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Continuous measure representations on harmonic spaces
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In a series of papers ([7], [8], [9], [10], [11]) F-Y. Maeda has developed a
theory of Dirichlet integrals on those harmonic spaces X which admit a so-called
measure representation.

By definition (see [11], p. 33) a measure representation is a homomorphism
σ = (σu)UeVL of the sheaf & —(&(U))UeU into the sheaf Λ = (*Jί(U))UeVi of all signed

Radon measures, such that

Vu(f) ^ 0 <=> / is superharmonic on U (fe @(U)9 UeU).

Here, &(U) denotes the set of all functions /: (7->^, which are locally represent-
able as differences of continuous superharmonic functions, and U is the system
of all open subsets of X.

In the special case where X is an open subset of Rn and the function 1 as
well as the coordinate functionals π l 9..., ππ belong to &(X), F-Y. Maeda was
able (again using the hypothesis of the existence of a measure representation) to
associate a differential operator L to the given harmonic space. The coefficients
of this operator are measures on X and the following property holds:

L(h) = 0 <=> h is harmonic on U (he V2(U)9 UeU).

This note consists in the proof of the following

THEOREM. Every harmonic space (see [1] or [5]) with a countable base of
its topology admits a measure representation.

Moreover, there exists a measure representation σ with the following con-
tinuity property: the restriction of συ to the space yc(U) of all continuous super-
harmonic functions on U e U is continuous with respect to the topology of local
uniform convergence on ^C(U) and the vague topology on <Jί(U).

The proof of the existence of σ essentially relies on the results of N. Boboc,
Gh. Bucur and A. Cornea concerning the carrier theory in standard iϊ-cones (see
[2]). In the first part of this paper we mainly compile those results in [2], which
are important for our purposes. In the second and the third part, the existence
of a measure representation and its continuity property will be proved.

In general the notations of [2] and [5] are used. In addition, «^c(l/): =
n &(U) denotes the set of all continuous superharmonic functions on U e
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It, and 0>c(U): = 0>(U)nV(U) and &0(U) denote respectively the set of all

continuous potentials on U and that of all continuous potentials on U with

compact superharmonic support. For p e ^(U) and a bounded Borel measurable

function / o n U

Vp(f)=fOP

is the specific product of / and p (as defined for example in [5], p. 196). JΓ((7)

denotes the set of all continuous functions on U having compact support.

§ 1. Representation measures for continuous potentials with compact super-

harmonic support

In this section let (X, jrί?*) denote a ^-harmonic space with a countable base

of its topology and 1 e 3F*(X). We fix a (positive) Radon measure μ on X such

that

0 < \ p dμ < oo for all pe &0(X), p Φ 0.

(1.1) REMARKS.

1) A measure μ with the above properties always exists; take for example

7-.. X-̂ 00 1 „

where {xn: ne N} is a countable dense subset of X.

2) Every positive hyperharmonic function h being a limit of an increasing

sequence (pn)neN

 i n «^oW> we have

[hdμ = O Φ = Φ ft = 0.

3) A first step towards proving the existence of a measure representation

consists in assigning to each potential p e &0(X) in a "reasonable way" a measure

μr Obviously a measure μp — even for arbitrary potentials p — can be defined

by

i.e. the μ-integral of the specific product of / and p, provided that this integral

exists for all / e J f ( X ) . First difficulties arise then in proving the following

property of measure representations:

μPi - μP2 > 0 ==» Pί -
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in other words, the injectivity of the map p*-+μp on suitablesubcones of 0>(X).

(1.2) EXAMPLE. Let X = ] — 1, + 1[ and μ the Lebesgue measure on X. For

every open interval UaX let 2f(U) denote the vector space of all continuous

functions/: U-+R such that

1) / is locally affine on U\{0};

2) / i s constant on ί/Π] — 1, 0], provided that OeU

(see [5], Exercise 3.1.7). The corresponding harmonic structure possesses two

non-proportional potentials with the same superharmonic support {0}, namely

px\ x I >1 - |x|, p2: x | > l ] ( M [ ( x ) ( l - x ) .

Using the above notations we get μPi = ε0, μP2 = (l/2)ε0, and hence μPί-μP2>0,

but p^p^^X).

As demonstrated in [2] such problems cannot occur to representations of

continuous potentials.

(1.3) The cone S: =<9*+(X) of all positive hyperharmonic functions on X which

are finite on a dense set, is a standard if-cone of functions on X such that S ^

PROOF: By [3], Theoreme 5, S is an ϋ-cone which is canonically isomorphic

to its bidual S**. (In the cited theorem "superharmonic" means "hyperharmonic

and finite on a dense set". Hence the cone S? of [3], Theoreme 5, coincides with

our cone S). The proof of this theorem shows that there exists an absolutely

continuous resolvent y such that S coincides with the cone of all ^-excessive

functions. Hence, by [2], Example 3 on p. 113, S is a standard iϊ-cone.

(1.4) The set K*:~{seS: μ(s)<l} is a compact metrizable Choquet simplex

with respect to the natural topology; X* is a cap of the cone S ([2], Proposition

4.2.4, remark after Corollary 4.2.5. The fact that μ is a weak unit in 5* follows

from (1.1), property 2, and from the remark at the end of p. 96 in [2]). Hence

each 5 6 S such that μ(s) < oo admits a representation

s(x)=[ s'(x)μ(ds') (xeX),
Jx*

where μ is a finite positive measure carried by the set X* of all non-zero extreme

points of X*.

(1.5) There exists a semipolar subset Sx of X and a measurable map (9f from

EX:—X\SX into X* such that the following properties hold:

i) The carrier of the function px: =Θx(x), carr xp x : ={yeX: Rξj3φpx

for every neighbourhood U of y}, is the one-point set {x}, xeEx. (If

px is superharmonic, then caττxpx coincides with the usual superhar-
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monic support, as defined for example in [1], p. 163.)

ii) To each pe0>o{X) there exists a unique finite Borel measure μp on

Ex such that

P(y) = { Θ*x{z){y)μp{dz) for all yeX.
JEx

PROOF. Let X' denote the set of all non-zero extreme points of the cap

K: = {μ e S*: μ(l) < 1} (5* denotes the dual iϊ-cone, see [2]). X can be viewed as

a subspace of X' via the embedding χt-*εx. By [2], p. 194, there exists a Borel

measurable subset E of X\ a Borel measurable subset E* of X* and a bijec-

tion Θ*: E-+E* such that

(1) The sets X'\E and X*\£* both are semipolar;

(2) carηp Θ*(x) = {x} for all xeE, where X7 denotes the closure of X' in K;

(3) Both <9* and its inverse Θ: £*->£ are Borel measurable.

The notion of "carr" is introduced in [2], §3.4. It is easy to see that the usual

superharmonic support S(p) of p e ^o{X) coincides with carr^ p and that

Θ*(x) = carr x Θ*(x) for x e £ ί l l

By (1.4) each pe0>o(X) is representable by a measure μ'p on X*. Since p is

universally continuous (see [2], p. 97/98) the semipolar set X*\E* has ^-measure

zero; i.e. μ'p is carried by £ * ([2], p. 197). If μp denotes the image measure of

μp under the Borel measurable bijection Θ: £*->£, then

P θ 0 = ( Θ*(z)(y)μp(dz) for all yeX.
J E

Since μp is carried by the compact set carr^r p = S(p) c= X, we can take

EX:=E n X

(as a subset of X'\E the set SX:=X\E is semipolar) and

(1.6) REMARKS.

1) The measure μp introduced in (1.5) for pe&>0(X) and regarded as a

Radon measure on X coincides with the measure defined in (1.1.3), since

P(') =

and hence

ϊKfΘp) = ^ θϋz)(y)μ(dy)f(z)μίlidz)
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for every fejT+(X).

2) The map

p\ >μP, where μp(f) = μ{fQ p), /eJ f + (X),

is one-to-one on &0(X\ since each p e &0(X) is representable as

The injectivity assertion still remains true even in the case when

For later purposes we provide the following preparative

(1.7) LEMMA. Let UczX be open. For p, p' e0>o(X) the following properties

are equivalent:

1) P~~P' ί s harmonic on U;

2) luQp=hOprl
3) the representation measures μp and μv> coincide on U.

PROOF. The representation measure μPu of Pu'.^luOp is the measure

lυμp. Hence 2) and 3) are equivalent. The equality luθp = luθp' implies

P-p'^lxwQp-lxwOpΊ and hence {p-p')\υeJίr{Ό) (property 1).

Suppose now conversely that property 1) holds. The potential l^Op is the

specific restriction of p with respect to U; hence it depends only on the potential

part of the superharmonic function p\υ (see [1], pp. 153-157). Analogously

lc/Op' only depends on the potential part of p'\v. By condition 1) these two

potential parts coincide. Hence

(1.8) COROLLARY. Suppose that the restriction of μp — μp> to U is a positive

measure. Then there exists a superharmonic function s on U such that

p = p' + 5 on U.

PROOF. Let μ: = lv(μp - μp>) > 0. Then

defines a positive hyperharmonic function q on X. The equality

q + li; Θ p' = li/ Θ P

shows that qe0>o(X). An application of (1.7), 3)=>l), to the potentials p and

q + p' then finishes the proof.
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§ 2. The existence of a measure representation

For an open subset U of a harmonic space X let &(U) denote the set of all
functions/: U-+R which are locally representable as differences of continuous
superharmonic functions:

For each xeU there exists an open neighbourhood Vx and fl9 f2^^c(^x)
such that / = / i —f2 on Vx.

If X is a ^-harmonic space, then (according to the extension theorem, see [1],
p. 159, or [5], p. 46)

se &(U)os is locally representable as a difference of globally defind con-
tinuous potentials with compact support.

(2.1) THEOREM. Every harmonic space with a countable base admits a measure
representation.

PROOF. First step: Suppose first that (X, Jίf*) is a ^3-harmonic space.
Dividing the sheaf «#** by a strictly positive continuous superharmonic function,
we can assume without loss of generality that 1 e^f*(I) (see [11], p. 33).

Let/e^(L7), UeU. If f=p — p' on some open subset VczV with p> p'e
^o(X), then we define the restriction of the measure σv(f) to V by (μp — μp)\v.
Then:

1) συ{f) is well-defined: Suppose that f=pί—p'1 on some open set Vίcz
Then

P + Pl=Pr + Pi on V Π Vl9

and hence by (1.7)

μp + μ p ί = μp, + μpi9 μp - μp = μpι - μp/ on V Π Vt.

2) σv(f) belongs to ^ ( t / ) , since the measures μp,pe^0(X), are finite
Radon measures.

3) σ = (σ t̂/eu is a measure representation: Obviously σ is a homomorphism
of the sheaf & into the sheaf Jί'. By (1.8) σv(f) is positive iff / is super-
harmonic on U e U.

Second step: Let (X, J>ί?*) be a harmonic space with a countable base of its
topology. Then there exists a locally finite covering (JJ^)ieI of X consisting of up-
sets and a subordinate continuous partition (ψi) of the function 1. By the first
step each of the harmonic spaces (Ui9 Jf*\u) admits a measure representation
σ\ Obviously
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(i.e. σu(f)(g)=Σieiσiunui(f)((Pi9)> 9e^(u)> /e#(U)> t/eU) is a measure
representation for (X, Jf *). J

(2.2) EXAMPLES.

1) Let X = ] — 1, +1 [, endowed with the harmonic structure of the solutions
of the equation w" = 0, and μ the restriction of the Lebesgue measure on X. For
every potential p e 0>(X) the measure μp satisfies the condition

where

G(x, y)=min (j^y, j£y), ^ je l ,

denotes the Green function (normed by μ(G( , j)) = 1 for y e X). For fe
U e U, we get

σu(f) = — ~jX f" (in the distribution sense).

2) Let (Z, ̂ * ) be the harmonic space considered in (1.2), and μ the restric-
tion of the Lebesgue measure to X = ] — 1, +1[. Then

°u(f)= -φf"+f'-(0)so.

Here, /l(0) denotes the left derivative of/ at 0, ε0 is the Dirac measure at 0, /"
denotes the second derivative in the distribution sense of/ on X\{0} and φ: X-+R
is defined by

ψ(y) =

y<o

(A similar measure representation was considered by F-Y. Maeda in [11], Ex-
ample 3.3).

(2.3) Without going into details we remark:
1) Let (X, Jf*) be an abelian harmonic group with a countable base.

Starting from a translation invariant compatible family of strict continuous
potentials (see [13], VI) a translation invariant measure representation can be
constructed.

2) In [4], A. Boukricha and W. Hansen study perturbations of harmonic
spaces. These perturbations can be characterized with the help of measure
representations: Let (X, Jί?) be a Bauer space with a countable base and let σ
be a measure representation. For a sheaf 3tf" of continuous functions on X the
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following conditions are equivalent:
(1) 3^' is obtained by a perturbation of 3^.

(2) j r = [σ + /ι = 0] (i.e. -*"([/) = {/e #(£/): σ t / (/)+/^| l 7 = 0}, ί/eH),
where μ is the image with respect to σ of a compatible family ([4],
p. 78) of continuous potentials (pv) (i.e. μlu — ̂ uiPu))^ a n d ^ denotes
the sheaf of local differences of continuous superharmonic functions
with respect to the given harmonic structure Jf.

§3. Continuity of the measure representation

In §2 we showed that there exists a measure representation σ on a ^-harmonic
space (X, tf *) such that

*x(Po)(/) = fiifOPo) for every p0 e 0>Of fe JT+(X)

For the study of continuity properties of this measure representation we need the
following preparations.

(3.1) LEMMA (Hansen). Let (X, Jί?*) be a ty-harmonic space with a countable
base. For every pe^0(U)9 l/etl, there exists a unique pe^0{X) such that

p = p o n jj a n d

The extension map p*-+p is increasing.

For the proof see [6].

(3.2) LEMMA. Suppose that (sn)neN is a sequence in ^C+(U) converging locally

uniformly to some s0 e SfJJJ) and let K be a compact subset of U. Then there

exists a sequence (pn)neN in &oOQ such that

1) (PnXeN converges locally uniformly to some

2) Pn~~sn is harmonic on some neighbourhood of K, n>0,

3) σx(Pn)\κ = <ru(sn)\κ> n>0.

PROOF. We choose a function φeX~(U) such that 0 < φ < l , φ = l on some
neighbourhood of K, and apply (3.1) to the potentials pn: = uRφSn (UR denotes
the reduced function with respect to I/). Obviously the extended potentials
pn satisfy condition 2); property 3) is an immediate consequence of 2) and (1.7).

For the proof of 1) let p' e ^0(U) such that p'> 1 on the compact set L : =
suρp(φ). Then for any ε>0 there exists NεeN such that

sn < s0 4- ε, s0 < 5rt + ε on L,
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for every n > Ne. Hence

φsn < φs0 + εp\ φs0 < φsn + εp\

"Rφsn < "Rφso + ep'9

 uRφso < uRφSn + βp',

i.e. pn<Po + εp'9 Po<pn + εp' for every n>Nε. The monotonicity and additivity

of the extension m a p then imply

ft £ & + <#', Po<Pn + εp' for n>Nε.

Consequently the sequence (pn)neN converges locally uniformly to p0. By

Lebesgue's dominated convergence theorem

(3.3) LEMMA. Let (pn)neN be a sequence in 0>O(X) converging locally uni-

formly to poe^o(X) such that μ(p0) = limn^00 μ(pn). Then the sequence of

measures (σχ(Pn))neN converges vaguely to σx(p0).

PROOF. The locally uniformly convergent sequence (pn)neN satisfies the as-

sumptions of [12], (4.4) and (4.5) (applied to Y = X) concerning continuity pro-

perties of the specific multiplication. Consequently the sequence (fOpn)n€N

converges to fQpQ with respect to the natural topology of the standard if-cone

for every bounded continuous f u n c t i o n / : X-+R+. F rom

l i m i n g μ(fθ pn) > μ(fQ p0),

Urn i n f ^ μ((l - /) © pn) > μ((l - /) © p0), fe <€(X\ 0 < / < 1,

and

Xxm^nAPrύ = fi(Po)>

we conclude

lim^oo σx(pn)(f) = l i m ^ ^ μ(fQ pn) = μ(fQ p0) = σx(p0)(f). J

(3.4) COROLLARY. Let (sn)neN be a sequence in yc(U) converging locally uni-

formly to seSfc(U). Then the sequence ((?u(sn))neN of Radon measures converges

vaguely to σv(s).

PROOF. Let KaU be a. compact set. After adding a fixed positive super-

harmonic function 5' e &>C(JJ) we may assume that s n > 0 on some fixed neighbour-

hood U' of K. The assertion follows now from (3.2) and (3.3), applied to the

sequence (sπ \Ό\eN and the fact that σv(sn)\κ = σv,(sn)\κ. J

(3.5) THEOREM. Let (X, 34?*) be α harmonic space with a countable base of

its topology and σ the measure representation on X given in (2.1). Then for
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every Uell

is continuous with respect to the topology of locally uniform convergence on
SfJJJ) and the vague topology on J

PROOF. The measure representation σ given in (2.1) is of the form

where each σι denotes a "local" measure representation on some φ-set I/f, the
family (Ui)ieI being a locally finite covering of X and ((Pi)ieI a subordinate partition
of the constant function one.

To each σ' the results of (3.4) can be applied. Let now (sn)neN be a sequence
in Sfc(Ό) converging locally uniformly to some se^c(U)9 and let feJf+(U).
Then there exists a finite subset Jal such that

Uf Π supp (/) = 0 for all ί e I\J.

For ieJ the function φj is continuous with compact support; hence by (3.4)

<ϊu(s) (/) = Σ ieJ <ru n t/f(s) (<Ptf)

= lίmΪI-.oo Σisj abnufaXVif) = limn->oo σ^s^fj). J

The following example shows that in general σ is not continuous on 0t.

(3.6) EXAMPLE. Let (X, jf*) be the harmonic space of the solutions of the
equation w" = 0 on X — ~\ — 1, +1[ and σ the measure representation defined by

σv{f): = - / " (in the distribution sense, fe &(U)).

For each n e i V , x e ] - l , +1[, let

pn(x): = n(l - |x|), qn(x): = min (pn(x), n-^j.

Then sn:—pn — qne^{X). Since 0<sπ<l/n, the sequence (sn)neN converges
uniformly to 0, but the sequence of measures (σx(sn))neN is not vaguely convergent.
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