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1. Introduction

Let Rn (n^2) be the n-dimensional Euclidean space, and set

Rϊ = {* = (*', *„); *„>()}.

In this paper we investigate the behavior near the boundary dR£ of α-potentials

\χ-y\ -Λf(y)dy9R n

where 0<α<n and /is a nonnegative measurable function on Rn satisfying the
condition :

(1) f(y)*\yn\'dy < x>.
JR»

For γ ̂  1, we say that a function u has a Γv-limit 6 at ξ e dR'ί if

for any α>0, where

T,(ξ, α) = {(x', xJeRl; |(x', 0)-ξ| <

If w has a Γy-limit at ξ for any y> 1, then u is said to have a T^ -limit at ξ. Our
first aim is to prove the following result :

THEOREM 1. Let αp>/ι and f be a nonnegative measurable function on

Rn satisfying (1) with β<p-i.
(i) // n — oφ-fj3>0, then for each y^l there exists a set Ey<^dR+ such

that Hy(n_βp+/o(£y)
==0 and U{ has a Tγ-limit at any ξedRϊ.-Er

(ii) 7/n-ύφ + 0 = 0, then there exists a set EczdR^ such that Bn/pίp(E) = Q
and U{ has a T^Ίimit at any ξedRl-E.

(iiϊ) //n-oφ + 0<0, then U{ has a limit at any ξ

Here Hfi denotes the ^-dimensional Hausdorff measure, and ££>p the Bessel
capacity of index (^, p) (cf. [5]).

As an application of (ii) of Theorem 1, we can prove a result of Cruzeiro
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[4] concerning the existence of 7^ -limits of harmonic functions with gradient
in Ln(Rn

+).

In case αp^n, if we further restrict the set of approach, then we can obtain
a similar result by replacing "Tv-limit" by "(α, p)-fine T*-limit". To do so,
we need a capacity Cα p ( - ), which is a special case of the capacities of Meyers
[5].

Let G be an open set in R". For EaR», define

where the infimum is taken over all nonnegative measurable functions g on Rn

such that 0=0 outside G and U*(x)^l for every xe£, and || ||p denotes the LP-
norm in Rn. A set E in Rn is said to be (α, p)-thin at ξ e dRn

+ relative to Ty if for
any α, ft, a' and b' with 0<a'<a<b<b',

(2) ΣΓ=ι 2^-^C^E, ίl Ty(ί, α, fr); G, n Γy(£, α', 6')) < oo,

where £,- = {* e£;2-^|x -£|<2-ί+1}, G, = {x; 2-'-1<|x-ξ|<2-i+2} and
α, ft) = {χ =.(*', x je f l j ; flx;/y<|ξ/-x'|<ftxj/-y}. We say that a function w

has an (α, /?)-fine T*-limit £ at £ if there exists a set E^R^ such that E is (α,"_p)-
thin at £ relative to Ty and

for any a and fc with 0<a<b; u is said to have an (α, p)-fine TJ-limit at ξ if it

has an (α, p)-fine T* -limit at ξ for any y> 1.
Now we are ready to state our second result.

THEOREM 2. Let p>l, ap^n and β<p—l. Let f be a nonnegative mea-
surable function on Rn satisfying (1).

(i ) Ifn — ctp + β>Q, then for each γ^l there exists a set EyddRl such that

#y(n_ap+/3)(£y) = 0 and V{ has an (α, p)-fine T* -limit at any ξεdRn+-Er

(ii) 7/n-oφ + β = 0, then there exists a set EcidRy. such that Bn/pp(E} = Q
and U{ has an (α, p)-fine T^-limit at any ξedR^—E.

(iii) // n — oφ + β<0, then U{ has an (α, p)-fine T^-limit at any ξedR^..

We shall also discuss the existence of Ty-limits and (α, /?)-fine T*-limits of α-
Green potentials ir\. R+9 and give a generalization of a result of Wu [12; Theorem
1], in which he treated only the case n-2p + β>Q (α = 2). Since T^limit ((α, p)-
fine T*-limit) coincides with nontangential limit (nontangential (α, /?)-fme limit),
Theorems 2 and 3 in [10] are included in Theorems 5, 7 and 10 of the present paper.
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2. Proof of Theorem 1

For a nonnegative measurable function / on Rn, we set

\χ-y\*-*f(y)dy.
R»

LEMMA 1. For x°eR" and c>0, we have

\x - y\ -"f(y)dy = tf£(*°).
{y,\χ-y\>c\xo-x\}

PROOF. If l/{(x°)=oo, then Fatou's lemma gives the required equality.
Assume ί/{(x°)<oo. If \x-y\>c\xΌ-x\, then

\χ°-y\ ^ l*°-*l + \χ-y\ < (i+c-*)\χ-y\9

so that Lebesgue's dominated convergence theorem establishes the required
equality.

LEMMA 2. Let f be a nonnegative measurable function satisfying (1) with
real numbers p>\ and β. If we set

JB(ξ,r).

then Hd(Bd) = Q, where B(ξ, r) denotes the open ball with center at ξ and radius r.

LEMMA 3. Let f be as above and define

BO = \ξedRϊι limsup^oOogr-^-1 \ f(y)p\yn\
βdy>0\ .

( JB(ξ,r) )

Then Bn/pfp(B0) = 0.

These lemmas follow from the facts in [6; p. 165] and [5; Theorem 21].

LEMMA 4. Let oφ>π, β<p-l, p'=p/(p-l), ξedR'ί and xeRl. Then
there exists a positive constant C independent of x such that

If I* -y\p'(Λ-n)\yn\-βp'/p<tyY/pf

(}B(X,\ξ-x\/2) }

χ(*p-β-n)/p if n _ α/7 _μ β > Q?

( \ ξ - x \ ( * p - β - » V p i f / i - άp + j 8 " < 0 ;
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PROOF. Let £* = (0, 1). By change of variables, we see that the left hand
side is equal to

χ*-n-β/p+n/p> if

(J{z;\ξ*-z\^χ-
l\ξ-X

which is dominated by

Cχ(

n«p-β-»)/p If
(JB(ξ*,l

C
+

JjKO.JC^K-Jc

, l / 2 )

Evaluating these integrals by the aid of polar coordinates in R", we obtain the
required inequalities.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. We write U{ = Uί + U2, where

{y;\χ-y\>\ξ-χ\/2}

By Lemma l, limx^ξ Uί(x)=U{(ξ),
First let n — oιp + β>Q. It suffices to prove that U2 has Ty-limit zero at ξe

dR$-Bv(tl.Λp+β), since Hy(n_Λp+β)(Bγ(n.ap+β}) = 0 on account of Lemma 2. By
Holder's inequality and Lemma 4, we have

Ϊ
C } I/P

χp-β-a\ f(yY\yn\
βdy\ .

jB(ξ,2\ξ-χ\) )

Hence if ξedR$-By{n-ap+β} and xεTy(ξ, ά)nB(ξ, 1), then

U2(x) £ const. { \χ - ί|y<«p-*-») { f(v)>\vn\'dy\1/P ,
( )B(ξ,2\ξ-x\) ' ' }

which tends to zero as x->ξ, xε Ty(ξ, a). This implies that U2 has Ty-limit zero

atξeBRl-BJ{n-Λp+ιn.
Next let n — ccp + β = 0. Then it follows from Lemma 4 that

U2(x) g const. \{log(x^\x - ξ\ + 2)]^^ f(yY\yn\
βdyY

IP .
I jB(«,2|«-je | ) )

If ξ 6 5ΛJ - BO and x e Γy(ς, α), then

{ (' ) l / p

DogdJc-.ίl-' + lXI'-M /(^"bπi^v ,
JΛ(ί,2|ί-Jt |) )
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and hence U2 has Γy-limit zero at ξ. Since γ is arbitrary, U2 has Too-limit zero
at ξεdR"+-B0. By Lemma 3, Bπ/P)p(β0) = 0.

In case n — oφ-fβ<0, we obtain

ί Γ ) l /p

I/2(x) g const. |ς - *|«^-» \ f(yY\yn\
βdy\ ,

I J*($,2|$-x|) )

which tends to zero as x-*ξ. Thus Theorem 1 is established.

A function u is said to have a nontangential limit at ξ e dR$ if it has a Tx -limit
at •£. The following can be obtained with a slight modification of the above proof.

THEOREMS. Let zp>n and f be a nonnegative measurable function on
R" satisfying (1) vv/'f/i a real number β.

(i) // n — αp + /?>0, then U{ has a nontangential limit at any ξedR+ —

**n-Λp + β'

(ii) // w — αp + ̂ ^O, then U{ has a nontangential limit at any ξedR+.

3. (α, />)-fine J*-limit

For a nonnegative measurable function/ on R", we write ί/{ = U l 4- L/2 -4-
where

B(x,xn/2)

Lemma 1 implies that lim^,, U^x)^ U{(ξ).

LEMMA 5. Let p>l, β<p-l, xeRϊ. and ξedRΊ.. Then there exists a
positive constant C independent of x such that

U2(x)P ^ C

x*p-β-"F(x) in case n — ctp + β > 0,

[lo^(χ-1\x-ξ\+2)']p-ίF(x) in case n - oψ 4- j8 = 0,

in case n — αp -f β < 0,

B(ξ,2\ξ-x\ϊ

This lemma can be proved in the same way as Lemma 4 with the aid of
Holder's inequality.
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LEMMA 6. Let f be a nonnegative measurable function on Rn satisfying
(1) with real numbers p>l and β. For βf>β, set

(\yf - <ΓI 2 y -+ \yn\
2Y*p-β'-n)/2f(y)p\yn\

β'dy =
B(ξ.l)

Then Hy(n_ap+β)(Ay,β) = Qfor γ^l and β'>β.

REMARK. If we set Ay = n β>>β Aγ^9 then Hy(n_ap+β}(Ay) = Q.

PROOF OF LEMMA 6. If n — αp + β^O, then ' AΊ#. is empty. Suppose n —
αp + /?>0 and Hy(n_ap+fn(Ayίβ>)>Q. By [3; Theorems 1 and 3 in §11] we can
find a nonnegative measure μ such that μ(A7tβ>)>Q9 μ(Rn — Aytβ>) = Q and

μ(B(x, r)) ^ rt
(n-«p+^ for every x and r.

Then, since (|/-ξΊ2y + |yJ2)(αp~^'"/ί)/2^(0^const. \yn\
β-β', we have

00 =

/ - {'I2' + bJ^^ '̂

^ const. y(y)p\yn\
βdy < oo,

which is a contradiction. Thus the lemma is proved.

LEMMA 7. Let f be a nonnegative measurable function on Rn satisfying
(1) with real numbers p> 1 and β. Letap^n andy^l. Then for each ξedR^ —
Ar there exists a set £<=#£ such that E is (α, p)-thin at ξ relative to Ty and

(3) K™x->ξ,Xeτγ(ξ,a,b)-E U3(x) = 0 for any a and b with b>a>0.

PROOF. Suppose ξedR^.—Ayfβ^ β'>β. Take a sequence {αj of positive
numbers such that lim^oo at=co and

(\y'-ξ'\2v + \yn\
2Y*p-β'-n}l2f(y)p\yn\

β'dy < oo,
i

where Gf = {x; 2-/-1<|x-ξ|<2-ί+2}. Consider the sets

El = {xe£(ξ, 2-+1) - 5fe 2-0; C73(x) ^ ar1/"} .

Let 0<α / <α<fe<ft / , and find c>0 such that c<l/2 and 5(x, cxπ)c=Γy(f, α r,
6') whenever x e T7(ξ, a, ft) and 0 < xn < 1 . Set
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I*- y\"~"f(y)dy,
B(x,Xnl2)-B(x,cxn}

- y\ - f(y)dy.
)B(x,cxn)

By Holder's inequality,

l / p
U'3(x) ^ const. \xy>~* ( f(y)pdy

( }B(x,xn/2) )

^ const. If f(y)pytp-*dy
( J B ( x , X n / 2 )

1/P

Find fc">0 such that B(x9 xπ/2)c:Ty(ζ, b") whenever xeTv(ξ, b) and 0<xn<l.

Since Σ^I^M f(y)py?l

p~ndy<co, we may assume that U'3(x)<
} G i n τ v ( ξ , b " )

2~1a-rί/p for all xeEt n Ty(ξ, Λ, b), and hence

l/5(x) ^ Σ-^Γ17' for all x e £, n Γy(ξ, a, b) .

Consequently it follows from the definition of capacity CΛ>P that

C^E, n Ty«, fl, b); G, Π T7(ξ, a', b'))

^ 2pa, ( f(y)pdy
JGif}Tγ(ξ,a',b')

^ const. 2- ίy(π~β*>fl i \ /(j)pJίp~n^.
j G i n Γ y ί ξ . f r ' )

Define E = \JfLίEί. Then we see that E satisfies (2) and (3). Thus the lemma is
established.

With the aid of Lemmas 5 and 7, we deduce the following result, which
proves Theorem 2 in view of Lemmas 2, 3 and the remark after Lemma 6.

THEOREM 2'. Let p>l, αp^n andβ<p— 1. Let f be a nonnegative measur-
able function on Rn satisfying (1).

(i) //rc-θφ + 0>0 and <J edR£-C4y U By(n_ap+/?)) /orsoroey^l, ί/x^n l/{
Λfls «n (a, p)-^n^ T*-limit U{(ξ) at ξ.

(ii) Ifn-ap + β = Q and ξεdRϊ-B0, then U{ has an (a, p)-fine T*-lίmit
U{(ξ) at ξ.

(iii) // n-θφH-β<0, ίhen l/{ has an (a, p)-^ne T* -limit at any ξedR$.

REMARK 1. In case n-α/? = /? = 0, for each ξedR$-B0 one can find a set
EciR" such that



536 Yoshihiro MIZUTA

and

limr,o (log r-'y-^/E n B(ξ, r) n Γ7«, α, 6); B({, 2r) n Ty«, α', />')) = 0

for any y > 1 and any a, b, a', V with 0 < α' < α < b < 6'.

REMARK 2. Let p>l, α/?<n, y > l and 0 < t f ' < α < b < f o ' . If £ satisfies (2)
and EczTy(£, α, 6), then there exists a nonnegative measurable function / on
Rn such that

(i) l/ί(ί)<op; (ii) lim^ ί f j rβEt/ί(x)=oo; (iii)

For f e δ K ϊ . and £ = (£', 1), we set

THEOREM 4. Let /?, j5 and f be as in Theorem 2. Let y > 1 . Then for each

ξedR$-(AγuB*(n-ap+β)) there exists a set EcH = {(ζ', 1); ζ'eRΛ-l}such that
E has Hausdorff dimension at most n — ap and

(4) lim^f,βMδ,C) U{(x) = U{(ξ)

for every ζeH — E, where B$ = Bd if d^O and B$ is empty if d<Q.

To prove this, we need the following result (cf. [2; Theorem IX, 7]).

LEMMA 8. Let μ be a nonnegative measure on Rn such that U%(x)=\ \x —

y\*~ndμ(y)φ oo, and x° e Rn. Then there exists a set £c/f whose Riesz capacity
of order α is zero such that

= μ({x0}) for every ζeH-E.

PROOF OF THEOREM 4. Let ξ edR^-B*(n_Λp+βγ Then Lemmas 1 and 5

imply that

* *e + JRn-B(x,xn/2)

Let 0<ε<α. By Holder's inequality we derive

\x - y\*-*f(y)dy\B(x,xn/2)

^ \( \x - y\(*-^p'~ndy \1/P K \x - y\"-*f(y)'dy\l

ljB(x,xn/2) ) (jB(x,xn/2) j

{ ^ C ) I/P
χ(nΛ~ε}p \ \χ - y\εp~nf(y)p dy\

JB(x,xn/2) )

^ const. \zn

n~*p \ \z - w\Bp~ng(w)dw\ *,
( jB(z,CZn) J
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where c is a positive constant independent of z = (x', xj/ y) and #(w)=/(w'.

j)PWn«P-ι )+y-ι. if ξedRn

+-Ar then \ f(y)pyίp'ndy<aQ for

so that \ g(w)dw<ao for any α>l. By Lemma 8, we can find a set Eεa

H whose Riesz capacity of order n — εp is zero such that

Iimx_> ί ϊ j e 6 ί (5ιζ) \ \x-y\*~nf(y)dy = 0
Jβ(x,x n /2)

for every ζeH — Eε. Define E = Γ\0<ε<ΛEε. Then E has Hausdorff dimensior
at most H — op, and (4) holds for any ζeH — E.

4. Jy-limits of Green potentials

For a nonnegative measurable function/on R$9 we define

GJ(x, y)f(y)dy,
R+

where Gα(x, y) = \x — y\Λ~n — \x — y\Λ~", x=(x', — xw) for x = (x', xπ). We firs
note the following property of Gα.

LEMMA 9. There exist c1>Q and c2>0 such that

Cl l^-vl^^fx-.vl 2 ~ G*(x' y* ~ °2 \x-y\n-«\x-y\2

for every x = (x', xn) and y = (y'9 yn) in R$.

COROLLARY. G{ φ oo ι/ and only if \ (14- |y|)α"n~2};

π/(3;)d};< °°

ForOgδ<l, define

j&δ = IξedR"; Iimsup r φ 0/ α~<5~π~1 \ ynf(y)dy > '

LEMMA 10 (cf. [10; Lemma 3]). For ξedRn+ and c>0, define

*> y)f(y)dy.
{yeRl;\x-y\>c\x-ξ\}

If G{φoo and 0^(5<1, then Hmx^ξiXeRnχ-δG^(x} = Q if and only if

Eδ.

REMARK. If G{φoo,then#π_α+δ+1(£δ) = 0. If in addition ( f(y)pyβ

ndy<
JRΊ

oo with p>l and β<2p-l, then Hn_Λp+β+δp(Eδ) = Q (see [10; Corollary t
Lemma 5]).
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The following result can be proved in the same way as Lemma 4.

LEMMA 11. Let ocp>n and ξεdRn

+. Then

U{yeRΪ;|x-,y\<\ξ-x\/2}

χ(ap-β-n)/p jf n _ y^p _|_ β _μ ^

^ const. JcM[log (x~l\ζ — x\ + 2)~\ί/p' if n — ap-{-β + ̂

By Lemmas 10 and 11 we can establish the following theorems.

THEOREM 5. Let ocp>n9 0^(5<1 and f be a nonnegatίve measurable func-

tion on Rl such that G{φ oo and

(5) J(yYyβ

ndy < oo, β<2p-l.
jRn

+

(i) If n — ap + β + δp>Q and 7^1, then x~δGf

a(x) has Ty-lίmit zero at any
R»+-(Eδ(jBy(n,Λp+β+δp)).
(ii) // n-ap + β + δp^Q, then x~δG{(x) has limit zero at any

THEOREM 6. Let ap>n and f be as above. Set

9 ξedR»+.
Rn

+

( i ) Ifn-ap + β + p>Qandy^l, then x'^^x^has a Tγ-limit G(ξ) at any

(ii) // n-ap + β + p = Q, then x~lG{(x) has a T^-limit G(ξ) at any ξe
BRn

+-B0.

(iiϊ) Ifn-ap + β + p<0, then lim^ίfjeeΛ. χ-*Gζ(x) = G(ξ) for any ξεdR»+.

As to T*-limits of Green potentials, we have the next result.

THEOREM 7. Let p>l, 0^(5<1, ap^n and f be a nonnegatίve measurable
function on R+ satisfying (5) with β<2p — l such that G{φ oo.

(i) // n-<xp + β + δp>0 and γ^l, then x~dG{(x) has (α, p)-fine T*-
limit zero at any ξedRn

+-(Eδ U A*)δ U Bγ(n_ap+β+δp)).
(ii) // n-ap + β + δp^Q, then x~δGf

Λ(x) has (α, p)-fine T*-lίmit zero at

any

Here A*ιδ = nβ >p+δp A7ift>. Note that Hγ(n-Λp+p+δp}(EδnA*tό) = Q in the
case of (i) of Theorem 7.
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PROOF OF THEOREM 7. Write G{(x) = Gt(x) + G2(x) + G3(x), where

GΛ(
{yeRn

+;\X-y\>\ξ-X\/2}

G2(x) = ( Ga(x,
J{yeRl;xn/2<\x-r\Z\(-x\/2}

GsW =

First note that Hmx^ξ)XeRn+χ-δGi(x) = Q if ξedR$ — EΛ according to Lemma 10.
In what follows we shall prove only the case n — oιp + β-t-δp>Q9 because the
remaining case can be proved similarly. Assume n — ap + β + δp>0. Then
Holder's inequality yields

-x\/2)-B(x,xn/2)

/P

χ-*G2(x) g c2x*-' \(
UB(x,\ξ-

x j l f(y)pyβ

ndy
UB(ξ,2\ξ-x\)nRΪ }

^ const. \xy>-t-*p-» ( f(y)pyβ

ndyV/P .
( JB(ξ,2\x-ξ\){]Rn

+ )

IfξedR"+-By(n_Λp+β+δp) and xeTv(ξ, a)[\B(ξ, 1), then

x~δG2(x) ^ const. \\x - ξ\y(«p-β-*p-n)( f(y)pyβ

ndy
( jB(ξ,2\x-ξ\)t\Rl }

/P

0 as x - > ξ, xeTy(ξ9 a) .

Since x~δG3(x)^c2\ \x — y\a~nf(y)(ynβ}~δdy on account of Lemma 9,
JB(x,Xn/2)

it follows from Lemma 7 that x~<5G3(x)has(α, ]?)-fine Γ*-limit zero at ξedR^ —
A*tδ. By these facts x;^G{(x) has (α, jp)-fine T*-limit zero at ξedRl-Eδ-

In a similar manner we can establish the following result.

THEOREM 8. Let α, β, p and f be as in Theorem 7.

(i) // n-ap + β + p>Q and y^l, then x^lG{(x)hasan (α, p)-fine T*-limit
G(ξ)at anyξEdRn

+-(A^^By(n_ap+β+p)).

(ii) // n-oφ + β + p^O, then x~lGf

Λ(x) has an (α, p)-fine T*-limit G(ξ) at
any ξedRn

+-B*(n_Λp+β+p}.

In a way similar to the proof of Theorem 4, the existence of limits along ty

of Green potentials can be proved.



540 Yoshihiro MIZUTA

THEOREM 9 (cf. Wu [12; Theorem 1]). Let α, β, δ, p and f be as in Theorem
1.

(i) // n-ap + β + δp>0 and y>l, then for each ξ e dRn+ - (Eδ U A*tδ U
£y(,,-αp+0+ap)) f/iere ex/sis α seί £c:// swc/z fλβί E has Hausdorff dimension
at most n — ap and

(6) lim^^^ζ) χ-'G{(x) = 0 for every ζ e H - E.

(ii) // n — ctp + β + δp^Q, then for each ξedR'ί there exists a set
such that E has Hausdorff dimension at most n — ccp and (6) holds.

As to nontangential limits we have the following results.

THEOREM 10. Let 0^<5<1 and f be a nonnegatίve measurable function

on R$ such that G{φoo and \ f(y)pyβ

ndy<oo for some real numbers p>i
)RΪ

and β.
(i) // β + δp^ap — n>Q9 then x~δG{[(x) has nontangential limit zero

at any ξedR»+-(Eδ U B^ap+β+δp)9 where Bp = Bd when d>0 and Bj* is empty
when d^O.

(ii) // αp<;« and n-up+β + δp^Q, then for each ξedRl~(EΛV Aζtd)
there exists a set EcR^ such that E is (α, p)-thin at ξ (relative to 7\) and

lίm^ ί fX6Γl(4fβ)_£ *nδGf

Λ(x) = 0 for any a > 0.

Similar results can be obtained in case (5 = 1.

5. Further results and remarks

Let D be a special Lipschitz domain as defined in Stein [11; Chap. VI].
Then similar results can be shown to hold for U{ with a nonnegative measurable
function / on Rn such that

(7) ( f(yγd(yydy «x>9 p > 1, β < p - 1,
jRn

if we replace T7(ξ, a) by {x e D |x - ξ\ < ad(x)1^}. Here d(y) denotes the distance
from y to the boundary dD.

Let m be a positive integer and u be an (m, p)-quasi continuous function
(see [7]) such that

< oo,

where Dλ = (d/dxί)
λί~ (dldxn)

λ» for a multi-index λ = (λl9..., λn) with length



On the behavior of potentials near a hyperplane 541

1^1 = A ! H \-λn. If p>i and β<p—l, then for each bounded open set G we

can find functions /A > G satisfying

such that

holds for x e G n D except for a set with Cmtp capacity zero, where aλ are constants

(cf. [7]). Thus one can discuss the boundary behavior of u by similar methods

as above; one need take into account the following exceptional sets:

jx e G n dD; J|jc - y\m'n\fλ,G(y)\dy = oo| ,

which has Bm_β/Pfp capacity zero as will be shown in the Appendix.

For Green potentials in D, we refer to Aikawa [1], in which finely non-

tangential limits of Green potentials are discussed.

6. Appendix

Here we show that BΛ^β/pίp({xeδD:> (7{(x)=oo}) = 0 if / is a nonnegative

measurable function on Rn satisfying (7). Set A = {xedD:> Uζ(x)=co}. If

jS^O, then A is included in

A' = IxeδD; ( \x-y\*-βlp-nU(y)d(yγi^dy = ool .
( JB(x, l ) )

Since BΛ_β/pίp(A') = Q by assumption (7), we have Ba_β/pίp(A) = Q. If β^oφ-1,

then BΛ-β/pίp(dD) = Q, so that Ba_β/p>p(A) = Q. Now assume that 0<β<[min(α,

l)]p~ l ^y considering a Lipschitz transformation of D to R^. locally, we may

assume further that D is the half space R^.

Let gΛ denote the Bessel kernel of order α (see [5]), and note

A = g'Jίx-y)f(y)dy = oo J .

We see that the function G(ξ) = \gΛ(ξ - y)f(y)dy, ξ e dRn+, belongs to the Lipschitz

space ΛjL% + 1)/p(δjR!j.) (cf. [11; Chap. VI, §4.3]). Let u be the Poisson integral

of G with respect to Rn

+. By the fact in [11 p. 152] we have

oo,
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where m is a positive integer greater than a — (β + l)/p. By [9; Theorem 2] we

can find a set B a dR^ such that u has a finite nontangential limit at any ξ e dRy. — B
and BΛ_β/ptp(B) = Q. Since limx^ξtXeR*u(x)=ao for any ξeA9 it follows that
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