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Introduction

In the n-dimensional Euclidean space R", let S be a compact portion of a
k-dimensional (1=<k=<n-—1) Lipschitzian surface. Let & be a continuously
differentiable function on the set {x e R*; 0<|x|<R,} for some positive number
R, greater than the diameter of S. For a signed measure ¢ on S, we define the
single layer @-potential of & by

30 = [ 0Ce—y)do(s),

provided the integral exists. Clearly, V' is continuously differentiable on Q\S
for a neighborhood 2 of S, but, in general, not on S.

The purpose of this paper is to investigate the following problems under the
conditions that S satisfies oy-condition at x°e S (in the sense of [11]) and that
[(6P/dx,) (x)| £ Clx|~*"1, 0<|x| <Ry, for some A with 0<i<n.

(T) Existence of limits of derivatives of V3 along sets which are non-
tangential to S at x°e S;

(II') Holder continuity of derivatives of Vg on sets of the above type;

(III) Existence of derivatives of V§ at x°e S;

(IV) Holder continuity of derivatives of V' on S.

In the case of the single layer Newtonian potentials V] in R3, i.e., in the
case where n=3, k=2, ®(x)=|x|"! (hence A=1) and o=fdS (dS: the surface
element of S), many results on these problems have been obtained; see O. D.
Kellogg [8], N. M. Giinter [6] and M. Ohtsuka [9] and [11].

In case n and k (1=k=<n-—1) are arbitrary, S. Diimmel [3], and Diimmel
and Siewert [4] have shown a few results concerning problem (I) for &(x)=
|x|~*: but in these papers, problems (II), (IIT) and (IV) are not discussed.

- We shall extend these results to more general single layer @-potentials with
conditions on ¢ and ¢ suitable to respective problems; in particular when we
consider normal derivatives (d/dn)V$ we assume a local homogeneity condition
for @ (denoted by (@ —4); see 1.3) and further, in case A=k —1, a condition of the
type (cf. (#—5) in 1.3)
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[(@®/dn)(x)| = Clx*| |x|7*~1,

where x* is the projection of x to the space of normal directions to S at x°. Note
that @(x)=|x|~* satisfies both (® —4) and (¥ —5).

Basic notions and definitions for S, ¢ and @ are given in §1. We assume that
S contains the origin 0 and consider problems (I), (II) and (III) for x°=0. 1In
§2 we study the behavior of single layer ®-potentials themselves (not their deriva-
tives), and prove the existence of their limits along a set non-tangential at the origin
or a non-tangential line terminating at the origin and their Hoélder continuity on
such a set. In §3 we are concerned with problems (I) and (II). We obtain in
Theorem 3.1 the Hélder continuity of tangential derivatives of ¥ on a non-
tangential set. The existence of limits of normal derivatives (d/dn)V§ and that
of functions of type |x|*~**1(d/dn)V(x) along non-tangential lines terminating
at the origin are immediate consequences of the results in §2 (Theorems 3.2 and
3.2"). In Theorem 3.3 we obtain the Hélder continuity of directional derivatives
of V' on a non-tangential line terminating at the origin. Note that normal deriv-
atives, and hence directional derivatives, are Holder continuous only on a line.
In fact, limits of a normal derivative along lines depend on their directions. But,
in case S is an (n—1)-dimensional surface, as in [9; Theorem 18], the Holder
continuity of directional derivatives on a non-tangential set can be proved (Corol-
lary 3.1). In §4 we consider problem (III). We show in Theorem 4.1 the exist-
ence of a certain limit for Vg which insures the existence of the tangential deriv-
ative of Vg at the origin (Corollary 4.2). In Theorem 4.2 we give an answer
to problem (III) for directional derivatives. §5 is devoted to problem (IV) in the
case where ¢ has density fand A=k — 1 under the conditions that S satisfies uniform
ap-condition and f is Hélder continuous on S. We obtain in Theorem 5.1 the
Holder continuity of directional derivatives of ¥ on S and a generalization of a
theorem of Liapunov (Theorems 5.2 and 5.2°).

The author wishes to express his gratitude to Professor Makoto Ohtsuka for
suggesting the topic of this paper. He is also indebted to Professor Fumi-Yuki
Maeda and Dr. Yoshihiro Mizuta who read the manuscript very carefully and
suggested many improvements.

§1. Preliminaries

1.1 Basic notions

Let R* be the n-dimensional Euclidean space with points x=(x,,..., X,).
The inner product of points x=(x,,..., x,) and y=(yy,..., y,) is defined by {x, y> =
>, x;y; and the distance of x, y by |[x—y|={>%, (x;—y;)?*}/2. We denote
by C4(E) the closure of a set E in R" and by B()(x, r) the n-dimensional closed
ball {yeR"; |[y—x|=r}. We write e, =(1, 0,..., 0),..., ¢,=(0,..., 0, 1).
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Let a be a unit vector in R* and x° be a point in R”. The open half line
{x°+pa; p>0} is denoted by L(x° a). For a set E in R", the contingent of E
at x9, denoted by contg (E, x°), is the set of all half lines L(x°, a) for which there
is a sequence {x(™} in E\{x°} satisfying lim,_, x("=x° and lim,_, (x(" —x%)/
[x(") — x0| =a.

LeMMA 1.1. If E, F are sets such that 0eCé(E\{0}) n C4(F\{0}) and
contg (E, 0) n contg (F, 0)=g, then there are positive numbers C=C(E, F) and
r=r(E, F) such that

x| + |y| = Clx—yl
for every xe En B™(0, r) and yeF.

We can prove the lemma by the same argument as in the proof of [1; Prop-
osition 0.1] and thus omit its proof.

LetO<a=<1. A function fdefined on a set E is said to be a-H élder continuous
on E if there is a positive constant C such that

If(x) = f(®)] = Clx — %I
whenever x, X € E. The smallest of such C is called the Hdlder constant of f.
Let u be a non-negative measure, let x° be a point in R* and write g(p)=
u(BM(x°, p)) for p=0. Then for any continuously differentiable function F on
(0, ] (r>0) such that lim,, , F(p)g(p)=0,

(LD F(x=xDdu() = FO)g0) - |” Fo)a(p)dp,

SO<|x—x°|§r

provided at least one of the integrals exists. This formula will be often used in
the sequel.

The letter C will be used to denote various positive constants independent of
the variables in question.

1.2. The surface S

Let k be an integer such that 1<ks<n—1. For x=(x,,..., x,)€R", let
X' =(X{y.e0r X 0,...,0) and x*=x—x"=(0,..., 0, X;4,..., X,). We often regard
x" as a point in R*,

Let S be a k-dimensional Lipschitz surface defined by

S = {XGR”; Xk+1 = ¢k+1(x’)a"'s Xp = wn(x’)’ |X’| é rO}

for some ry,>0, where ¥, ,,..., ¥, are Lipschitz functions on |x’|<r, such that
¥(0)=0, i=k+1,...,n. Let P(x)=(', Yy (x),..., ¥, (x)) and assume that
|[P(x)|2£2r3 for all x', |x'|Sry. Then the diameter of S does not exceed 3r,.
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The k-dimensional Hausdorff measure m, on S will be denoted by ug. It is ex-
pressed as dug(Y(x"))=J, ¥ (x")dx’ with a bounded Borel measurable function
J¥ on |x'|=ry such that J,¥(x')=1 dx’-a.e. (see e.g., [10; Theorem 3]), where
dx'=dx,---dx, is the k-dimensional Lebesgue measure. In the sequel we denote
by S(0, r) the image of the k-dimensional closed ball B*)(0, r) under ¥ for 0=
r=<ro.

Let ¢y>0. We say that S satisfies ay-condition at the origin if the following
condition holds:

> ‘<%(x’)>2 < K |x'|?%0  dx'-a.e
B\ 0x; =1 e
for some positive constant K;. By Fubini’s theorem and the absolute continuity
of y; the above condition implies that
(5-1) [Yi(x)] = Kp|x/[!+ee
for all x', |x'|<ry and i=k+1,..., n, and
(S-2) 0= JP(x') — 1 < K;|x'|*e dx'-a.e.,

where K, and K; depend only on K,. In this case it is easy to see that contg
(S, 0)={L(0, a); a*=0}.

For 0<e=1, let E(0, &)={x e BM™(0, ry); |x*| =¢|x|}. The following lemma
is a consequence of Lemma 1.1.

LEMMA 1.2. Let 0<e=1. Assume that S satisfies ay-condition at 0. Then
there are positive numbers C and r depending only on K,, ay and & such that
S n E(0, &/2) n B™(0, r)={0} and

(1.2) x| + |yl < Clx—yl
for every x € E(0, &) n B"™(0, r) and y e S.

REMARK 1.1. If we replace the oy-condition by the condition that
lim,. o ¥(x)/|x'|=0 (i=k+1,..., n), then the assertion of the lemma is still
valid.

Let o be a signed measure on S. If there is a number A4 such that
(o-1) lim, o r™*|lo—Aps| (S(0, r)) = 0,

then the origin is called a Lebesgue point of 6. Here we denote by |o| the total
variation of ¢. The origin is called a Lebesgue point of order a; (>0) if there
are numbers 4 and L, >0 such that

(0-2) lo—Apus| (S0, r)) = Lyrk*e, 0<r<ry
(cf. [4; p. 188]).
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1.3. The kernel @

LemMA 1.3, Let @ e CY{(B™(0, 4ry)\{0}), i.e., @ be a continuously differ-
entiable function on B™(0, 4rg)\{0}. If there are positive numbers C and t
'such that t>1 and

|ID;@(x)| = Clx|™® for O0<|x|Z4r, and i=1,...,n,

where D;=0/0x;, then there is a positive number C' depending only on C, ry, T
and max,|=4,,|P(x)| such that

|@(x)| < C'|x|™**1  for every x, 0 < |x| < 4r,
and
|P(x) — P(X)| = C'|x—X| |x|7*+1|%|~!

for every x and %, 0 < |x| £ |X| £ 4r,.
The proof of this lemma is elementary.

Let @ be a real valued continuous function on B™(0, 4r,)\{0}. Let 0<i<n.
In the sequel we shall consider the following conditions on @:

(@-1)  [D(x)| = M,|x|™%, 0 < |x| = 4ro,

(9-2)  |P(x)| = M|x*|[x|7*71, 0 < |x| = 4ro,

(9-3)  |P(x) — (R = Ms|x — X[ [x|7AZ7, 0 < [x] < |X] < 4r,,
(P-4) ®(hx) = h=*P(x), 0<h<2 and 0 < |x| £2r;

in case @ € CY(B™(0, 4ry)\{0}),
(9-5) ID,;®(x)] < M,y|x*||x|™*"2, O0<|x|<4rq and i=k+1,...,n,
(9-6)  |DP(x) — D;@(R)| = Ms|x — X| x|~ 1%]7,

O0<|x|Z|X|Z£4ry and i=1,...,n;

in case @e C3(B")(0, 4r,)\{0}), i.e., @ is a 2-times continuously differentiable
function on B(")(0, 4r,)\{0},

(-7) |D;D;(x) — D:D; (%) = Mglx — X|[x[7472(%] 7",
O<|x|=Z|X|<4ro and i,j=1,...,n

It is easy to see that (#-2) implies (1) with M; =M, and (P-3) implies (P-1)
with M, =2M;+M,r§, where Mo=max| =4, |P(x)|. If @ satisfies (P-6),
then (@-3) holds for ¢ by Lemma 1.3 and so does (#-1). Here the constants
M, and M, depend only on My, Mg, ry and A. If @ satisfies ($-7), then ($-6)
holds for ¢ by Lemma 1.3 and so do (@-1) and (#-3). In this case the constant
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M 5 depends only on Mg, Mg, ro and A, where Mg =max; <;<, MaxX| =4, |D:P(X),
and the constants M, and M5 depend only on My, Mg, M, ro and A.
For a signed measure ¢ on S, we define the single layer ®-potential of ¢ by

Ve(x) = V(®, 0)(x) = SS O(x — y)do(y),

whenever the integral exists. If f is a Borel measurable function on S with
g |fldus< oo and o=fug, then we denote V5 by V4; in particular, if &(x)=
N

|x|~*, we denote Vg by V¢ and V§ by V.

LEMMA 1.4, Let O<r=r,. Assume that ® satisfies (d—1). Then (0/0x;)
SI | d(x—y)dy exists at 0 and equals
ylsr

= =000, edm,,0)

fori=1,..., n, where dy is the Lebesgue measure on R" and v(y) is the unit outer
normal at y to the boundary 0B™(0, r) of B(™(0, r).

As in the proof of [7; Theorem 1.14], we can prove this lemma, and so we
omit its proof.

§2. Haolder continuity of @-potentials on non-tangential sets

In this section we discuss the Hoélder continuity of @-potentials on sets non-
tangential to S at 0 and the existence of limits of functions of type [x|*~¥V§(x)
as x—0 along a non-tangential line.

2.1. Limits and Holder continuity in general case

PROPOSITION 2.1. Let S be a k-dimensional Lipschitz surface and let E
be a set in B(™(0, r,) such that 0e C4(E\{0}) and contg (E, 0) n contg (S, 0)=g.

(@) If @ satisfies (P-1), then for a signed measure o on S such
that V!!(0) < oo,

limx—'O,er Vg)(x) = Vgi(o) .
(i) Assume that @ satisfies (©-3) and a signed measure o on S satisfies
(0-3) lo|(B™(0, r)) < Lyr* for 0<Sr=<r,

with some L,>0 and y>0. If y>4A, then V§0) exists and V§ is p-Holder
continuous on En B™(0, r(E, S)), where f=y—14, if y—A<1;0<f<1, if y—
A=1; B=1, if y—A>1. The Holder constant depends only on L,, My, M,,
C(E, S), ro, B, y and 4.
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REMARK 2.1. This proposition still holds in case ¢ is not necessarily sup-
ported by S, if S is replaced by the support of ¢.

PrOOF OF (i) If xe E n B"(0, r(E, S))\{0}, then Vg(x) is well defined. By
(®9-1) and Lemma 1.1,

(2.1 [B(x—y) = M |x—y|™* =< Cly|™

for every xe En B™(0, r(E, S)) and every yeS. Hence, assertion (i) follows
from Lebesgue’s dominated convergence theorem.
PRrOOF OF (ii). As stated in §1, (#-3) implies (#-1). Let g(r)=|a| (B™(0, r)).
By using (1.1) and (#-3), we have
0

Vil = |_1v1-dlol() s Cratao) + {7 p 19 (p)dp) s Crii < 0

for some constant C>0. Hence, V'$(0) exists by (¥-1).
Now let x, X e En B™(0, r(E, S)). Then

Ve - Va@I s | (o= yldiel(s)

5(0, |x—%|

TN L 0 2 )
S0, |x—%|)

[ 1x=3) = O = Ydlol(y).
S\S(0, |x—%|)

By (2.1),

|®(x—p)ld|ol(y) < cS IyIdlal(y)

SS(O,Ix—:’El) S(0, |x—x

|x—%|
< cflx—xp + S pr3tdp}
0

S Clx—%|""* = Clx— X/,

since B<y—A. Similarly,

[, 19(E=pldiely) = Clx—17.
S(0, |x=%])

By Lemma 1.1 and (¢-3), we have for ye S

|[P(x—y) — D(X—y)| < Clx—%||y|7*"1,
so that

S |®(x—y) — B(E—y)ldlal(y)
S\S(0, |x—%])
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IIA

clx—=l| o))
S\S(0, |x—%|)

IIA

Cle=sl{ritgra) + [ 72g(p)dp)
|

< C|x—x|{rg-l + S . pV""zdp} < Clx— 3|,

Thus combining above estimates we obtain
Ve(x) — Vg(®)I = Clx—%[%,

where the constant C depends only on L,, My, M5, C(E, S), ro, B,y and A. Thus
assertion (ii) is proved.

In the sequel we denote by vg the measure on S determined by dvy(¥(y’))=
{LY(y)—1}dy’. By (S—2) we obtain

COROLLARY 2.1. Let0<e=1. Assume that @ satisfies (#-3) and S satisfies
ag-condition at 0. If k+ay> A, then V(®, vg) is f-Holder continuous on E(0, €) N
B™(0, r') with r'>0 depending only on K,, o, and &, where f=k+ay—2, if
k+ag—A<1;0<p<l,if k+oag—A=1; =1, if k+ay—A>1. The Hdlder
constant depends only on K,, K3, My, M5, rq, do, B, € and A.

2.2. Lemmas
For x € B™(0, ro)\{0}, let

Y0 =Y 9= (8= ¥() — Bx—y}dy’

Iy =
and

P(x) = P(x; &) = S ®(x—))dy'.

|y’ |Sro

LEMMA 2.1. Let O<e<1. Assume that S satisfies ay-condition at 0.
(i) If(@-3) is valid for @ and if k+oay> A, then Y(0) exists, and

limx-’O,er(O,e) Y(x) = Y(O)'

(i) If @ e CY(B™N0, 4ry)\{0}) and it satisfies (P—6) and if k+oy> A, then
Y is p-Hélder continuous on E(0, ¢) n BU"(0, r') with r'>0 depending only on
K,, ay and ¢, where B is as in Corollary 2.1. The Hdlder constant depends only

on K,, My, Ms, 1o, o, B, € and A.
PrOOF OF (i). By Lemma 1.2, (S-1) and (#-3), we have
(2.2) |o(x—P(y)) — B(x—y)| < C|y'|*"*
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for every x € E(0, &) n B(™(0, r’) and y € S with »' =r(E(0, ¢), S), and

Iy |sro

since k+ag>A. Thus Y(0) exists, and Lebesgue’s dominated convergence
theorem implies

me—»o,er(o,e) Y(x) = Y(0).

PRrROOF OF (ii). As is seen in §1, (¥-1) and (@-3) are valid. For x, Xe
E(0, &) n B(™(O, 1),

Y(x) — Y(®)| = S l |B(x—¥(y) — P(x—y")ldy’

lyr|s|x-%

+ [2(x—¥(y) — ®(X—y"ldy’

S Iy 1=)x-%|
[ 166 % YO - G R, Iy
[x=%| =]y’ |=ro

= Il(x’ )?) + 12(x’ x) + I3(X, i)’

where G(x, X, y)=®(x—y)—®(X—y). By (2.2) we have

henR sl | Iypeidy = Clegtot < Cle-g,

ly/|s|x—%
since k+oo—A=p. Similarly,
I,(x, X) £ Clx—X|5.
Applying the mean value theorem, by Lemma 1.2, (S-1) and (®-6), we have
|G(x, %, P()") — G(x, X, y)| £ Clx—=X||y’|="*"!

for every y’, [y’| < ro, so that

Iy(x, %) < Clx—%| S |y'|oo=3-1dy’ < Clx— %,

|x=%|=|y’|Sro
Therefore we obtain
[Y(x)—Y(%)| = Clx—%|#,

where the constant C depends only on the values described in the lemma.

Let p>0 and w be a unit vector in R*. For a Borel measurable function F
defined on B™)X(0, r,), write

p(p; w, F) = Sw|=1 F(ro(1+p)~'(—py' +w)dmy_,(y),
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provided the integral exists.

LEMMA 2.2. LetO<ex1. Assume that ® satisfies (9-2) with A=k.

(i) There is a positive number C depending only on M,, ry and & such that
[V(x)| £ C for every x € E(0, )\{0}.

(i) If @ satisfies (d-4) with A=k, and if a is a unit vector such that a*+#0,
then

Mo, serc0.0 70) = 18 | p£1(14 )4 plp; a*/la*], Ddp.
(iii) If @ satisfies (9-3) and (P-4) with A=k, then there exists a positive
number C depending only on M,, M5, r, and € such that
V() =P(R) < C{lx—F| + |(x*/Ix*)) — (F*/IF*)]}
for all x, X € E(0, &)\{0}.
ProoF. For x € E(0, ¢) n B("(0, ro/4\{0}, let d=ro—|x’'| and F={y’; |y'| <

Fo, |y’ —x'|>d}. Then we write

23) P(x) = S ,,k—xd,,g O(— py' +x*)dmy_(y")

d
0 lyrl=1
+{ oe-yay,

Since |B(—py’ +x*)| S M,|x*| {p? +|x*|?}~*+D/2 by (P-2) with A=k, the ab-
solute value of the first integral on the right of (2.3) is dominated by

d ©
clx*ifl 1o+ 1 41ap < €[ ot ) tdp < oo,
0 0
Since d =3rq/4, we have
(2.4 [@(x—y)| & M,|x*||x—y'|7*!
S M, min {|x*|(4/3ro)**1, (4/3ro)*}

for all y’e F. Thus the second term on the right of (2.3) is dominated by
C(4/3ro)krk = C(4/3)* in absolute value. Hence, assertion (i) is obtained.
Next, we prove (ii). It follows from (®-2) with A=k that

(2.5) Ip(p; x*/|x*|, D) = Crg*(1+p)~!
for every x € E(0, &) n B("(0, ro/4)\{0}. By (9-4) with A=k, we can write

d/|x

~ *|
7o = (7 o1 )4 p(os 3l ) + | @e—y)dy.
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Thus assertion (ii) follows from (2.4) and (2.5).
Finally, we prove (iii). Let x, XeE(0, &) n B"X(0, ro/4)\{0} with [x'|<
|X’|. Then

Po-T@®=| ey =|  aE-ydy

[y’ =x"|= Iy’ =%'|

+{, (06=y) = 8G—yNdy

+{ aG—ydy - ax-y)dy
= Il(x) - Il(i) + IZ(xy i) + I3(X, 52) - 14(x! x)a
where d=ry—|x'|, Fi=F, F,={y’; |y —x'|>d, |y'—%|=d} and F;={y';
ly'=x'|£d, |y'—%'|>d}. Since d=3ry/4 and so F, = B®)(0, ro)\B*)(0, ry/2), by
(®-3) with A=k, the absolute value of the integrand of I, is dominated by C|x — X|
for every y'eF,. Therefore |I,(x, X)|<C|x—X|. Since ®(x—y’) is bounded

for (x, y') € B"(0, ro/4) x {B®)(0, ro)\B*)(0, ro/2)} and my(F,)=my(F3)<C|x—%|,
we see that |[3(x, X)| < C|x—X| and |I,(x, X)| =C|x—X|. Asabove, we have

da/1x*|
1 = 18 (7 11 oy ptos x¥1x%, ),

so that

/|x*
*

- da/|x*|
1) =11 S [ § ™ o114 0) 00 %1%, @)dp

d/|2*| o |l o~
75 (7 (14 9 HpGos 311571, @) = p(ps 3*/13%1, B)ldp
= I{V(x, %) + IV (x, X).

Now (2.5) implies

. d/1x*| <
I{9(x, x)éclg o PR | S Clx -,
d/|x*

since d=3rq/4. By (9-3) with A=k, we have
|D(ro(L+p)" (= py' +x*/|Ix*])) — D(ro(1+p)7(—py’ +X*/IZ*))
< Cri(1+p)7H(x*/Ix*]) — (X*/|x*))]
for every y’, |y’|=1, so that
I9(x, %) = Cl(x*/Ix*]) — (F*/IZ*))].
Therefore

V)=V < ClIx—%| + |Ge*/Ix*]) — (Z*/IF*])]} -
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Note that the constant C in this last expression depends only on M,, M3, ry and ¢.
Thus assertion (iii) follows, since dist (E(0, &)\B()(0,.r,/8), R¥)>0 and thus by
(#-3) V is 1-Holder continuous on E(0, £)\B™(0, r,/8) with Hélder constant
depending only on M;, ry and e.

COROLLARY 2.2. Let a be a unit vector with a*#O. If @ satisfies (9-2),
(#-3) and (-4) with A=k, then V is a 1-Hélder continuous function on L(0, a) n
B0, ro) with Holder constant depending only on M,, M5, a and r,,.

Similarly we obtain

LEMMA 2.2°. Assume that ® satisfies (¢-1) and (9-4). Let a be a unit
vector with a* #0.
(i) If A>k, then

lim, 0, xeL(0,0) [X|*=%P(x; @)
= r§la*|*~* S: P11+ p)*plp; a*/|a*|, ®)dp.
(i) If A=k, then
lim, o, ver(0,) (l0g [X)"17(x; @)

==t e=rey)dm ().

2.3. Limits and Holder continuity in special case

PROPOSITION 2.2. Let a be a unit vector with a*#0. Assume that S satisfies
ag-condition at O and @ satisfies (P-2), (9-3) and (P-4) with L=k.

(i) If a signed measure o on S satisfies (6 —1) with A€ R, then

lim, 0 er(0,a) V3(X)

= V30 + Art | o114+ p)plp; a¥lla*], Bdp.

(i) Suppose a signed measure o on S satisfies (6 —2) with Ae R and a,>0.
Let 0<e<1 and let f=min {ag, o,} in case min {ay, a;}<1; 0<B<1 in case
min {ag, a;}=1; B=1 in case min{ay, o, }>1. If, in addition, ®Pe
CY{(B™(0, 4ro)\{0}) and it satisfies (#-6) with A=k, then there exists a positive
number C depending only on A, K,, K3, Mo, M5, M5, 1o, 0, oy, B and & such that

Ve(x)— Ve = C{lx—XI# + |(x*/Ix*]) — (F*/IX*])I}

for all x, % € E(0, &) n B™(0, r')\{0} with r'>0 depending only on K,, o, and ¢;
in particular, V§ is a B-Hdolder continuous function on L(0, a) n B("(0, r') with
r'>0 depending only on K,, oy and a and with Hélder constant depending only
on A, K,, K3, My, My, Ms, a, 1y, 29, &y and f.
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Proor. For x e L(0, a) n B(™(0, r'), where r'=r(L(0, a), S), we write
(2.6) Va(x) = SS {P(x—y) — P(x—y")}d(o— Aus)(y)
+ o=y - au ()

+ A{V(D, v5)(x) + Y(x; ®) + V(x; D)}.

Since |P(x—y)—DP(x—y")| ZC|y|*~* for xe L0, a)n B™(0, r') and yeS by
(S-1) and (#-3) with A=k, and hence by (o-1)

[ Iyteotdio - apsl () < o0.

Lebesgue’s dominated convergence theorem implies
li,s0,et000 | {B0r—) = Px—y)}d(o— Ap9) ()

= [ (=0 Au9) ) = V(®, 0 - 4 ©),

because &(—y')=0 by (#-2). In order to estimate the second integral on the
right of (2.6), let g(r)=|o—Ausl(S(0, r)) and &(r)=supo<,<, P *g(p). Then
for O<r<r’, we have

[, 1oG—y)ldio— sl )
S,r)

< clx{(xn1+ 0719 + [ (w1 +0) g0}
< c{i+{7 pa+pydpln,

since |®(x—y )| S Clx*|(|x*|+|y’)~*"! for xe L(0,a)n B™(0,r') and yeS by
(®#-2) and Lemma 1.2. Therefore

|{, o=y -au )| < Cor) + | 100x=yNdlor— Aus| ).
s S1S(0,r)

Hence, the second integral on the right of (2.6) tends to zero as x—0 along L(0, a),
because #(—y’)=0 and lim,, &(r)=0 by (6-1). Since

V§(0) = V(®, 60— Aps) (0) + A{V(D, v5)(0) + Y(0; D)},

assertion (i) follows from Corollary 2.1, (i) of Lemma 2.1 and (ii) of Lemma 2.2.
Next, for x € B™(0, ro)\S, we write

Q7 Vax) = V(, 0—Aus)(x) + A{V(D, vs) (x) + Y(x; ) + V(x; )}
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Applying (ii) of Proposition 2.1 with y=k+oa, and ¢ replaced by o — Aug, we see
that the first term on the right of (2.7) is §-Holder continuous on E(0, &) n B(™(0, r’)
with ' =r(E(0, &), S). Thus assertion (ii) follows from Corollary 2.1, (ii) of Lem-
ma 2.1 and (iii) of Lemma 2.2.

COROLLARY 2.3. Assume that k=n—1. Let 0<e<l1, E (0, &)={xe€
E(0, &); x,>0} and S be as in Proposition 2.2. Assume that (9-2), ($-3) and
(9-4) with A=n—1 are valid for ®.

(i) If a signed measure o on S satisfies (6—1) with A€ R, then

limx—»O,xsEdO,s) V%(x)

[ o]
= V50 + 45 7 o214 p) (s e, @),

(ii) Suppose a signed measure o on S satisfies (6-2) with k=n—1, AeR
and a,>0. If, in addition, ® € CY(B™(0, 4ry)\{0}) and it satisfies (-6) with
A=n—1, then V§ is B-Holder continuous on E (0, &) n B"(0, r') with r'>0
depending only on K,, oy and ¢, where B is the same as in Proposition 2.2. The
Holder constant depends only on A, K,, K3, My, M,, Ms, ay, oy, B and e.

By a slight modification of the proof of Proposition 2.2, we obtain

PROPOSITION 2.2'. Let A=k and let a and S be as in Proposition' 2.2
Assume that (9-3) and (9-4) hold for ® and that a signed measure o on S
satisfies (6-1). If A>k, then

lim,o,er(0,a 1X1* ¥V ()
= drgla* =+ " 911+ ) pps a*la, Pdp
and if A=k, then
lm o serc0. (108 1)1 VG0) = — Ar (| &(=roy)dm,_.(y).

ProOF. We prove only the case A>k. For xe L(0, a) n B™(0, r'), where
r' =r(L(0, a), S), we write

(2.8) |x|**Vg(x) = lxl“"SS D(x—y)d(o—Aus)(y)
+ A|x|* V(D vo) (x) + Y(x; D)} + A|x|**F(x; B).

As above, let g(r)=|o—Aus/(S(0, r)) and e(r)=supo<,<,p *g(p). Then for
O<r<r', we have
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ok o= pldio - psl )
(0,r)
< ClxlH{(xl +1749(r) + [ (x1+ 0 g(o)dp}
< C{ltrt (il 41 4 [+ pH(xl+ )y dpl )

< cft+{7 parprirapke,
since |P(x —y)| < C(|x|+|y])~* for xe L(0, a)n B (0, r') and yeS. Therefore
the first term on the right of (2.8) tends to zero as x—0 along L(0, a), because
lim, ;o &(r)=0 by (6-1). Similarly, as x—0 along L(0, a), the second term on
the right of (2.8) also tends to zero. Hence, by (i) of Lemma 2.2 the assertion
of the first part is proved.

§3. Holder continuity and limits of directional derivatives on
non-tangential sets

In this section we prove the Holder continuity of directional derivatives of
d-potentials on a non-tangential line terminating at the origin (cf. [9; Theorem
187).

Throughout this section we assume that S satisfies a,-condition at 0. Let
T(0) (resp. N(0)) be the set of all tangent (resp. normal) vectors to S at 0, i.e.,
T(0)={teR"; |t|=1, t*=0}, N(O)={neR"; |n|=1, n'=0}.

3.1. Tangential derivatives

THEOREM 3.1. LetO<e=<1. Suppose ®eC!(B™(0,4r,)\{0}) and it satisfies
(®-6). If a signed measure o on S satisfies (0-2) with AeR and o, >0 and
if k+min {&y, 2y} >A+1, then for each i=1,..., k, D;V% is B-Hélder continuous
on E(0, &) n B™(0, r')\{0} with r'>0 depending only on K,, oy, and &, where
B=k+min {ay, ;}—A—1, if k+min{ay, a,}—A—1<1;0<f<1, if k+
min {&g, 2, } —A—1=1; f=1, if k+min{oag, a;}—A—1>1. The Hélder con-
stant depends only on A, K,, K3, My, Ms, rq, %, %1, B, € and A. Furthermore,

limx—»o,xels(o.e) D;Vg(x) = V(D;®, 0 — Apus)(0)
+ A{V(D;®, vs)(0) + Y(0; D;®)}
—af (=)0, eddm (),

where v(y') is the unit outer normal at y' to the boundary 0B*X(0, ry) of B*)X(0, ry)
in R*. The same assertions hold for (d/dt)V§ for any te T(0) with D; and e;
replaced by d/dt and t.
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PrOOF. For simplicity, let E=E(0, &) n B™(0, r')\{0}, where r' =r(E(0, ), S).
Since D;V3(x) =S D;®(x — y)do(y)=V(D;®, o)(x) for x € B™(0, ro)\S, it is enough
S
to show that V(D;®, ¢) is f-Holder continuous on E. Consider the measures
go=0—Apug and p,=(J, PP 1) lus on S. Then
V(D:®, 0)(x) = V(D;®, 00)(x) + A{V(D,®, vs)(x) + V(D;®, py)(x)} .

By (#-6) and (0-2), Proposition 2.1 implies that V(D;®, o) is p-Holder con-
tinuous on E. By Corollary 2.1, V(D;®, vs) is also f-Holder continuous there.
We rewrite V(D;®, 1,) as follows:

VD, w)@) = | Did(x= Py

Iy'is
i,
== - (D —-'{/ ’ d ’
S|}"|§ro ayi (X (y )) v
= 2 S D,d(x—¥(NYL () ay
J=k+1 |Y'|§'0 J ay‘ |

= =N, eddmiy(y)
— Sgeinr | D0 =) (Lo (3) )y ().
Since @ € C1(B™)(0, 4r,)\{0}) and r' <rg,

x — S D(x— YN, eddmy_ (")

1y 1=ro

is a C!-function on B((0, ') and hence it is f-Holder continuous there. Finally,
for a;=((0Y;/0y;)o¥~")uy, by (S-1) we have

LICORET A

[y'|#ody" = Crk*eo, 0 <r < r,.
|y |sr

Hence again by Proposition 2.1, each V(D;®, o;) is f-Holder continuous on E.
Thus D;V§ is f-Holder continuous on E. Note that the Holder constant depends
only on the values stated in the theorem.

If t e T(0), then

(dld)Vg = V(d®/dt, 6) = iy t,V(D®, 0)

on BM(0, rg)\S, so that this is f-Holder continuous on E.
As to the limit, we write D;V§(x) as follows: For x € B™(0, ro)\S,

(3.1) DVg(x) = V(D®, 60)(x) + A{V(D;®, vs)(x) + Y(x; D;®) + V(x; D;®)}.
As x—0, x € E(0, ¢)\{0}, by Proposition 2.1 and its corollary, V(D;®, ¢,)(x) and
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V(D;®, vs)(x) converge to V(D;®, 0o)(0) and V(D;®, v5)(0), respectively. By
Lemma 2.1 Y(x; D;®) converges to Y(0; D;®). Finally, since

P D)= = | @x=y) (), eddmy- ()

and this is continuous on B®™)(0, r'), it tends to ——SI . d(—y"H)v(Y"), e

y’ =
dmy_(y"). Thus the theorem is proved:

REMARK 3.1. In a way similar to the proof of (i) of Proposition 2.1, we
can show that if A<k—1, |D;®(x)| < C|x|~*"* (1<i<n) and V!g},(0) < co, then

1in'].x—>0,,\‘slz‘(0,x»;) Divg(x) = V(D,¢, 0)(0) (1 é i é n)‘
In particular, this equality holds in case A<k—1 in the above theorem.

REMARK 3.2. In a way similar to the proof of Proposition 2.2°, we can see
that if @e C1(B™(0, 4ry)\{0}), it satisfies ($-6), a signed measure o on S satisfies
(6-1) and A>k—1, then

limx—fo,xsE(O,c) |xll_k+lDiV$(x) = 0
for0<e<tandi=1,..., k.

REMARK 3.3. If A2k—1 and if we replace (6-2) by (o-1) in the theorem,
then lim,_ ¢ c£0..) D;V3(x) does not exist in general as the following example
shows:

ExampLE 3.1. Let S=B®)(0, 1), A=2k—1 and E={x; x;=-=x,_,=0,
x,>0}. Let a non-negative function f be defined by
(—log |x'])71, if x"eF,
fx) = ,
0, if x"eS\F,

where F={x"eS;0<x,;=1/2, x3+---+x=<x?}. Then do=fdus=fdy’ on S
satisfies (6-1) with 4=0 and

]imx—>0,xe£ Dl V{(x) = 0.

In fact, for h>0, we have
DV{(he,) = 1§ yilhe,~y'1-(r)ay’

= 2{_yu(—togly D@+ 1y Ry Drzay,
F

so that Fatou’s lemma implies
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/2
lim infy 0 D,V{(he,) 2 C | pr-i=2(~log p)'dp = o,
0
since A=k—1.

3.2. Limits of normal derivatives

The following two theorems are immediate consequences of Propositions
2.2 and 2.2" applied to d®/dn in place of P.

THEOREM 3.2. Let A=k—1 and neN(0). Assume that ®€C'(B™(0, 4ry)\
{0}), that it satisfies (#—4) and (P-6) with A=k—1 and that (®-5) with
A=k—1 holds for d®|/dn in place of D;®. If a signed measure ¢ on S satisfies
(6—1) with A€R, then

Td‘Vgs(O) = lim, o, xeL(0,n) —F— d 3(x)

V(‘i,f,o-)(O)+ArOS k=1(1 4 p)- p<p,n,‘; )dp

REMARK 3.4. Incase A<k—1,itis easy to see that if |(d®/dn)(x)| < C|x|~*1
and V¢!, (0)< oo, then

d s . d ;0 _ do
’_t'i_n_VO(O)=hmx—’0,xeL(O,n)WVO(x) = V(W, 0>(O)~

THEOREM 3.2°. Let ne N(O) and a be a unit vector with a*#0. Assume
that @ € CY(B™(0, 4ry)\{0}), that it satisfies (#—4) and (¢-6) and that a signed
measure o on S satisfies (o—-1) with A€ R.

(i) IfA>k—1, then

d

lim, o, ver(0,a) [X]27**1 “a"Tng(x)

= rgr a2 (7 o1 (14 p) 215 s 0 1a¥), L2 )ap.
0
(ii) If A=k—1, then
lim (log |x)~ —2_V3(x)
x—+0,xeL(0,a) a’n (]
= — Ak ae . :
ArOSly’l=l an roy')dm_(y").

(iii) If A=k—1 and (®-5) holds for d®/dn in place of D;®, then

. d
lim, o, xer(0,a) —d;l_V;(x)
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i kgw k-1 —kp(. * | g* ii?f_)

V(42,0 )0 + 4k " p-1(1+ p)p( 0 a*/la*, 42 ).
ReMARK 3.5. Incase @ is defined on R*\{0} and is homogeneous of order

-A; i.e., @(hx)=h"*®(x) for all h>0 and all x#0, then

Poi w, @) = rH(1pp | By +whdm_ ()

Iy'I=

for a unit vector w in R*. Write

apsw, ® = (= py +w)dm_ ().

1y
Let a, n and o be as in Theorem 3.2’. Assume that @e C!(R"\{0}) and it satisfies

(#-6) for 0<|x|<|X|. Then (i) and (iii) of Theorem 3.2’ are written as follows.
(i) If A>k-—1, then

. - d .o
llmx—'O,xeL(O,a)lxll k“ﬁ 3(x)
= wk-a-1 {7 k-1 ey ﬂ) .
lar=1 {7 po1g(p; a*fla¥), L2 Vap;
(iii) If A=k—1 and (@ —5) holds for d®/dn in place of D;®, then
i 4 yaixy = v( 42 °°k—1<.*'*'i?;>
lim, o, xeL(0,a) an 3(x) V( an’ 0')(0) + ASO p* gl p; a*/[|a*|, an dp.

In case P(x)=|x|~4, similar results were obtained in [3; Satz 3]. In this special
case note that

(7 019003 w, @)dp = w2 rG—POPRITG2)
for any we N(0), if A>k.

3.3. Holder continuity of directional derivatives

THEOREM 3.3 Let s be a unit vector and let ng=|s*|"'s* in case s*#0.
Assume that a signed measure ¢ on S satisfies (6-2) with AeR and o, >0 and
that ®eC3(B™(0, 4ry)\{0}) and it satisfies ($—4) and (®-7) with A=k—1, and
furthermore assume that (®-5) with A=k—1 holds for d®/dn, in place of D;®
in case s*#0.. Let 0<e¢=1 and B be as in (ii) of Proposition 2.2. Then there is
a positive number C depending only on A, K,, K3, Mo, Mg, M4, Mg, 1o, %o, &y,
and & such that

a

Lvae) - Lva|s Cllx— 10+ 1x%) - GH/I%*D1)
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for all x, X € E(0, &) n B™(0, r')\{0} with r'>0 depending only on K,, a, and &.
In particular, for any unit vector a with a*+#0, (d|/ds)V$ is B-Hdlder continuous
on L(0, a) n B™(0, r') with r'>0 depending only on K,, oy and a. The Hdlder
constant depends only on A, K,, K5, My, My, M4, Mg, a, rq, o9, &y and .

PrOOF. By (®-7) and Lemma 1.3, (&-1), (#-3) and (#-6) with A=k—1
are valid for @, where M, M5 and M5 appearing in these inequalities depend only
on My, My, Mg and ry. For xe E(0, &) n B0, r')\{0} with »' =r(E(0, &), S), we
write

d '
£5VB0) = 1515V 500 + 1514

&(x),

where t,=|s"|"1s’, provided s’ #0; if s'=0 (resp. s* =0), then we set |s'| (d/dt,)V$=0
(resp. |s*|(d/dny)Vg=0). If s'#0, then it follows from Theorem 3.1 that
(d/dt)V3 is B-Holder continuous on E(0, &) n BU(0, r)\{0}. If s*#0, then
applying (ii) of Proposition 2.2 with @ and A=k replaced by d®/dn, and A=k—1,
respectively, we obtain the desired estimate for |s*|(d/dng)V%. Therefore the
assertions of the theorem are valid.

COROLLARY 3.1. Let k=n—1 and s be a unit vector. Assume that &€
C%(BM™(0, 4ro)\{0}), that it satisfies (®-4) and (®-7) with A=n—2 and that
(P-5) with A=n—2 holds for D,® in case 5,#0. Let p, ¢ and ¢ be as in Theorem
3.3. Then (d/ds)Vg is a B-Holder continuous function on E_(0, &) n B™(0, r’)
for some r' >0.

3.4. Applications to double layer potentials

For r; withO<r; <rg, suppose S(0, r,) is a C'-surface and ®e C!(B™(0, 4ry)\
{0}). For every yeS(0, ry), take a unit normal vector n, to S at y such that
each component of n, is a Borel measurable function of y on S(0, r,) and

(3.2) In,—nol = Clyl*

for some C>0. For asigned measure ¢ on S(0, r,), we define Wg,(x)=g (d/dn,)
S

&(x—y)da(y) and call Wg a double layer @-potential of o. If xe B"(0, ry)\S,
then

(3.3) Wa(x) = 2=, V(D;®, 0))(x),

where do(y)=—<n,, e;»da(y) for i=1,..., n. Furthermore, by (3.2), it is easily
seen that if ¢ satisfies (o-1) with A € R, then (6-2) is valid for o; (1< i< k) with
A=A;=0 and «a, replaced by a,, and (6-1) is valid for g; (k+1=Zi<n) with
A;= —A<ny, e;) in place of A; if o satisfies (6-2) with 4e R and o, >0, then
(6-2) holds for g; (1 <i<n) with A=4; and «, replaced by min {«y, ;}. Thus
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the following two propositions are consequences of Theorems 3.1, 3.2 and 3.3.

PROPOSITION 3.1. Let A=k—1 and a be a unit vector with a*#0. Assume
that ®e CY(B™(0, 4ry)\{0}) and it satisfies (#-4), (9-5) and (®-6) with A=k —1.
If a signed measure o on S(0, r,) satisfies (6—1), then

]im.\'*O,.\‘EL(O,a) W%(x)

exists.

PROPOSITION 3.2. Let a and J be as in Proposition 3.1. Assume that
® e C3(B™(0, 4ry)\{0}) and it satisfies (D-4), (®-5) and (P-7) with A=k—1.
If (0-2) is valid for a signed measure o on S(0, r,), then W$ is p-Hdlder con-
tinuous on L(0, a) n B0, r') for some ¥’ >0, where B is as in (ii) of Proposition
2.2.

Also, we have

PrROPOSITION 3.3. Let A>k—1 and a be as in Proposition 3.1. Assume
that @€ CY(B™(0, 4ro)\{0}) and it satisfies (#—4) and (P-6). If (0-1) is valid
for a signed measure o on S(0, r,), then |x|*"**1W3(x) converges to a finite
value, as x—0, x € L(0, a).

In fact, by virtue of (3.3), it suffices to prove that |x|*"**1V(D;®, ¢;)(x)
converges to a finite value for i=1,...,n. If k+1<i<n, then the existence of
the limit follows from (i) of Theorem 3.2', since o; satisfies (6—1) with A=A4,, as
shown above. If 1 Zi<k, then by Remark 3.2 we obtain

limx*O,xeL(O,a) lel_k+l V(D1¢) ai) (x) = Oa

since, as is seen above, (6-2) holds for ¢; with A =0 and «, replaced by min {a,, o}
and thus (o-1) holds for o; with A=0. Hence the assertion is proved.

§4. Existence of derivatives on the surface

In this section we are concerned with differentiability of Vg at 0 (cf. [9;
Theorem 18] and [11; Theorem 2]). Note that the existence of normal derivatives
of Vg at 0 was already given in Theorem 3.2. As is easily seen (cf. [2; Satz 4]),
if A<k—1 and |o|({y; |ly—x|Sr})SCr* for |x—x° <r, and 0Zr=r, then
D,-Vg,(x)=g D, ®(x — y)do(y) for |x—x° <r,. Thus we consider only the case
Azk—1.

Throughout this section, we assume that S satisfies oy-condition at 0, ¢ €
CY{(B™(0, 4ry)\{0}) and it satisfies (P-6).
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4.1. Lemmas

LEMMA 4.1. Let k—1=ZAi<k, let te T(0) and g; (i=k+1,..., n) be real
valued Borel measurable functions defined on an open interval of R! containing
zero such that

4.1) |gi(h)| £ M|h|t+= for some M >0 and o> 0.

Suppose that a signed measure o on S satisfies (6-2) with A€ R and a,>0, and
that there are numbers L>0 and o,, 0<o, =<1, such that

(o-3) lol (B™(x, p)) £ Lp*~1*=

for every xeS and O0Zp=<r, If (k+o;—1)(k+a,—A—1)>A, then
V(d®/dt, o — Aug)(0) exists and

lim_o h={V(®, 0 — Aps) (x(h)) — V(®, 0 —Aps)(0)}

_ do
= V(W’ 4 Alls)(o),

where x(h)=ht+g, . (h)ex s+ - +ga(h)e,.
Proor. For simplicity, let 6,=0— Aus. . First we note
4.2) k+oa,>A+1,
since k+a,—2—1Z0,<1 and (k+o,—1)(k+a,—A—1)>1. By (9-6),
|(d]dt)y®(x)| < C|x|~*~'. Hence, by (6-2) and (4.2) we have
[, [49-(=)|dlaol(r) < o.

Thus V(d®/dt, 6,)(0) exists. Moreover, by using ($-3) and (4.1), we easily
see that

limh-.o h1 S {d>(x(h)—y)-.di(_y)}do_o(y)
S\8(0,r)
- o
- SS\s(o,,} dt y)doo(y)

for 0O<r<r,. Thus to obtain the assertion of the lemma, it is sufficient to show
that

im, o lim supq [ A { {0(x(h) =) — @(=)}dog(y)| = 0.
To see this, take r, 0<r=r,, such that 4nMr*<1, (4.1) is valid and |x(h)|=

2|h| for h with |h|=<r/4. Let Fi={yeS(0, r); |ht—y|<|h|/2}, F,=S(0, r\F,
and put
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1) = 17 {@(x(h=) = &(=}do(), i =1,2
for |h|<r/4. Observe that for y € F,, |y| < 3|ht—y|, so that by (4.1)
|x(h)—y| Z [ht—y| — |x(h)—ht| Z |ht—y| — nM|h|'*+*
2 |ht—y| — 471 h| 2 27 ht—y| 2 67'|y|.
Hence by (9-3) we have
{P(x(h)—y) — (= y)}/h| < Cly|™*!
for y € F,, since |x(h)|<2|h|. Thus by (6-2)

L s o) s € i+ dlool )
F» S(0,r)
é Crk+a1—l—1’
so that by (4.2)
lim, o lim sup,_.q |I,(h)| = 0.
Next, we consider I,(h). Since S is represented by Lipschitz functions,
(4.3) ly—z| S Cly'—z| for y, z€S.

Let x,=Y¥(ht). If yeF,, then |ht—y'|<|h|/2=|y] and by (4.3) |x,—y|=<
C|ht—y'| £ C|x(h)—y|, so that

|2(x(h)—y) — (=)l = Clx,—y[™*.

Thus it is enough to show that

(44 iy 11171 {16, = y1-4dlol ) = 0.

1

For this purpose, take >0 such that (1+f8)(k+a,—A—1)>1and k+o, —A—1>
BA. Then (1+p)(k—2A)>1, since a,<1 and thus k—A=k+a,—A—1. Let
Fy={yeS(0, r); |x,—y|<|h|**#}. Then it follows from (¢-3)’ that

h{, x= sl dlol0) S Clasp 0Dt 0 a5 h—s0.
F3
Next, since |ht—y'|<|x,—¥(y)|, we have

= ey < Cla § b=y | dy’

[ht=y’|S|h|1+F

= C|p|A*BG=H=1 _, 0 as h—> 0.
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Finally, by (6-2) we have
Ihl"g Ix,—yI~*dlool (y) < Clh|¥+==(*P2"1 — 0 as h — 0.
F(\F3

Thus (4.4) holds, and the proof is complete.

Applying the lemma with o=vg which satisfies (6-2) with A=0 and a;, =«
and (0-3)" with a, =1, we obtain the following corollary.

COROLLARY 4.1. Let k—1ZA<k and t, g, (i=k+1,..., n) and x(h) be as
in Lemma 4.1. If (k+oy—1)(k—A)> 4, then V(d®/dt, vs)(0) exists and

limy. h™H{V(®, v9) (x(W) = V(®@, v9)O)} = V(42 v5)(©).

LEMMA 4.2. Let t, 4, g; (i=k+1,..., n) and x(h) be as in Lemma 4.1. If
min {a, oy} >(A—k+1)/(k—4), then

limy,,o h~!1 SI < {o(x(M) —¥(y)) — (= ¥(y)) — ®(ht—y") + &(—y")}dy’

y'|Zro

= Y(O; %)

Proor. For simplicity, let H(x, y)=®(x—y)—®(—y). As in the proof of
Lemma 4.1, we see that

limyo h“g {H(x(h), ¥(y")) — H(Ht, y')}dy’

r<|y’|sro

Sr<|y'|§ro {%(_ () - %(“y'j}dY'-

Thus it suffices to prove that
lim, o lim supj. [h~" Sl s {H(x(h), ¥(y")) — H(ht, y')}dy'| = 0.
y =r

Choose r, 0<r<r, such that |¥(y’)--y'| £471y’| on B*XO, r), (4.1) is valid and
|x(h)| =2|h| for h with |h|<r/4, and choose M large enough so that (S-1) with
K,=M is valid. Let B=min {a, oy} and O<|h|<r/4. Set

I(h) = |h|™? Smsf [H(x(h), ¥(y")) — H(ht, y)|dy’,

I1y(h) = ||} " |&(= ¥ () — ¢(=y)ldy’,

153]

SU’
1) = [@Ce() — () — Blhi—y)ldy,

—y'|=3(h|
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I3(h) = |h|™! SF |@(x(h) — ¥(y)) — ®(ht — ¥(y))ldy’

and
Iy(hy = || SF \H(ht, ¥(')) — H(ht, y)\dY',

where F={y’; 2|h|<|y’|<r, 2|h|Z|ht—y’'|}. Then I(h)Z2I,(h)+21,(h)+1;5(h)+
I,(h). By (S-1) and (®-3), the integrand of I, is dominated by C|y’|?°~%, so that
3| n|

I,(h) < Clhl—lg pktao=i=lgp = C|p|k+ro=4-1,
0

Next, using (#-3), we have

L = i | \ht — 3| x(h) — ¥ ("))
|ht=y’| <3|h|
X A i (9:(B) —Yi(r))?} 12dy’
. 3
< el [ ot gpn + i1
3(2nM|h|B)-1

< Clhlﬁ(k—}.)—(l—k+l)g pk—i.—l(l +p)'dp
o !

< Clh|PE=P=G=k+D log (r/|Al),

because {31y (M) —Vi(¥)* P2 iy (g(WI+ WY =2nM|h|'*F  on
B®)(0, 4|h|) by (S-1) and (4.1), and thus by the monotonicity of t—1(A2+42)"1/2,
[x(h) =YY X k1 (gi(h) — Yi(y")?}12
< 2nM|h|*8{|ht—y'|> + (2nM|h|1*F)2} 12,

By (®-3) and (4.1), the integrand of I; is dominated by C|h|'**|ht—y'|~*"1,
so that

I3(h) = CIhI“S bt — y'|=*"1dy’ < Clhl* S2| ka—l—zdp
F h
< Cla|**==*"log (r/|Al).
Finally, applying the mean value theorem, by (S-1) and (#-6), we see that the

integrand of I, is dominated by C|h||y’|*c=*~1 on F, since 27'|y’|<|ht—y'|<
2|y’| on F. Thus

I(h) = CS ) |p’|20=4=1dy’ = Crkt+ao=a-1,

Iy’ | =r

Since min {a, oy} >4 —k+1 by assumption, the lemma is proved.
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4.2, Existence of derivatives at the origin

In [9; Theorem 15] Ohtsuka proved that if f satisfies a Holder condition at
0, then the tangential derivative (d/df)V] of a single layer Newtonian potential
V{ exists. In this connection the following problem is raised by him ([9; p. 56]):
In R3, let S be a 2-dimensional C!-surface which satisfies a,-condition at 0 (€ S)
and let te T(0). If the origin is a Lebesgue point of order «, >0 of o=fus, i.c.,

[, 170) — dldus) = 00> as 710
S(0,r)

with some A4 € R, then does the tangential derivative (d/dt)V{ exist at 0?
First we give a negative answer to the problem and next a condition under
which the assertion holds.

ExampLE 4.1. Let S=B®(0,1) and o,>0. Put r;=2"¢% and ;=
2-Getani/te=1) (j=k k+1,...). Let fbe a function on S defined as follows:
|x"—re "t if |x'—re| 26, (G=k k+1,..),
f(x) =

0, otherwise.

Then for i=k, k+1,..., V{_,(rie;)=o0 and
g FO)dy < Crta forall r,0<r <2k,
S(@0,r)
In fact, if 271 <r<27i*1, then

SS(O Sy s S F(y)dy' < C X5y 861 < Crietan,

§(0,2-i+1)

THEOREM 4.1. Let t, 4, 0, g; (i=k+1,..., n) and x(h) be as in Lemma 4.1.
If min {o&, oo} >(A—k+1)/(k—2) and (k+o;—1)(k+0,—A—1)>A, then

limy,o {V3(x(h) —V3(0)} /A

- V(%, a—Aus>(0) + A{V(%, vs>(0) + Y<O; @)}
—A| S0, Ddm ().

PROOF. Writing
{Va(x(h) — V§(0)}/h
= h™{V(®, 0 —Aps) (x(h)) — V(P, o —Aps) (0)}
+ Ah™H{V(D, vs) (x(h)) — V(2, v5)(0)}
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+Ah—1g

Iy

\gre {P(x(h) =Py )N —(—¥Y(y)—D(ht—y )+ D(—y")}dy’
+ Ah~Y{P(ht; ®)—TV(0; D)},

we see that the assertion of the theorem follows from Lemmas 4.1, 4.2 and 1.4
and Corollary 4.1.

In this theorem let all g;=0. Then, by the aid of Theorem 3.1, we obtain

COROLLARY 4.2. Let0<e¢=1, A and o be as in Lemma 4.1. Ifay>(A—k+
Di(k—2) and (k+a;—1)(k+a,—A—1)>4A, then the partial derivatives
D,V3 (i=1,.., k) exist at 0 and

D;V(0) = lim, 0, xe£(0,s) Di V' 3(x).
Moreover,

d .
4y (0)=1lim o, e5(0,0) 2V 5(x)

and

4V5(0) =¥, 1,D,V5(0)

for any te T(0).
REMARK 4.1. Assume that a Borel measurable function f on S satisfies
|f(x)—A| < C|x|*', whenever xe€S

for some Ae R, C>0and o, >0. Then o=fug satisfies (6-3)’ with a,=1. Thus,
in case A=k—1, [9; Theorem 15] is a special case of this Corollary 4.2, since the
assumptions on &, and a; are nothing but oy >0 and a, >0.

For a Lebesgue measurable function f on R" such that S [x—=yI"*fdy # o,
we define a domain @-potential of f by S(P(x-— y)f(»)dy and denote it by Uf(x).

Since domain @-potentials can be considered as the restrictions of single layer
P-potentials in R**1, we obtain

COROLLARY 4.3. Let f be a Lebesgue measurable function on R* such that
f=0 outside B™(0, ro). Assume that for a point x° with |x°|<ry, there are
numbers A, C>0 and a, >0 such that

If(x)—A4] = Clx—x0n

for every x. If n4+a,>A+1, then the partial derivatives D;U}, i=1,...,n,
exist at x° and
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DUS(x0) = S D& (x°—y)f(y)dy

B()(0,r0)\ 2

+ S D,®(x0—y){f(y) - A}dy
_ AS ®(x°— )V (p), eddm, i (p)
o

for every domain Q with C'-boundary 0Q such that x°e Q< B™)(0, ry), where
v(y) denotes the unit outer normal to 0Q at y.

Next, we consider the existence of directional derivatives at 0. Since Theorem
3.2’ shows that normal derivatives of single layer ®-potentials do no exist in
general in case 4>k — 1, we consider only the case A=k—1.

THEOREM 4.2 (cf. [11; Theorem 2]). Let A=k—1 and s be a unit vector.
Assume that @ satisfies (9—4) and (D-5), and a signed measure o on S satisfies
(6-2) with a,>0 and (6-3) with a,>0. If a,(k+a;—1)>k~1, then the deriv-
ative (d|ds)V in the direction s exists at 0 and

d
tS

SVH0) = 151 5V50) + Is*|45V5(0)

= B4y siDV5(0) + Is* - V50),

where t, and ng are as in 3.3.

Proof. If s*=0, then the assertion is obtained in Corollary 4.2. If s'=0,
then the existence of the normal derivative is proved in Theorem 3.2. Thus in
the sequel we assume that s’ #0 and s¥*#0. Then for h>0, we write

I(h) = {V§(hs) — Vi(hs®)}/h + {Va(hs*) — V§(0)}/h.

By the mean value theorem we find a point x,(h) on the segment between hs
and hs* and a point x,(h) on the segment between hs* and the origin such that

1) = 15" Ve (1) + Is*| 4LVa e ().

Since x,(h) € E(0, |s*|), we have by Corollary 4.2

. d

limy s V(i (8) = V(0.
Since x,(h) € L(0, n,), by Theorem 3.2 we obtain

. d
lim, 0 gy V3(xa(h) = V5(0).



Existence and Hoélder continuity of derivatives of single layer @-potentials 571

Thus the proof is complete.

4.3. Counter examples

We here show that in case k—1<i<k and O<ag<(A—k+1)/(k—A) or in
case k—1</ and O<a; <A—k+1 the partial derivative D,V does not exist in
general even if o=fugq satisfies (6-2) and (6-3)'".

EXAMPLE 4.2. Let k—1<A<k and A-k+1l<ag<(A—k+1)/(k—2). Let
S={x; Xpr1=Ix1"*%, X ;= =x,=0,[x'|<1}. Then V,(x)= Ss |x—=y|~*dus(y)
is not differentiable with respect to x, at 0.

To see this, we write

(Vithe)) = VO3 h=h" | (lhes=yI™ = |y )dus(y)

+ h—lg (lhey =¥ (y) [ — [P DTE () — 1} dy’

1y l=r

(ke =¥ = PO

|y |sr

for 0<4h<r, where Y(y')=(V15..» Vs |¥1]17%, 0,..., 0). Denote the terms on
the right by I,(h), I,(h) and I;(h), respectively. Clearly,

. 0 -
timyio () = = { L (v dus(),
s\8(0,r) OV1
As in the proof of Lemma 4.1, we can show
lim supy, o |I5(h)| < Crkteo=a-1,

To evaluate I, we write it as follows:

i) =1t § | (hey=yI7 = 1y’

y'|sr

+ 1ty - 1Ny

+ b (hey =PI = lhe, =y -dy

b {lhe, = PO = 1RO = lhe, =1 + 1|4y
= () + J1(1) + () + Js(h),

where F, ={y’;|y’—he;|<2h or |y'|<2h} and F,=S(0, r)\F,. Applying Lemma
1.4 with &(x)=|x|"*, n=k and i=1, we obtain
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limyio JO) = = | VIO, eddme- () = 0.
Since the integrand of J, is non-negative and dominated by C|y’|*e~%, we have

0= /(W)= Ch_lg |y'|2o=Ady’ = Chk+ao=4-1,
3h

Iy'ls

so that lim,,oJ4(h)=0, since k+ay>A+1. As in the proof of Lemma 4.2,
we see that lim sup,, ¢ |J5(h)| < Crkteo=4-1,

We now show that lim,;,J,(h)= —o0. Since the integrand is non-positive,
by changing variables, we obtain

-5z (e, =y'| = hey =¥ () ) dy’

|her—y’ | Sh/2

2t = (24} d

lulsh/2
h/2 .
= ot [ gt - (o2 4 jay ey dp
> Chrotk=1)=(A=k+1)
Thus lim,, o J,(h)= — o0, because ay(k— 1) <(L—k+1), and hence
limy 0 {V 1(he;) = V(O)}/h = — o0,
which implies that ¥, is not differentiable with respect to x; at 0.

In case k—1<A<k and O<ag<A—k+1, let S and f be as in Example 3.1.
As in the proof of that example it can be easily seen that

lim,, o D, V{(—he,) = 0.
Hence V1 is not differentiable with respect to x, at 0.

ExampPLE 4.3. Let k—1<Aand O<a;<A—k+1. Let S=B®(0,1). Con-
sider a non-negative continuous function f on S such that it is equal to |x’|** in
F={x"; 0=x,<1/2, x3+---+x2<x%}, equal to zero if x; <0 and f(x')<|x'|*
everywhere. Then D,V{ does not exist at 0.

In fact, we show that
limhlo Dl V{(_‘hel) = 00.

Since f is non-negative, we have

D,Vi{(—he,) = 4 SS (h+y1)lhes+y'|*72f(y)dy’

= ASF yily'|*the; +y'|~472dy’
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for h>0. Thus
liminf, o D, V{(—he;) = CS ly|=4-1dy’ = oo,
F

since k+oa;<A+1 and [y’|<2y, on F.

§5. Holder continuity of derivatives on the surface

In this section we study the Holder continuity of derivatives of @-potentials
on the surface S when A=k—1 under the condition that S is a C!-surface
satisfying uniform o«,-condition (cf. [6; Chap. II, §7] and [11; Theorem 3]).

5.1. Surface with uniform & -condition

In what follows we assume that S is a C!-surface, i.e., ;e C{(B*)(0, ry))
(i=k+1,...,n). For any xe S, let T(x) (resp. N(x)) be the set of unit tangent
(resp. normal) vectors to S at x. For each x e S, applying Gram-Schmidt or-
thogonalization process to the vectors

(1,0,...,0 61//k+1 '),.. ‘7‘”; (x’)>,

(O""’ 0,1 a'/"‘“ (x), *”: (x’)>,
(‘ &g%(x’),..., - ag/_;:,(x ), 1, 0,..., 0),

(‘ %ﬂu'),---, - 27‘/':@'), 0,..., 0, 1),

we obtain an orthonormal system {s,(x),..., s,(x)} such that s,(x),..., s;(x) € T(x)
and s, ((x),..., s,(x) € N(x). Note that s(0)=e;, i=1,..., n, and each s; is con-
tinuous on S. We denote by A(x) the orthogonal matrix such that s,(x)=e;A(x)
for i=1,...,n. Let O<r,<r,. For each xeS(0, r,), there exists an open
neighborhood V, of x such that SnCé(V,) is expressed by C!-functions
Vs 1(E'5 x),..., Y, (E'; x) with tangent-normal system of coordinates &, that is,

S nCeVy) = {x+¥("; DAx); I&'] £ 13},

where Y(&'; x)=(&', Yir41(&'; X),..., ¥, (€'; x)) and r; is a positive number in-
dependent of x € S(0, r,). Asin §1,

dus(x+P(&'; 9)A(x)) = J,P(&'; x)de’

for |£'| =r, with a continuous function J,W(¢'; x) (= 1).
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For 0<ay=<1, we say that S satisfies ay-condition uniformly on S(0, r,),
if there is a positive number K such that

. 2
o, (G @ ) 5 kg
for every x € S(0, r,) and [£'|<r;. Then as in §1 we can find K, >0 such that

(8-3) W5 X)| = Kgf&'|Fee

and
0= J W5 x) — 1 < Kyd'[*e

for every xe S(0, r,), |£'|<ry and i=k+1,..., n. We note that in case k=n—1,
S(0, r,) is a Liapunov surface with a Liapunov function g(t)=Ct?, if S satisfies
ao-condition uniformly (see [6; Chap. I, §1] and [12; p. 18]).

We denote by S(x, p) the set {x+ V(¢'; x)A(x); |&'|<p} for 0=Zp=r; and
x € S(0, r,).

LEMMA 5.1. Let O0<oao=1 and O<r,<ry. If S satisfies ay-condition uni-
formly on S(O, r,), then there is a positive number C depending only on K,
such that for every x, X € S(0, r,),

[<si(x), s;(ED| = Clx—%|*, i # j,
1 = {5(x), s(%)) < Clx— x|

and so
Isi(x) — s(X)| = C|x — X|*.

This lemma is easily obtained from the construction of s/(x)’s.

For xeS(0, r,) and zeR", let z¥(x)=(zA(x)"!)*, and for 0<e=<1 and
0<r=r;, let E(x, r, &)=B™(x, r) n {y; [(y —x)*(x)| 2 ely — x|}

LeMMA 5.2. Let O<r,<r, and 0<eZ1. Assume that S satisfies o,-
condition uniformly on S(0, r,). Then there are positive numbers C and r de-
pending only on K, r3, 0y and € such that

(5.1 |z—x| + |x—yl = Clz—y]|
for every xe S(0, r,), ye S and ze€ E(x, r, ).

By virtue of Lemma 1.2 and the uniform a,-condition, the assertion holds.

5.2. A remark on Holder continuity

LEMMA 5.3. Let O<a=<1, S be a k-dimensional Lipschitz surface as in
§1 and f be a Borel measurable function on S. Then the following statements
are mutually equivalent:
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(i) The function f is a-Hdolder continuous on SN B™(0, r) for some r,
0<r=ro.
(ii) There are positive numbers p,, p, and C such that

! F ) ~F(ldps(y) < Cpb
SNBU(x,p)
for every xe S0 BW(O, py) and 05 p=p,.

PrROOF. Since y,’s representing S are Lipschitz functions, there are positive
numbers C (=1) and p, such that

(5.2) C™'p* < pus(B"(x, p)) < Cp*

for every x € S n B™(0, py) and 0= p < p,, Thus it can be easily seen that (i) implies
(ii). Suppose (ii) is valid. Let x, Xe SnB™(0, p;) with [x—X|<p,/2. Then
by (5.2) we obtain
CHfx)—f ) [x—x|*
S 1) —=f(B)lps(B™(x,| x —%1))
S (f=FDusl(BM(x, |x—XI))
+ 1(f=fXusl(B™M(X, 2|x—%[)) < Clx—x[**=.

Thus (ii) implies (i).

REMARK 5.1. Let S be as in Lemma 5.3 and f, g be Borel measurable
functions on S. Let O<r<ryand O<a=1. If

{ F()—g(ldus(y) < Cpt*e

SnB("(x,p)

for all xeSn B™(0, r) and p=0, then it follows from [5; Chap. II, Theorem
2.9.7] that f=g us-a.e. on S n B™(0, r), because, as in the proof of Lemma 5.3,
Us satisfies the diametric regularity condition (see [5; Chap. I, 2.8.8]). Thus,
by the above lemma, g is a-H6lder continuous on S n B("(0, r), so that we may
assume that f is a-Holder continuous there, when we consider the single layer
d-potential of f.

5.3. Boundedness of derivatives
In the rest of this section, we assume that S satisfies ay-condition uniformly
on S(0, r,) for O<r,<r,.

LEMMA 54. Let A=k—1>0and 0<e<1. Assume that ®€CY(B™(0,4ry)\
{0}) and it satisfies (P—4) and (P-6) with A=k—1 and
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(0-8) 5 (EAC) | S MoAEH I, i = ke + Loy

Jor every xeS(0, r,) and £ e R" with 0<|{|<rs. If fis ay-Hélder continuous
on S, then there exists a positive number C depending only on K,, M5, M,, 7,
oo, %y, & MaXg |f| and the Hélder constant of f such that

lax Vq,(z)( <cC

Sor all ze\U,50,,) E(x, r, e\S(0, r,) and j=1,..., n, where r is the number
given by Lemma 5.2.

Proor. For simplicity, let E,=E(x, r, e)\{x} for xe S(0, r,) and put D=
Useso) Ex- Since D;VE(z)= X1, (d/ds)V{(z)<ej, s;» for zeE,, where s;=
s{(x), it is sufficient to prove that sup,., |(d/ds;)VE(z)| <. Let &(&)=D(EA(x)).
Then & also satisfies (9-6).

If zeE,, xe S(0, r,), then we write

(z—=y)f(y)dus(y)

Va(2) = SS\S(x ) dS
=) {f(») = f(¥)}dus(y)

w0 | GE - o ) ) - Dy

SS(x rs) dS

{‘95 € - vors ) - 22 e-mlar

+ f(x) SW

w1 G E=mar,

where z—x=C&A(x). It is clear that the first term on the right is bounded on
D={(x, z); xe S(0, r,) and ze E,} with a bound depending only on M and .
By using (9-6) and (5.1), we see that the absolute value of the second term is
majorized by a constant which depends only on K,, M s, r3, o, &;, € and the Holder
constant of f. Similarly, the third and the fourth terms are bounded on D with
a bound depending only on K,, M3, r3, 0, € and maxg |f|. If 1<i=<k, then the
last term on the right is equal to

1§ BE=mom), eddme o).

whose absolute value is dominated by a constant depending only on Mg, 73, €
and maxg|f|. If k+1<Zi<n, then by (i) of Lemma 2.2 with & replaced by
(0/0¢;)®, the absolute value of the last term on the right is majorized by a positive
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number depending only on M., r;, ¢ and maxg|f|. Thus the assertion of the
lemma is obtained.

From Theorems 3.2 and 4.2, Corollary 4.2 and this lemma we derive the
following corollary.

COROLLARY 5.1.  Under the same assumptions as in the lemma, there exists
a positive number C depending only on K,, Ms, M, r3, oy, 0y, maxg | f| and the
Holder constant of f such that

|-Evim|=c
for all unit vectors s and x € S0, r,).

5.4. Holder continuity on the surface

THEOREM 5.1 (cf. [9; Theorem 20]). Let A=k—1 and s be a unit vector.
Assume that @ e C2(B")(0, 4ry)\{0}) and it satisfies ($-4), (®-7) with A=k—1
and (9-8). If a function f is a;-Hdélder continuous on S and min {ag, o} <1,
then the derivative (d/ds)V} in the direction s is min {ag, &, }-Hdélder continuous
on S(0, r;). The Holder constant depends only on K,, Mg, M4, 13, oo, o4,
maxg | f| and the Hélder constant of f.

REMARK 5.2. In case n=3 and &(x)=|x|"!, this theorem is reduced to
[9; Theorem 20].

Proor. Let f=min {&g, &;}. By Theorem 4.2,
d d d
V(%) = Tk <, Si(x)>mV£(x) + IS*(X)|7,1S(T)V£(X)
for every x € S(0, r,), where ny(x)=|s*(x)|"1s*(x) in case s*(x)#0.
First, we prove the Holder continuity of (d/ds(x))V5(x) for i=1,..., k. Let
r>0 be the number given in Lemma 5.2 for e=1/2. Then there is r4>0 (r4 rs),
depending only on K, and r;, such that x+|x—X|ne E(X, r, 1/2) whenever

ne N(x), x, Xe€S(0, r,) and |x—X|=r,. For x, X€S(0, r,) with |[x—X|=r,,
let w=x+|x—X|s;+(x) and write

d d . d 4
i ) = ) V) = (G ) — iy 0|
d
* {WV‘{’(W) ds; (x) Vf(x)}

+ B (i), 5,099 g5y VA,
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Since we E(%, r, 1/2), by Lemma 5.4 (d/ds(%))V4(w) is a bounded function of
(x, X)e S(0, r,)x S(0, r,), so that the second and the fourth terms on the right
are dominated by C|x—X|# in absolute value by Lemma 5.1. Since s,(x) (resp.
5{X)), 1S i<k, are tangent vectors to S at x (resp. X), we see by Theorem 3.1
that the first and the third terms on the right are majorized by C|x —X|# in absolute
value. The above constants C depend only on K,, M¢, M, 5, o, o;, maxg|f|
and the Holder constant of f. Therefore we obtain

Tj"(xS—V‘{a(X) - *dsjifi)Vi(f) = Clx—x|F

for |x—X|<r, with a constant C of the above type. It follows that <s, s(x))
(dlds(x))V4(x) is p-Holder continuous on S(0, r,) for i=1,...,k, since
(d/ds{x))V4(x) is bounded by Corollary 5.1 and (s, s{x)) is ay-Holder continuous
by Lemma 5.1.

Next, we prove the Holder continuity of |s*(x)|(d/dn(x))V§(x). For x,
XeS(0, r,) with |x—X|<r,, we assume that |s*(x)|<|s*(X)| and s*(X)#0, and
put w=x+|x—X|n(x) and z=X+|x—X|n(X). Here we let ny(x)=ny(x) if
s*(x)=0. Then

I5* () gy V60 = 15* (D gy Vo)
= 15 ()] gty Vo) = ey VO
+ Der G55 0) = 55D, () g5 Gy VA0
d

+ IO Gy V) = gz VO]

s

+ |s*(i)|{d—n:1(—§V£(z) — ﬁ%(g)} =T+ T+ s+

By Theorems 3.2 and 3.3, we have |J;|<C|x—X%|# and |J,|=C|x—X|#, and by
Lemmas 5.1 and 5.4 we have |J,| < C|x —X|#, where the constants C depend only
on K4, Mg, M+, ry, oy, o;, maxg|f| and the Holder constant of f.

To estimate J;, we observe that

(5.3) I(x = X)*X)| = Clx—X|' %,

(5.4) L= Inx)*X)| = Zl=1 [Knd(x), s(X))]
S Xhakrr Zi=1 Knd(X), s;(x)D][<s(x), s(X))]
= Clx—ZX|*

and
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(55 [s*(X)] ny(x) — n(X)| = 2[s%(x) — s*()|
S 2 3ok 1<, six)Dsi(x) — (s, si(%))sd(X))]
é Clx_ilao,

by (S-3) and Lemma 5.1, where the constants C depend only on K,. Now,
put w=(w—X)*(x) for simplicity. Since

W= (x—X)*&) + |x—X[n(x)*(%),

(5.3) and (5.4) imply that

(5.6) [1W] — |x=%|| £ Clx—X|!*ee
and
(5.7 |(W/|x— %) — ny(X)|

S Ix=X)*E®)x—%7" + |n{x)*(%) — n(H)|
= Clx—=%|* + |n(x) — n(%).
From (5.5), (5.6) and (5.7), it follows that
[s*(Z) [(w = Z)*X)/I(w = )*X)| — (z—=)*(X)/I(z—X)*X)| |
= [s*@)N(W/|W]) — ny(X)|
S [s*RNW] = [x=X[ | |x=%]|7 + [s*(Z)] [W/|x — %] — n(X)|
< Clx—x|%
with a constant C depending only on K,. Thus, by Theorem 3.3, |J;| < C|x—X|#

with C depending only on the values described in the theorem. The proof of the
theorem is now complete.

5.5. A generalization of a theorem of Liapunov

Let r>0,0<0<n/2 and a be a unit vector in R". For a point x° in R",
we denote by C(x°; a, r, 8) the truncated closed cone with vertex at x°, axis
along L(x°, a), height r and angle 0, that is, the set of all points x satisfying the
inequalities

[x—x% cosf £ (x —x%ad <.

Since S satisfies ay-condition uniformly on S(0, r,), by Lemma 5.2 there are
positive numbers C and r* depending only on K, r3, oy and 6, such that

lz—x| + |x—y| £ Clz—)y|

for every x € S(0, r,), ye S and z e C(x; s34 ,(x), ¥, 0).
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LeEMMA 5.5 (¢f. [9; Lemma 9]). Let 0<a=<1and 0<@<mr/2. Assume that
g is a function defined on \U,c5 r,) C(¥; Sx41(¥), ¥, O)\S(O, r;) for which there
is a positive number C, such that

lg(x) — g(%)| = Cylx—x|*,
whenever x, X € C(y; si4,(y), r*, O\{y} for some yeS(0, r,). Let g(x) be equal
to g(x) on \J yes(0,r2) C(y; Ses1(¥), 7*/2, 0/2)\S(O, r;,) and defined by
limz—'x,zsC(x;skH(x),r‘,e)\{x} g(Z)

on S(0,r;). Then for r with 0<r<r,, g is a-Hélder continuous on \U s,
C(y; se+1(»), r*[2, 0/2) with Holder constant depending only on C,, K4, r3, a, aq
and 0.

Proor. First, we prove that g is a-Ho6lder continuous on S(0, r). Since S
satisfies a,-condition uniformly on S(0, r,), it is enough to show that g is a-
Holder continuous on S near the origin. If we choose p so large that cos 6/2 <
p/(p+1), then we can find rs (>0) depending only on K,, r3, y and 0 such that

X + plx—X|si 4 1(x) € C(X; 514 1(%), r*/2, 0/2)
for every x, X € S(0, rs). Given x, Xe S(0, rs), let w=x+ p|x—X|s;,(x). Then
by our assumption
1g(x)—g(w)| £ Cylx—w|* and [g(w)—g(X)| = Cy|lw—X|*,

which imply
1g(x)—g(X)| = Cox—X|*,

where C,=2(1+ p)*C,, since |x—w|<p|x—X| and |w—X|<(1+p)|x—Z%|. Thus
g is a-Holder continuous on S(0, r) with Holder constant depending only on
Cy, K4, r3, o, g and 0. Next we prove the assertion of the lemma. For sim-
plicity, we denote the cone C(y; s;41(), r*, 0) (resp. C(y; si+1(¥), r*/2, 0/2)) by
C(y) (resp. C*(y)) for ye S(0, r;). For x, X € \U 500, C*(»), there exist y, je
S(0, r) such that xe C*(y) and e C*(¥). If xeC(¥), then |g(x)— g(X)| = Cy|x —X|*.
Thus suppose x& C(7) and ¥& C(y). Since x € C*(y) and X € C*(j), we see that

lx=yl = Cslx—X| and [X—J| = C3lx—X],
where -C; =cosec 6/2, so that
1g(x)— g = Cylx—yl|* = C,C§lx—%|*,
1g()—g(M)| = C4X=JI* = C,C§lx—%|*

and
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g =GP = Culy—F1* = Co(1+2C3)%|x— %7,
where C, is the Holder constant of g on S(0, »). Hence,

1g(x)—g(®)| = Clx—X|*

Thus the lemma is proved.

Now we give a generalization of a theorem of Liapunov [6; Chap. 11, §7 or
Appendix, §1] and [11; Theorem 3]).

THEOREM 5.2. Let k=n—1,A=n-2, O<ay<1 and O<r<r,. Assume
that @ € C2(B("(0, 4ro)\{0}), that it satisfies (#—4) and ($-7) with .=n—2 and
that (9-8) with k=n—1 holds. Let K be a compact set contained in {x=
(%', xp)5 Xp2Y(x), IX'| 1} or in {x=(x', x,); X, SY,(x"), [X'|Sr} and Kc
B™(0, 2ro). If f is a,-Hélder continuous on S, then the derivative (d/ds)V} in
any direction s can be extended to be min {a,, o, }-Hdlder continuous on K.

ProOF. We prove only the case Kc{x; x,2y,(x), |x|Sr}. Let 0<
r<r'<r,. Then there exists a positive number r, such that for xeKn
{x; dist (x, S)<r,}, the point y, nearest to S from x belongs to S(0, r’), so that
y.—X is a normal to S at y, and

Kn {X, dist (x, S) é r6} < UyeS(O,r') C(y; sn(y)7 Fes 9)

for any 0, 0<O0<m/2. Hence, using Lemma 5.3 and Corollary 3.1, we obtain the
assertion.

THEOREM 5.2'. Under the same assumptions as in Theorem 5.2, if K is
contained in {x; x, 2y, (x), |x'|£r}, then (d|ds)V] in the direction s is
min {a,, o, }-Hélder continuous on K, provided {s, s,(x)) =0 for every xe S n K.

In fact, since <s, s,(x)> =0, by Theorems 3.1, 3.2 and 4.2 we have
(d/ds)Vf;,(x) = ]imz—*x,:eC(x;s,.(x),r) (d/dS)Vé;(Z)

for xe SN K. Thus by Theorem 5.2 the assertion holds.
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