On the behavior of potentials near a hyperplane

Yoshihiro MIZUTA

(Received January 10, 1983)

1. Introduction

Let R^n $(n \ge 2)$ be the *n*-dimensional Euclidean space, and set

$$R_{+}^{n} = \{x = (x', x_{n}); x_{n} > 0\}.$$

In this paper we investigate the behavior near the boundary ∂R_{+}^{n} of α -potentials

$$U^{f}_{\alpha}(x) = \int_{\mathbb{R}^{n}} |x - y|^{\alpha - n} f(y) dy,$$

where $0 < \alpha < n$ and f is a nonnegative measurable function on \mathbb{R}^n satisfying the condition:

(1)
$$\int_{\mathbb{R}^n} f(y)^p |y_n|^\beta dy < \infty.$$

For $\gamma \ge 1$, we say that a function u has a T_{γ} -limit ℓ at $\xi \in \partial R_{+}^{n}$ if

$$\lim_{x\to\xi,\,x\in T_{\gamma}(\xi,a)}u(x)=\ell$$

for any a > 0, where

$$T_{\gamma}(\xi, a) = \{ (x', x_n) \in \mathbb{R}^n_+; | (x', 0) - \xi | < a x_n^{1/\gamma} \}.$$

If u has a T_{γ} -limit at ξ for any $\gamma > 1$, then u is said to have a T_{∞} -limit at ξ . Our first aim is to prove the following result:

THEOREM 1. Let $\alpha p > n$ and f be a nonnegative measurable function on R^n satisfying (1) with $\beta < p-1$.

(i) If $n - \alpha p + \beta > 0$, then for each $\gamma \ge 1$ there exists a set $E_{\gamma} \subset \partial R_{+}^{n}$ such that $H_{\gamma(n-\alpha p+\beta)}(E_{\gamma}) = 0$ and U_{α}^{f} has a T_{γ} -limit at any $\xi \in \partial R_{+}^{n} - E_{\gamma}$.

(ii) If $n-\alpha p+\beta=0$, then there exists a set $E \subset \partial R^n_+$ such that $B_{n/p,p}(E)=0$ and U^f_{α} has a T_{∞} -limit at any $\xi \in \partial R^n_+ - E$.

(iii) If $n - \alpha p + \beta < 0$, then U_{α}^{f} has a limit at any $\xi \in \partial R_{+}^{n}$.

Here H_{ℓ} denotes the ℓ -dimensional Hausdorff measure, and $B_{\ell,p}$ the Bessel capacity of index (ℓ, p) (cf. [5]).

As an application of (ii) of Theorem 1, we can prove a result of Cruzeiro

[4] concerning the existence of T_{∞} -limits of harmonic functions with gradient in $L^{n}(\mathbb{R}^{n}_{+})$.

In case $\alpha p \leq n$, if we further restrict the set of approach, then we can obtain a similar result by replacing " T_{γ} -limit" by " (α, p) -fine T_{γ}^{*} -limit". To do so, we need a capacity $C_{\alpha,p}(\cdot; \cdot)$, which is a special case of the capacities of Meyers [5].

Let G be an open set in \mathbb{R}^n . For $E \subset \mathbb{R}^n$, define

$$C_{\alpha,p}(E; G) = \inf \|g\|_p^p,$$

where the infimum is taken over all nonnegative measurable functions g on \mathbb{R}^n such that g=0 outside G and $U_{\alpha}^g(x) \ge 1$ for every $x \in E$, and $\|\cdot\|_p$ denotes the L^p norm in \mathbb{R}^n . A set E in \mathbb{R}^n is said to be (α, p) -thin at $\xi \in \partial \mathbb{R}^n_+$ relative to T_γ if for any a, b, a' and b' with 0 < a' < a < b < b',

(2)
$$\sum_{i=1}^{\infty} 2^{i\gamma(n-\alpha p)} C_{\alpha,p}(E_i \cap T_{\gamma}(\xi, a, b); G_i \cap T_{\gamma}(\xi, a', b')) < \infty,$$

where $E_i = \{x \in E; 2^{-i} \le |x - \xi| < 2^{-i+1}\}$, $G_i = \{x; 2^{-i-1} < |x - \xi| < 2^{-i+2}\}$ and $T_{\gamma}(\xi, a, b) = \{x = (x', x_n) \in \mathbb{R}^n_+; ax_n^{1/\gamma} < |\xi' - x'| < bx_n^{1/\gamma}\}$. We say that a function u has an (α, p) -fine T_{γ}^* -limit ℓ at ξ if there exists a set $E \subset \mathbb{R}^n_+$ such that E is (α, p) -thin at ξ relative to T_{γ} and

$$\lim_{x \to \xi, x \in T_{y}(\xi, a, b) - E} u(x) = \ell$$

for any a and b with 0 < a < b; u is said to have an (α, p) -fine T_{∞}^* -limit at ξ if it has an (α, p) -fine T_{γ}^* -limit at ξ for any $\gamma > 1$.

Now we are ready to state our second result.

THEOREM 2. Let p>1, $\alpha p \leq n$ and $\beta < p-1$. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1).

(i) If $n - \alpha p + \beta > 0$, then for each $\gamma \ge 1$ there exists a set $E_{\gamma} \subset \partial R^n_+$ such that $H_{\gamma(n-\alpha p+\beta)}(E_{\gamma}) = 0$ and U^f_{α} has an (α, p) -fine T^*_{γ} -limit at any $\xi \in \partial R^n_+ - E_{\gamma}$.

(ii) If $n-\alpha p+\beta=0$, then there exists a set $E \subset \partial R^n_+$ such that $B_{n/p,p}(E)=0$ and U^f_{α} has an (α, p) -fine T^*_{∞} -limit at any $\xi \in \partial R^n_+ - E$.

(iii) If $n - \alpha p + \beta < 0$, then U_{α}^{f} has an (α, p) -fine T_{∞}^{*} -limit at any $\xi \in \partial R_{+}^{n}$.

We shall also discuss the existence of T_{γ} -limits and (α, p) -fine T_{γ}^* -limits of α -Green potentials in R_{+}^* , and give a generalization of a result of Wu [12; Theorem 1], in which he treated only the case $n-2p+\beta>0$ ($\alpha=2$). Since T_1 -limit ((α, p)fine T_1^* -limit) coincides with nontangential limit (nontangential (α, p)-fine limit), Theorems 2 and 3 in [10] are included in Theorems 5, 7 and 10 of the present paper.

2. Proof of Theorem 1

For a nonnegative measurable function f on \mathbb{R}^n , we set

$$U^f_{\alpha}(x) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) dy.$$

LEMMA 1. For $x^0 \in \mathbb{R}^n$ and c > 0, we have

$$\lim_{x \to x^0} \int_{\{y; |x-y| > c | x^0 - x|\}} |x - y|^{\alpha - n} f(y) dy = U^f_{\alpha}(x^0).$$

PROOF. If $U_{\alpha}^{f}(x^{0}) = \infty$, then Fatou's lemma gives the required equality. Assume $U_{\alpha}^{f}(x^{0}) < \infty$. If $|x-y| > c|x^{0}-x|$, then

$$|x^{0} - y| \leq |x^{0} - x| + |x - y| < (1 + c^{-1})|x - y|,$$

so that Lebesgue's dominated convergence theorem establishes the required equality.

LEMMA 2. Let f be a nonnegative measurable function satisfying (1) with real numbers p>1 and β . If we set

$$B_d = \left\{ \xi \in \partial R^n_+; \lim \sup_{r \neq 0} r^{-d} \int_{B(\xi, r)} f(y)^p |y_n|^\beta dy > 0 \right\}, \quad d > 0,$$

then $H_d(B_d) = 0$, where $B(\xi, r)$ denotes the open ball with center at ξ and radius r.

LEMMA 3. Let f be as above and define

$$B_0 = \left\{ \xi \in \partial R^n_+; \lim \sup_{r \neq 0} (\log r^{-1})^{p-1} \int_{B(\xi, r)} f(y)^p |y_n|^\beta dy > 0 \right\}$$

Then $B_{n/p,p}(B_0) = 0$.

These lemmas follow from the facts in [6; p. 165] and [5; Theorem 21].

LEMMA 4. Let $\alpha p > n$, $\beta < p-1$, p' = p/(p-1), $\xi \in \partial R_+^n$ and $x \in R_+^n$. Then there exists a positive constant C independent of x such that

$$\begin{cases} \left\{ \int_{B(x,|\xi-x|/2)} |x - y|^{p'(\alpha-n)} |y_n|^{-\beta p'/p} dy \right\}^{1/p'} \\ \leq C \begin{cases} x_n^{(\alpha p - \beta - n)/p} & \text{if } n - \alpha p + \beta > 0, \\ [\log (x_n^{-1} |\xi - x| + 2)]^{1/p'} & \text{if } n - \alpha p + \beta = 0, \\ |\xi - x|^{(\alpha p - \beta - n)/p} & \text{if } n - \alpha p + \beta < 0. \end{cases} \end{cases}$$

PROOF. Let $\zeta^* = (0, 1)$. By change of variables, we see that the left hand side is equal to

$$\chi_n^{\alpha-n-\beta/p+n/p'} \left\{ \int_{\{z; |\xi^{*-z}| \leq x_n^{-1}|\xi^{-x}|/2\}} |\xi^{*} - z|^{p'(\alpha-n)} |z_n|^{-\beta p'/p} dz \right\}^{1/p'},$$

which is dominated by

$$Cx_n^{(\alpha p-\beta-n)/p} \left\{ \int_{B(\xi^*, 1/2)} |\xi^* - z|^{p'(\alpha-n)} dz + \int_{B(0, x_n^{-1}|\xi-x|/2+1)} (1+|z|)^{p'(\alpha-n)} |z_n|^{-\beta p'/p} dz \right\}^{1/p'}.$$

Evaluating these integrals by the aid of polar coordinates in R^n , we obtain the required inequalities.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. We write $U_{\alpha}^{f} = U_{1} + U_{2}$, where

$$U_1(x) = \int_{\{y; |x-y| > |\xi-x|/2\}} |x - y|^{\alpha - n} f(y) \, dy,$$
$$U_2(x) = \int_{\{y; |x-y| \le |\xi-x|/2\}} |x - y|^{\alpha - n} f(y) \, dy.$$

By Lemma 1, $\lim_{x\to\xi} U_1(x) = U^f_{\alpha}(\xi)$.

First let $n - \alpha p + \beta > 0$. It suffices to prove that U_2 has T_{γ} -limit zero at $\xi \in \partial R^n_+ - B_{\gamma(n-\alpha p+\beta)}$, since $H_{\gamma(n-\alpha p+\beta)}(B_{\gamma(n-\alpha p+\beta)}) = 0$ on account of Lemma 2. By Hölder's inequality and Lemma 4, we have

$$U_2(x) \leq \text{const.} \left\{ x_n^{\alpha p - \beta - n} \int_{B(\xi, 2|\xi - x|)} f(y)^p |y_n|^\beta dy \right\}^{1/p}.$$

Hence if $\xi \in \partial R_+^n - B_{\gamma(n-\alpha p+\beta)}$ and $x \in T_{\gamma}(\xi, a) \cap B(\xi, 1)$, then

$$U_2(x) \leq \text{const.} \left\{ |x - \xi|^{\gamma(\alpha p - \beta - n)} \int_{B(\xi, 2|\xi - x|)} f(y)^p |y_n|^\beta dy \right\}^{1/p},$$

which tends to zero as $x \to \xi$, $x \in T_{\gamma}(\xi, a)$. This implies that U_2 has T_{γ} -limit zero at $\xi \in \partial R^n_+ - B_{\gamma(n-\alpha p+\beta)}$.

Next let $n - \alpha p + \beta = 0$. Then it follows from Lemma 4 that

$$U_2(x) \leq \text{const.} \left\{ \left[\log \left(x_n^{-1} | x - \xi | + 2 \right) \right]^{p-1} \int_{B(\xi, 2|\xi-x|)} f(y)^p |y_n|^\beta dy \right\}^{1/p}.$$

If $\xi \in \partial R^n_+ - B_0$ and $x \in T_{\gamma}(\xi, a)$, then

$$U_2(x) \leq \text{const.} \left\{ \left[\log \left(|x - \xi|^{-1} + 2 \right) \right]^{p-1} \int_{B(\xi, 2|\xi - x|)} f(y)^p |y_n|^\beta dy \right\}^{1/p},$$

and hence U_2 has T_{γ} -limit zero at ξ . Since γ is arbitrary, U_2 has T_{∞} -limit zero at $\xi \in \partial R_+^n - B_0$. By Lemma 3, $B_{n/p,p}(B_0) = 0$.

In case $n - \alpha p + \beta < 0$, we obtain

$$U_2(x) \leq \text{const.} \left\{ |\xi - x|^{\alpha p - \beta - n} \int_{B(\xi, 2|\xi - x|)} f(y)^p |y_n|^\beta dy \right\}^{1/p},$$

which tends to zero as $x \rightarrow \xi$. Thus Theorem 1 is established.

A function u is said to have a nontangential limit at $\xi \in \partial R_{+}^{n}$ if it has a T_{1} -limit at ξ . The following can be obtained with a slight modification of the above proof.

THEOREM 3. Let $\alpha p > n$ and f be a nonnegative measurable function on R^n satisfying (1) with a real number β .

(i) If $n-\alpha p+\beta>0$, then U_{α}^{f} has a nontangential limit at any $\xi \in \partial R_{+}^{n}-B_{n-\alpha p+\beta}$.

(ii) If $n - \alpha p + \beta \leq 0$, then U_{α}^{f} has a nontangential limit at any $\xi \in \partial R_{+}^{n}$.

3. (α, p) -fine T_{γ}^* -limit

For a nonnegative measurable function f on R^n , we write $U_{\alpha}^f = U_1 + U_2 + U_3$, where

$$U_{1}(x) = \int_{R^{n}-B(x,|x-\xi|/2)} |x-y|^{\alpha-n}f(y)dy,$$

$$U_{2}(x) = \int_{B(x,|x-\xi|/2)-B(x,x_{n}/2)} |x-y|^{\alpha-n}f(y)dy,$$

$$U_{3}(x) = \int_{B(x,x_{n}/2)} |x-y|^{\alpha-n}f(y)dy.$$

Lemma 1 implies that $\lim_{x\to\xi} U_1(x) = U^f_{\alpha}(\xi)$.

LEMMA 5. Let p > 1, $\beta , <math>x \in \mathbb{R}^n_+$ and $\xi \in \partial \mathbb{R}^n_+$. Then there exists a positive constant C independent of x such that

$$U_2(x)^p \leq C \begin{cases} x_n^{\alpha p - \beta - n} F(x) & \text{in case } n - \alpha p + \beta > 0, \\ [\log (x_n^{-1} | x - \xi | + 2)]^{p-1} F(x) & \text{in case } n - \alpha p + \beta = 0, \\ |x - \xi|^{\alpha p - \beta - n} F(x) & \text{in case } n - \alpha p + \beta < 0, \end{cases}$$

where $F(x) = \int_{B(\xi,2|\xi-x|)} f(y)^p |y_n|^\beta dy$.

This lemma can be proved in the same way as Lemma 4 with the aid of Hölder's inequality.

LEMMA 6. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1) with real numbers p > 1 and β . For $\beta' > \beta$, set

$$A_{\gamma,\beta'} = \left\{ \xi \in \partial R^n_+; \ \int_{B(\xi,1)} (|y'-\xi'|^{2\gamma}+|y_n|^2)^{(\alpha p-\beta'-n)/2} f(y)^p |y_n|^{\beta'} dy = \infty \right\}.$$

Then $H_{\gamma(n-\alpha p+\beta)}(A_{\gamma,\beta'})=0$ for $\gamma \geq 1$ and $\beta' > \beta$.

REMARK. If we set $A_{\gamma} = \bigcap_{\beta' > \beta} A_{\gamma,\beta'}$, then $H_{\gamma(n-\alpha p+\beta)}(A_{\gamma}) = 0$.

PROOF OF LEMMA 6. If $n - \alpha p + \beta \leq 0$, then $A_{\gamma,\beta'}$ is empty. Suppose $n - \alpha p + \beta > 0$ and $H_{\gamma(n-\alpha p+\beta)}(A_{\gamma,\beta'}) > 0$. By [3; Theorems 1 and 3 in §II] we can find a nonnegative measure μ such that $\mu(A_{\gamma,\beta'}) > 0$, $\mu(R^n - A_{\gamma,\beta'}) = 0$ and

 $\mu(B(x, r)) \leq r^{\gamma(n-\alpha p+\beta)}$ for every x and r.

Then, since $\int (|y'-\xi'|^{2\gamma}+|y_n|^2)^{(\alpha p-\beta'-n)/2} d\mu(\xi) \leq \text{const.} |y_n|^{\beta-\beta'}$, we have

$$\infty = \iint \{ \int (|y' - \xi'|^{2\gamma} + |y_n|^2)^{(\alpha p - \beta' - n)/2} f(y)^p |y_n|^{\beta'} dy \} d\mu(\xi)$$

=
$$\iint \{ \int (|y' - \xi'|^{2\gamma} + |y_n|^2)^{(\alpha p - \beta' - n)/2} d\mu(\xi) \} f(y)^p |y_n|^{\beta'} dy$$

\le const.
$$\iint f(y)^p |y_n|^{\beta} dy < \infty,$$

which is a contradiction. Thus the lemma is proved.

LEMMA 7. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1) with real numbers p > 1 and β . Let $\alpha p \leq n$ and $\gamma \geq 1$. Then for each $\xi \in \partial \mathbb{R}^n_+ - A_\gamma$, there exists a set $E \subset \mathbb{R}^n_+$ such that E is (α, p) -thin at ξ relative to T_γ and

(3) $\lim_{x \to \xi, x \in T_{\gamma}(\xi, a, b) - E} U_3(x) = 0 \quad \text{for any a and b with } b > a > 0.$

PROOF. Suppose $\xi \in \partial R_+^n - A_{\gamma,\beta'}$, $\beta' > \beta$. Take a sequence $\{a_i\}$ of positive numbers such that $\lim_{i\to\infty} a_i = \infty$ and

$$\sum_{i=1}^{\infty} a_i \int_{G_i} (|y'-\xi'|^{2\gamma} + |y_n|^2)^{(\alpha p - \beta' - n)/2} f(y)^p |y_n|^{\beta'} dy < \infty,$$

where $G_i = \{x; 2^{-i-1} < |x-\xi| < 2^{-i+2}\}$. Consider the sets

$$E_i = \{x \in B(\xi, 2^{-i+1}) - B(\xi, 2^{-i}); U_3(x) \ge a_i^{-1/p}\}.$$

Let 0 < a' < a < b < b', and find c > 0 such that c < 1/2 and $B(x, cx_n) \subset T_y(\xi, a', b')$ whenever $x \in T_y(\xi, a, b)$ and $0 < x_n < 1$. Set

On the behavior of potentials near a hyperplane

$$U'_{3}(x) = \int_{B(x,x_{n}/2)-B(x,cx_{n})} |x - y|^{\alpha - n} f(y) dy,$$
$$U''_{3}(x) = \int_{B(x,cx_{n})} |x - y|^{\alpha - n} f(y) dy.$$

By Hölder's inequality,

$$U'_{3}(x) \leq \text{const.} \left\{ x_{n}^{\alpha p-n} \int_{B(x, x_{n}/2)} f(y)^{p} dy \right\}^{1/p}$$
$$\leq \text{const.} \left\{ \int_{B(x, x_{n}/2)} f(y)^{p} y_{n}^{\alpha p-n} dy \right\}^{1/p}.$$

Find b'' > 0 such that $B(x, x_n/2) \subset T_{\gamma}(\xi, b'')$ whenever $x \in T_{\gamma}(\xi, b)$ and $0 < x_n < 1$. Since $\sum_{i=1}^{\infty} a_i \int_{G_i \cap T_{\gamma}(\xi, b'')} f(y)^p y_n^{\alpha p-n} dy < \infty$, we may assume that $U'_3(x) < 2^{-1}a_i^{-1/p}$ for all $x \in E_i \cap T_{\gamma}(\xi, a, b)$, and hence

$$U''_{3}(x) \ge 2^{-1}a_{i}^{-1/p}$$
 for all $x \in E_{i} \cap T_{\gamma}(\xi, a, b)$.

Consequently it follows from the definition of capacity $C_{\alpha,p}$ that

$$C_{\alpha,p}(E_i \cap T_{\gamma}(\xi, a, b); G_i \cap T_{\gamma}(\xi, a', b'))$$

$$\leq 2^p a_i \int_{G_i \cap T_{\gamma}(\xi, a', b')} f(y)^p dy$$

$$\leq \text{const. } 2^{-i\gamma(n-\alpha p)} a_i \int_{G_i \cap T_{\gamma}(\xi, b')} f(y)^p y_n^{\alpha p-n} dy$$

Define $E = \bigcup_{i=1}^{\infty} E_i$. Then we see that E satisfies (2) and (3). Thus the lemma is established.

With the aid of Lemmas 5 and 7, we deduce the following result, which proves Theorem 2 in view of Lemmas 2, 3 and the remark after Lemma 6.

THEOREM 2'. Let p > 1, $\alpha p \leq n$ and $\beta < p-1$. Let f be a nonnegative measurable function on \mathbb{R}^n satisfying (1).

(i) If $n-\alpha p+\beta>0$ and $\xi \in \partial R^n_+ - (A_\gamma \cup B_{\gamma(n-\alpha p+\beta)})$ for some $\gamma \ge 1$, then U^f_{α} has an (α, p) -fine T^*_{γ} -limit $U^f_{\alpha}(\xi)$ at ξ .

(ii) If $n - \alpha p + \beta = 0$ and $\xi \in \partial R^n_+ - B_0$, then U^f_{α} has an (α, p) -fine T^*_{∞} -limit $U^f_{\alpha}(\xi)$ at ξ .

(iii) If $n-\alpha p+\beta < 0$, then U_{α}^{f} has an (α, p) -fine T_{∞}^{*} -limit at any $\xi \in \partial R_{+}^{n}$.

REMARK 1. In case $n - \alpha p = \beta = 0$, for each $\xi \in \partial R_+^n - B_0$ one can find a set $E \subset R_+^n$ such that

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a, b) - E} U^{f}_{\alpha}(x) = U^{f}_{\alpha}(\xi)$$

and

$$\lim_{r \downarrow 0} (\log r^{-1})^{p-1} C_{a,p}(E \cap B(\xi, r) \cap T_{y}(\xi, a, b); B(\xi, 2r) \cap T_{y}(\xi, a', b')) = 0$$

for any $\gamma > 1$ and any a, b, a', b' with 0 < a' < a < b < b'.

REMARK 2. Let p>1, $\alpha p < n$, $\gamma > 1$ and 0 < a' < a < b < b'. If E satisfies (2) and $E \subset T_{\gamma}(\xi, a, b)$, then there exists a nonnegative measurable function f on R^n such that

(i) $U^f_{\alpha}(\xi) < \infty$; (ii) $\lim_{x \to \xi, x \in E} U^f_{\alpha}(x) = \infty$; (iii) $\int f(y)^p |y_n|^{\alpha p - n} dy < \infty$.

For $\xi \in \partial R_+^n$ and $\zeta = (\zeta', 1)$, we set

$$t_{\gamma}(\xi, \zeta) = \{ (\xi' + r\zeta', r^{\gamma}); 0 < r < 1 \}.$$

THEOREM 4. Let p, β and f be as in Theorem 2. Let $\gamma > 1$. Then for each $\xi \in \partial R^n_+ - (A_\gamma \cup B^*_{\gamma(n-\alpha p+\beta)})$ there exists a set $E \subset H = \{(\zeta', 1); \zeta' \in R^{n-1}\}$ such that E has Hausdorff dimension at most $n - \alpha p$ and

(4)
$$\lim_{x \to \xi, x \in t_{\gamma}(\xi, \zeta)} U_{\alpha}^{f}(x) = U_{\alpha}^{f}(\xi)$$

for every $\zeta \in H - E$, where $B_d^* = B_d$ if $d \ge 0$ and B_d^* is empty if d < 0.

To prove this, we need the following result (cf. [2; Theorem IX, 7]).

LEMMA 8. Let μ be a nonnegative measure on \mathbb{R}^n such that $U^{\mu}_{\alpha}(x) = \int |x - y|^{\alpha - n} d\mu(y) \neq \infty$, and $x^0 \in \mathbb{R}^n$. Then there exists a set $E \subset H$ whose Riesz capacity of order α is zero such that

$$\lim_{r \neq 0} r^{n-\alpha} U^{\mu}_{\alpha}(x^0 + r\zeta) = \mu(\{x^0\}) \quad for \ every \quad \zeta \in H - E.$$

PROOF OF THEOREM 4. Let $\xi \in \partial R^n_+ - B^*_{\gamma(n-\alpha p+\beta)}$. Then Lemmas 1 and 5 imply that

$$\lim_{x\to\xi,x\in\mathbb{R}^n_+}\int_{\mathbb{R}^{n-B}(x,x_n/2)}|x-y|^{\alpha-n}f(y)dy=U^f_{\alpha}(\xi).$$

Let $0 < \varepsilon < \alpha$. By Hölder's inequality we derive

$$\begin{split} &\int_{B(x,x_n/2)} |x-y|^{\alpha-n} f(y) dy \\ &\leq \left\{ \int_{B(x,x_n/2)} |x-y|^{(\alpha-\varepsilon)p'-n} dy \right\}^{1/p'} \left\{ \int_{B(x,x_n/2)} |x-y|^{\varepsilon p-n} f(y)^p dy \right\}^{1/p} \\ &\leq \text{const.} \left\{ x_n^{(\alpha-\varepsilon)p} \int_{B(x,x_n/2)} |x-y|^{\varepsilon p-n} f(y)^p dy \right\}^{1/p} \\ &\leq \text{const.} \left\{ z_n^{n-\varepsilon p} \int_{B(z,cz_n)} |z-w|^{\varepsilon p-n} g(w) dw \right\}^{1/p}, \end{split}$$

where c is a positive constant independent of $z = (x', x_n^{1/\gamma})$ and $g(w) = f(w', w_n^{\gamma})^p w_n^{\gamma(\alpha p-n)+\gamma-1}$. If $\xi \in \partial R_+^n - A_\gamma$, then $\int_{T_\gamma(\xi, a)} f(y)^p y_n^{\alpha p-n} dy < \infty$ for any a > 1, so that $\int_{T_1(\xi, a)} g(w) dw < \infty$ for any a > 1. By Lemma 8, we can find a set $E_{\varepsilon} \subset H$ whose Riesz capacity of order $n - \varepsilon p$ is zero such that

$$\lim_{x\to\xi,\,x\in t_{\mathcal{Y}}(\xi,\zeta)}\int_{B(x,\,x_n/2)}|x-y|^{\alpha-n}f(y)\,dy\,=0$$

for every $\zeta \in H - E_{\varepsilon}$. Define $E = \bigcap_{0 < \varepsilon < \alpha} E_{\varepsilon}$. Then E has Hausdorff dimension at most $n - \alpha p$, and (4) holds for any $\zeta \in H - E$.

4. T_y-limits of Green potentials

For a nonnegative measurable function f on R_{+}^{n} , we define

$$G^{f}_{\alpha}(x) = \int_{R^{n}_{+}} G_{\alpha}(x, y) f(y) dy,$$

where $G_{\alpha}(x, y) = |x - y|^{\alpha - n} - |\bar{x} - y|^{\alpha - n}$, $\bar{x} = (x', -x_n)$ for $x = (x', x_n)$. We firs note the following property of G_{α} .

LEMMA 9. There exist $c_1 > 0$ and $c_2 > 0$ such that

$$c_1 \frac{x_n y_n}{|x - y|^{n - \alpha} |\bar{x} - y|^2} \le G_{\alpha}(x, y) \le c_2 \frac{x_n y_n}{|x - y|^{n - \alpha} |\bar{x} - y|^2}$$

for every $x = (x', x_n)$ and $y = (y', y_n)$ in \mathbb{R}^n_+ .

COROLLARY. $G_{\alpha}^{f} \equiv \infty$ if and only if $\int_{\mathbb{R}^{n}_{+}} (1+|y|)^{\alpha-n-2} y_{n} f(y) dy < \infty$.

For $0 \leq \delta < 1$, define

$$E_{\delta} = \left\{ \xi \in \partial R^n_+; \limsup_{r \neq 0} r^{\alpha - \delta - n - 1} \int_{B(\xi, r) \cap R^n_+} y_n f(y) dy > 0 \right\}.$$

LEMMA 10 (cf. [10; Lemma 3]). For $\xi \in \partial \mathbb{R}^n_+$ and c > 0, define

$$G_1(x) = \int_{\{y \in \mathbb{R}^n_+; |x-y| > c | x-\xi\}} G_\alpha(x, y) f(y) dy$$

If $G_{\alpha}^{f} \equiv \infty$ and $0 \leq \delta < 1$, then $\lim_{x \to \xi, x \in \mathbb{R}^{n}_{+}} x_{n}^{-\delta}G_{1}(x) = 0$ if and only if $\xi \in \partial \mathbb{R}^{n}_{+} - E_{\delta}$.

REMARK. If $G_{\alpha}^{f} \equiv \infty$, then $H_{n-\alpha+\delta+1}(E_{\delta}) = 0$. If in addition $\int_{R_{+}^{n}} f(y)^{p} y_{n}^{\beta} dy < \infty$ with p > 1 and $\beta < 2p-1$, then $H_{n-\alpha p+\beta+\delta p}(E_{\delta}) = 0$ (see [10; Corollary t Lemma 5]).

The following result can be proved in the same way as Lemma 4.

LEMMA 11. Let $\alpha p > n$ and $\xi \in \partial R_+^n$. Then $\begin{cases} \begin{cases} \sum_{\{y \in R_+^n; |x-y| < |\xi-x|/2\}} G_{\alpha}(x, y)^{p'} y_n^{-\beta p'/p} dy \end{cases}^{1/p'} \\ \leq \text{const.} \begin{cases} x_n^{(\alpha p - \beta - n)/p} & \text{if } n - \alpha p + \beta + p > 0, \\ x_n [\log (x_n^{-1} |\xi - x| + 2)]^{1/p'} & \text{if } n - \alpha p + \beta + p = 0, \\ x_n |\xi - x|^{(\alpha p - \beta - p - n)/p} & \text{if } n - \alpha p + \beta + p < 0. \end{cases}$

By Lemmas 10 and 11 we can establish the following theorems.

THEOREM 5. Let $\alpha p > n$, $0 \le \delta < 1$ and f be a nonnegative measurable function on \mathbb{R}^n_+ such that $G^f_{\alpha} \equiv \infty$ and

(5)
$$\int_{\mathbb{R}^n_+} f(y)^p y_n^\beta dy < \infty, \quad \beta < 2p-1.$$

(i) If $n - \alpha p + \beta + \delta p > 0$ and $\gamma \ge 1$, then $x_n^{-\delta}G_{\alpha}^f(x)$ has T_{γ} -limit zero at any $\xi \in \partial R_{+}^n - (E_{\delta} \cup B_{\gamma(n-\alpha p+\beta+\delta p)})$.

(ii) If $n - \alpha p + \beta + \delta p \leq 0$, then $x_n^{-\delta} G_{\alpha}^f(x)$ has limit zero at any $\xi \in \partial R_+^n$.

THEOREM 6. Let $\alpha p > n$ and f be as above. Set

$$G(\xi) = 2(n-\alpha) \int_{\mathbb{R}^n_+} |\xi - y|^{\alpha - n - 2} y_n f(y) dy, \quad \xi \in \partial \mathbb{R}^n_+.$$

(i) If $n - \alpha p + \beta + p > 0$ and $\gamma \ge 1$, then $x_n^{-1}G_{\alpha}^f(x)$ has a T_{γ} -limit $G(\xi)$ at any $\xi \in \partial R_{+}^n - B_{\gamma(n-\alpha p+\beta+p)}$.

(ii) If $n - \alpha p + \beta + p = 0$, then $x_n^{-1}G_{\alpha}^f(x)$ has a T_{∞} -limit $G(\xi)$ at any $\xi \in \partial R_n^n - B_0$.

(iii) If $n - \alpha p + \beta + p < 0$, then $\lim_{x \to \xi, x \in \mathbb{R}^n_+} x_n^{-1} G_{\alpha}^f(x) = G(\xi)$ for any $\xi \in \partial \mathbb{R}^n_+$.

As to T_{ν}^* -limits of Green potentials, we have the next result.

THEOREM 7. Let p>1, $0 \le \delta < 1$, $\alpha p \le n$ and f be a nonnegative measurable function on \mathbb{R}^n_+ satisfying (5) with $\beta < 2p-1$ such that $G^f_{\alpha} \not\equiv \infty$.

(i) If $n-\alpha p+\beta+\delta p>0$ and $\gamma \ge 1$, then $x_n^{-\delta}G_{\alpha}^f(x)$ has (α, p) -fine T_{γ}^* -limit zero at any $\xi \in \partial R_+^n - (E_{\delta} \cup A_{\gamma,\delta}^* \cup B_{\gamma(n-\alpha p+\beta+\delta p)})$.

(ii) If $n - \alpha p + \beta + \delta p \leq 0$, then $x_n^{-\delta} G_{\alpha}^f(x)$ has (α, p) -fine T_{∞}^* -limit zero at any $\xi \in \partial \mathbb{R}_+^n$.

Here $A_{\gamma,\delta}^* = \bigcap_{\beta'>\beta+\delta p} A_{\gamma,\beta'}$. Note that $H_{\gamma(n-\alpha p+\beta+\delta p)}(E_{\delta} \cap A_{\gamma,\delta}^*) = 0$ in the case of (i) of Theorem 7.

PROOF OF THEOREM 7. Write $G_{\alpha}^{f}(x) = G_{1}(x) + G_{2}(x) + G_{3}(x)$, where

$$G_{1}(x) = \int_{\{y \in \mathbb{R}^{n}_{+}: |x-y| > |\xi-x|/2\}} G_{\alpha}(x, y) f(y) dy,$$

$$G_{2}(x) = \int_{\{y \in \mathbb{R}^{n}_{+}: x_{n}/2 < |x-y| \le |\xi-x|/2\}} G_{\alpha}(x, y) f(y) dy,$$

$$G_{3}(x) = \int_{B(x, x_{n}/2)} G_{\alpha}(x, y) f(y) dy.$$

First note that $\lim_{x \to \xi, x \in \mathbb{R}^n_+} x_n^{-\delta} G_1(x) = 0$ if $\xi \in \partial \mathbb{R}^n_+ - E_{\delta}$ according to Lemma 10. In what follows we shall prove only the case $n - \alpha p + \beta + \delta p > 0$, because the remaining case can be proved similarly. Assume $n - \alpha p + \beta + \delta p > 0$. Then Hölder's inequality yields

$$\begin{aligned} x_n^{-\delta} G_2(x) &\leq c_2 x_n^{1-\delta} \left\{ \int_{B(x, |\xi-x|/2) - B(x, x_n/2)} |x-y|^{p'(\alpha-n-2)} |y_n|^{p'(1-\beta/p)} dy \right\}^{1/p} \\ &\times \left\{ \int_{B(\xi, 2|\xi-x|) \cap R_+^n} f(y)^p y_n^\beta dy \right\}^{1/p} \\ &\leq \text{const.} \left\{ x_n^{\alpha p - \beta - \delta p - n} \int_{B(\xi, 2|x-\xi|) \cap R_+^n} f(y)^p y_n^\beta dy \right\}^{1/p}. \end{aligned}$$

If $\xi \in \partial R^n_+ - B_{\gamma(n-\alpha p+\beta+\delta p)}$ and $x \in T_{\gamma}(\xi, a) \cap B(\xi, 1)$, then

$$x_n^{-\delta}G_2(x) \leq \text{const.} \left\{ |x - \xi|^{\gamma(\alpha p - \beta - \delta p - n)} \int_{B(\xi, 2|x - \xi|) \cap R_+^n} f(y)^p y_n^\beta dy \right\}^{1/p}$$

$$\longrightarrow 0 \text{ as } x \longrightarrow \xi, \ x \in T_{\gamma}(\xi, a) .$$

Since $x_n^{-\delta}G_3(x) \leq c_2 \int_{B(x,x_n/2)} |x-y|^{\alpha-n}f(y)(y_n/2)^{-\delta}dy$ on account of Lemma 9, it follows from Lemma 7 that $x_n^{-\delta}G_3(x)$ has (α, p) -fine T_{γ}^* -limit zero at $\xi \in \partial R_+^n - A_{\gamma,\delta}^*$. By these facts $x_n^{-\delta}G_{\alpha}^f(x)$ has (α, p) -fine T_{γ}^* -limit zero at $\xi \in \partial R_+^n - E_{\delta} - A_{\gamma,\delta}^* - B_{\gamma(n-\alpha p+\beta+\delta p)}$.

In a similar manner we can establish the following result.

THEOREM 8. Let α , β , p and f be as in Theorem 7.

(i) If $n - \alpha p + \beta + p > 0$ and $\gamma \ge 1$, then $x_n^{-1}G_{\alpha}^f(x)$ has an (α, p) -fine T_{γ}^* -limit $G(\zeta)$ at any $\zeta \in \partial R_+^n - (A_{\gamma,1}^* \cup B_{\gamma(n-\alpha p+\beta+p)})$.

(ii) If $n - \alpha p + \beta + p \leq 0$, then $x_n^{-1}G_{\alpha}^f(x)$ has an (α, p) -fine T_{∞}^* -limit $G(\xi)$ at any $\xi \in \partial \mathbb{R}^n_+ - B^*_{\gamma(n-\alpha p+\beta+p)}$.

In a way similar to the proof of Theorem 4, the existence of limits along t_{γ} of Green potentials can be proved.

Yoshihiro MIZUTA

THEOREM 9 (cf. Wu [12; Theorem 1]). Let α , β , δ , p and f be as in Theorem 7.

(i) If $n-\alpha p+\beta+\delta p>0$ and $\gamma>1$, then for each $\xi \in \partial R^n_+ - (E_{\delta} \cup A^*_{\gamma,\delta} \cup B_{\gamma(n-\alpha p+\beta+\delta p)})$ there exists a set $E \subset H$ such that E has Hausdorff dimension at most $n-\alpha p$ and

(6)
$$\lim_{x \to \xi, x \in I_{\gamma}(\xi, \zeta)} x_n^{-\delta} G_{\alpha}^f(x) = 0 \quad for \; every \; \zeta \in H - E.$$

(ii) If $n-\alpha p+\beta+\delta p \leq 0$, then for each $\xi \in \partial \mathbb{R}^n_+$ there exists a set $E \subset H$ such that E has Hausdorff dimension at most $n-\alpha p$ and (6) holds.

As to nontangential limits we have the following results.

THEOREM 10. Let $0 \leq \delta < 1$ and f be a nonnegative measurable function on \mathbb{R}^n_+ such that $G^f_{\alpha} \equiv \infty$ and $\int_{\mathbb{R}^n_+} f(y)^p y^{\beta}_n dy < \infty$ for some real numbers p > 1and β .

(i) If $\beta + \delta p \ge \alpha p - n > 0$, then $x_n^{-\delta} G_{\alpha}^f(x)$ has nontangential limit zero at any $\xi \in \partial R_+^n - (E_{\delta} \cup B_{n-\alpha p+\beta+\delta p}^{**})$, where $B_d^{**} = B_d$ when d > 0 and B_d^{**} is empty when $d \le 0$.

(ii) If $\alpha p \leq n$ and $n - \alpha p + \beta + \delta p \geq 0$, then for each $\xi \in \partial R_+^n - (E_{\delta} \cup A_{1,\delta}^n)$ there exists a set $E \subset R_+^n$ such that E is (α, p) -thin at ξ (relative to T_1) and

$$\lim_{x \to \xi, x \in T_1(\xi, a) - E} x_n^{-\delta} G_{\alpha}^f(x) = 0 \quad \text{for any } a > 0.$$

Similar results can be obtained in case $\delta = 1$.

5. Further results and remarks

Let D be a special Lipschitz domain as defined in Stein [11; Chap. VI]. Then similar results can be shown to hold for U_{α}^{f} with a nonnegative measurable function f on R^{n} such that

(7)
$$\int_{\mathbb{R}^n} f(y)^p d(y)^\beta dy < \infty, \quad p > 1, \, \beta$$

if we replace $T_{\gamma}(\xi, a)$ by $\{x \in D; |x - \xi| < ad(x)^{1/\gamma}\}$. Here d(y) denotes the distance from y to the boundary ∂D .

Let m be a positive integer and u be an (m, p)-quasi continuous function (see [7]) such that

$$\sum_{|\lambda|=m}\int_D |D^{\lambda}u(x)|^p d(x)^{\beta} dx < \infty,$$

where $D^{\lambda} = (\partial/\partial x_1)^{\lambda_1} \cdots (\partial/\partial x_n)^{\lambda_n}$ for a multi-index $\lambda = (\lambda_1, \dots, \lambda_n)$ with length

 $|\lambda| = \lambda_1 + \dots + \lambda_n$. If p > 1 and $\beta , then for each bounded open set G we can find functions <math>f_{\lambda,G}$ satisfying

$$\int_{G} |f_{\lambda,G}(y)|^{p} d(y)^{\beta} dy < \infty$$

such that

$$u(x) = \sum_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^n} f_{\lambda,G}(y) dy$$

holds for $x \in G \cap D$ except for a set with $C_{m,p}$ capacity zero, where a_{λ} are constants (cf. [7]). Thus one can discuss the boundary behavior of u by similar methods as above; one need take into account the following exceptional sets:

$$\left\{x\in G\cap\partial D;\,\int|x-y|^{m-n}|f_{\lambda,G}(y)|dy=\infty\right\},$$

which has $B_{m-\beta/p,p}$ capacity zero as will be shown in the Appendix.

For Green potentials in D, we refer to Aikawa [1], in which finely nontangential limits of Green potentials are discussed.

6. Appendix

Here we show that $B_{\alpha-\beta/p,p}(\{x \in \partial D; U_{\alpha}^{f}(x) = \infty\}) = 0$ if f is a nonnegative measurable function on \mathbb{R}^{n} satisfying (7). Set $A = \{x \in \partial D; U_{\alpha}^{f}(x) = \infty\}$. If $\beta \leq 0$, then A is included in

$$A' = \left\{ x \in \partial D; \int_{B(x,1)} |x-y|^{\alpha-\beta/p-n} [f(y)d(y)^{\beta/p}] dy = \infty \right\}.$$

Since $B_{\alpha-\beta/p,p}(A')=0$ by assumption (7), we have $B_{\alpha-\beta/p,p}(A)=0$. If $\beta \ge \alpha p-1$, then $B_{\alpha-\beta/p,p}(\partial D)=0$, so that $B_{\alpha-\beta/p,p}(A)=0$. Now assume that $0 < \beta < [\min(\alpha, 1)]p-1$. By considering a Lipschitz transformation of D to R_{+}^{n} locally, we may assume further that D is the half space R_{+}^{n} .

Let g_{α} denote the Bessel kernel of order α (see [5]), and note

$$A = \left\{ x \in \partial R^n_+; \int g_{\alpha}(x-y)f(y)dy = \infty \right\}.$$

We see that the function $G(\xi) = \int g_{\alpha}(\xi - y)f(y)dy, \xi \in \partial R_{+}^{n}$, belongs to the Lipschitz space $\Lambda_{\alpha^{-}(\beta+1)/p}^{p,p}(\partial R_{+}^{n})$ (cf. [11; Chap. VI, §4.3]). Let *u* be the Poisson integral of *G* with respect to R_{+}^{n} . By the fact in [11; p. 152] we have

$$\sum_{|\lambda|=m}\int_{R^n_+}|D^{\lambda}u(x)|^px_n^{p(m-\alpha)+\beta}dx<\infty,$$

Yoshihiro MIZUTA

where *m* is a positive integer greater than $\alpha - (\beta + 1)/p$. By [9; Theorem 2] we can find a set $B \subset \partial R^n_+$ such that *u* has a finite nontangential limit at any $\xi \in \partial R^n_+ - B$ and $B_{\alpha-\beta/p,p}(B)=0$. Since $\lim_{x\to\xi,x\in R^n_+} u(x)=\infty$ for any $\xi\in A$, it follows that $A \subset B$, so that $B_{\alpha-\beta/p,p}(A)=0$.

References

- [1] H. Aikawa, On the minimal thinness in a Lipschitz domain, preprint.
- [2] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer, Berlin, 1971.
- [3] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [4] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans R^d de la classe de Sobolev W⁴₁, C. R. Acad. Sci. Paris 294 (1982), 71–74.
- [5] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255–292.
- [6] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
- Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
- [8] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415–437.
- [9] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717–745.
- [10] Y. Mizuta, Boundary limits of Green potentials of order α , Hiroshima Math. J. 11 (1981), 111–123.
- [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [12] J.-M. G. Wu, L^p-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895–911.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University