. Paris 270, 1679–1682 (1970).

336

- [4] A. Boukricha and W. Hansen: Characterization of perturbations of harmonic spaces; Potential Theory, Copenhagen 1979; Lecture Notes in Math. 787, Berlin-Heidelberg-New York: Springer 1980.
- [5] C. Constantinescu and A. Cornea: Potential theory on harmonic spaces, Berlin-Heidelberg-New York: Springer 1972.
- [6] W. Hansen: Kernels on harmonic spaces, Preprint.
- [7] F-Y. Maeda: Dirichlet integrals of functions on a self-adjoint harmonic space, Hiroshima Math. J. 4, 682-742 (1974).
- [8] F-Y. Maeda: Dirichlet integrals of product of functions on a self-adjoint harmonic space, Hiroshima Math. J. 5, 197–214 (1975).
- [9] F-Y. Maeda: Dirichlet integrals on general harmonic spaces, Hiroshima Math. J. 7, 119-133 (1977).
- [10] F-Y. Maeda: Differential equations associated with harmonic spaces, Proceedings of the Colloquium on Complex Analysis, Joensuu 1978, Lecture Notes in Math. 747, 260– 267, Berlin-Heidelberg-New York: Springer 1979.
- [11] F-Y. Maeda: Dirichlet integrals on harmonic spaces, Lecture Notes in Math. 803, Berlin-Heidelberg-New York: Springer 1980.
- [12] U. Schirmeier: Continuity properties of the carrier map, to appear in Revue Roumaines Math. Pures Appl.
- [13] L. Stoica: Local operators and Markov processes, Lecture Notes in Math. 816, Berlin-Heidelberg-New York: Springer 1980.

Math.-Geograph. Fakultät der Katholischen Universität Ostenstraße 26–28 D 8078 Eichstätt