On the behavior of potentials near a hyperplane

Yoshihiro Mizuta
(Received January 10, 1983)

1. Introduction

Let $R^{n}(n \geqq 2)$ be the n-dimensional Euclidean space, and set

$$
R_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\} .
$$

In this paper we investigate the behavior near the boundary ∂R_{+}^{n} of α-potentials

$$
U_{\alpha}^{f}(x)=\int_{R^{n}}|x-y|^{\alpha-n} f(y) d y
$$

where $0<\alpha<n$ and f is a nonnegative measurable function on R^{n} satisfying the condition:

$$
\begin{equation*}
\int_{R^{n}} f(y)^{p}\left|y_{n}\right|^{\beta} d y<\infty \tag{1}
\end{equation*}
$$

For $\gamma \geqq 1$, we say that a function u has a T_{γ}-limit ℓ at $\xi \in \partial R_{+}^{n}$ if

$$
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi, a)} u(x)=\ell
$$

for any $a>0$, where

$$
T_{\gamma}(\xi, a)=\left\{\left(x^{\prime}, x_{n}\right) \in R_{+}^{n} ;\left|\left(x^{\prime}, 0\right)-\xi\right|<a x_{n}^{1 / \gamma}\right\}
$$

If u has a T_{γ}-limit at ξ for any $\gamma>1$, then u is said to have a T_{∞}-limit at ξ. Our first aim is to prove the following result:

Theorem 1. Let $\alpha p>n$ and f be a nonnegative measurable function on R^{n} satisfying (1) with $\beta<p-1$.
(i) If $n-\alpha p+\beta>0$, then for each $\gamma \geqq 1$ there exists a set $E_{\gamma} \subset \partial R_{+}^{n}$ such that $H_{\gamma(n-\alpha p+\beta)}\left(E_{\gamma}\right)=0$ and U_{α}^{f} has a T_{γ}-limit at any $\xi \in \partial R_{+}^{n}-E_{\gamma}$.
(ii) If $n-\alpha p+\beta=0$, then there exists a set $E \subset \partial R_{+}^{n}$ such that $B_{n / p, p}(E)=0$ and U_{α}^{f} has a T_{∞}-limit at any $\xi \in \partial R_{+}^{n}-E$.
(iii) If $n-\alpha p+\beta<0$, then U_{α}^{f} has a limit at any $\xi \in \partial R_{+}^{n}$.

Here H_{ℓ} denotes the ℓ-dimensional Hausdorff measure, and $B_{\ell, p}$ the Bessel capacity of index (ℓ, p) (cf. [5]).

As an application of (ii) of Theorem 1, we can prove a result of Cruzeiro
[4] concerning the existence of T_{∞}-limits of harmonic functions with gradient in $L^{n}\left(R_{+}^{n}\right)$.

In case $\alpha p \leqq n$, if we further restrict the set of approach, then we can obtain a similar result by replacing " T_{γ}-limit" by " (α, p)-fine T_{γ}^{*}-limit". To do so, we need a capacity $C_{\alpha, p}(\cdot ; \cdot)$, which is a special case of the capacities of Meyers [5].

Let G be an open set in R^{n}. For $E \subset R^{n}$, define

$$
C_{\alpha, p}(E ; G)=\inf \|g\|_{p}^{p},
$$

where the infimum is taken over all nonnegative measurable functions g on R^{n} such that $g=0$ outside G and $U_{\alpha}^{g}(x) \geqq 1$ for every $x \in E$, and $\|\cdot\|_{p}$ denotes the $L^{p_{-}}$ norm in R^{n}. A set E in R^{n} is said to be (α, p)-thin at $\xi \in \partial R_{+}^{n}$ relative to T_{γ} if for any a, b, a^{\prime} and b^{\prime} with $0<a^{\prime}<a<b<b^{\prime}$,

$$
\begin{equation*}
\sum_{i=1}^{\infty} 2^{i \gamma(n-\alpha p)} C_{\alpha, p}\left(E_{i} \cap T_{\gamma}(\xi, a, b) ; G_{i} \cap T_{\gamma}\left(\xi, a^{\prime}, b^{\prime}\right)\right)<\infty, \tag{2}
\end{equation*}
$$

where $E_{i}=\left\{x \in E ; 2^{-i} \leqq|x-\xi|<2^{-i+1}\right\}, G_{i}=\left\{x ; 2^{-i-1}<|x-\xi|<2^{-i+2}\right\}$ and $T_{\gamma}(\xi$, $a, b)=\left\{x=\left(x^{\prime}, x_{n}\right) \in R_{+}^{n} ; a x_{n}^{1 / y}<\left|\xi^{\prime}-x^{\prime}\right|<b x_{n}^{1 / y}\right\}$. We say that a function u has an (α, p)-fine T_{γ}^{*}-limit ℓ at ξ if there exists a set $E \subset R_{+}^{n}$ such that E is (α, p) thin at ξ relative to T_{γ} and

$$
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi, a, b)-E} u(x)=\ell
$$

for any a and b with $0<a<b ; u$ is said to have an (α, p)-fine T_{∞}^{*}-limit at ξ if it has an (α, p)-fine T_{γ}^{*}-limit at ξ for any $\gamma>1$.

Now we are ready to state our second result.
Theorem 2. Let $p>1, \alpha p \leqq n$ and $\beta<p-1$. Let f be a nonnegative measurable function on R^{n} satisfying (1).
(i) If $n-\alpha p+\beta>0$, then for each $\gamma \geqq 1$ there exists a set $E_{\gamma} \subset \partial R_{+}^{n}$ such that $H_{\gamma(n-\alpha p+\beta)}\left(E_{\gamma}\right)=0$ and U_{α}^{f} has an (α, p)-fine T_{γ}^{*}-limit at any $\xi \in \partial R_{+}^{n}-E_{\gamma}$.
(ii) If $n-\alpha p+\beta=0$, then there exists a set $E \subset \partial R_{+}^{n}$ such that $B_{n / p, p}(E)=0$ and U_{α}^{f} has an (α, p)-fine T_{∞}^{*}-limit at any $\xi \in \partial R_{+}^{n}-E$.
(iii) If $n-\alpha p+\beta<0$, then U_{α}^{\int} has an (α, p)-fine T_{∞}^{*}-limit at any $\xi \in \partial R_{+}^{n}$.

We shall also discuss the existence of T_{γ}-limits and (α, p)-fine T_{γ}^{*}-limits of α Green potentials in R_{+}^{n}, and give a generalization of a result of Wu [12; Theorem 1], in which he treated only the case $n-2 p+\beta>0(\alpha=2)$. Since T_{1}-limit $((\alpha, p)$ fine T_{1}^{*}-limit) coincides with nontangential limit (nontangential (α, p)-fine limit), Theorems 2 and 3 in [10] are included in Theorems 5, 7 and 10 of the present paper.

2. Proof of Theorem 1

For a nonnegative measurable function f on R^{n}, we set

$$
U_{\alpha}^{f}(x)=\int_{R^{n}}|x-y|^{\alpha-n} f(y) d y .
$$

Lemma 1. For $x^{0} \in R^{n}$ and $c>0$, we have

$$
\lim _{x \rightarrow x^{0}} \int_{\left\{y ;|x-y|>c\left|x^{0}-x\right|\right\}}|x-y|^{\alpha-n} f(y) d y=U_{\alpha}^{f}\left(x^{0}\right)
$$

Proof. If $U_{a}^{f}\left(x^{0}\right)=\infty$, then Fatou's lemma gives the required equality. Assume $U_{\alpha}^{f}\left(x^{0}\right)<\infty$. If $|x-y|>c\left|x^{0}-x\right|$, then

$$
\left|x^{0}-y\right| \leqq\left|x^{0}-x\right|+|x-y|<\left(1+c^{-1}\right)|x-y|,
$$

so that Lebesgue's dominated convergence theorem establishes the required equality.

Lemma 2. Let f be a nonnegative measurable function satisfying (1) with real numbers $p>1$ and β. If we set

$$
B_{d}=\left\{\xi \in \partial R_{+}^{n} ; \lim \sup _{r \downarrow 0} r^{-d} \int_{B(\xi, r)} f(y)^{p}\left|y_{n}\right|^{\beta} d y>0\right\}, \quad d>0,
$$

then $H_{d}\left(B_{d}\right)=0$, where $B(\xi, r)$ denotes the open ball with center at ξ and radius r.
Lemma 3. Let f be as above and define

$$
B_{0}=\left\{\xi \in \partial R_{+}^{n} ; \lim \sup _{r \downarrow 0}\left(\log r^{-1}\right)^{p-1} \int_{B(\xi, r)} f(y)^{p}\left|y_{n}\right|^{\beta} d y>0\right\} .
$$

Then $B_{n / p, p}\left(B_{0}\right)=0$.
These lemmas follow from the facts in [6; p. 165] and [5; Theorem 21].
Lemma 4. Let $\alpha p>n, \beta<p-1, p^{\prime}=p /(p-1), \xi \in \partial R_{+}^{n}$ and $x \in R_{+}^{n}$. Then there exists a positive constant C independent of x such that

$$
\begin{aligned}
& \left\{\int_{B(x,|\xi-x| / 2)}|x-y|^{p^{\prime}(\alpha-n) \mid}\left|y_{n}\right|^{-\beta p^{\prime} / p} d y\right\}^{1 / p^{\prime}} \\
& \quad \leqq C \begin{cases}x_{n}^{(\alpha p-\beta-n) / p} & \text { if } n-\alpha p+\beta>0, \\
{\left[\log \left(x_{n}^{-1}|\xi-x|+2\right)\right]^{1 / p^{\prime}}} & \text { if } n-\alpha p+\beta=0, \\
|\xi-x|^{(\alpha p-\beta-n) / p} & \text { if } n-\alpha p+\beta<0\end{cases}
\end{aligned}
$$

Proof. Let $\xi^{*}=(O, 1)$. By change of variables, we see that the left hand side is equal to

$$
x_{n}^{\alpha-n-\beta / p+n / p^{\prime}}\left\{\int_{\left\{z ;\left|\xi^{*-z}-z\right| \leqq x_{n}^{-1}\left|\xi^{-}-x\right| / 2\right\}}\left|\xi^{*}-z\right|^{p^{\prime}(\alpha-n)}\left|z_{n}\right|^{-\beta p^{\prime} / p} d z\right\}^{1 / p^{\prime}}
$$

which is dominated by

$$
\begin{aligned}
& C x_{n}^{(\alpha p-\beta-n) / p}\left\{\int_{B\left(\xi^{*}, 1 / 2\right)}\left|\xi^{*}-z\right|^{p^{\prime}(\alpha-n)} d z\right. \\
& \left.\quad+\int_{B\left(o, x_{n}^{-1}|\xi-x| / 2+1\right)}(1+|z|)^{p^{\prime}(\alpha-n)}\left|z_{n}\right|^{-\beta p^{\prime} / p} d z\right\}^{1 / p^{\prime}}
\end{aligned}
$$

Evaluating these integrals by the aid of polar coordinates in R^{n}, we obtain the required inequalities.

We are now ready to prove Theorem 1.
Proof of Theorem 1. We write $U_{\alpha}^{f}=U_{1}+U_{2}$, where

$$
\begin{aligned}
& U_{1}(x)=\int_{\{y ;|x-y|>|\xi-x| / 2\}}|x-y|^{\alpha-n} f(y) d y \\
& U_{2}(x)=\int_{\{y ;|x-y| \leqq|\xi-x| / 2\}}|x-y|^{\alpha-n} f(y) d y
\end{aligned}
$$

By Lemma $1, \lim _{x \rightarrow \xi} U_{1}(x)=U_{a}^{f}(\xi)$.
First let $n-\alpha p+\beta>0$. It suffices to prove that U_{2} has T_{γ}-limit zero at $\xi \in$ $\partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta)}$, since $H_{\gamma(n-\alpha p+\beta)}\left(B_{\gamma(n-\alpha p+\beta)}\right)=0$ on account of Lemma 2. By Hölder's inequality and Lemma 4, we have

$$
U_{2}(x) \leqq \text { const. }\left\{x_{n}^{\alpha p-\beta-n} \int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p}
$$

Hence if $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta)}$ and $x \in T_{\gamma}(\xi, a) \cap B(\xi, 1)$, then

$$
U_{2}(x) \leqq \text { const. }\left\{|x-\xi|^{\gamma(\alpha p-\beta-n)} \int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p},
$$

which tends to zero as $x \rightarrow \xi, x \in T_{\gamma}(\xi, a)$. This implies that U_{2} has T_{γ}-limit zero at $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta)}$.

Next let $n-\alpha p+\beta=0$. Then it follows from Lemma 4 that

$$
U_{2}(x) \leqq \text { const. }\left\{\left[\log \left(x_{n}^{-1}|x-\xi|+2\right)\right]^{p-1} \int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p}
$$

If $\xi \in \partial R_{+}^{n}-B_{0}$ and $x \in T_{\gamma}(\zeta, a)$, then

$$
U_{2}(x) \leqq \text { const. }\left\{\left[\log \left(|x-\xi|^{-1}+2\right)\right]^{p-1} \int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p}
$$

and hence U_{2} has T_{γ}-limit zero at ξ. Since γ is arbitrary, U_{2} has T_{∞}-limit zero at $\xi \in \partial R_{+}^{n}-B_{0}$. By Lemma 3, $B_{n / p, p}\left(B_{0}\right)=0$.

In case $n-\alpha p+\beta<0$, we obtain

$$
U_{2}(x) \leqq \text { const. }\left\{|\zeta-x|^{\alpha p-\beta-n} \int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p},
$$

which tends to zero as $x \rightarrow \xi$. Thus Theorem 1 is established.
A function u is said to have a nontangential limit at $\xi \in \partial R_{+}^{n}$ if it has a T_{1}-limit at ξ. The following can be obtained with a slight modification of the above proof.

Theorem 3. Let $\alpha p>n$ and f be a nonnegative measurable function on R^{n} satisfying (1) with a real number β.
(i) If $n-\alpha p+\beta>0$, then U_{α}^{f} has a nontangential limit at any $\xi \in \partial R_{+}^{n}-$ $B_{n-\alpha p+\beta}$.
(ii) If $n-\alpha p+\beta \leqq 0$, then U_{α}^{f} has a nontangential limit at any $\xi \in \partial R_{+}^{n}$.

3. (α, p)-fine T_{γ}^{*}-limit

For a nonnegative measurable function f on R^{n}, we write $U_{\alpha}^{f}=U_{1}+U_{2}+U_{3}$, where

$$
\begin{aligned}
& U_{1}(x)=\int_{R^{n-B(x,|x-\xi| / 2)}}|x-y|^{\alpha-n} f(y) d y, \\
& U_{2}(x)=\int_{B(x,|x-\xi| / 2)-B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y, \\
& U_{3}(x)=\int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y .
\end{aligned}
$$

Lemma 1 implies that $\lim _{x \rightarrow \xi} U_{1}(x)=U_{\alpha}^{f}(\xi)$.
Lemma 5. Let $p>1, \beta<p-1, x \in R_{+}^{n}$ and $\xi \in \partial R_{+}^{n}$. Then there exists a positive constant C independent of x such that

$$
U_{2}(x)^{p} \leqq C \begin{cases}x_{n}^{\alpha p-\beta-n} F(x) & \text { in case } n-\alpha p+\beta>0 \\ {\left[\log \left(x_{n}^{-1}|x-\xi|+2\right)\right]^{p-1} F(x)} & \text { in case } n-\alpha p+\beta=0 \\ |x-\xi|^{\alpha p-\beta-n} F(x) & \text { in case } n-\alpha p+\beta<0\end{cases}
$$

where $F(x)=\int_{B(\xi, 2|\xi-x|)} f(y)^{p}\left|y_{n}\right|^{\beta} d y$.
This lemma can be proved in the same way as Lemma 4 with the aid of Hölder's inequality.

Lemma 6. Let f be a nonnegative measurable function on R^{n} satisfying (1) with real numbers $p>1$ and β. For $\beta^{\prime}>\beta$, set

$$
A_{\gamma, \beta^{\prime}}=\left\{\xi \in \partial R_{+}^{n} ; \int_{B(\xi, 1)}\left(\left|y^{\prime}-\xi^{\prime}\right|^{2 \gamma}+\left|y_{n}\right|^{2}\right)^{\left(\alpha p-\beta^{\prime}-n\right) / 2} f(y)^{p}\left|y_{n}\right|^{\beta^{\prime}} d y=\infty\right\} .
$$

Then $H_{\gamma(n-\alpha p+\beta)}\left(A_{\gamma, \beta^{\prime}}\right)=0$ for $\gamma \geqq 1$ and $\beta^{\prime}>\beta$.
Remark. If we set $A_{\gamma}=\cap_{\beta^{\prime}>\beta} A_{\gamma, \beta^{\prime}}$, then $H_{\gamma(n-\alpha p+\beta)}\left(A_{\gamma}\right)=0$.
Proof of Lemma 6. If $n-\alpha p+\beta \leqq 0$, then $A_{\gamma, \beta^{\prime}}$ is empty. Suppose $n-$ $\alpha p+\beta>0$ and $H_{\gamma(n-\alpha p+\beta)}\left(A_{\gamma, \beta^{\prime}}\right)>0$. By [3; Theorems 1 and 3 in §II] we can find a nonnegative measure μ such that $\mu\left(A_{\gamma, \beta^{\prime}}\right)>0, \mu\left(R^{n}-A_{\gamma, \beta^{\prime}}\right)=0$ and

$$
\mu(B(x, r)) \leqq r^{\gamma(n-\alpha p+\beta)} \quad \text { for every } \quad x \quad \text { and } \quad r .
$$

Then, since $\int\left(\left|y^{\prime}-\xi^{\prime}\right|^{2 \gamma}+\left|y_{n}\right|^{2}\right)^{\left(\alpha p-\beta^{\prime}-n\right) / 2} d \mu(\xi) \leqq$ const. $\left|y_{n}\right|^{\mid \beta-\beta^{\prime}}$, we have

$$
\begin{aligned}
\infty & =\int\left\{\int\left(\left|y^{\prime}-\xi^{\prime}\right|^{2 \gamma}+\left|y_{n}\right|^{2}\right)^{\left(\alpha p-\beta^{\prime}-n\right) / 2} f(y)^{p}\left|y_{n}\right| \beta^{\prime} d y\right\} d \mu(\xi) \\
& =\int\left\{\int\left(\left|y^{\prime}-\xi^{\prime}\right|^{2 \gamma}+\left|y_{n}\right|^{2}\right)^{\left(\alpha \alpha^{\prime}-\beta^{\prime}-n\right) / 2} d \mu(\xi)\right\} f(y)^{p}\left|y_{n}\right|^{\beta^{\prime}} d y \\
& \leqq \text { const. } \int f(y)^{p}\left|y_{n}\right|^{\beta} d y<\infty,
\end{aligned}
$$

which is a contradiction. Thus the lemma is proved.
Lemma 7. Let f be a nonnegative measurable function on R^{n} satisfying (1) with real numbers $p>1$ and β. Let $\alpha p \leqq n$ and $\gamma \geqq 1$. Then for each $\xi \in \partial R_{+}^{n}-$ A_{γ}, there exists a set $E \subset R_{+}^{n}$ such that E is (α, p)-thin at ξ relative to T_{γ} and

$$
\begin{equation*}
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi, a, b)-E} U_{3}(x)=0 \quad \text { for any } a \text { and } b \text { with } b>a>0 . \tag{3}
\end{equation*}
$$

Proof. Suppose $\xi \in \partial R_{+}^{n}-A_{\gamma, \beta^{\prime}}, \beta^{\prime}>\beta$. Take a sequence $\left\{a_{i}\right\}$ of positive numbers such that $\lim _{i \rightarrow \infty} a_{i}=\infty$ and

$$
\sum_{i=1}^{\infty} a_{i} \int_{G_{i}}\left(\left|y^{\prime}-\xi^{\prime}\right|^{2 \gamma}+\left|y_{n}\right|^{2}\right)^{\left(\alpha p-\beta^{\prime}-n\right) / 2} f(y)^{p}\left|y_{n}\right| \beta^{\prime} d y<\infty,
$$

where $G_{i}=\left\{x ; 2^{-i-1}<|x-\xi|<2^{-i+2}\right\}$. Consider the sets

$$
E_{i}=\left\{x \in B\left(\xi, 2^{-i+1}\right)-B\left(\xi, 2^{-i}\right) ; U_{3}(x) \geqq a_{i}^{-1 / p}\right\} .
$$

Let $0<a^{\prime}<a<b<b^{\prime}$, and find $c>0$ such that $c<1 / 2$ and $B\left(x, c x_{n}\right) \subset T_{\gamma}\left(\xi, a^{\prime}\right.$, b^{\prime}) whenever $x \in T_{\gamma}(\xi, a, b)$ and $0<x_{n}<1$. Set

$$
\begin{aligned}
U_{3}^{\prime}(x) & =\int_{B\left(x, x_{n} / 2\right)-B\left(x, c x_{n}\right)}|x-y|^{\alpha-n} f(y) d y \\
U_{3}^{\prime \prime}(x) & =\int_{B\left(x, c x_{n}\right)}|x-y|^{\alpha-n} f(y) d y
\end{aligned}
$$

By Hölder's inequality,

$$
\begin{aligned}
U_{3}^{\prime}(x) & \leqq \text { const. }\left\{x_{n}^{\alpha p-n} \int_{B\left(x, x_{n} / 2\right)} f(y)^{p} d y\right\}^{1 / p} \\
& \leqq \text { const. }\left\{\int_{B\left(x, x_{n} / 2\right)} f(y)^{p} y_{n}^{\alpha p-n} d y\right\}^{1 / p} .
\end{aligned}
$$

Find $b^{\prime \prime}>0$ such that $B\left(x, x_{n} / 2\right) \subset T_{\gamma}\left(\xi, b^{\prime \prime}\right)$ whenever $x \in T_{\gamma}(\xi, b)$ and $0<x_{n}<1$. Since $\sum_{i=1}^{\infty} a_{i} \int_{G_{i} \cap T_{\gamma}\left(\xi, b^{\prime \prime}\right)} f(y)^{p} y_{n}^{\alpha p-n} d y<\infty$, we may assume that $U_{3}^{\prime}(x)<$ $2^{-1} a_{i}^{-1 / p}$ for all $x \in E_{i} \cap T_{\gamma}(\xi, a, b)$, and hence

$$
U_{3}^{\prime \prime}(x) \geqq 2^{-1} a_{i}^{-1 / p} \quad \text { for all } \quad x \in E_{i} \cap T_{\gamma}(\xi, a, b) .
$$

Consequently it follows from the definition of capacity $C_{\alpha, p}$ that

$$
\begin{aligned}
& C_{\alpha, p}\left(E_{i} \cap T_{\gamma}(\xi, a, b) ; G_{i} \cap T_{\gamma}\left(\xi, a^{\prime}, b^{\prime}\right)\right) \\
& \quad \leqq 2^{p} a_{i} \int_{G_{i} \cap T_{\gamma}\left(\xi, a^{\prime}, b^{\prime}\right)} f(y)^{p} d y \\
& \quad \leqq \text { const. } 2^{-i \gamma(n-\alpha p)} a_{i} \int_{G_{i} \cap T_{\gamma}\left(\xi, b^{\prime}\right)} f(y)^{p} y_{n}^{\alpha p-n} d y .
\end{aligned}
$$

Define $E=\cup_{i=1}^{\infty} E_{i}$. Then we see that E satisfies (2) and (3). Thus the lemma is established.

With the aid of Lemmas 5 and 7, we deduce the following result, which proves Theorem 2 in view of Lemmas 2, 3 and the remark after Lemma 6.

Theorem 2'. Let $p>1, \alpha p \leqq n$ and $\beta<p-1$. Let f be a nonnegative measurable function on R^{n} satisfying (1).
(i) If $n-\alpha p+\beta>0$ and $\xi \in \partial R_{+}^{n}-\left(A_{\gamma} \cup B_{\gamma(n-\alpha p+\beta)}\right)$ for some $\gamma \geqq 1$, then $U_{\alpha}^{\dot{f}}$ has an (α, p)-fine T_{γ}^{*}-limit $U_{\alpha}^{f}(\xi)$ at ξ.
(ii) If $n-\alpha p+\beta=0$ and $\xi \in \partial R_{+}^{n}-B_{0}$, then U_{α}^{f} has an (α, p-fine T_{∞}^{*}-limit $U_{a}^{f}(\xi)$ at ξ.
(iii) If $n-\alpha p+\beta<0$, then U_{α}^{f} has an ($\left.\alpha, p\right)$-fine T_{∞}^{*}-limit at any $\xi \in \partial R_{+}^{n}$.

Remark 1. In case $n-\alpha p=\beta=0$, for each $\xi \in \partial R_{+}^{n}-B_{0}$ one can find a set $E \subset R_{+}^{n}$ such that

$$
\lim _{x \rightarrow \xi, x \in T_{\gamma}(\xi, a, b)-E} U_{\alpha}^{f}(x)=U_{\alpha}^{f}(\xi)
$$

and
$\lim _{r \downarrow 0}\left(\log r^{-1}\right)^{p-1} C_{\alpha, p}\left(E \cap B(\xi, r) \cap T_{\gamma}(\xi, a, b) ; B(\xi, 2 r) \cap T_{\gamma}\left(\xi, a^{\prime}, b^{\prime}\right)\right)=0$
for any $\gamma>1$ and any $a, b, a^{\prime}, b^{\prime}$ with $0<a^{\prime}<a<b<b^{\prime}$.
Remark 2. Let $p>1, \alpha p<n, \gamma>1$ and $0<a^{\prime}<a<b<b^{\prime}$. If E satisfies (2) and $E \subset T_{\gamma}(\xi, a, b)$, then there exists a nonnegative measurable function f on R^{n} such that
(i) $U_{a}^{f}(\xi)<\infty$;
(ii) $\lim _{x \rightarrow \xi, x \in E} U_{\alpha}^{f}(x)=\infty$;
(iii) $\int f(y)^{p}\left|y_{n}\right|^{\alpha p-n} d y<\infty$.

For $\xi \in \partial R_{+}^{n}$ and $\zeta=\left(\zeta^{\prime}, 1\right)$, we set

$$
t_{\gamma}(\xi, \zeta)=\left\{\left(\xi^{\prime}+r \zeta^{\prime}, r^{\gamma}\right) ; 0<r<1\right\} .
$$

Theorem 4. Let p, β and f be as in Theorem 2. Let $\gamma>1$. Then for each $\xi \in \partial R_{+}^{n}-\left(A_{\gamma} \cup B_{\gamma(n-\alpha p+\beta)}^{*}\right)$ there exists a set $E \subset H=\left\{\left(\zeta^{\prime}, 1\right) ; \zeta^{\prime} \in R^{n-1}\right\}$ such that E has Hausdorff dimension at most $n-\alpha p$ and

$$
\begin{equation*}
\lim _{x \rightarrow \xi, x \in t_{\gamma}(\xi, \zeta)} U_{\alpha}^{f}(x)=U_{\alpha}^{f}(\xi) \tag{4}
\end{equation*}
$$

for every $\zeta \in H-E$, where $B_{d}^{*}=B_{d}$ if $d \geqq 0$ and B_{d}^{*} is empty if $d<0$.
To prove this, we need the following result (cf. [2; Theorem IX, 7]).
Lemma 8. Let μ be a nonnegative measure on R^{n} such that $U_{\alpha}^{\mu}(x)=\int \mid x-$ $\left.y\right|^{\alpha-n} d \mu(y) \neq \infty$, and $x^{0} \in R^{n}$. Then there exists a set $E \subset H$ whose Riesz capacity of order α is zero such that

$$
\lim _{r \downarrow 0} r^{n-\alpha} U_{a}^{\mu}\left(x^{0}+r \zeta\right)=\mu\left(\left\{x^{0}\right\}\right) \text { for every } \zeta \in H-E .
$$

Proof of Theorem 4. Let $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta)}^{*}$. Then Lemmas 1 and 5 imply that

$$
\lim _{x \rightarrow \xi, x \in R_{+}^{n}} \int_{R^{n-B\left(x, x_{n} / 2\right)}}|x-y|^{\alpha-n} f(y) d y=U_{\alpha}^{f}(\xi)
$$

Let $0<\varepsilon<\alpha$. By Hölder's inequality we derive

$$
\begin{aligned}
& \int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y \\
& \quad \leqq\left\{\int_{B\left(x, x_{n} / 2\right)}|x-y|^{(\alpha-\varepsilon) p^{\prime}-n} d y\right\}^{1 / p^{\prime}}\left\{\int_{B\left(x, x_{n} / 2\right)}|x-y|^{\varepsilon p-n} f(y)^{p} d y\right\}^{1 / p} \\
& \quad \leqq \text { const. }\left\{x_{n}^{(\alpha-\varepsilon) p} \int_{B\left(x, x_{n} / 2\right)}|x-y|^{\varepsilon p-n} f(y)^{p} d y\right\}^{1 / p} \\
& \quad \leqq \text { const. }\left\{z_{n}^{n-\varepsilon p} \int_{B\left(z, c z_{n}\right)}|z-w|^{\varepsilon p-n} g(w) d w\right\}^{1 / p},
\end{aligned}
$$

where c is a positive constant independent of $z=\left(x^{\prime}, x_{n}^{1 / \gamma}\right)$ and $g(w)=f\left(w^{\prime}\right.$; $\left.w_{n}^{\gamma}\right)^{p} w_{n}^{\gamma(\alpha p-n)+\gamma-1}$. If $\xi \in \partial R_{+}^{n}-A_{\gamma}$, then $\int_{T_{\gamma}(\xi, a)} f(y)^{p} y_{n}^{\alpha p-n} d y<\infty$ for any $a>1$, so that $\int_{T_{1}(\xi, a)} g(w) d w<\infty$ for any $a>1$. By Lemma 8, we can find a set $E_{\varepsilon} \subset$ H whose Riesz capacity of order $n-\varepsilon p$ is zero such that

$$
\lim _{x \rightarrow \xi, x \in t_{\gamma}(\xi, 5)} \int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y) d y=0
$$

for every $\zeta \in H-E_{\varepsilon}$. Define $E=\cap_{0<\varepsilon<\alpha} E_{\varepsilon}$. Then E has Hausdorff dimensior at most $n-\alpha p$, and (4) holds for any $\zeta \in H-E$.

4. $\boldsymbol{T}_{\boldsymbol{\gamma}}$-limits of Green potentials

For a nonnegative measurable function f on R_{+}^{n}, we define

$$
G_{\alpha}^{f}(x)=\int_{R_{+}^{n}} G_{\alpha}(x, y) f(y) d y
$$

where $G_{\alpha}(x, y)=|x-y|^{\alpha-n}-|\bar{x}-y|^{\alpha-n}, \bar{x}=\left(x^{\prime},-x_{n}\right)$ for $x=\left(x^{\prime}, x_{n}\right)$. We firs note the following property of G_{α}.

Lemma 9. There exist $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} \frac{x_{n} y_{n}}{|x-y|^{n-\alpha}|\bar{x}-y|^{2}} \leqq G_{\alpha}(x, y) \leqq c_{2} \frac{x_{n} y_{n}}{|x-y|^{n-\alpha}|\bar{x}-y|^{2}}
$$

for every $x=\left(x^{\prime}, x_{n}\right)$ and $y=\left(y^{\prime}, y_{n}\right)$ in R_{+}^{n}.
Corollary. $\quad G_{\alpha}^{f} \equiv \infty$ if and only if $\int_{R_{+}^{n}}(1+|y|)^{\alpha-n-2} y_{n} f(y) d y<\infty$.
For $0 \leqq \delta<1$, define

$$
E_{\delta}=\left\{\xi \in \partial R_{+}^{n} ; \lim \sup _{r \downarrow 0} r^{\alpha-\delta-n-1} \int_{B(\xi, r) \cap R_{+}^{n}} y_{n} f(y) d y>0\right\}
$$

Lemma 10 (cf. [10; Lemma 3]). For $\xi \in \partial R_{+}^{n}$ and $c>0$, define

$$
G_{1}(x)=\int_{\left\{y \in R_{+}^{n} ;|x-y|>c|x-\xi|\right\}} G_{\alpha}(x, y) f(y) d y .
$$

If $G_{\alpha}^{f} \equiv \infty$ and $0 \leqq \delta<1$, then $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} x_{n}^{-\delta} G_{1}(x)=0$ if and only if $\xi \in \partial R_{+}^{n}-$ E_{δ}.

Remark. If $G_{\alpha}^{f} \neq \infty$, then $H_{n-\alpha+\delta+1}\left(E_{\delta}\right)=0$. If in addition $\int_{R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y$. ∞ with $p>1$ and $\beta<2 p-1$, then $H_{n-\alpha p+\beta+\delta p}\left(E_{\delta}\right)=0$ (see [10; Corollary t Lemma 5]).

The following result can be proved in the same way as Lemma 4.
Lemma 11. Let $\alpha p>n$ and $\xi \in \partial R_{+}^{n}$. Then

$$
\begin{aligned}
& \left\{\int_{\left\{y \in R_{+}^{n} ;|x-y|<|\xi-x| / 2\right\}} G_{\alpha}(x, y)^{p^{\prime}} y_{n}^{-\beta p^{\prime} / p} d y\right\}^{1 / p^{\prime}} \\
& \quad \leqq \text { const. } \begin{cases}x_{n}^{(\alpha p-\beta-n) / p} & \text { if } n-\alpha p+\beta+p>0, \\
x_{n}\left[\log \left(x_{n}^{-1}|\xi-x|+2\right)\right]^{1 / p^{\prime}} & \text { if } n-\alpha p+\beta+p=0, \\
x_{n}|\xi-x|^{(\alpha p-\beta-p-n) / p} & \text { if } n-\alpha p+\beta+p<0 .\end{cases}
\end{aligned}
$$

By Lemmas 10 and 11 we can establish the following theorems.
Theorem 5. Let $\alpha p>n, 0 \leqq \delta<1$ and f be a nonnegative measurable function on R_{+}^{n} such that $G_{\alpha}^{f} \neq \infty$ and

$$
\begin{equation*}
\int_{R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y<\infty, \quad \beta<2 p-1 . \tag{5}
\end{equation*}
$$

(i) If $n-\alpha p+\beta+\delta p>0$ and $\gamma \geqq 1$, then $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has T_{γ}-limit zero at any $\xi \in \partial R_{+}^{n}-\left(E_{\delta} \cup B_{\gamma(n-\alpha p+\beta+\delta p)}\right)$.
(ii) If $n-\alpha p+\beta+\delta p \leqq 0$, then $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has limit zero at any $\xi \in \partial R_{+}^{n}$.

Theorem 6. Let $\alpha p>n$ and f be as above. Set

$$
G(\xi)=2(n-\alpha) \int_{R_{+}^{n}}|\xi-y|^{\alpha-n-2} y_{n} f(y) d y, \quad \xi \in \partial R_{+}^{n} .
$$

(i) If $n-\alpha p+\beta+p>0$ and $\gamma \geqq 1$, then $x_{n}^{-1} G_{\alpha}^{f}(x)$ has a T_{γ}-limit $G(\xi)$ at any $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta+p)}$.
(ii) If $n-\alpha p+\beta+p=0$, then $x_{n}^{-1} G_{\alpha}^{f}(x)$ has a T_{∞}-limit $G(\xi)$ at any $\xi \in$ $\partial R_{+}^{n}-B_{0}$.
(iii) If $n-\alpha p+\beta+p<0$, then $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} x_{n}^{-1} G_{\alpha}^{f}(x)=G(\xi)$ for any $\xi \in \partial R_{+}^{n}$.

As to T_{γ}^{*}-limits of Green potentials, we have the next result.
Theorem 7. Let $p>1,0 \leqq \delta<1, \alpha p \leqq n$ and f be a nonnegative measurable function on R_{+}^{n} satisfying (5) with $\beta<2 p-1$ such that G_{α}^{f} 丰 ∞.
(i) If $n-\alpha p+\beta+\delta p>0$ and $\gamma \geqq 1$, then $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has (α, p)-fine T_{γ}^{*-} limit zero at any $\xi \in \partial R_{+}^{n}-\left(E_{\delta} \cup A_{\gamma, \delta}^{*} \cup B_{\gamma(n-\alpha p+\beta+\delta p)}\right)$.
(ii) If $n-\alpha p+\beta+\delta p \leqq 0$, then $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has (α, p)-fine T_{∞}^{*}-limit zero at any $\xi \in \partial R_{+}^{n}$.

Here $A_{\gamma, \delta}^{*}=\cap_{\beta^{\prime}>\beta+\delta p} A_{\gamma, \beta^{\prime}}$. Note that $H_{\gamma(n-\alpha p+\beta+\delta p)}\left(E_{\delta} \cap A_{\gamma, \delta}^{*}\right)=0$ in the case of (i) of Theorem 7.

Proof of Theorem 7. Write $G_{\alpha}^{f}(x)=G_{1}(x)+G_{2}(x)+G_{3}(x)$, where

$$
\begin{aligned}
G_{1}(x) & =\int_{\left\{y \in R^{n} ;|x-y|>|\xi-x| / 2\right\}} G_{\alpha}(x, y) f(y) d y \\
G_{2}(x) & =\int_{\left\{y \in R_{+}^{n} ; x_{n} / 2<|x-y| \leqq|\xi-x| / 2\right\}} G_{\alpha}(x, y) f(y) d y \\
G_{3}(x) & =\int_{B\left(x, x_{n} / 2\right)} G_{\alpha}(x, y) f(y) d y
\end{aligned}
$$

First note that $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} x_{n}^{-\delta} G_{1}(x)=0$ if $\xi \in \partial R_{+}^{n}-E_{\delta}$ according to Lemma 10. In what follows we shall prove only the case $n-\alpha p+\beta+\delta p>0$, because the remaining case can be proved similarly. Assume $n-\alpha p+\beta+\delta p>0$. Then Hölder's inequality yields

$$
\begin{aligned}
x_{n}^{-\delta} G_{2}(x) & \leqq c_{2} x_{n}^{1-\delta}\left\{\int_{B(x,|\xi-x| / 2)-B\left(x, x_{n} / 2\right)}|x-y|^{p^{\prime}(\alpha-n-2)}\left|y_{n}\right|^{p^{\prime}(1-\beta / p)} d y\right\}^{1 / p^{\prime}} \\
& \times\left\{\int_{B(\xi, 2|\xi-x|) \cap R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y\right\}^{1 / p} \\
& \leqq \text { const. }\left\{x_{n}^{\alpha p-\beta-\delta p-n} \int_{B(\xi, 2|x-\xi|) \cap R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y\right\}^{1 / p}
\end{aligned}
$$

If $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta+\delta p)}$ and $x \in T_{\gamma}(\xi, a) \cap B(\xi, 1)$, then

$$
\begin{aligned}
x_{n}^{-\delta} G_{2}(x) & \leqq \text { const. }\left\{|x-\xi|^{\gamma(\alpha p-\beta-\delta p-n)} \int_{B(\xi, 2|x-\xi|) \cap R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y\right\}^{1 / p} \\
& \longrightarrow 0 \text { as } x \longrightarrow \xi, x \in T_{\gamma}(\xi, a) .
\end{aligned}
$$

Since $x_{n}^{-\delta} G_{3}(x) \leqq c_{2} \int_{B\left(x, x_{n} / 2\right)}|x-y|^{\alpha-n} f(y)\left(y_{n} / 2\right)^{-\delta} d y$ on account of Lemma 9, it follows from Lemma 7 that $x_{n}^{-\delta} G_{3}(x)$ has (α, p)-fine T_{γ}^{*}-limit zero at $\xi \in \partial R_{+}^{n}-$ $A_{\gamma, \delta}^{*}$. By these facts $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has (α, p)-fine T_{γ}^{*}-limit zero at $\xi \in \partial R_{+}^{n}-E_{\delta}-$ $A_{\gamma, \delta}^{*}-B_{\gamma(n-\alpha p+\beta+\delta p)}$.

In a similar manner we can establish the following result.
Theorem 8. Let α, β, p and f be as in Theorem 7.
(i) If $n-\alpha p+\beta+p>0$ and $\gamma \geqq 1$, then $x_{n}^{-1} G_{\alpha}^{f}(x)$ has an (α, p)-fine T_{γ}^{*}-limit $G(\xi)$ at any $\xi \in \partial R_{+}^{n}-\left(A_{\gamma, 1}^{*} \cup B_{\gamma(n-\alpha p+\beta+p)}\right)$.
(ii) If $n-\alpha p+\beta+p \leqq 0$, then $x_{n}^{-1} G_{\alpha}^{f}(x)$ has an (α, p)-fine T_{∞}^{*}-limit $G(\xi)$ at any $\xi \in \partial R_{+}^{n}-B_{\gamma(n-\alpha p+\beta+p)}^{*}$.

In a way similar to the proof of Theorem 4, the existence of limits along t_{γ} of Green potentials can be proved.

Theorem 9 (cf. Wu [12; Theorem 1]). Let α, β, δ, p and f be as in Theorem 7.
(i) If $n-\alpha p+\beta+\delta p>0$ and $\gamma>1$, then for each $\xi \in \partial R_{+}^{n}-\left(E_{\delta} \cup A_{\gamma, \delta}^{*} \cup\right.$ $\left.B_{\gamma(n-\alpha p+\beta+\delta p)}\right)$ there exists a set $E \subset H$ such that E has Hausdorff dimension at most $n-\alpha p$ and

$$
\begin{equation*}
\lim _{x \rightarrow \xi, x \in t_{\gamma}(\xi, \zeta)} x_{n}^{-\delta} G_{\alpha}^{f}(x)=0 \quad \text { for every } \quad \zeta \in H-E \tag{6}
\end{equation*}
$$

(ii) If $n-\alpha p+\beta+\delta p \leqq 0$, then for each $\xi \in \partial R_{+}^{n}$ there exists a set $E \subset H$ such that E has Hausdorff dimension at most $n-\alpha p$ and (6) holds.

As to nontangential limits we have the following results.
Theorem 10. Let $0 \leqq \delta<1$ and f be a nonnegative measurable function on R_{+}^{n} such that $G_{\alpha}^{f} \neq \infty$ and $\int_{R_{+}^{n}} f(y)^{p} y_{n}^{\beta} d y<\infty$ for some real numbers $p>1$ and β.
(i) If $\beta+\delta p \geqq \alpha p-n>0$, then $x_{n}^{-\delta} G_{\alpha}^{f}(x)$ has nontangential limit zero at any $\xi \in \partial R_{+}^{n}-\left(E_{\delta} \cup B_{n-\alpha p+\beta+\delta p}^{* *}\right)$, where $B_{d}^{* *}=B_{d}$ when $d>0$ and $B_{d}^{* *}$ is empty when $d \leqq 0$.
(ii) If $\alpha p \leqq n$ and $n-\alpha p+\beta+\delta p \geqq 0$, then for each $\xi \in \partial R_{+}^{n}-\left(E_{\delta} \cup A_{1, \delta}^{*}\right)$ there exists a set $E \subset R_{+}^{n}$ such that E is (α, p)-thin at ξ (relative to $\left.T_{1}\right)$ and

$$
\lim _{x \rightarrow \xi, x \in T_{1}(\xi, a)-E} x_{n}^{-\delta} G_{\alpha}^{f}(x)=0 \quad \text { for any } a>0
$$

Similar results can be obtained in case $\delta=1$.

5. Further results and remarks

Let D be a special Lipschitz domain as defined in Stein [11; Chap. VI]. Then similar results can be shown to hold for U_{α}^{f} with a nonnegative measurable function f on R^{n} such that

$$
\begin{equation*}
\int_{R^{n}} f(y)^{p} d(y)^{\beta} d y<\infty, \quad p>1, \beta<p-1 \tag{7}
\end{equation*}
$$

if we replace $T_{\gamma}(\xi, a)$ by $\left\{x \in D ;|x-\xi|<a d(x)^{1 / \gamma}\right\}$. Here $d(y)$ denotes the distance from y to the boundary ∂D.

Let m be a positive integer and u be an (m, p)-quasi continuous function (see [7]) such that

$$
\Sigma_{|\lambda|=m} \int_{D}\left|D^{\lambda} u(x)\right|^{p} d(x)^{\beta} d x<\infty
$$

where $D^{\lambda}=\left(\partial / \partial x_{1}\right)^{\lambda_{1}} \ldots\left(\partial / \partial x_{n}\right)^{\lambda_{n}}$ for a multi-index $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with length
$|\lambda|=\lambda_{1}+\cdots+\lambda_{n}$. If $p>1$ and $\beta<p-1$, then for each bounded open set G we can find functions $f_{\lambda, G}$ satisfying

$$
\int_{G}\left|f_{\lambda, G}(y)\right|^{p} d(y)^{\beta} d y<\infty
$$

such that

$$
u(x)=\Sigma_{|\lambda|=m} a_{\lambda} \int \frac{(x-y)^{\lambda}}{|x-y|^{n}} f_{\lambda, G}(y) d y
$$

holds for $x \in G \cap D$ except for a set with $C_{m, p}$ capacity zero, where a_{λ} are constants (cf. [7]). Thus one can discuss the boundary behavior of u by similar methods as above; one need take into account the following exceptional sets:

$$
\left\{x \in G \cap \partial D ; \int|x-y|^{m-n}\left|f_{\lambda, G}(y)\right| d y=\infty\right\}
$$

which has $B_{m-\beta / p, p}$ capacity zero as will be shown in the Appendix.
For Green potentials in D, we refer to Aikawa [1], in which finely nontangential limits of Green potentials are discussed.

6. Appendix

Here we show that $B_{\alpha-\beta / p, p}\left(\left\{x \in \partial D ; U_{\alpha}^{f}(x)=\infty\right\}\right)=0$ if f is a nonnegative measurable function on R^{n} satisfying (7). Set $A=\left\{x \in \partial D ; U_{\alpha}^{f}(x)=\infty\right\}$. If $\beta \leqq 0$, then A is included in

$$
A^{\prime}=\left\{x \in \partial D ; \int_{B(x, 1)}|x-y|^{\alpha-\beta / p-n}\left[f(y) d(y)^{\beta / p}\right] d y=\infty\right\} .
$$

Since $B_{\alpha-\beta / p, p}\left(A^{\prime}\right)=0$ by assumption (7), we have $B_{\alpha-\beta / p, p}(A)=0$. If $\beta \geqq \alpha p-1$, then $B_{\alpha-\beta / p, p}(\partial D)=0$, so that $B_{\alpha-\beta / p, p}(A)=0$. Now assume that $0<\beta<[\min (\alpha$, 1)] $p-1$. By considering a Lipschitz transformation of D to R_{+}^{n} locally, we may assume further that D is the half space R_{+}^{n}.

Let g_{α} denote the Bessel kernel of order α (see [5]), and note

$$
A=\left\{x \in \partial R_{+}^{n} ; \int g_{\alpha}(x-y) f(y) d y=\infty\right\}
$$

We see that the function $G(\xi)=\int g_{\alpha}(\xi-y) f(y) d y, \xi \in \partial R_{+}^{n}$, belongs to the Lipschitz space $\Lambda_{\alpha-(\beta+1) / p}^{p, p}\left(\partial R_{+}^{n}\right)$ (cf. [11; Chap. VI, §4.3]). Let u be the Poisson integral of G with respect to R_{+}^{n}. By the fact in [11; p. 152] we have

$$
\Sigma_{|\lambda|=m} \int_{R_{+}^{n}}\left|D^{i} u(x)\right|^{p} x_{n}^{p(m-\alpha)+\beta} d x<\infty,
$$

where m is a positive integer greater than $\alpha-(\beta+1) / p$. By [9 ; Theorem 2] we can find a set $B \subset \partial R_{+}^{n}$ such that u has a finite nontangential limit at any $\xi \in \partial R_{+}^{n}-B$ and $B_{\alpha-\beta / p, p}(B)=0$. Since $\lim _{x \rightarrow \xi, x \in R_{+}^{n}} u(x)=\infty$ for any $\xi \in A$, it follows that $A \subset B$, so that $B_{\alpha-\beta / p, p}(A)=0$.

References

[1] H. Aikawa, On the minimal thinness in a Lipschitz domain, preprint.
[2] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer, Berlin, 1971.
[3] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[4] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans R^{d} de la classe de Sobolev W_{1}^{d}, \quad C. R. Acad. Sci. Paris 294 (1982), 71-74.
[5] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[6] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.
[7] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[8] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
[9] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
[10] Y. Mizuta, Boundary limits of Green potentials of order α, Hiroshima Math. J. 11 (1981), 111-123.
[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[12] J.-M. G. Wu, L^{p}-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

