On the \boldsymbol{q}-dimension of a space of orderings and \boldsymbol{q}-fans

Daiji Kisima, Mieo Nishi and Hirohumi Uda
(Received May 19, 1983)

Let F be a formally real field, P a preordering and ρ a form over F. We shall say that a pair (ρ, P) is maximal if ρ is P-anisotropic and P is maximal among the preorderings over which ρ is anisotropic. For a given q-cone Q (cf. [7]) we shall define a preordering $P(Q)$ and show that, P being a preordering, (ρ, P) is a maximal pair for some form ρ if and only if P is of finite index and of the form $P=P(Q)$ for some q -cone Q; such a preordering will be called a q -fan in this paper.

The main purpose of this paper is to characterize a q-fan in terms of the q -dimension which is defined in $\S 3$, and give a reduction formula on q -dimensions (Theorem 3.6 and Theorem 3.9).

§1. Defintions and preliminaries

Throughout this paper, a field always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F}, P is said to be a preordering of F if P is additively closed and $\dot{F}^{2} \subset P$. We denote by $X(F / P)$ the space of all orderings σ with $P(\sigma) \supset P$, where $P(\sigma)$ is the positive cone of σ. A valuation v of F is called a real valuation if its residue field is formally real. The objects: valuation ring, valuation ideal, group of units, residue field and group of values will be denoted by A, M, U, F_{v} and G respectively. A preordering P of F will be called compatible with a valuation v of F (or v is compatible with P) if $1+M \subset P$. If a preordering P of F is compatible with a valuation v, then $P \cap U$ is a union of cosets of M and $\bar{P}=\varphi(P \cap U)$ is a preordering of F_{v}, where φ is the canonical surjection: $A \rightarrow F_{v}$.

We shall say that two orderings $\sigma, \tau \in X(F / P)$ are connected in $X(F / P)$ if $\sigma=\tau$ or there exists a fan of index 8 which contains σ and τ, and we denote the relation by $\sigma \sim \tau$. It is known that the relation \sim is an equivalence relation in $X(F / P)$ ([4], Theorem 4.7). Each equivalence class of this relation is called a connected component of $X(F / P)$. We say that a preordering P is connected if $X(F / P)$ is connected. We denote by $\operatorname{gr}(X(F / P))$ the translation group of $X(F / P)$ in the terminology of [4], namely $\operatorname{gr}(X(F / P))=\{\alpha \in \chi(F / P) \mid \alpha \cdot X(F / P)=X(F / P)\}$ where $\chi(F / P)=\operatorname{Hom}(\dot{F} / P,\{ \pm 1\})$ is the character group of \dot{F} / P. For a preordering P of finite index, P is connected if and only if $\operatorname{dim} \dot{F} / P \geqq 3$ and dim $\operatorname{gr}(X(F / P)) \geqq 1$.

Let v be a valuation compatible with P. We shall define a group isomorphism:

$$
\begin{equation*}
\dot{F} / P \longrightarrow G / v(P) \times \dot{F}_{v} / \bar{P} \tag{*}
\end{equation*}
$$

as a preliminary step to $\S 3$. Let $s: G \rightarrow \dot{F}$ be a q-section ([7], §7) with the property that $s(v(P)) \subset P$. We define the group homomorphism $f: \dot{F} \rightarrow G \times \dot{F}_{v} / \dot{F}_{v}^{2}$ by $f(x)=$ $\left(v(x), x s(v(x))^{-1} \bmod M\right)$. Then by easy calculation, we can see $f^{-1}(v(P) \times \bar{P})=P$ and we get the group isomorphism (*) ([5], Theorem, p. 186).

Proposition 1.1. Let P be a preordering of finite index and v be a valuation compatible with P. Then we have

$$
\operatorname{gr}(X(F / P)) \cong \operatorname{Hom}(G / v(P),\{ \pm 1\}) \times \operatorname{gr}\left(X\left(F_{v} / \bar{P}\right)\right)
$$

In particular

$$
\operatorname{dim} \operatorname{gr}(X(F / P))=\operatorname{dim} G / v(P)+\operatorname{dim} \operatorname{gr}\left(X\left(F_{v} / \bar{P}\right)\right)
$$

as \boldsymbol{Z}_{2}-vector spaces. Moreover if there exists a valuation v of F which is compatible with P and $v(P) \neq G$, then the index of P is 4 or $X(F / P)$ is connected.

Proof. The group isomorphism $\dot{F} / P \cong G / v(P) \times \dot{F}_{v} / \bar{P}$ naturally induces a group isomorphism $\chi(\dot{F} / P) \cong \operatorname{Hom}(G / v(P), \quad\{ \pm 1\}) \times \chi\left(\dot{F}_{v} / \bar{P}\right)$. Considering $X(F / P)$ and $X\left(F_{v} / \bar{P}\right)$ as subsets of $\chi(\dot{F} / P)$ and $\chi\left(\dot{F}_{v} / \bar{P}\right)$ respectively, we get a natural bijection: $X(F / P) \cong \operatorname{Hom}(G / v(P),\{ \pm 1\}) \times X\left(F_{v} / \bar{P}\right)$. Then it follows immediately that

$$
\operatorname{gr}(X(F / P)) \cong \operatorname{Hom}(G / v(P),\{ \pm 1\}) \times \operatorname{gr}\left(X\left(F_{v} / \bar{P}\right)\right.
$$

If $v(P) \neq G$, then $\operatorname{dim} \operatorname{gr}(X(F / P)) \geqq 1$ and this implies that $X(F / P)$ is connected or the index of P is 4 .
Q. E. D.

For two forms f and g over F, we write $f \cong g(\bmod P)$ if $\operatorname{dim} f=\operatorname{dim} g$ and for any $\sigma \in X(F / P), \operatorname{sg} n_{\sigma}(f)=\operatorname{sg} n_{\sigma}(g)$ where $s g n_{\sigma}(f)$ and $s g n_{\sigma}(g)$ are the signatures at σ of f and g respectively. If $f \cong x g(\bmod P)$ for some $x \in \dot{F}$, then we say that the forms f and g are P-similar. We now recall the definitions of the residue class forms of a form $\rho=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and the sets of valuations $\Omega(P)$, $\Omega\left(P, a_{1}, \ldots, a_{n}\right)$ which were introduced in [1]. Let v be a valuation of F which is compatible with a preordering P. If $v\left(a_{i}\right) \equiv v\left(a_{j}\right)(\bmod v(P))$ for any i, j, then it is clear that there exist $x \in \dot{F}$ and $t_{i} \in P(i=1, \ldots, n)$ such that $v\left(x t_{i} a_{i}\right)=0$ for any i. Let $\bar{\rho}=\left\langle\left(x t_{1} a_{1}\right)^{-}, \ldots,\left(x t_{n} a_{n}\right)^{-}\right\rangle$be the form over F_{v}, where the bar means the residue class modulo M. We shall show that $\bar{\rho}$ is unique up to \bar{P}-similarity. Assume that $x^{\prime} \in \dot{F}$ and $t_{i}^{\prime} \in P(i=1, \ldots, n)$ satisfy the same conditions. We put $\bar{\rho}^{\prime}=\left\langle\left(x^{\prime} t_{1}^{\prime} a_{1}\right)^{-}, \ldots,\left(x^{\prime} t_{n}^{\prime} a_{n}\right)^{-}\right\rangle$and $\alpha=\left(x t_{1} a_{1}\right)\left(x^{\prime} t_{1}^{\prime} a_{1}\right)^{-1}$. Then α is a unit of A
and we have $\alpha\left(x^{\prime} t_{i}^{\prime} a_{i}\right)=\left(t_{1} t_{1}^{\prime-1} t_{i}^{\prime} t_{i}^{-1}\right)\left(x t_{i} a_{i}\right), \quad t_{1} t_{1}^{\prime-1} t_{i}^{\prime} t_{i}^{-1} \in P \cap U$ for every i. These relations imply $\bar{\rho} \cong \bar{\alpha} \cdot \bar{\rho}^{\prime}(\bmod \bar{P})$ and the conclusion follows. For a form $\rho=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, the equivalence relation in $\left\{a_{1}, \ldots, a_{n}\right\}$ defined by $v\left(a_{i}\right) \equiv v\left(a_{j}\right)$ $(\bmod v(P))$ gives rise to a partition of this set. Let $\rho=\rho_{1} \perp \cdots \perp \rho_{t}$ be the decomposition of ρ with respect to this partition; that is, t is the number of classes and each ρ_{i} satisfies the condition mentioned above. The forms $\bar{\rho}_{i}(i=1, \ldots, t)$ of F_{v} are called the residue class forms of ρ. As for $\Omega(P)$, it is the set of valuations which are compatible with at least one ordering $\sigma \in X(F / P)$, and $\Omega\left(P, a_{1}, \ldots, a_{n}\right)=$ $\left\{v \in \Omega(P) \mid v\left(a_{i}\right) \not \equiv v\left(a_{j}\right)(\bmod v(P))\right.$ for some i and $\left.j\right\}$. For $v \in \Omega(P)$, there exists the least preordering which is compatible with v and contains P. We denote it by P^{v}.

Proposition 1.2. ([1], Theorem 3.3) Let $\rho=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a form such that ρ is P-anisotropic and σ-indefinite for any $\sigma \in X(F / P)$. Then there exists a valuation $v \in \Omega\left(P, a, \ldots, a_{n}\right)$ such that ρ is P^{v}-anisotropic.

§ 2. \boldsymbol{q}-cones and \boldsymbol{q}-fans

In [6], Prestel introduced the notion of q-cones and pre-q-cones which generalize that of orderings and preorderings respectively. A subset Q of \dot{F}, will be called a pre-q-cone if it satisfies the following conditions:
(1) $Q+Q \subset Q$
(2) $F^{2} \cdot Q \subset Q$
(3) $Q \cap-Q=\phi$
(4) $1 \in Q$.

For a pre-q-cone Q, if $Q \cup-Q=\dot{F}$, then Q will be called a q-cone of F. (In [7], a pre-q-cone Q contains the element $0 \in F$ and does not necessarily contain $1 \in Q$. In this paper we assume $0 \notin Q$ and $1 \in Q$ for convenience.) It is easily shown that if Q is a pre-q-cone, then $S_{F} \cdot Q \subset Q$ where $S_{F}=D_{F}(\infty)=\Sigma \dot{F}^{2}$.

Definition and Proposition 2.1. For a pre-q-cone Q of F, we define $P(Q)=$ $\{x \in Q \mid x Q \subset Q\}$. Then $P(Q)$ is a preordering of F. For a preordering P of F, if there exists a q-cone Q such that $P(Q)=P$, then P will be called a q-fan.

The proof is easy and omitted.
Definition 2.2. Let ρ be a form and P be a preordering of F over which ρ is anisotropic. If ρ is P^{\prime}-isotropic for any preordering $P^{\prime} \supsetneqq P$, then we say that the pair (ρ, P) is a maximal pair.

By [1], Corollary 3.4, if (ρ, P) is a maximal pair, then P has a finite index.
Lemma 2.3. Let P be a preordering and Q be a pre-q-cone of F. Then the following statements hold.
(1) $P(Q) \supset P$ if and only if Q is a union of cosets of P.
(2) If $P(Q) \supset P$, then there exists a q-cone $Q_{1} \supset Q$ such that $P\left(Q_{1}\right) \supset P$.

Proof. The assertion (1) follows immediately from the definition. As for the assertion (2), let $M=\left\{Q^{\prime} \mid Q^{\prime}\right.$ is a pre- q-cone which contains Q and is a union of cosets of $P\}$. Then M is an inductive set with respect to the inclusion relation, and by Zorn's Lemma, there exists a maximal element Q_{1} of M. It is easy to show that Q_{1} is a required one.
Q. E. D.

Theorem 2.4. Let P be a preordering of F which is of finite index. Then the following statements are equivalent:
(1). P is a $q-f a n$.
(2) There exists a form ρ such that (ρ, P) is a maximal pair.

Proof. (1) $\Rightarrow(2)$: Let Q be a q-cone of F such that $P(Q)=P$. By Lemma 2.3, (1), there exist $a_{1}, \ldots, a_{n} \in \dot{F}$ such that $Q=a_{1} P \cup \cdots \cup a_{n} P$. We put $\rho=$ $\left\langle a_{1}, \ldots, a_{n}\right\rangle$; then it is clear that ρ is P-anisotropic. Let P^{\prime} be a preordering of F which contains P properly and take an element $x \in P^{\prime}-P$. Then we have $x Q \nsubseteq Q$ and so there exists $\alpha \in Q$ such that $x \alpha \notin Q$. This implies $-x \alpha \in Q$ and ρ is $P^{\prime}-$ isotropic.
(2) $\Rightarrow(1)$: We put $Q^{\prime}=D(\rho / P)$, where $D(\rho / P)$ is the set $\{b \in \dot{F} \mid \rho$ represents b over $P\}$. Then it follows from the maximality of P that Q^{\prime} is a pre-q-cone and $P\left(Q^{\prime}\right)=P$. By Lemma 2.3, (2), there exists a q-cone Q such that $P(Q) \supset P$. It is clear that the form ρ is $P(Q)$-anisotropic and the maximality of P shows that $P(Q)=P$.
Q. E. D.

Corollary 2.5. For a form ρ and a preordering P of F, the following statements are equivalent:
(1) ρ is P-anisotropic.
(2) There exists a q-fan P^{\prime} of finite index such that $P^{\prime} \supset P$ and ρ is P^{\prime} anisotropic.

Example 2.6. Let P be a preordering of finite index. If P is an ordering, then clearly P is a q-fan. Moreover a non-trivial fan P is a q-fan. In fact let $\left\{1, a_{2}, \ldots, a_{n}\right\}$ be a complete system of representatives of the positive cone of some ordering $\quad \sigma \in X(F / P)$, i.e. $P(\sigma)=P \cup a_{2} P \cup \cdots \cup a_{n} P$. We put $\rho=\left\langle 1=a_{1}\right.$, $\left.a_{2}, \ldots, a_{n-1},-a_{n}\right\rangle$. Since P is a fan, ρ is P-anisotropic, and we can readily see that $Q=D(\rho / P)$ is a q-cone and $P(Q) \supset P$. Conversely take an element $x \in Q-P$. We have only to show $x Q \nsubseteq Q$. To do this, we may assume that $x=a_{2}$ or $x=-a_{n}$. Since $P \cup a_{2} P \cup \cdots \cup a_{n} P$ is an ordering, we have $a_{2} a_{n} \in a_{j} P$ for some $j(j \neq n)$. Then $a_{2}\left(-a_{n}\right) P=-a_{j} P \nsubseteq Q$, which implies $x Q \nsubseteq Q$.

The following proposition is shown implicitly in the proof of [1], Corollary 3.4.

Proposition 2.7. Let v be a valuation which is compatible with a pre-
ordering P. Let $\rho=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a form such that (ρ, P) is a maximal pair. Then the following statements hold.
(1) The value group G is generated by $v\left(a_{i}\right)(i=1, \ldots, n)$ and $v(P)$.
(2) Let $\bar{\rho}_{i}(i=1, \ldots, t)$ be the residue class forms of ρ and $\bar{P}_{i}(i=1, \ldots, t)$ be preorderings of F_{v} such that $\bar{P}_{i} \supset \bar{P}$ and $\left(\bar{\rho}_{i}, \bar{P}_{i}\right)$ are maximal pairs. (Since each $\bar{\rho}_{i}$ is \bar{P}-anisotropic by [1], Proposition 3.1, Zorn's Lemma guarantees the existence of \bar{P}_{i}) Then we have $\bar{P}=\cap \bar{P}_{i}(i=1, \ldots, t)$.

Theorem 2.8. Let P be a preordering of finite index. If P is a q-fan, then P is connected. In particular, if ρ is P-anisotropic, then there exists a connected preordering $P^{\prime}\left(P^{\prime} \supset P\right)$ of finite index such that ρ is P^{\prime}-anisotropic.

Proof. By Theorem 2.4, there exists a form $\rho=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that (ρ, P) is a maximal pair. When P is an ordering, the assertion is clear. Therefore we may assume that P is not an ordering. Then for any $\sigma \in X(F / P), \rho$ is σ-indefinite by the maximality of P. So it follows from Proposition 1.2 that there exists a valuation $v \in \Omega\left(P, a_{1}, \ldots, a_{n}\right)$ such that ρ is P^{v}-anisotropic. Hence $P^{v}=P$ by the maximality of P and so P is compatible with v. There exist a_{i} and a_{j} such that $v\left(a_{i}\right) \equiv v\left(a_{j}\right)(\bmod v(P))$, and we can see that $v(P) \neq G$. It follows from Proposition 1.1 that dim $\operatorname{gr}(X(F / P)) \geqq 1$. Since P is a q-fan, P is not an intersection of two orderings, and so P is connected.
Q. E. D.

Definition 2.9. For a preordering P of F, we define $Y(F / P)=\{Q$: a q-cone of $F \mid P(Q) \supset P\}$. Naturally the set $X(F / P)$ can be identified with a subset of $Y(F / P)$.

Let P be a preordering of finite index and X_{1}, \ldots, X_{n} be the connected components of $X(F / P)$. We put $P_{i}=X_{i}^{\frac{1}{l}}$, i.e. P_{i} is the preordering of X_{i}. Then we have $P=\cap P_{i}$ and it is the decomposition of P into connected components (cf. [3], §2).

Corollary 2.10. Notation being as above, we have $Y(F / P)=\cup Y\left(F / P_{i}\right)$ (disjoint union).

Proof. It is clear that $Y\left(F / P_{i}\right) \subset Y(F / P)$ for any i. Let Q be an element of $Y(F / P)$. By Theorem 2.8, $P(Q)$ is connected and this implies $P(Q) \supset P_{i}$ for some i, and $Q \in Y\left(F / P_{i}\right)$. Thus $Y(F / P)=\cup Y\left(F / P_{i}\right)$. Next we shall show that $Y\left(F / P_{i}\right) \cap$ $Y\left(F / P_{j}\right)=\phi$ for any $i \neq j$. Assume on the contrary that there exists a q -cone $Q \in$ $Y\left(F / P_{i}\right) \cap Y\left(F / P_{j}\right)$. Then $P(Q)$ contains P_{i} and P_{j}; since $P(Q)$ is a preordering, this implies that $X_{i}=X\left(F / P_{i}\right)$ and $X_{j}=X\left(F / P_{j}\right)$ have a common ordering, a contradiction.
Q. E. D.

§3. Valuations and \boldsymbol{q}-fans

For a preordering P, there exists a finest valuation v compatible with P. Its valuation ring A is generated by $A_{\boldsymbol{Q}}^{\boldsymbol{\sigma}}, \sigma \in X(F / P)$, where $A_{\boldsymbol{Q}}^{\boldsymbol{\sigma}}$ is the finest valuation ring compatible with $\sigma \in X(F / P)$, i.e. $A_{\boldsymbol{Q}}^{\sigma}=\{a \in F \mid b-a \in P(\sigma)$ and $b+a \in P(\sigma)$ for some $b \in \boldsymbol{Q}\}$ and \boldsymbol{Q} is the field of rational numbers. We shall call v the finest valuation of P and A the finest valuation ring of P. The set of valuations compatible with P forms a chain.

Lemma 3.1. Let v_{1}, v_{2} be valuations compatible with a preordering P, and A_{1}, A_{2} be the valuation rings of v_{1}, v_{2} respectively. If $A_{1} \subset A_{2}$, then $\operatorname{dim} G_{1} /$ $v_{1}(P) \geqq \operatorname{dim} G_{2} / v_{2}(P)$.

Proof. It is easy to see that $v_{1}^{-1}\left(v_{1}(P)\right)=P \cdot U_{1}$ and $v_{2}^{-1}\left(v_{2}(P)\right)=p \cdot U_{2}$, where U_{1} and U_{2} are the groups of units of A_{1} and A_{2} respectively. Then, since $U_{1} \subset U_{2}$ and $\dot{F} / P U_{i} \cong G_{i} / v_{i}(P)(i=1,2)$, we have $\operatorname{dim} G_{1} / v_{1}(P) \geqq \operatorname{dim} G_{2} / v_{2}(P)$. Q. E. D.

Lemma 3.2. Let P be a preordering of finite index and v be the finest valuation compatible with P. If P is connected, then $\operatorname{dim} G / v(P) \geqq 1$.

Proof. First we note $\operatorname{dim} \operatorname{gr}(X(F / P)) \geqq 1$ and $\operatorname{dim} \dot{F} / P \neq 2$ since P is connected. We take $\tau \in \operatorname{gr}(X(F / P)), \tau \neq 1$. We write $X(F / P)=\left\{\sigma_{1}, \ldots, \sigma_{k}\right.$, $\left.\tau \sigma_{1}, \ldots, \tau \sigma_{k}\right\}$. Then we have $k \geqq 2$ since $\operatorname{dim} \dot{F} / P \neq 2$. We let P_{i} be the preordering of a 4 fan $\left\{\sigma_{1}, \sigma_{i}, \tau \sigma_{1}, \tau \sigma_{i}\right\}(i=2, \ldots, k)$. By [2], Theorem 2.7, there exists a valuation v_{i} such that v_{i} is compatible with P_{i} and \bar{P}_{i} is trivial (i.e. the index of \bar{P}_{i} equals 2 or 4), for any $i=2, \ldots, k$. For the value group G_{i} of v_{i}, we have $v_{i}\left(P_{i}\right) \neq G_{i}$ by Proposition 1.1. The valuation ring A_{i} of the valuation v_{i} contains the finest valuation ring $A_{\boldsymbol{Q}}^{\sigma_{1}}$ compatible with σ_{1}; hence the set $\left\{A_{i}\right\}$ forms a chain. We may assume that A_{2} is the maximal one. Then the valuation v_{2} is compatible for any ordering of $X(F / P)$, so v_{2} is compatible with P. Then the valuation ring A of v is contained in A_{2} and hence $\operatorname{dim} G / v(P) \geqq \operatorname{dim} G_{2} / v_{2}(P) \geqq 1$ by Lemma 3.1.
Q. E. D.

Lemma 3.3. Let v be the finest valuation of a preordering P. Then any valuation of F_{v} compatible with \bar{P} is trivial.

Proof. Let \bar{v} be a valuation of F_{v} compatible with \bar{P}, A and \bar{A} be the valuation rings of v and \bar{v} respectively and $\varphi: A \rightarrow F_{v}$ be the canonical surjection. Then $A^{\prime}=\varphi^{-1}(\bar{A})$ is a valuation ring of F, and it is clear that the valuation v^{\prime} corresponding to A^{\prime} is compatible with P. Since v is the finest valuation of P and $A^{\prime} \subset A$, it follows that $A^{\prime}=A$ and \bar{v} is trivial.
Q. E. D.

Theorem 3.4. Let P be a preordering of finite index and v be the finest
valuation of P. If P is connected and is not a fan, then $\operatorname{dim} G / v(P)=\operatorname{dim} g r$ $(X(F / P))$. In particular, the induced preordering \bar{P} of F_{v} is not connected.

Proof. Assume on the contarary that $\operatorname{dim} G / v(P) \neq \operatorname{dim} \operatorname{gr}(X(F / P))$. Then we have $\operatorname{dim} G / v(P)<\operatorname{dim} \operatorname{gr}(X(F / P))$ and $\operatorname{dim} \operatorname{gr}\left(X\left(F_{v} / \bar{P}\right)\right) \geqq 1$ by Proposition 1.1. From [2], Example 2.6, \bar{P} is not a fan, so $\operatorname{dim} \dot{F}_{v} \mid \bar{P} \neq 2$ and \bar{P} is connected. Then it follows from Lemma 3.2 that $\bar{v}(\bar{P}) \neq \bar{G}$, where \bar{v} is the finest valuation of \bar{P} and \bar{G} is its value group. This contradicts Lemma 3.3.
Q. E. D.

Definition 3.5. Let P be a preordering of finite index. Then P can be written as $P=P_{1} \cap \cdots \cap P_{n}$, where P_{i} is a q-fan for any $i=1, \ldots, n$. We call the least number of n the q-dimension of P and denote it by $q-\operatorname{dim}(P)$.

Theorem 3.6. Let P be a connected preordering of finite index and v be a valuation which is compatible with P. Then the following statements are equivalent.
(1) P is a $q-f a n$.
(2) $\mathrm{q}-\operatorname{dim}(\bar{P}) \leqq 2^{r}, r=\operatorname{dim} G / v(P)$.

Proof. $(1) \Rightarrow(2)$: Let (ρ, P) be a maximal pair, and $\bar{\rho}_{i}(i=1, \ldots, t)$ be residue class forms of ρ. Then it follows from $t \leqq 2^{r}$ that $\mathrm{q}-\operatorname{dim}(\bar{P}) \leqq 2^{r}$ by Proposition 2.7, (2).
(2) $\Rightarrow(1)$: If \bar{P} is an ordering of F_{v}, then P is a fan ([2], Example 2.6) and the assertion follows from Example 2.6. If $r=0$, then \bar{P} is a q-fan and there exists a q-cone \bar{Q} of F_{v} such that $P(\bar{Q})=\bar{P}$. We write $\bar{Q}=\bar{a}_{1} \bar{P} \cup \cdots \cup \bar{a}_{m} \bar{P}, a_{i} \in U, \bar{a}_{i}=$ $a_{i} \bmod M(i=1, \ldots, m)$. It is clear that the form $\rho=\left\langle a_{1}, \ldots, a_{m}\right\rangle$ is P-anisotropic. Since $\dot{F} / P \cong \dot{F}_{v} / \bar{P}$, we see that $Q=D(\rho / P)=a_{1} P \cup \cdots \cup a_{m} P$ and Q is a q-cone of F. Then it follows immediately that $P(Q)=P$, and so P is a q-fan. Next we consider the case $r \geqq 1$ and \bar{P} is not an ordering. We can write $\bar{P}=\bar{P}_{1} \cap \cdots \cap \bar{P}_{s}, 2 \leqq s \leqq 2^{r}$, such that $\bar{P}_{i} \neq \bar{P}_{j}$ for any $i \neq j$ and each \bar{P}_{i} is a q-fan. (If \bar{P} is a q-fan, then we write $\bar{P}=\bar{P} \cap P(\tau)$, where $P(\tau)$ is the positive cone of some ordering $\tau \in X\left(F_{v} / \bar{P}\right)$.) Let $\bar{Q}_{i}(i=1, \ldots, s)$ be q-cones of F_{v} such that $P\left(\bar{Q}_{i}\right)=\bar{P}_{i}$. We write $\bar{Q}_{i}=\bar{a}_{i 1} \bar{P} \cup \cdots \cup$ $\bar{a}_{i m} \bar{P}(i=1, \ldots, s)$, where $a_{i j} \in U, \bar{a}_{i j}=a_{i j} \bmod M$ and $2 m$ is the index of \bar{P}. Let $s: G \rightarrow \dot{F}$ be a q-section with $s(v(P)) \subset P$ and $\alpha_{1}, \ldots, \alpha_{r}$ be elements of G such that the set $\left\{\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}\right\}$ is a basis of the Z_{2}-vector space $G / v(P)$. Let A be the set $\left\{\varepsilon_{1} \alpha_{1}+\cdots+\varepsilon_{r} \alpha_{r} ; \varepsilon_{i}=0,1\right\}$ consisting of 2^{r} elements of G. Let $y_{i}\left(i=1, \ldots, 2^{r}\right)$ be elements of F such that $y_{1}=1$ and $A=\left\{v\left(y_{i}\right) ; i=1, \ldots, 2^{r}\right\}$. We put $\rho=$ $\Sigma y_{i}\left\langle a_{i 1}, \ldots, a_{i m}\right\rangle\left(\mathrm{i}=1, \ldots, 2^{r}\right.$, where $a_{i j}=a_{s j}$ for $i \geqq s$.) Since the residue class forms of ρ are \bar{P}-anisotropic, ρ is P-anisotropic ([1], Proposition 3.1). Also $2 \cdot \operatorname{dim} \rho$ equals the index of P by the group isomorphism (*) in $\S 1$. Since $\left\{y_{i} a_{i j}\right.$; $\left.i=1, \ldots, 2^{r}, j=1, \ldots, m\right\}$ are the complete system of representatives of $Q=D(\rho / P)$ over P, Q is a q-cone. It is clear that $P(Q) \supset P$ and we shall show the reverse
inclusion. It suffices to show that $f(P(Q)) \subset v(P) \times \bar{P}$, where f is the group homomorphism defined in $\$ 1$.

Step 1. First we shall show that $v(P(Q)) \subset v(P)$. Assume on the contrary that there exists $\alpha \in P(Q)$ such that $v(\alpha) \notin v(P)$. Then we can write $v(\alpha)=v\left(y_{k}\right)+b$ for some $y_{k} \neq 1$ and $b \in v(P)$. It follows from the facts $v\left(\alpha a_{1 i}\right)=v(\alpha) \in v\left(y_{k}\right)+v(P)$ and $\alpha a_{1 i} \in Q$ that $\alpha a_{1 i} \in y_{k} a_{k 1} P \cup \cdots \cup y_{k} a_{k m} P(i=1, \ldots, m)$. It is now easy to show that by a suitable renumbering of $\left\{a_{k i}\right\}$, we may assume that $\alpha a_{1 i} \in y_{k} a_{k i} P$ for any $i=1, \ldots, m$. So we can write $\alpha a_{1 i}=y_{k} a_{k i} p_{i}, p_{i} \in P(i=1, \ldots, m)$. The residue class forms of $\left\langle\alpha a_{11}, \ldots, \alpha a_{1 m}\right\rangle$ and $\left\langle y_{k} a_{k 1}, \ldots, y_{k} a_{k m}\right\rangle$ are $\left\langle\bar{a}_{11}, \ldots, \bar{a}_{1 m}\right\rangle$ and $\left\langle\bar{a}_{k 1}, \ldots, \bar{a}_{k m}\right\rangle$ respectively and they are \bar{P}-similar by the argument in §1. This shows that $\bar{Q}_{1}=\beta \bar{Q}_{k}$ for some $\beta \in \dot{F}_{v}$ and so $\bar{P}_{1}=\bar{P}_{k}$. This is a contradiction.

Step 2. Next we shall show that $\alpha s(v(\alpha))^{-1} \bmod M \in \bar{P}$ for any $\alpha \in P(Q)$. Let k be an integer with $1 \leqq k \leqq s$. Since $v(\alpha) \in v(P)$, we have $\alpha y_{k} a_{k i} \in y_{k} a_{k 1} P \cup \cdots \cup$ $y_{k} a_{k m} P(i=1, \ldots, m)$. Similarly to Step 1 , we can find a bijection $\sigma:\{1, \ldots, m\} \rightarrow$ $\{1, \ldots, m\}$ such that $\alpha a_{k i} \in a_{k \sigma(i)} P(i=1, \ldots, m)$. So we can write $\alpha a_{k i}=a_{k \sigma(i)} p_{i}$ for some $p_{i} \in P$. Then since $s(v(\alpha))^{-1} \in P$ and $v\left(p_{i}\right)=v(\alpha)$, we have $p_{i} s(v(\alpha))^{-1} \in P \cap U$; therefore $\beta \bar{a}_{k i}=\bar{a}_{k \sigma(i)} p_{i}^{\prime}$, where $\beta=\alpha s(v(\alpha))^{-1} \bmod M$ and $p_{i}^{\prime}=p_{i} s(v(\alpha))^{-1} \bmod M \in$ \bar{P}. This shows that $\beta \bar{Q}_{k}=\bar{Q}_{k}$, and so $\beta \in \bar{P}_{k}=P\left(\bar{Q}_{k}\right)$. Thus we have $\beta=$ $\alpha s(v(\alpha))^{-1} \in \cap \bar{P}_{k}=\bar{P}$.
Q. E. D.

Corollary 3.7. Let P be a connected preordering of finite index and v be the finest valuation of P. Then the following statements are equivalent:
(1) P is a $q-f a n$.
(2) $\mathrm{q}-\operatorname{dim}(\bar{P}) \leqq 2^{r}$, where $r=\operatorname{dim} \operatorname{gr}(X(F / P))$.

Proof. The assertion follows immediately from Theorem 3.4 and Theorem 3.6. Q. E. D.

Let v be a valuation of F compatible with a preordering P of F. Let T and S be preorderings of F and F_{v} respectively such that $T \supset P$ and $S \supset \bar{P}$. We say that T is the lifting of S if $X(F / T)$ consists of all orderings which lift the orderings of $X\left(F_{v} / S\right)$, i.e. $\quad X(F / T)=\left\{\sigma \in X(F / P) \mid \bar{\sigma} \in X\left(F_{v} / S\right)\right\}$. If T is the lifting of S then it is clear that $\bar{T}=S$.

Lemma 3.8. Notation being as above, we have $|X(F / T)|=2^{r} \times\left|X\left(F_{v} / S\right)\right|$ and $\operatorname{dim} G / v(T)=r(r=\operatorname{dim} G / v(P))$, namely $v(T)=v(P)$.

Proof. It is clear that for an ordering $\tau \in X\left(F_{v} / \bar{P}\right)$, there exists exactly 2^{r} orderings $\sigma_{i} \in X(F / P)$ which lift the ordering τ. So we have $|X(F / T)|=2^{r} \times$ $\left|X\left(F_{v} / S\right)\right|$. This shows that $\operatorname{dim} G / v(T)=r$ since $X(F / T) \cong \operatorname{Hom}(G / v(T)$, $\{ \pm 1\}) \times X\left(F_{v} / S\right)$.
Q. E. D.

Theorem 3.9. Let P be a connected preordering of finite index and v be the
finest valuation of P. Then $\mathrm{q}-\operatorname{dim}(P)$ is the least integer satisfying $s \geqq \mathrm{q}-\operatorname{dim}$ $(\bar{P}) / 2^{r}$, where $r=\operatorname{dim} \operatorname{gr}(X / P)$.

Proof. We put $m=\mathrm{q}-\operatorname{dim}(\bar{P})$ and write $\bar{P}=\bar{P}_{1} \cap \cdots \cap \bar{P}_{m}$ where each \bar{P}_{i} is a q-fan. By Corollary 3.7, we may assume $2^{r}<m$. We put $S_{i}=\bar{P}_{2^{r}(i-1)+1} \cap \cdots \cap$ $\bar{P}_{2^{r} i}(i=1, \ldots, s-1)$ and $S_{s}=\bar{P}_{2^{r}(s-1)+1} \cap \cdots \cap \bar{P}_{m}$. We let T_{i} be the liftings of $S_{i}(i=1, \ldots, s)$ and $T=\cap T_{i}(i=1, \ldots, s)$. By Theorem 3.6 and Lemma 3.8, each T_{i} is a q-fan. Since we have the isomorphisms $\dot{F} / P \cong G / v(P) \times \dot{F}_{v} / \bar{P}$ and $\dot{F} / T \cong$ $G / v(T) \times \dot{F}_{v} / \bar{T}$, it follows froms $\bar{T}=\cap \bar{T}_{i}=\bar{P}$ and $v(T)=v(P)$ that $T=P$. Hence $\mathrm{q}-\operatorname{dim}(P) \leqq s$. Conversely we write $P=P_{1} \cap \cdots \cap P_{n}$ where each P_{i} is a q-fan. Then by Theorem 3.6, q-dim $\left(\bar{P}_{i}\right) \leqq 2^{t} \leqq 2^{r}\left(t=\operatorname{dim} G / v\left(P_{i}\right)\right)$; therefore $q-\operatorname{dim}(\bar{P}) \leqq$ $2^{r} \mathrm{q}-\operatorname{dim}(P)$ since $\bar{P}=\bar{P}_{1} \cap \cdots \cap \bar{P}_{n}$.
Q. E. D.

Remark 3.9. (1) The converse of Theorem 2.8 is not valid. In fact let K be a field with exactly three orderings and $F=K((x))$ and $P=S_{F}=\Sigma \dot{F}^{2}$. Then $X(F / P)$ is connected and $\operatorname{dim} \operatorname{gr}(X(F / P))=1$. Since $F_{v} \cong K$ has exactly three orderings, we have $\mathrm{q}-\operatorname{dim}(\bar{P})=3$ and by Corollary $3.7, P$ is not a q-fan.
(2) In Example 2.6, we showed that a non-trivial fan is a $q-f a n$. The converse is false. In fact we put $L=K((x))((y))$ where K is the field given in (1) and $P=S_{L}=\Sigma \dot{L}^{2}$. Then $X(L / P)$ is not a fan. However since $\operatorname{dim} \operatorname{gr}(X(L / P))=2$, we can see that P is a q-fan by Corollary 3.7.

References

[1] E. Becker and L. Bröcker, On the description of the reduced Witt ring, J. Algebra 52 (1978), 328-346.
[2] L. Bröcker, Characterization of fans and hereditarily pythagorean fields, Math. Z. 151 (1976), 149-163.
[3] D. Kijima and M. Nishi, On the space of orderings and the group H, Hiroshima Math. J. 13 (1983), 283-293.
[4] M. Marshall, Classification of finite space of orderings, Can. J. Math. 31 (1979), 320-330.
[5] J. Merzel, Quadratic forms over fields with finitely many orderings, Contemporary Math. 8 (1982), 185-229.
[6] A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319-342.
[7] A. Prestel, Lectures on formally real fields, Lecture notes IMPA, Rio de Janeiro, 1976.

> Department of Mathematics, Faculty of Science, Hiroshima University Department of Mathematics, Faculty of Science,

> Hiroshima University
> and
> Faculty of Education, Miyazaki University

