Asymptotic approximations for the distributions of multinomial goodness-of-fit statistics

Minoru Siotani and Yasunori Fuikoshi
(Received April 21, 1983)

§ 1. Introduction

Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}$ be a random vector with the multinomial distribution $\mathrm{M}_{k}(n, \pi)$, i.e.,

$$
\operatorname{Pr}\left(Y_{1}=n_{1}, \ldots, Y_{k}=n_{k}\right)= \begin{cases}n!\prod_{j=1}^{k}\left(\pi_{j}^{n_{j}} / n_{j}!\right), & n_{j}=0,1, \ldots, n(j=1, \ldots, k) \\ & \text { and } \sum_{j=1}^{k} n_{j}=n, \\ 0 & \text { otherwise }\end{cases}
$$

where $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)^{\prime}, \pi_{j}>0, \sum_{j=1}^{k} \pi_{j}=1$. For testing the simple hypothesis $\mathrm{H}: \boldsymbol{\pi}=\boldsymbol{p}$ (\boldsymbol{p} a fixed vector) against $\mathrm{K}: \boldsymbol{\pi} \neq \boldsymbol{p}$, the following three statistics are commonly used:
(1) Pearson's chi-square statistic

$$
T_{1}=\sum_{j=1}^{k}\left(Y_{j}-n p_{j}\right)^{2} /\left(n p_{j}\right),
$$

(2) Log-likelihood ratio statistic

$$
T_{2}=2 \sum_{j=1}^{k} Y_{j} \log \left\{Y_{j} /\left(n p_{j}\right)\right\},
$$

(3) Freeman-Tukey statistic

$$
T_{3}=4 \sum_{j=1}^{k}\left(\sqrt{Y_{j}}-\sqrt{n p_{j}}\right)^{2}
$$

where $\boldsymbol{p}=\left(p_{1}, \ldots, p_{k}\right)^{\prime}, p_{j}>0(j=1, \ldots, k)$ and $\sum_{j=1}^{k} p_{j}=1$.
It is well known (e.g., see Bishop, Fienberg and Holland [2, p. 313]) that under the null hypothesis these three statistics have the same chisquare distribution with $k-1$ degrees of freedom in the limit. We use the chi-square approximation when expected numbers $n p_{j}$ are not small. But this brings about the question of how small the numbers $n p_{j}$ can be without invalidating the chi-square approximation. There are many papers attempting to answer this question, in particular, for the case of T_{1}, but there is wide difference of the proposed numbers for $n p_{j}$. Another question arises in some practical applications when these statistics show significantly different values for a finite sample, in particular, between T_{1} and T_{2} or T_{3}.

Yarnold [6] obtained an asymptotic expansion for the null distribution of T_{1}
and studied the accuracy of the chi-square and other approximations to it. In this paper we give asymptotic expansions for the null distributions of T_{2} and T_{3} similar to that of T_{1}. Based on the asymptotic expansions, we shall propose new approximations for T_{2} and T_{3}.

§2. A preliminary lemma

In this paper we assume $\boldsymbol{\pi}=\boldsymbol{p}$, since we treat the null distributions of \boldsymbol{T}_{i}. Define

$$
X_{j}=\left(Y_{j}-n p_{j}\right) / \sqrt{n}, \quad j=1, \ldots, k,
$$

and let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{r}\right)^{\prime}$, where $r=k-1$. Then the random variable \boldsymbol{X} is a lattice random vector which takes values in

$$
L=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{r}\right)^{\prime} ; \boldsymbol{x}=(1 / \sqrt{n})(\boldsymbol{m}-n \boldsymbol{q}) \quad \text { and } \quad \boldsymbol{m} \in M\right\}
$$

where $\boldsymbol{q}=\left(p_{1}, \ldots, p_{r}\right)^{\prime}$ and M is a set of integer vectors $\boldsymbol{m}=\left(n_{1}, \ldots, n_{r}\right)^{\prime}$ such that $n_{j} \geq 0$ and $\sum_{j=1}^{r} n_{j} \leq n$. We can express X as

$$
X=\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(Z_{\alpha}-\mathrm{E}\left(\boldsymbol{Z}_{\alpha}\right)\right)
$$

where $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ are independently identically distributed lattice random vectors having the distribution of a random vector obtained by deleting the k th component of the random vector with the multinomial distribution $\mathbf{M}_{k}(1, p)$.

Lemma 2.1. Let $\boldsymbol{x}=(1 / \sqrt{n})(\boldsymbol{m}-n \boldsymbol{q})$. Then for any $\boldsymbol{m} \in M$,

$$
\begin{equation*}
\operatorname{Pr}(X=x)=n^{-r / 2} \phi(x)\left\{1+\frac{1}{\sqrt{n}} h_{1}(x)+\frac{1}{n} h_{2}(x)+O\left(n^{-3 / 2}\right)\right\} \tag{2.1}
\end{equation*}
$$

$$
\text { where } \phi(\boldsymbol{x})=(2 \pi)^{-r / 2}|\Omega|^{-1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{x}^{\prime} \Omega^{-1} \boldsymbol{x}\right), \Omega=\operatorname{diag}\left(p_{1}, \ldots, p_{r}\right)-\boldsymbol{q} \boldsymbol{q}^{\prime}
$$

$$
\begin{aligned}
h_{1}(x)= & -\frac{1}{2} \sum_{j=1}^{k} \frac{x_{j}}{p_{j}}+\frac{1}{6} \sum_{j=1}^{k} x_{j}\left(\frac{x_{j}}{p_{j}}\right)^{2}, \\
h_{2}(x)= & \frac{1}{2} h_{1}(x)^{2}+\frac{1}{12}\left(1-\sum_{j=1}^{k} \frac{1}{p_{j}}\right) \\
& +\frac{1}{4} \sum_{j=1}^{k}\left(\frac{x_{j}}{p_{j}}\right)^{2}-\frac{1}{12} \sum_{j=1}^{k} x_{j}\left(\frac{x_{j}}{p_{j}}\right)^{3}
\end{aligned}
$$

and $x_{k}=-\sum_{j=1}^{r} x_{j}$.
Proof. Let $Q(t)$ be the characteristic function of $\boldsymbol{Y}^{*}=\left(Y_{1}, \ldots, Y_{r}\right)^{\prime}$, which is given by

$$
\begin{aligned}
Q(\boldsymbol{t}) & =\sum_{\boldsymbol{m} \in M} \exp \left(\mathrm{it} t^{\prime} \boldsymbol{m}\right) \operatorname{Pr}\left(\boldsymbol{Y}^{*}=\boldsymbol{m}\right) \\
& =\left\{\sum_{j=1}^{r} p_{j} \exp \left(\mathrm{i} t_{j}\right)+p_{k}\right\}^{n}
\end{aligned}
$$

where $t=\left(t_{1}, \ldots, t_{r}\right)^{\prime}$. Then, for any $\boldsymbol{x}=(1 / \sqrt{n})(\boldsymbol{m}-n \boldsymbol{q}) \in L$, we have

$$
\begin{aligned}
\operatorname{Pr}(X=\boldsymbol{x}) & =\operatorname{Pr}\left(\boldsymbol{Y}^{*}=\boldsymbol{m}\right) \\
& =(2 \pi)^{-r} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} Q(\boldsymbol{t}) \exp \left(-\mathrm{i} \boldsymbol{t}^{\prime} \boldsymbol{m}\right) d \boldsymbol{t} \\
& =(2 \pi \sqrt{n})^{-r} \int_{-\sqrt{n} \pi}^{\sqrt{n} \pi} \cdots \int_{-\sqrt{n} \pi}^{\sqrt{n} \pi} \gamma(\boldsymbol{t}) \exp \left(-\mathrm{i} \boldsymbol{t}^{\prime} \boldsymbol{x}\right) d \boldsymbol{t}
\end{aligned}
$$

where $\gamma(\boldsymbol{t})=Q(\boldsymbol{t} / \sqrt{n}) \exp \left(-\mathrm{i} \sqrt{n t^{\prime}} \boldsymbol{q}\right)$. For large n and fixed $\boldsymbol{t}, \gamma(\boldsymbol{t})$ can be expanded as

$$
\gamma(t)=\exp \left(-\frac{1}{2} t^{\prime} \Omega t\right)\left\{1+\sum_{j=1}^{2} n^{-j / 2} b_{j}(t)+O\left(n^{-3 / 2}\right)\right\}
$$

where

$$
\begin{aligned}
b_{1}(t)= & \frac{\mathrm{i}^{3}}{6}\left\{\sum_{j=1}^{r_{j}} p_{j} t_{j}^{3}-3\left(t^{\prime} \boldsymbol{q}\right) t^{\prime} \Omega t-\left(\boldsymbol{t}^{\prime} \boldsymbol{q}\right)^{3}\right\}, \\
b_{2}(t)= & \frac{1}{2} b_{1}(\boldsymbol{t})^{2}+\frac{\mathrm{i}^{4}}{24}\left\{\sum_{j=1}^{r} p_{j} t_{j}^{4}-4\left(\boldsymbol{t}^{\prime} \boldsymbol{q}\right) \sum_{j=1}^{r_{j}} p_{j} t_{j}^{3}\right. \\
& \left.-3\left(t^{\prime} \Omega \boldsymbol{t}\right)^{2}+6\left(\boldsymbol{t}^{\prime} \boldsymbol{q}\right)^{2} t^{\prime} \Omega t+3\left(t^{\prime} \boldsymbol{q}\right)^{4}\right\} .
\end{aligned}
$$

Form a discussion on the asymptotic expansions of the density functions of sums of independent identically distributed random vectors (e.g., see Bhattacharya and Ranga Rao [1, p. 231]) it follows that

$$
\begin{aligned}
\operatorname{Pr}(X=x)= & (2 \pi \sqrt{n})^{-r}\left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left(i t^{\prime} x\right) \exp \left(-\frac{1}{2} t^{\prime} \Omega \boldsymbol{t}\right)\right. \\
& \left.\times\left\{1+\sum_{j=1}^{2} n^{-j / 2} b_{j}(t)\right\} d \boldsymbol{t}+O\left(n^{-3 / 2}\right)\right]
\end{aligned}
$$

Now then the formula (2.1) is obtained by substituting the above expressions of $b_{1}(t)$ and $b_{2}(t)$ and carrying out the integration with the aid of formulae of the inverse Fourier transforms for the normal density and its derivatives.

Let $D=\operatorname{diag}\left(p_{1}, \ldots, p_{k}\right), \sqrt{\boldsymbol{p}}=\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{k}}\right)^{\prime}$, and $A=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}\right)^{\prime}$ be a $k \times r$ matrix such that $(A, \sqrt{\bar{p}})$ is an orthogonal matrix. Define

$$
\begin{align*}
z & =\left(z_{1}, \ldots, z_{k}\right)^{\prime}=H x \\
& =A^{\prime} D^{-1 / 2}\left[\begin{array}{c}
I_{r} \\
-1, \ldots,-1
\end{array}\right] x . \tag{2.2}
\end{align*}
$$

Then, noting that $H \Omega H^{\prime}=I_{r}$ and $\sqrt{p_{j}}\left(a_{j}^{\prime} z\right)=x_{j}$, we can express (2.1) as

$$
\begin{equation*}
\operatorname{Pr}(X=x)=n^{-r / 2}|\Omega|^{-1 / 2}\left\{f(z)+O\left(n^{-3 / 2}\right)\right\} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f(z)=(2 \pi)^{-r / 2} \exp \left(-\frac{1}{2} z^{\prime} z\right)\left\{1+\frac{1}{\sqrt{n}} g_{1}(z)+\frac{1}{n} g_{2}(z)\right\} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{aligned}
g_{1}(z)= & -\frac{1}{2} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(\boldsymbol{a}_{j}^{\prime} z\right)+\frac{1}{6} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(\boldsymbol{a}_{j}^{\prime} z\right)^{3}, \\
g_{2}(z)= & \frac{1}{2} g_{1}(z)^{2}+\frac{1}{12}\left(1-\sum_{j=1}^{k} \frac{1}{p_{j}}\right) \\
& +\frac{1}{4} \sum_{j=1}^{k} \frac{1}{p_{j}}\left(\boldsymbol{a}_{j}^{\prime} z\right)^{2}-\frac{1}{12} \sum_{j=1}^{k} \frac{1}{p_{j}}\left(\boldsymbol{a}_{j}^{\prime} z\right)^{4} .
\end{aligned}
$$

§3. Asymptotic expansions for $\operatorname{Pr}(X \in B)$

In order to get an asymptotic expansion for $\operatorname{Pr}(X \in B)$, it is necessary to sum the local expansion (2.1) over all the points in $B \cap L$. It is known (Esséen [3], Ranga Rao [5]) that such a lattice sum can be expressed as a Stieltjes integral when B is a Borel set. Yarnold [6] gave a reduction for the Stieltjes integral when B is an 'extended convex set". It is convenient to summarize here Yarnold's result, since we will use it in the subsequent sections. A set B is called an extended convex set if B has the following representation for every $l \in\{1, \ldots, r\}$:

$$
\begin{aligned}
B=\left\{\mathrm{x}=\left(x_{1}, \ldots, x_{r}\right)^{\prime}: \lambda_{l}\left(\mathrm{x}^{*}\right)\right. & <x_{l}<\theta_{l}\left(x^{*}\right) \text { and } \\
& \left.x^{*}=\left(x_{1}, \ldots, x_{l-1}, x_{l+1}, \ldots, x_{r}\right)^{\prime} \in B_{l}\right\}
\end{aligned}
$$

where $B_{l} \subset R^{r-1}$ and λ_{l}, θ_{l} are continuous functions on R^{r-1}. If B is an extended convex set, then

$$
\begin{equation*}
\operatorname{Pr}(X \in B)=J_{1}+J_{2}+J_{3}+O\left(n^{-3 / 2}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{1}=\int \cdots \int_{B} \phi(x)\left\{1+\frac{1}{\sqrt{n}} h_{1}(x)+\frac{1}{n} h_{2}(x)\right\} d x, \\
& J_{2}=-\frac{1}{\sqrt{n}} \sum_{l=1}^{r} n^{-(r-l) / 2} \sum_{x_{l+1} \in L_{l+1}} \cdots \sum_{x_{r} \in L_{r}} \\
& \cdot\left[S_{1}\left(\sqrt{n} x_{l}+n p_{l}\right) \phi(x)\right]_{\lambda_{l}\left(x^{*}\right)}^{\theta_{(}\left(x^{*}\right)} d x_{1} \cdots d x_{l-1}, \\
& J_{3}=\frac{1}{n} \sum_{l=1}^{r} n^{-(r-l) / 2} \sum_{x_{l+1} \in L_{l+1}} \cdots \sum_{x_{r} \in L_{r}} \int \cdots \int_{B_{l}}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left[-S_{1}\left(\sqrt{n} x_{l}+n p_{l}\right) h_{1}(x) \phi(x)\right. \\
& \left.\quad+S_{2}\left(\sqrt{n} x_{l}+n p_{l}\right) \frac{\partial}{\partial x_{l}} \dot{\phi}(x)\right]_{\lambda_{l}\left(x^{*}\right)}^{\theta_{l}\left(x^{*}\right)} d x_{1} \cdots d x_{l-1} \\
& L_{j}=\left\{x_{j}: x_{j}=(1 / \sqrt{n})\left(n_{j}-n p_{j}\right) \text { and } n_{j} \text { is integer }\right\} \\
& S_{1}(x)=x-[x]-\frac{1}{2}
\end{aligned}
$$

$S_{2}(x)$ is the real-valued periodic function of period one such that $S_{2}(x)=\frac{1}{2}\left(x^{2}-x+\frac{1}{6}\right)$ on $0 \leq x<1$,

$$
\begin{aligned}
& {[h(x)]_{\lambda_{l}\left(x^{*}\right)}^{\theta_{l}\left(x^{*}\right)}=h\left(x_{1}, \ldots, x_{l-1}, \theta_{l}\left(x^{*}\right), x_{l+1}, \ldots, x_{r}\right)} \\
& \quad-h\left(x_{1}, \ldots, x_{l-1}, \lambda_{l}\left(x^{*}\right), x_{l+1}, \ldots, x_{r}\right) .
\end{aligned}
$$

The J_{1} term can be regarded as the Edgeworth expansion for a continuous distribution, while the J_{2} term is a term to account for the discontinuity in \boldsymbol{X}. It is known that $J_{2}=O\left(n^{-1 / 2}\right)$ and $J_{3}=O\left(n^{-1}\right)$. Since Pearson's chi-square statistic T_{1} is expressed as $T_{1}=X^{\prime} \Omega^{-1} X$, it holds that

$$
\operatorname{Pr}\left(T_{1}<\boldsymbol{c}\right)=\operatorname{Pr}\left(\boldsymbol{X} \in B_{1}\right)
$$

where $B_{1}=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{r}\right)^{\prime}: \boldsymbol{x}^{\prime} \Omega^{-1} \boldsymbol{x}<c\right\}$. Hoel [4] evaluated the J_{1} term for the case of $B=B_{1}$. Yarnold [6] evaluated the J_{2} term for the case of $B=B_{1}$ and showed that $J_{1}+J_{2}$ provides very accurate approximation to $\operatorname{Pr}\left(T_{1}<c\right)$.

§4. Log-likelihood ratio statistic

We can express the null distribution of T_{2} as

$$
\begin{equation*}
\operatorname{Pr}\left(T_{2}<c\right)=\operatorname{Pr}\left(X \in B_{2}\right) \tag{4.1}
\end{equation*}
$$

where $B_{2}=\left\{x=\left(x_{1}, \ldots, x_{r}\right)^{\prime}: T_{2}(x)<c\right\}$ and

$$
\begin{equation*}
\mathrm{T}_{2}(x)=2 \sum_{j=1}^{k}\left(n p_{j}+\sqrt{n} x_{j}\right) \log \left\{1+x_{j} /\left(\sqrt{n} p_{j}\right)\right\} \tag{4.2}
\end{equation*}
$$

Observing that the set B_{2} is an extended convex set, we can write (4.1) as the formula (3.1) with $B=B_{2}$. In the following we shall evaluate the J_{1} and J_{2} terms.

Making the transformation (2.2), we can write J_{1} as

$$
\begin{equation*}
J_{1}=\int \cdots \int_{B_{2}} f(z) d z \tag{4.3}
\end{equation*}
$$

where $f(z)$ is given by (2.4) and $\widetilde{B}_{2}=\left\{z=\left(z_{1}, \ldots, z_{r}\right)^{\prime}: T_{2}\left(H^{-1} z\right)<c\right\}$. We may regard J_{1} as the distribution function of $T_{2}\left(H^{-1} Z\right)$ when Z has a continuous
density function $f(z)$. Then the characteristic of $T_{2}\left(H^{-1} Z\right)$ is defined by

$$
\begin{equation*}
C(t)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left\{\mathrm{i} t T_{2}\left(H^{-1} z\right)\right\} f(z) d z \tag{4.4}
\end{equation*}
$$

We can expand $T_{2}\left(H^{-1} z\right)$ as

$$
\begin{align*}
T_{2}\left(H^{-1} z\right)= & z^{\prime} z-\frac{1}{3 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} z\right)^{3} \tag{4.5}\\
& +\frac{1}{6 n} \sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j}^{\prime} z\right)^{4}+O\left(n^{-3 / 2}\right)
\end{align*}
$$

in the set Θ_{n} of z for which $\left|a_{j}^{\prime} z / \sqrt{n} p_{j}\right|<1, j=1, \ldots, r$. Substituting (4.5) into (4.4), we obtain

$$
\begin{align*}
& C(t)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \exp \left(\mathrm{i} t z^{\prime} z\right)\left[1-\frac{\mathrm{i} t}{3 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{h}}}\left(a_{j}^{\prime} z\right)^{3}\right. \tag{4.6}\\
& \left.+\frac{\mathrm{i} t}{6 n} \sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j}^{\prime} z\right)^{4}+\frac{(\mathrm{i} t)^{2}}{18 n}\left\{\sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} z\right)^{3}\right\}^{2}\right] f(z) d z+O\left(n^{-3 / 2}\right)
\end{align*}
$$

The validity of this reduction is obtained by controling the errors of approximations. For example, if we define the set Λ_{n} of z by $\left|z_{j}\right|<2 \sqrt{2 \log n}, j=1, \ldots, r$, then it can be checked that for sufficiently large n,
(i) $\Lambda_{n} \subset \Theta_{n}$,
(ii) $\int_{A n}|f(z)| d z=o\left(n^{-2}\right)$.

The formula (4.6) follows by dividing the region of the integral in (4.4) into Λ_{n} and Λ_{n}^{c} and using the properties (i) and (ii). Carrying out the integral (4.6) with the aid of the moment formulae for a multivariate normal variate, we obtain

$$
\begin{align*}
& C(t)=(1-2 \mathrm{i} t)^{-r / 2}\left[1+\frac{1}{12 n}\left(1-\sum_{j=1}^{k} \frac{1}{p_{j}}\right)\left\{1-(1-2 \mathrm{i} t)^{-1}\right\}\right] \tag{4.7}\\
&+O\left(n^{-3 / 2}\right)
\end{align*}
$$

Inverting (4.7) we obtain

$$
\begin{align*}
J_{1} & =\operatorname{Pr}\left(\chi_{r}^{2}<c\right)+\frac{1}{12 n}\left(1-\sum_{j=1}^{k} \frac{1}{p_{j}}\right) \tag{4.8}\\
& \times\left\{\operatorname{Pr}\left(\chi_{r}^{2}<c\right)-\operatorname{Pr}\left(\chi_{r+2}^{2}<c\right)\right\}+O\left(n^{-3 / 2}\right)
\end{align*}
$$

Next we consider the J_{2} term in (3.1) with $B=B_{2}$. Approximating $\left[S_{1}\left(\sqrt{n} x_{l}+n p_{l}\right) \phi(x)\right]_{\lambda_{l}}^{\theta_{l}\left(x^{*}\right)}$) by its asymptotic approximation

$$
(2 \pi)^{-r / 2}|\Omega|^{-1 / 2} \exp \left(-\frac{1}{2} c\right)\left[S_{1}\left(\sqrt{n} x_{l}+n p_{l}\right)\right]_{\lambda_{l}\left(x^{*}\right)}^{\theta_{l}\left(x^{*}\right)},
$$

and using the same argument as in Yarnold [6], we obtain an asymptotic approximation to J_{2},

$$
\begin{equation*}
\hat{J}_{2}=\left(N_{2}-n^{r / 2} V_{2}\right) \exp \left(-\frac{1}{2} c\right) /\left\{(2 \pi n)^{r} \prod_{j=1}^{k} p_{j}\right\}^{1 / 2} \tag{4.9}
\end{equation*}
$$

where N_{2} is the number of lattice points in B_{2}, i.e.,

$$
\begin{equation*}
N_{2}=\#\left\{\boldsymbol{x} ; \boldsymbol{x} \in L \quad \text { and } \quad T_{2}(x)<c\right\} \tag{4.1}
\end{equation*}
$$

and V_{2} is the volume of B_{2}. We shall give an expansion for

$$
\begin{align*}
V_{2} & =\int \cdots \int_{B_{2}} d x \tag{4.11}\\
& =|\Omega|^{1 / 2} \int \cdots \int_{B_{2}} d z
\end{align*}
$$

where $z=H x$ is defined by (2.2) and $\tilde{B}_{2}=\left\{z: z=H x\right.$ and $\left.x \in B_{2}\right\}$. Consider the transformation $z \rightarrow u$ such that $T_{2}\left(H^{-1} z\right)=u^{\prime} u$. Using (4.5) we can express z in terms of \boldsymbol{u} as

$$
\begin{aligned}
& z=u+\frac{1}{6 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} u\right)^{2} a_{j} \\
& -\frac{1}{72 n}\left\{5\left(u^{\prime} u\right) u+\sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j}^{\prime} u\right)^{3} a_{j}\right\}+O\left(n^{-3 / 2}\right)
\end{aligned}
$$

for sufficiently large n. It is seen that the Jacobian of the transformation is

$$
\begin{aligned}
\left|\frac{\partial z}{\partial u}\right|= & \left\lvert\, I_{r}+\frac{1}{3 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} a_{j}\right)\left(a_{j} u^{\prime}\right)\right. \\
& \left.-\frac{1}{72 n}\left\{10 u u^{\prime}+5\left(u^{\prime} u\right) I_{r}+3 \sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j} u^{\prime}\right)^{2} a_{j} a_{j}^{\prime}\right\}+O\left(n^{-3 / 2}\right) \right\rvert\, \\
= & 1+\frac{1}{3 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}} a_{j}^{\prime} u+\frac{1}{72 n}\left\{(1-5 r) u^{\prime} u\right. \\
& \left.-7 \sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j}^{\prime} u\right)^{2}+4\left(\sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}} a_{j}^{\prime} u\right)^{2}\right\}+O\left(n^{-3 / 2}\right) .
\end{aligned}
$$

From (4.11) we obtain

$$
\begin{align*}
V_{2}= & |\Omega|^{1 / 2} \int \cdots \int_{u^{\prime} u<c}\left|\frac{\partial z}{\partial u}\right| d u \tag{4.12}\\
= & V_{1}\left[1+\frac{c}{n}\{72(k+1)\}^{-1}\left\{-9 k^{2}+15 k-6\right.\right. \\
& \left.\left.-3 \sum_{j=1}^{k} \frac{1}{p_{j}}\right\}+O\left(n^{-3 / 2}\right)\right]
\end{align*}
$$

where V_{1} is the volume of B_{1}, i.e.,

$$
\begin{align*}
V_{1} & =|\Omega|^{1 / 2} \int \cdots \int_{u^{\prime} u<c} d \boldsymbol{u} \tag{4.13}\\
& =\left\{(\pi c)^{r} \prod_{j=1}^{k} p_{j}\right\}^{1 / 2} / \Gamma\left(\frac{1}{2} r+1\right) .
\end{align*}
$$

The J_{3} term is very complicated. However, from the general result in Section 3 it follows that $J_{3}=O\left(n^{-1}\right)$. Neglecting the J_{3} term, it is suggested to use

$$
\begin{equation*}
J_{1}+\hat{J}_{2} \tag{4.14}
\end{equation*}
$$

as an approximation to $\operatorname{Pr}\left(T_{2}<c\right)$, where J_{1} and \hat{J}_{2} are defined by (4.8) and (4.9), respectively.

§5. Freeman-Tukey statistic

The null distribution of the Freeman-Tukey statistic T_{3} can be expressed as

$$
\begin{equation*}
\operatorname{Pr}\left(T_{3}<c\right)=\operatorname{Pr}\left(X \in B_{3}\right) \tag{5.1}
\end{equation*}
$$

where $B_{3}=\left\{x=\left(x_{1}, \ldots, x_{r}\right)^{\prime}: T_{3}(x)<c\right\}$ and

$$
\begin{equation*}
T_{3}(\boldsymbol{x})=4 \sum_{j=1}^{k}\left\{\left(n p_{j}+\sqrt{n} x_{j}\right)^{1 / 2}-\sqrt{n} p_{j}\right\}^{2} . \tag{5.2}
\end{equation*}
$$

It is easily seen that B_{3} is an extended convex set. Therefore we can write (5.1) as the formula (3.1) with $B=B_{3}$. In the following we shall evaluate the J_{1} and J_{2} terms in (3.1) with $B=B_{3}$. When $\left|x_{j} /\left(\sqrt{n} p_{j}\right)\right|=\left|\left(\boldsymbol{a}_{j}^{\prime} z\right) / \sqrt{n} p_{j}\right|<1$ and $\left|1 /\left(n p_{j}\right)\right|<1$, we can expand $T_{3}(x)$ as

$$
\begin{align*}
T_{3}(x)= & T_{3}\left(H^{-1} z\right) \tag{5.3}\\
= & z^{\prime} z-\frac{1}{2 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} z\right)^{3} \\
& +\frac{5}{16 n} \sum_{j=1}^{k} \frac{1}{p_{j}}\left(a_{j}^{\prime} z\right)^{4}+O\left(n^{-3 / 2}\right) .
\end{align*}
$$

The J_{1} term can be obtained by using the formula (5.3) and the same method as in the case of T_{2}. The final result is given by

$$
\begin{equation*}
J_{1}=\operatorname{Pr}\left(\chi_{r}^{2}<c\right)+\frac{1}{n} \sum_{j=0}^{3} g_{j} \operatorname{Pr}\left(\chi_{r+2 j}^{2}<c\right)+O\left(n^{-3 / 2}\right) \tag{5.4}
\end{equation*}
$$

where

$$
g_{0}=\frac{1}{12}\left(1-\sum_{j=1}^{k} \frac{1}{p_{j}}\right), g_{1}=\frac{1}{32}\left(-k^{2}+4 k-3\right),
$$

$$
\begin{aligned}
& g_{2}=\frac{1}{32}\left(2 k^{2}-2 k-1+\sum_{j=1}^{k} \frac{1}{p_{j}}\right) \\
& g_{3}=\frac{1}{96}\left(-3 k^{2}-6 k+4+5 \sum_{j=1}^{k} \frac{1}{p_{j}}\right) .
\end{aligned}
$$

Applying an argument similar to that in the case of T_{2}, we can obtain an asymptotic approximation for the J_{2} term given by

$$
\begin{equation*}
\hat{J}_{2}=\left(N_{3}-n^{r / 2} V_{3}\right) \exp \left(-\frac{1}{2} c\right) /\left\{(2 n)^{r} \prod_{j=1}^{k} p_{j}\right\}^{1 / 2} \tag{5.5}
\end{equation*}
$$

where N_{3} is the number of lattice points in B_{3}, i.e.,

$$
\begin{equation*}
N_{3}=\#\left\{\boldsymbol{x}: \boldsymbol{x} \in L \quad \text { and } \quad T_{3}(\boldsymbol{x})<\boldsymbol{c}\right\} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{3}=\int \cdots \int_{B_{3}} d x \tag{5.7}
\end{equation*}
$$

Similarly we can derive an asymptotic expansion for V_{3}. For this, we consider the transformation $z \rightarrow \boldsymbol{u}$ such that $T_{3}\left(H^{-1} z\right)=u^{\prime} \boldsymbol{u}$. From (5.3) we can write the transformation as

$$
z=u+\frac{1}{4 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}}\left(a_{j}^{\prime} u\right)^{2} a_{j}-\frac{5}{32 n}\left(u^{\prime} u\right) u+O\left(n^{-3 / 2}\right)
$$

Therefore we have

$$
\begin{align*}
V_{3}= & |\Omega|^{1 / 2} \int \cdots \int_{u^{\prime} u<c}\left|\frac{\partial z}{\partial \boldsymbol{u}}\right| d \boldsymbol{u} \tag{5.8}\\
= & |\Omega|^{1 / 2} \int \cdots \int_{u^{\prime} u<c}\left[1+\frac{1}{2 \sqrt{n}} \sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}} \boldsymbol{a}_{j}^{\prime} \boldsymbol{u}\right. \\
& +\frac{1}{32 n}\left\{-(2+5 r) \boldsymbol{u}^{\prime} \boldsymbol{u}+4\left(\sum_{j=1}^{k} \frac{1}{\sqrt{p_{j}}} \boldsymbol{a}_{j}^{\prime} \boldsymbol{u}\right)^{2}\right. \\
& \left.\left.-4 \sum_{j=1}^{k} \frac{1}{p_{j}}\left(\boldsymbol{a}_{j}^{\prime} \boldsymbol{u}\right)^{2}\right\}+O\left(n^{-3 / 2}\right)\right] d \boldsymbol{u} \\
= & V_{1}\left\{1-\frac{3 c}{32 n}(k-1)(3 k-1)(k+1)^{-1}+O\left(n^{-3 / 2}\right)\right\}
\end{align*}
$$

where V_{1} is given by (4.13).
The formulas (5.4) and (5.5) will be useful in getting closer approximations to $\operatorname{Pr}\left(T_{3}<c\right)$.

References

[1] R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiely, New York (1975).
[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge (1975).
[3] C. G. Esseén, Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law, Acta Math., 77 (1945), 1-125.
[4] P. G. Hoel, On the chi-square distribution for small samples, Ann. Math. Statist., 9 (1938), 158-165.
[5] R. Ranga Rao, On the central limit theorem in R_{k}, Bull. Amer. Math. Soc., 67 (1961), 359-361.
[6] J. K. Yarnold, Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set, Ann. Math. Statist., 43 (1972), 1566-1580.

Department of Information and Behavioral Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University and
Department of Mathematics, Faculty of Science, Hiroshima University

