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Introduction

The homotopy classification of spaces and maps is a subject of classical

studies in algebraic topology. The group £(X) of self equivalences of a space X

and the subgroup <?H(X) of self //-equivalences of an //-space X arose from such

classification problem. For a based space X, &(X) is defined to be the set of all

homotopy classes of homotopy equivalences of X to itself with group multipli-

cation induced by the composition of maps; and it has been investigated by several

authors including [2], [10], [19], [20] and [22], where calculating £{X) has

been made with two exact sequences, originally due to Barcus-Barratt [2], given by

either the skeletons or the Postnikov system of X. When X is an //-space, &H(X)

is defined to be the subgroup of £(X) consisting of //-maps, which has been studied

in [13] and [24] for instance. But much less examples of calculation are known;

in fact, when X is a finite 1-connected //-complex (//-space being a CfP-complex),

&H{X) has determined only in case that X is of rank g 2 with no torsion in

homology.

This paper is divided into two parts. In Part I, we present an exact sequence

for calculating £H{X) of a 1-connected //-complex X in terms of its Postnikov

system. The aim of Part II is the determination of #H(G2fb) made use of the

exact sequence given in Part I, where Gltb ( — 2 ^ b ^ 5 ) are of rank 2 with torsion

in homology given by Mimura-Nishida-Toda [17].

Let X be a 1 -connected //-complex, and consider the Postnikov system

{Xn} of X with obvious map/ n : X-*Xn and usual fiber sequence

(1) ΩXn-χMU K(πH, n)-l^Xn^^Xn.1J^ K(πn9 n

(Ω is the loop functor)

where πn(X) is sometimes abbreviated to πn and the Postnikov invariant fcMfl to k.

Then, the theorem of J. D. Stasheff [26, Th. 5] states that Xn is an //-space in

such a way that all the structure maps /„, k, pn and in are //-maps and we have

proved in the previous paper [25, Th. 1.3] that

(2) /„ induces a homomorphism /„,: &H{X)-jκ$H{X^ which is monomor-

phic ifn^.dimX and isomorphic if n^2 dim X,
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This motivates our study of relation between tfH(Xn) and $H(Xn-x) in order to

give an exact sequence for the calculation of #H(X).

For this purpose, we consider more generally the mapping track Ef and the

usual fiber sequence

(3) ΩAM>ΩB-L>EfMA-LB of a given //-map/ between //-complexes A and B,

where Ef is an //-space so that p and i are also //-maps (cf. [26, Th. 2]). Denote

the homotopy set by [ , ] and consider the exact sequence and the induced map

ίEf9 QA] Λ°Ώ*+ ίEf9 ββ] -±> [£,, E/\ -**+ [£„ A],

Then, by the theorems due to Y. Nomura [19] and J. W. Rutter [22], in case

when

(3") πf(yl) = 0 unless m^i<n, πj(B) = Q unless n<j^m + n, for some integers

n>m;>2,

the restriction of the exact sequence in (3') to &(Ef) (<=[£/, Ef~]) gives us the

exact sequence

(4) [A, Ω5] - f £ g(Ef) ^ » > ^(A) x £{ΩB) (<?(ΩB) s ^(J5), ic = 1 + **)

in Theorem 2.5 of groups and homomorphisms, where [ , ΩB~\ is abelian as usual

and φ and φ are the homomorphisms induced by p and ί9 respectively. Restricting

(4) to #H(Ef) gives rise to an exact sequence for the computation of &H{Ef) from

#H(A) and &H(B), which is our main result in Part I and is stated as follows.

THEOREM 1-1. Let A and B be H-complexes satisfying (3//). Let f: A-+B

be an H-map and consider its mapping track Ef which is an H-space so that p

and i in (3) are H-maps. Then there is an exact sequence

(5) o ,

where the abelian group //(/) and the group G(f) are given as follows:

(5') H(f) = p*(P(f))IIm(Ωf)*np*(P(f)), P(f) = (κp*rK<?H(Ef))cz[A, flJB],

where (Ω/)*, p* are in (3') and Kp* is in (4); and P(f) can be taken to be the

subgroup [>4, ΩB~]H consisting of all H-maps if the condition (2.8.4) stated below

is satisfied.

{5") G(f) = {(Λls h2)e<?H(A) x JflWI/Λi = h2f in [4, B] with a

secondary homotopy stated in (2.7.2)}.
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The sequence (1) for a 1-connected //-complex X is considered as (3) for

Λ = Xn_l9 B = K(πn, n + 1) and/=fc with (3") for m = 2, and the above results can

be applied to obtain the following

THEOREM 1-2. Let X be a 1-connected H-complex and {Xn} in (1) be its
Postnikov system. Then there are exact sequences

(6) O-H.

where Hn, Gn, Hn and Gn are given as follows:

(6') Hn=Im p /Iin (βfc). => /?„=H{k)=pJ(PB)/Im (Ωfc)* n />?(/>„), P.=P{k),

where H"(X._ i ; π.)-ϊ t//-(^,; πn)<-<i^-[XB, ΩZ,,^] (/c = fc»+ ); αn^ PB can
be taken to be the subgroup PHn(Xn_ί; πn) consisting of all primitive elements if
the condition (3.7.5) stated below is satisfied.

(6") Gn = {(fc1,Λ2)e^(X l i-1)xautπ l l |Λffe = Λ2#fc in

n-i) x aut πn) D 5 B

and GΠ£p(Grt)cz«f(.£„_!) and G^piGjczf^X^J by the projection onto the

first factor if p* is epimorphic.

In Part II, we consider a 1-connected /ί-complex of rank 2 with 2-torsion

in homology, i.e.,

(7) G2b (-2Sb^5)given in [17, Th. 5.1] (see §4 for the definition).

The group <f(G2>b) is investigated in the previous paper [18] collaborated with

M. Mimura by studying the exact sequences on the skeletons of G2tb due to

Barcus-Barratt [2]. By using some results obtained there, we can show that the

groups Hn in (6') and Gn in (6") with X = G2th satisfy

(8) Hn = 0 and GH* piGjct^Xn-i) for 4 g n ^ 14 = dim

Notice that Z 3 = K(Z, 3) and <£Ή(X3)=Z2 in case X = G2ib. Then, by the ex-

actness of (6) and (2), we have the following

PROPOSITION 5.6. Let f3: G2>b->K(Z, 3) be the map killing the homotopy

groups except π3, andf3ι: tfH(G2>b)^>#H(K(Z, 3)) = Z2 be the induced homomor-

phism in (2). Then9f3ι is monomorphic9 and hence ^ ( G ^ ) is trivial or equal

to Z 2 .

Furthermore, we notice that

(9) G2jft is an H-space so that the inclusion S3czG2b is an H-map with
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respect to the usual multiplication on S3; and we can prove the following main

result in Part II :

THEOREM II. Let G2fb be the H-space in (9). Then the group &R(G2ib) is

trivial, i.e., any homotopy equivalent H-map of G2fb to itself is homotopic to the

identity map.

In case when a 1-connected //-complex X of rank 2 is 2-torsion free in

homology, Hilton-Roitberg [8] and A. Zabrodsky [31] proved that

(10) X is S3 x S3, SU(3), Ek (fc = 0, 1, 3, 4, 5) or SΊ x SΊ, up to homotopy

type,

where Ek is the principal S3-bundle over S 7 with classifying map kω e πΊ(BS3) =

π6(S3) = Z 1 2 (ω: a generator). We notice that the group &H(X) of such an //-

complex X with canonical multiplication is determined as follows:

(11) ([24], [25] and K. Maruyama [11]) «fH(S!7(3)) = Z 2 , <?H(Ek) = l,

<?H(S& x S£) = {a = (fly) G GL(2, Z) | atJ = (1 + ( - l) ί + ' ' det a)/2 mod kΆ} (£ = 3, 7),

where fc3 = 24 and kΊ = 240. Furthermore, we remark that ίffl(£fc) = l is valid

for any multiplication on Ek by [24] and Maruyama-Oka [13], but K. Maruyama

[12] has proved recently that there is a multiplication on SU(3) with #H(SU(3)) = 1.

Part I consists of §§1-3. In §1, we attempt functorial treatments of

and of ̂ W(X). In §2, we recall the exact sequence (4) together with the results on

Ker(/c/?*) and Im(φ, φ) in Theorem 2.5. We prove Theorem 1-1 in Theorem

2.8, and notice any multiplication on Ef in Remark 2.9. In §3, we give some

corollaries to Theorems 2.5 and 2.8, and prove Theorem 1-2 in Corollary 3.7.

Part II consists of §§4-7. In §4, we recall the definition and the properties of

G2tb given in [17], and prepare some results on p* and PHn(Xn_ί; πn) in (6r) with

X = G2b. In §5, we prove (8) in Lemmas 5.4-5 under Assertion 5.3, and Theorem

II in Theorem 5.8 by using Proposition 5.6 and the fact that π6(53) = Z 1 2 is gen-

erated by the obstruction to homotopy commutativity of the usual multiplication

on S3. Finally in §§6-7, we prove Assertion 5.3 by using the exact sequence of

homotopy sets induced by the fibering in (1) with X — G2h and by studying several

related homotopy sets in detail.

The author wishes to express his hearty thanks to Professors Masahiro

Sugawara, Mamoru Mimura and Shichirδ Oka for their valuable suggestions and

discussions.
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Part I. Self //-equivalences of the mapping track of an //-map

§ 1. Preliminaries on self (^equivalences

In this paper, all (topological) spaces are 1-connected spaces with base

points * and have the homotopy types of CFF-complexes, and all (continuous)

maps and homotopies preserve *. For a space or CW-complex X, the lower or

upper indexing Xn or Xn is used to denote the n-stage of the Postnikov system

{Xn} of X or the n-skeleton of X, respectively, unless otherwise stated. For any

spaces X and 7, we denote the set of homotopy classes of maps of X to 7 by

[X, 7 ] as usual, and often use the same symbol to refer to a map and its homotopy

class.

A given map g: X-+X' (resp. h: Y-+Y') induces the map

g*: \X', 7 ] -> [X, 7 ] with g*f=fg (resp. ft,: [X, 7] -> [X, 7'] with hj= hf)

between the homotopy sets by composing g (resp. h). A cofibering (resp. fibering)

induces the Puppe (resp. homotopy) exact sequence and we have the following by

the standard homotopy theory (cf., e.g., [4]), where we say that a map g: X^»X'

is n-connected if

g* . πt(X)-tπlX') is isomorphic for i < n and epimorphic for i = n.

(1.1.1) If g: X->X' is n-connected, then g*: [X', 7]->[X, 7 ] is bijective

when π f(7) = 0/or i^n, and is injectiυe when ^ ( 7 ) = 0/or i>n.

(1.1.2) IfX is (n-iyconnected and πf(7) = 0/or i^n, then [X, 7]=0.

(1.1.3) // h: Y-*Yr is n-connected and X is a finite dimensional CW-

complex, then h*\ \_X, 7]-»|~X, 7'] is bijective when d i m X < n , and surjective

when

Furthermore, we notice the following facts on the connectivity:

(1.1.4) // X and 7 are m- and n-connected, respectively, then XxY is

min{m, n}-connected and the smash product X A Y=XX Y/XV 7 is (m + n + 1)-

connected.

(1.1.5) g: X->X' is n-connected, if and only if the homotopy fiber (mapping

track) of g is (n — l)-connected, or equivalently, the homotopy cofiber (mapping

cone) of g is n-connected.

(1.1.6) For a CW-complex X and its n-skeleton Xn, the inclusion j n : Xnc:X

is n-connected.

(1.1.7) // g: X^X' and h: Y-+Y' are k- and £-connected, respectively,

then gxh: XxY^X'xY' is min{fc, ^-connected. If X, X', 7 and 7' are
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ra-, m'-, n- and n'-connected, respectively, in addition, then g Ah: XΛ Y-»

X'ΛY' is max{min{ra + ̂  + l, n' + k+\}, m i n { m ' + / c + l , n + £ + l}}-connected.

For any space X, we denote the subset of [X, X~\ consisting of all classes of

self equivalences of X (homotopy equivalences of X to itself) by

which forms a group under the composition of maps. To study this group, we

use the induced homomorphisms given in the following

LEMMA 1.2. Let f: X->Ybe a map, and consider the induced maps

\x,x\l±+[x, r\£-\γ, r\.

(i) ///* is bijective, thenZ*"1/* defines the homomorphism

(1.2.1) / : <f (X)-><f (Y) determined by (/,(Λ))/=/Λ in \X9 Y]for h e *(X).

(ii) If f * is bijective, thenf*ιf* defines the homomorphism

(1.2.2) / ' : *(Y)^*(X) determined byf(p(g)) = gfin [X, TΓ\for g e

PROOF. If / * is bijective, then for he[X9X], /i/=/*"1(/*^)e[Y, Y\ is

determined uniquely by the condition h'f=fh in [X, Y]. Thus/*" 1/* preserves

the identity map and the composition of maps, and we see (i). Similarly, we can

prove (ii). q. e. d.

For a given space X, we consider the n-stage Xn in the Postnikov system

(1.3.1) Xn is a space with πf(Jίw) = 0 for i>n, and there is an (n + l)-connected

maφfn:X->Xn9

or,

(1.3.2) up to homotopy type, Xn is a space obtained by attaching /-cells

with i ^ n + 2 to X so that Xn and the inclusion map/Π: X^Xn satisfy (1.3.1).

Then,/*: [Xn, X^\^[X, X^\ is bijective by (1.1.1) and/Π induces the homomor-

phism

(1.3.3) fnι:*{X)-+*{Xn) of (1.2.1) for / = /,.

When X is a CW-complex having no (n + l)-cells, we have the following

duality between £(Xn) and tf(Xn) of the n-skeleton Xn of X:

PROPOSITION 1.4. Let X be α CW-complex, and Xn be its n-skeleton.
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(i) / / X has no (n + l)-cells, then the inclusion jn:XnczX and the
composition fnjn: Xn->Xn induce the homomorphisms of (1.2.2) in the com-
mutative diagram

€(Xn)

where fnl is the one in (1.3.3), and (fnjn)1 is an isomorphism.
(ii) (cf. [23, Lemma 7.1]) If X is a finite dimensional CW-complex, then

fnι is an isomorphism for n^di

PROOF, (i) If Xn+1=Xn

9 then the induced maps in the commutative
diagram

are all bijective. In fact, j n is (n + l)-connected by (1.1.6) since Xn+ί=Xn, and so

is/π by (1.3.1). Thus j n * and/n* are bijective by (1.1.3), and so are j * and/* by

(1.1.1) and (1.3.1).

Therefore, the induced homomorphisms j ι

n and (fnjn)
1 are defined by the

above lemma, and so is also (/„./„),: &(Xn)-*#(Xn) which is the inverse of

(fnJn)1- The commutativity of the diagram in (i) is seen by the definitions

(1.2.1-2).

(ii) is an immediate corollary of (i). q. e. d.

We now consider //-spaces. We use the notation ~ for 'homotopic' as
usual, and the ones

Δ : * - * x * > V : I v I - ^ I and π: Xx Y-+Xx Y/Xv Y=XΛ Y

always to denote the diagonal, folding and collapsing maps, respectively.

A space X is an H-space if there is a map m: XxX-+X, called a multipli-

cation, such that m\IvI^V: I v I - > I . When a CW-complex X is an H-

space, we call it an H-complex whose multiplication m can be taken (up to

homotopy) to be m | X v X=V. For example, we have the following:

(1.5.1) // ^(^4) = 0 unless n<i^2n for some n^l, then A is an H-space

with unique multiplication (up to homotopy).

In fact, Am A! ( ^ means 'homotopy equivalent9) for some CW-complex A! and
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there is uniquely an extension m'\ A'xA'^A' of V by the obstruction theory.
We notice the following (1.5.2-6) where X=(X, m) is a given /f-space:

(1.5.2) ([9, Th. 1.1]) [A, X] for any A forms a loop with sum +m and
identity 0 = *, where

(1.5.3) g+mh = m(gxh)Δ'/A'A>AxA gXh^XxX-^χ farg,h:A->X;

i.e., for any g, g', there are uniquely h, h' so that g + mh = g' = hf + m g and h = 0 =

h'ifg=g'.

(1.5.4) ([21, Satz 6]) For AIDB, assume that B-i-^A-^A/B (i: the inclusion,
q: the collapsing map) is a cofibering, and consider the Puppe exact sequence
IAJB, X]-SU\A9 X]J^\β9 XI Then, for any g, g':A->X with g\B~gf\B:
B-+X, there is a separation element

d = d(g, g')e\_AjB, X~\ such that g + mq*d = g' in \_A, X~\, which is unique
if q* is injectiυe.

In fact, taking h e \_A, X] in (1.5.2), we see that i*h — 0 and helm q*. Especially,

(1.5.5) Yv Y-^Yx ΓJL,yΛ Yis a cofibering and π*:[YΛ 7, X]-[Yx Y, X]
is injectiυe; and

(1.5.6) for any multiplications m' and m" on X, the separation element
d{mf, m")e[XΛX, X] is defined so thatmf~m" if and only if d(m', m") = 0 or
d(m, m') = d{m, m") in [X Λ X, X].

For if-spaces X = (X, mx) and Y=(Y, mγ), a, map / : X->7is an H-mαp if
fmx~mγ(fxf): X x X-» Y; and we denote the subset of [X, Y] consisting of all
classes of iί-maps by [X, Y]H (c[X, Y]). Then, since /m x |XvX~/V =
V(/v/)-m y (/x/) |XvX: XvX-^Yfor/: X->Y,

(1.5.7) we have the map φ: [X, Y ] - > [ X Λ X , Y] with [X, Y]H

given by

= d(mγ(fxf),fniχ)εLXAX, Y]> the separation element in (1.5,4)

(cf. (1.5.5)), for/e[X, Y].

By the results due to I. M. James [9, Cor. 4.4 and §3], we notice the following:

(1.5.8) Let (X, mx) and (Y, mγ) be H-complexes with m x | X v X = V and
ray|YvY=V. Then, for any H-map / : X-+Y, we can take a homotopy F:
X x X x I-+ Y rel X v X offmx to mγ(fxf).

For any iί-space X = (X, m), we denote the subgroup of <f (X) consisting of
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all classes of self //-equivalences of X (homotopy equivalent ί/-maps of (X, m)
to itself) by

*fl(X) (= f^X, m)) = *(X) Π [X, X]H ( c * ( * ) ) .

As a sufficient condition for #H(X) = &(X), we see the following by (1.5.7), (1.1.4)
and (1.1.2):

(1.5.9) ([24, Prop. 2.7]) 7/ [ I Λ I , X] = 0, e.tf., ι/ X is A gίtwi in (1.5.1),

On the induced homomorphisms given in Lemma 1.2, we have the following

LEMMA 1.6. Let X and Y be H-spaces and f: X->Y be an H-map. If
f* (resp.f*) in Lemma 1.2 is bijective and

(/x/)*: [ Yx Y, Y] -• [X xX, Y] (resp./*: [Xxl,l]->[lxX, Y])

is injective, then the restriction of the induced homomorphism

/,: ^(X) -> ̂ (Y) in (1.2.1) (rβsp. / ' : <f(Y) -* (̂JSQ in (1.2.2))

defines the homomorphism

( 1 . 6 . 1 ) f ι = f

PROOF. Assume that / i : (I , mx)->(I, mx) is an iί-map. Then, by the
assumption that/: (X, mx)-+(Y, mγ) is an //-map and the definition of hf=fι(h)
in (1.2.1), we see easily that h'mγ(fxf) = mγ(h' x h')(fxf) in [X x X, Y]. Thus
h'mγ = mγ(hf xh') in [Yx Y, Y] since (/x/)* is injective, and /ir is an /ί-map.
The remaining half can be proved similarly. q. e. d.

When X = (X, m) is an //-space, m: XxX-+X can be extended to a multi-
plication mn: XMxXn-»Xn uniquely (up to homotopy) for Xn in (1.3.2) by the
obstruction theory. Thus

(1.7.1) the n-stage Xn in the Postnίkov system of an H-space X given in
(1.3.1) is an H-space with unique multiplication mn so that fn: X^Xn in (1.3.1)
is an H-map.

Furthermore, (/, x/J": [ I M x I n , I J ^ [ I x I , I J is bijective by (1.3.1),
(1.1.4) and (1.1.1). Thus the H-map/„ in (1.7.1) induces the homomorphism

(1.7.2) fnι: gH(X)^£H(Xn) of (1.6.1) for /=/„, which is the restriction of fnl

in (1.3.3).
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We have proved in [25, Th. 1.3] the following

(1.7.3) If X is a finite dimensional H-complex9 then /„,: #H(X)-+#H(Xn)

in (1.7.2) is monomorphic for n^dimZ, and isomorphic for n ^

By this result, the group &H(X) is determined by #H(Xn) for large n, and the

latter will be investigated inductively by using the fibering Xn->Xn-x with fiber

K(πn(X)9 n).

§ 2. Self (//^equivalences of the mapping track

The group &{Ef) of self equivalences of the mapping track Ef of / : A-+B is

investigated by Y. Nomura [19] and J. W. Rutter [22]. In this section, we

study the group #H(Ef) °f s elf //-equivalences of Ef which is an //-space when /

is an i/-map as is seen in (2.1.4).

Throughout this section, we assume that

(2.1.1) A = (A9 niγ) and B = (B9 m2) are given //-complexes with mί\AvA —

V and m2\ByB — V9 a n d / : A-+B is a given //-map with a homotopy F: Ax

A x I->B rel A v A offmx to m2(fxf) (cf. (1.5.8)).

Then, by using the path space PB = {£: I-+B\ ^(1) = *} and the loop functor Ω9

we have

(2.1.2) the mapping track Ef = {(a9 £)\aeA, £ePB9 f(a) = £(0)} (aAxPB)

off, and

(2.1.3) the fiber sequence ΩA^ΩB-±^Ef-^AJUB (p: the projection, /:

the inclusion); and

(2.1.4) (J. D. Stasheff [26, Th. 2]) Ef is an H-space so that p and i in (2.1.3)

are H-maps, where the multiplication m on Ef is defined by using F in (2.1.1)

and m2: PBxPB-+PB (m2(£, £') = m2(£ x £')A) as follows:

m((α, £), (a\ £')) = {mx{a9 a'), £");

£\tβ) = F(a9 a\ t) (O^ίg l ) , = m2(£, £') ( ί -

Hereafter, we are concerned with this //-space Ef = (Ef9 m), (cf. also Remark

2.9). Then,

(2.1.5) the loop action μ: EfxΩB-+Ef is an H-map, and μ = m(lx/) in

\EfxΩB,Ef\ where

μ((a9 £\ £') = (a, μ(£9 £'))9 μ{£9

because the loop action μ: PB x ΩB->PB is homotopic to m21PBx ΩB as usual.
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In [19] and [22], the group #(Ef) is studied by considering the map

(2.2.1) K : [Ef, ΩB] -• [ £ / } Ef~\ defined by κ(oc) = μ(l x α)Δ for α e [ £ / 5 ΩB],

where 1 denotes the identity map and μ is the loop action in (2.1.5). Then, we have

(2.2.2) φ + β) = κ(j8)ιc(α) /or α e [ £ / ? ΩB] and )8 e Im Q>*: [4, ΩB]

-+[£,, ΩB]),

( + is + μ in (1.5.2) of the loop multiplication μ on ΩB), by the following equalities

in the homotopy sets:

= μ(μ x 1)(1 x α x j8)(Δ x 1)Δ = μ(Φ) x

= /z(l x /0Δά = M« x £α)Δ, /ϊ'pδ = j 8 χ i x α)Δ = /ϊ'

Now, we notice that [ , ΩB~\ is the abelian group as usual by 4- = +μ== +m2

in our case, and consider

(2.2.3) [X, ΩBl-t+lXΛX, ΩBJi^UίX x X, ΩB] in (1.5.7) and (1.5.5) for any

/ί-space X = (X, m), where π* is monomorphic and φ is the homomorphism

with Ker φ = [X, ΩB]W given by

am = m2(a x a) + π*φ(a) for a e [Z, ΩB] (cf. (1.5.4)),

or π*</> = m* — pf ~ P* (Pi : the i-th projection).

LEMMA 2.3. ( i ) K: [Ef, ΩB]->[£ / ? £ r ] in (2.2.1) is given by i # : [£/, ΩB]

-•[£/, £/] as follows:

(2.3.1) ;c(a)= L + ί^a /or a e [ £ ; , ΩB], where + is+ m on [ , E/\ given in (1.5.2).

(ii) If oie [Ef9 ΩB]H, rAen κ(a) e \Ef9 E/\a.

(iii) /n the sequence [Ef, ΩA~\

(2.3.2) assume ίnaί a subset Qa\Ef, ΩB] satisfies φ(Q) Π Ker

TAen, for any OLEQ with κ{a)e[Ef, Ef~]H, there is a ' e [ £ / 5 ΩB]H swcn that

PROOF, (i) We have κ(α)=μ(l x α)Δ = m(l x iα)Δ = 1 + i*α by (2.2.1) and

the equality in (2.1.5).

(ii) Noticing that μ is an /ί-map by (2.1.5), we have similarly the following

in lEfxEf9 E/\\
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(2.3.3) κ(α)m = μ(l x α)A/n = m(l x ice) (m x m)Δ = m + /am,

m(κ(oc) x τc(a)) = m ( μ x / ί ) ( l x a x l x a ) ( Δ x Δ )

= μ(m x m 2 )( l x 1 x a x a)Δ = m + im2(a x a).

Therefore, if a is an iί-map, then these are equal to each other and κ(cc) is an

iί-map.

(iii) Let oceQ and assume that κ(α) is an H-map. Then ίccm = ίm2(α x α) in

[Ef x £ / ? £/] by (2.3.3) and (1.5.2). Thus π%φ(α) = i*π*φ(oί) = 0 and ί*φ(oc) = 0

by (2.2.3). Therefore,

φ(oc) = φ((Ωf)*β) for some βe[Ep ΩA], by the assumption (2.3.2).

Put α' = α - (&/)*£. Then </>(αr) = 0, and α' e [ £ / ? ΩB]Λ by (2.2.3). Further κ:(α) =

\ + i*(<x' + (Ωf)*β) = \ + (i*<x' + i*{Ωf)*β) = κ(μ') by (i), since ί is an #-map by

(2.1.4) and i(Ω/)~*. q.e.d.

In the rest of this section, we assume that the homotopy groups of A and B

in (2.1.1) satisfy

(2.4.1) TCi(A) = 0 unless m^i<n9 Kj(B) = 0 unless n< j^m + n, for some integers

We consider the cofiber sequence in the upper line of the homotopy com-

mutative diagram

SΩB

(2.4.2)

lCt — Ef \JiCΩB: the mapping cone of /, \

SΩB = Ci/Ef: the suspension of ΩB,

ΩB —1—> Ef -^-» A > B \j: the inclusion, k: the collapsing map /,

where the lower line is the fiber sequence (2.1.3), q is the map with q(CΩB) = *

and qj = p, and e is the evaluation map. Then, under the assumption (2.4.1),

we notice the following:

(2.4.3) p, j , q and e in (2.4.2) are n-, n-, (m + n)- and (2n 4-1)-connected,

respectively.

This is seen for p clearly, for q since p*: Ht(Ef, ΩB)-+ίίi{A) is isomorphic if

i<m + n and epimorphic if i = m + n, hence for j , and for e since the fiber of e is

the join ΩB*ΩB being 2n-connected ([3, Prop. 3.2] and [14, Lemma 2.3]).

Now, consider the following commutative diagram of the induced maps:
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[A, ΩA1 - ^ 2 % IA, Ωfi] £-ZCh ΩB1 U> A~\

(2.4.4) IE,, ΩA-]-W± ίEf,ΩB1 _ _ ίEft Ef]

I* *>
IB, B~\ f—-> ISΩB, tf] = IΩB,

where the middle horizontal sequence (resp. -il» -̂ ->) is the homotopy (resp.

Puppe) exact sequence of the fiber sequence (2.1.3) (resp. cofibering in (2.4.2)).

Then under (2.4.1), we see that

(2.4.5) the maps indicated by ^ are all bijective, and the vertical sequence

is exact.

In fact, the two p*'s, q* and e* are bijective by (2.4.1), (2.4.3) and (1.1.1), and so

the latter half holds. The lower i* is bijective, since it is in the homotopy exact

sequence with [ΩB, ΩA] = 0 = [_ΩB9 A] by (1.1.2):

Therefore, Lemma 1.2 shows that the restrictions of p*""1]?* and Ω~1i%ίi*

induce the homomorphisms

φ p ) determined by φ(h)p = ph in [Ef9A], and
(2.4.6)

φ = Ω-Hι: <?(Ef)-+(?(B) determined by iΩ(\l/(h)) = hi in [ΩB, E/],

respectively. Furthermore, by Y. Nomura [19, Th. 2.1, 2.9] and J. W. Rutter

[22, Th. 3.1], we have the following

THEOREM 2.5. Assume that H-complexes A and B satisfy (2.4.1). Then

the group #(Ef) of the mapping track Ef in (2.1.3) of an H-map f: A->B is

in the short exact sequence

(2.5.1) 0 — > H(f) -JU *φf) Sϊ^U G(f) _ > 1,

where

H(/) = Im(p*: {A, ΩB\-> [ £ / 5 Ω5])/Im((Ω/)*: [Ef9 ΩA} ^ \Ef9 ΩB])9

(2.5.2)

K is the homomorphism induced by K in (2.2.1) and (φ,ψ) is the one given by

φ and ψ in (2.4.6).

This theorem can-be seen by using the commutative diagram (2.4.4) with

(2.4.5) as follows. Restricting K in (2.2.1), we have the homomorphism κ:Imp*
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-+£(Ef) by (2.2.2), and fc-1(l) = Keri # =Im (Ωfi+clmp* by (2.3.1) and the

horizontal exact sequence; thus it induces the monomorphism K in (2.5.1). (2.3.1),

the two exact sequences and the definition (2.4.6) imply that Im K = 1 + ΐ* Im p* =

1+ (Kerp*) n (Ker ί*)=(φ, ψyKl), since p is an#-maρ by(2.1.4). Im(<p, ι/0 =

G(/) is seen by (2.4.6) and the following (2.5.3) and (2.5.5):

(2.5.3) For (hl9 /ι2)eG(/), there is he£{Ef) such that ph = hίp: Ef^>A

and hi = i(Ωh2) in [ΩB, Ef\.

In fact, a homotopy H: AxI-+B offht to h2f gives us such a map

(2.5.4) h: Ef-+Ef defined by h(a, ^)=(/x1(α), ^fl); £a(t/2) = H(a, t) (O^

(2.5.5) For he£(Ef), h^φ^e^A) and h2 = ψ(h)e<?(B) satisfy fhγ =
h2finlΛ9B].

In fact, by the cofiber sequence in (2.4.2) and as a dual to (2.5.3), a homotopy

H: ΩBx I-+Ef of hi to i(Ωh2) defines

by δ 1 | £ / = ft,R1(^ί/2)

so that hij^h: Ef-^Ct and A;/̂  =(SΩh2)k in [Cf, Sί25]. Thus, because (2.4.2)

is homotopy commutative and j * : [C4, ̂ 4]-^[£ / 5 ^ ] and #*: [i4, B]->[Cf, β ]

are injective by (2.4.3), (2.4.1) and (1.1.1), we have

qfiίj=zqjh = ph = h1p (since h1 = φ(h)) = h1qj in [Ef, A\ and so q^χ-hxq

in [Q, Λ]

fh1q^fqK1=ekKι^e(SΩh2)k^h2ek = h2fq in [C,, B], and so fhγ = h2f

in [Λ, B]'.

We now study the subgroup &Ή{Ef) of #(Ef) for the /ί-space Ef = (Ef, m)

in (2.1.4).

LEMMA 2.6. Assume that Q = Im(p*: [A, ΩB]-*[Ef, ΩB]) satisfies (2.3.2).

H, for K in (2.5.1).

PROOF. If α e p*(P), then α e \Ef, ΩB]H since p is an //-map by (2.1.4), and

so κ(<x)e\_Ef, E/]H by Lemma 2.3 (ii). Conversely, assume that α e β satisfies

κ(μ)Έ[,E/9E/]u. Then
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(2.6.1) κ(α) = fc(α') for some VL'e[Ef, ΩB~]H by Lemma 2.3 (iii).

This implies that α' — α e Ker z* by Lemma 2.3 (i), and Ker i* = Im (Ωf)% c Q. Thus

(2.6.2) α' e [ £ / ? &£]„ Π Q am/ <xr = p*βfor some βe[A, ΩB~\.

On the other hand, by (2.4.3), (1.1.7), (2.4.1) and (1.1.1), we see that

(2.6.3) pAp: EfAEf^ΛAA is (m + n)-connected, and(pΛp)*: [ i Λ i , ΩE]

ς*[EfΛEf, ΩB~\.

Consider the homomorphism φ: [X, Ω β ] - ^ [ l Λ l , ΩB] in (2.2.3) for X = A

and Ef. Then, {p/\p)*φ = φp* by the definition of φ, since p is an//-map by

(2.1.4). Thus (2.6.1-3) and [X, OB]H = Ker φ in (2.2.3) show that (p Λ p)*φ(β) =

] H = P and φ) = κ(p*β)eκ(p*P). q.e.d.

LEMMA 2.7. (i) £y restricting (φ, ^) in (2.5.1), we have the homomor-

phisms

(2.7.1) Φ :

(φ, ^

(ii) Im(φ, î ) is the subgroup of G(f) consisting of all (hl9 h2)e&(A)x

<f(β) satisfying the following property:

(2.7.2) There are homotopies H: Axl-+B of fhΛ to h2f(i.e.9(huh2)eG(f))

and

Hί: AxAxI-+A re\A v A of hxmx to mί(hί xh^ (i.e., hx

H2\ BxBxI -> β rel B v β of h2m2 to m2(h2 x h2) (i.e., h2 e&H(B)),

and in addition, there is a secondary homotopy D:AxAxI2-+B (/2 = /x/)

such that D(a, a', s, ί/2) ((s, ί/2)e/2) is

fHx(a,a',s)(t = 0),

H(m1(α,α'),0(s = 0,0^ί^l),n2F(α,α/,^l)(5 = 0,l^ίg2),
(*)

Ht(f(a\f(a'),s)(t = 2),

F(hM> hi("Ί 0 ( 5 = 1 , ό ^ ί ^ l ) , m2(H(a, ί - 1 ) , H(α', ί - l ) ) ( 5 = l , l = ί = 2 ) ,

where F: Ax Ax I-+B rel ,4 v A is α homotopy offmx to m2(fxf) given in (2.1.1).

PROOF, (i) By (2.4.3), (2.4.1), (1.1.1) and (1.1.7), (pxp)*: [AxA, 4]->

[EfxEf, A] is bijective. Thus the //-map p induces φ = px'. &H(F<f)-*&H(A) in

Lemma 1.6, which is φ \ £H(Ef). £H(B) = £(B) is seen by (2.4.1) and (1.5.9).
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(ii) We can prove (ii) by the same proof as that of C.-K. Cheng [6, Th. 2.2]
(where B is assumed to be K(π, n +1)) as follows. Consider h e #(Ef) given by
(2.5.4) for (hί9 h2) e G and a homotopy H. Then, by the definition of m in (2.1.4),

(2.7.3) we have D0(~hm), D1(~m(hxh)): EfxEf-»Ef such that pD0 =
Dί = m1(hίpxh1p) and

p'Ds((a, £), (a'9 £')){tβ){pf: Ef->PB is the projection)

= D(a, a\ s, ί/2) in (•) (sel, 0 g ί ^ 2 ) ,

= h2m2(£(t-2), β'(t-2)) (s = 0, 2^ί^3),

Thus, if (hl9 h2) satisfies (2.7.2), then D and Ht give us a homotopy of Do to Dί

immediately, and h e tfH(Ef).
Conversely, assume that he£H(Ef). To show the existence of iff and D,

we deform Ds in (2.7.3) to

(2.7.4) D'S(~DS): EfxEf->Ef(sei) so that D'0 = D[ on EfvEf9 by setting
pD's = pDs and

for 0 £ t'S 4,

where ί = min{ί', 2} (5=1, O^r'^3), = max{0, ί' —1} (otherwise).

On the other hand, since p is n-connected by (2.4.3), we see that

(2.7.5) p: Ef->A has a cross section τ: An^Ef (pτ = j : AnaA) on the
n-skeleton An of A.

Then, since D'o is homotopic to D\ by the assumption, we see the following by
[9, Cor. 4.4 and §3]:

(2.7.6) There is a homotopy D'\ AnxAnx I->Ef rel An v An of D'0(τ x τ)
to D[(τ x τ).

Now, for any homotopy H2: BxBxI->BrelB vB of h2m2 to m2{h2 x h2), p'D'
(α, a\ 5)074) for 3^ί r g4 is equal to H2(p'τ(a) (tf - 3), p'τ(a')(t'-3), s) if ί' = 4
or sεi or (α, a')eAnvAn by (2.7.3-4). Therefore, by the homotopy extension
property, we can deform the map AnxAnxP-*B given by p'Ό'\ AnxAnxI^
PB to

(2.7.7) D'\ AnxAnxI2^B such that D\a, a\ s, t'β) is stationary on s if
(α, α') e A" v ,4" and is equal to
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fpD'(a, a', s)(ί ' = 0), H2(f(a)J{a'\ s)(f' = 3), D(a, a',s, ί/2)

in (*) (5 ε /, 0 g t' g 3 and ί is the one in (2.7.4)).

Furthermore, by the obstruction theory and (2.4.1), we can extend

(2.7.8) pD': A"xAnxI->A to a homotopy Hγ\ AxAxI-^A rel4v,4 of
hίm1 to mι{h1 x ht), and then D' in (2.7.7) to D': Ax Ax P-+B so that D'(a, a\
5, t'β) is stationary on s if (α, a')eAvA and is equal to

D(a, a\ s, ί/2) in (*) if (s, ί'/3)e/2, where ί = min {f, 2} (s = l or ί' = 3),

= max{0, r ;-l}(s = Oor t' = 0).

Thus D' can be deformed to D in (2.7.2), and (ftls h2) satisfies (2.7.2). q. e. d.

By Theorem 2.5 together with Lemmas 2.6-7, we see immediately the fol-
lowing theorem, which is Theorem 1-1 in the introduction.

THEOREM 2.8. Assume that H-complexes A and B satisfy (2.4.1) and
consider the mapping track Ef in (2.1.3) of an H-map f: A->B, which is an
H-space by (2.1.4).

(i) Then the group £H(Ef) of all self H-equiυalences of Ef is in the exact
sequence

(2.8.1) 0 • H(f) -?-> SH{Ef) MiΐU G(f) > 1

obtained by restricting the one in (2.5.1), where H(f) = κ~ί(£H(Ej-)) for K in
(2.5.1) and

(2.8.2) G{f)={{K, h2) e <?H04) X f^B) | (hu h2) satisfies (2.7.2)}

(ii) Furthermore, consider the diagram

ίA, Ω2?]

(2.8.3) [p*

lEf, ΩA]W£>^ VEf, ΩB-] M [EfΛEf, ΩS}-^ ίEfΛEf, E/\,

where φ is the homomorphism defined by (2.2.3), and assume that

(2.8.4) Im (φp*) n Ker i^dmiφiΩf)^).

Then the group //(/) in (2.8.1) is given by

(2.8.5) H{f) = p*&A, ΩB]H)l(im (Ω/)*) Π p*(ίA, ΩB]B).
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Throughout this section, we have been concerned with the ϋ-space (Ef, m)
given in (2.1.4). We conclude this section with the following remark on any
multiplication on Ef.

REMARK 2.9 (cf. [26, Th. 4], [5, Cor. 1.9]). Let A and B be CW-complexes
with (2.4.1) and f: A-+B be a map, and assume that the mapping track Ef off
is an H-space with a multiplication m'. Then A is an H-space with a multi-
plication mx so that p: Ef-+A and f: A-+B are H-maps, where B is an H-space
with unique multiplication m2 by (2.4.1) and (1.5.1). Furthermore, there is a
homotopy F relv4v^4 of fmx to m2(fxf) so that m' is homotopic to m given in
(2.1.4) by using F.

PROOF. Since (pxp)*:[_AxA, A]^\_Ef xEf, A~] and (p vp)*: [A v A, A~]s
[Ef v Ef, A] by (2.4.3), (2.4.1) and (1.1.1), we have mί: A xA-*A with mί(pxp) =
pm' in [Ef x Ef, A~\ and mι | A v A = V. Consider

(2.9.1) [A, B] JU [A Λ A, £] (PΛP)% \Ef Λ £ / ? B], where (p Λ p)* is injective by
(2.6.3), (2.4.1) and (1.1.1),

and φ is the map in (1.5.7) for (A, mx) and (£, m2). Then we see φ(/) = 0 and
fe [y4, B]H, because

(P A p)*0(/) = d(m2(fxf), fmj (p A p) = d(m2(/p x/p), /pm') = 0

by (1.5.2-7), m1(pxp)~pm/ and/p~*.

To show the second half, consider the H-space (Ef9 m) given in (2.1.4) by using
a homotopy F:AxAxI->B relAvA of fmγ to m2(/x/). Furthermore,
consider the sequence

IA A A, ΩB] i£Δ2)X [Ef Λ Ef9 ΩJ5] J*+ \Ef A Ef9 E/\ -^> \Ef A Ef9 A~],

where (pΛp)* is bijective by (2.6.3) and -±ϋ-> _ ^ is exact. Then, since pm —

mί(pxp)~pm'9

(2.9.2) the separation element d(m, m') e [Ef A Ef, Ef~\ in (1.5.6) is
(p A p)*ί#ωfor some ω e [A A A, ΩB~].

By using this ω, define the second homotopy F: Ax Ax I-+B rel A v A of/mx to
m2{fxf) by

F(a, a\ t) = m2(F(a, a\ t\ (ωπ(α, α'))(0)

(U:AXA-+AAA is the collapsing map).

Then, by the definition of the multiplication in (2.1.4) and μ~m(l x i) in (2.1.5),
we see that
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(2.9.3) the multiplication m on Ef given in (2.1.4) by F is equal to m + m/ω

p)π in \EfxEf, Ef~\.

Thus, m' = m + mπ*ί/(m, m') = m + mπ*O?Λp)*iSJtω = m in [EfxEf, Ef~\ by (1.5.4)

and (2.9.2-3). q.e.d.

§ 3. Some corollaries to Theorems 2.5 and 2.8

In this section, we give some corollaries to Theorems 2.5 and 2.8 under the

situations given in §2 with suitable additional assumptions.

In the first place, we study the groups G(/) in (2.5.2) and G(f) in (2.8.2).

Corresponding to these groups, the projection p: &(A)x&{B)-+g(A) defines

the epimorphisms

(3.1) p: G(/)->p(G(/))(^04)), p: G(f)

COROLLARY 3.2. In Theorem 2.5 (resp. 2.8), assume in addition that

(3.2.1) the induced mapf*: [£, J5]->[^, β] is injectiυe on £(B) {resp. <?H(B)).

Then p: G(f)-*p(G(f)) (resp. p: 5(/)->p(G(/))) in (3.1) is an isomorphism.

PROOF. If / * is injective on &(B), then the second factor h2 e &(B) of

(hl9 h2) e G(f) is determined by hί e£(A) and the condition fhί = h2f in [A, J5],

Thus p in (3.1) is isomorphic. The rest can be proved samely. q. e. d.

Let A\ (i = l, 2) a n d / ' : A[^Af

2 be given, and consider the case when

(3.3.1) A = AU B = A2, A—ΩA'i with the loop multiplication mh f=Ωf'\

A = ΩA'ί-+B = ΩA'29 and

(3.3.2) the multiplication m on Ef given in (2.1.4) is defined by using the

stationary homotopy F: AxAxI-*B o f / m 1 = m 2 (/x/) (where the equality

holds by definition).

COROLLARY 3.4. In case (3.3.1-2), assume in addition to Theorem 2.8 that

(3.4.1) *I£Adclm(Q:lA'i9AΊl-+lAi9Ai}),e.g.9 3 m ^ n - l in (2.4.1), and
(3.4.2) Ω: [A'u A'2~\-+\_AU A2~\ = \_A, B~] is injective.

Then δ(/) = G(/) = {(/ιl5 h2)e^H(A)x^H(B)\fhί = h2f in \_A, B]} in (2.8.2).

PROOF. If h{ e £u(Aύ, then h^Ωh'i for some ftjetf(i4;) by (3.4.1) and we

have the stationary homotopy ff4: 4 , x 4 , x J-κ4 | of himi^mi}ιiy.hd (i = l,2).

Assume that//ii = /ι 2/in [A, B]. Then/'Λ'^ft i/ ' in [A'u Aft by (3.4.2); and a

homotopy i ί ' : A\xl-+A'2 of /'Λ; to /i2/' defines a homotopy # : ^ x / - > B of
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fhγ to h2f by H(a, t) (u) = H'(a(u)9 t)ΐoτaeA = ΩA'U which satisfies Him^a, a'), t)

= m2(H(a, t), H(af, t)) by definition. Thus, a secondary homotopy D: Ax Ax

P-+B in (2.7.2) can be defined immediately, and (hl9 h2)e&(f). We see that

(3.4.1) holds if 3ra ̂  n — 1, because

(3.4.4) ([28, Lemma 7.4]) Im(β: [X, Y]->[ΩX, ΩY]) = [ί2X, ΩY]H i/X is

n-connected and ̂ (7) = 0/or i>3n + l. q.e. d.

In the rest of this section, we consider the Postnikov system of an H-space.

On the Eilenberg-MacLane space, the following are well known:

(3.5.1) An Eilenberg-MacLane space K(π, ί) (ί^2) is an H-space with

unique multiplication which is the loop multiplication on ΩK(π, i + l) = K(π, i),

and

*(K(π, 0) = « % 0) = auί π (cf. [10], (1.5.1) and (1.5.9)).

(3.5.2) [X9 K(π9 0] = H\X\ π), and

[X, K(π, i)]u = PH\X\ π) when X is an H-space (cf. [27]),

where PH^X; π) is the subgroup of H^X; π) consisting of all primitive elements.

Now let X = (X, m) be a given 1-connected H-space, and

(3.6.1) {XnJn:X^XnfPn:Xn-+Xn_uk»+ieH»+i(Xn-i;πn)} (nn = πn(X))

be the Postnikov system of X, that is (cf. [26, Th. 5] and Remark 2.9),

(3.6.2) Xn = (Xn, mn) is an H-space with ^(XM) = 0 for i>n (X± = *9 X2 =

K(π2, 2)) and/,, is an (n + l)-connected if-map in (1.3.1) or (1.3.2) with (1.7.1),

(3.6.3) kn+1 e PHn+1(Xn_± πn) = LXa-i> κ(πn, n + 1)]H is the Postnikov invariant

of X, pn is an if-map with pnfn=fn-ι in [X, Xn-{]9 and we have a fiber sequence

(3.6.4) ΩXn_ 1 J^U K(πn! ή)J^Xn^,Xn-ί J^U K(πn, n +1)

which is homotopy equivalent to the one in (2.1.3) for/=fcn + 1, and so is the H-

space Xn to the H-space Ef in (2.1.4) for the H-map/=A:/I+1.

Then, we have the homomorphisms

(3.6.5) Φn=fnl:<?(X)-+<?(Xn) and Φn = Φ

of (1.3.3) and (1.7.2), respectively. Furthermore, for n ^ 3 , A = Xn_1 and B =

K(πn, n + 1) satisfy the assumption (2.4.1) with m = 2, and we have the homomor-

phisms

(3.6.6) φn = pnϊ: *(XJ -> ̂ XH^) and ψn = φn | <?H(Xn): <?H(Xn) -+ <f H (* M -i)
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of (2.4.6) and (2.7.1), respectively; and by definition, there hold the equalities

(3.6.7) φnΦn = Φn.ί and φnΦn = <£„_! (since pnfn ~/„_!>.

By applying Theorems 2.5 and 2.8 to the fiber sequence (3.6.4), we have the
following corollary, which is Theorem 1-2 in the introduction.

COROLLARY 3.7. LetX be a 1-connected H-complex. Then the groups
#(Xn)and #H(Xn) of the n-stage Xn in the Postnikov system (3.6.1) of X have the
following properties:

(i)

(ii) Let n^3, and consider the induced homomorphisms

(3.7.1) H'iX,^ πn) JL H-(Xn; πΠ)=[*„, K(πn, n)] (Q*"+'>* > \_Xn,

for pn and kn+ι in (3.6.4). Then we have the exact sequences

0 —-> Hn -U S{Xn) ®*H. Gn — , 1
(3.7.2) U U . U

n . ft z . /> <γ \ (P»» Ψ \ t% , i
U > tln > 6H(Λn) > U n > 1

of (2.5.1) and (2.8.1) for the fiber sequence (3.6.4), where

(iii) Furthermore, in addition to (3.7.1), consider the sequence

(3.7.4) H"(Xn π j -±> H»(XnΛ Xn π j = [XB A Xn, K(πn, «)] Js** [Xn Λ XΠ, XJ,

w/iere φ is defined by (2.2.3) with X=Xn and in is in (3.6.4), and assume that

(3.7.5) Im (φp*) n Ker /„* c Im (φ(Ωk->+%).

Then the group Hn in (3.7.2) is given by

(3.7.6) Hn = p*PJ(lm(Ωk«+%)(\p*Pn (Pn = PH\Xn-ΰ πM)).

(iv) //p* in (3.7.1) is epimorphic, then the epimorphisms

(3.7.7) p: Gn-• p ί G J ί c ^ X ^ ^ ) , p: 5 , - > ^ ^ ( c / ^ X , - ! ) ) ,

defined by the projection p: &(Xn-1) x aut πn-*#(Xtt_1), are isomorphic.

PROOF, (i) is in (3.5.1), and (ii) and (iii) are the consequences of Theorems
2.5 and 2.8.
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(iv) There holds the exact sequence Hn(Xn.x\ πn) -^-> Hn(Xn; πn)-i->Hn+ί

(πn, n + l ; π J i ^ ^ > H Λ + 1 ( ^ w - i ; π Λ ) of the fiber sequence (3.6.4). Therefore

(kn+1)* is monomorphic since p* is epimorphic. Thus we have (iv) by Corollary

3.2. q.e.d.

In the above corollary, the upper exact sequence of (3.7.2) has been obtained

by J. W. Rutter [22, Cor. 3.2]. By D. W. Kahn [10], the homomorphisms

Φn in (3.6.5) and φn in (3.6.6) have been considered and the group p(Gn) has been

investigated in [10, Lemma 2.1].

EXAMPLE 3.8. Consider the case that the homotopy groups of an H-complex

X are trivial except for πm = πm(X) and πn = πn(X) (n>m^2). If the Postnikoυ

invariant k is in the image of the cohomology suspension Ω: Hn+2(πm, ra-f-1; πw)

->Hn+1(πm, m; πn) and this Ω is monomorphic, then we have the exact sequence

where H=f*nPH»(πtn, m; πn) (fn = pn: Z = XΠ->^n.1=K(π I M, m)) and G is the

subgroup G(k) of aut πw x aut πn given in (2.5.2) for k: K(πm, m)-*K(πn, n + 1).

PROOF. In the exact sequence [X A X, ΩXn _ J ΛΩ!ύ±> [X Λ X, K(πn9 n)] -±U

[X A X, X] (X = Xn\ the first term is Hm-\X A X πw) = 0. Thus Ker i* = 0 and

(3.7.5) is satisfied. Further, [X, ΩXn.{\ = Hm~\X\ π m )=0. Therefore we

have the desired exact sequence by Corollaries 3.7 and 3.4. q. e. d.

The following lemma on (Ω/cn+1)sH in (3.7.1) will be used in the later sections.

LEMMA 3.9. Let XΆ be the £-skeleton of a CW-complex X, and assume that

χn = X»-i\)ge» for some g: S^-ΪX"-1. If (Sg)*: [SXn~\ χ-\->πn(X) is

trivial, then so is (Ωkn+%: [Xn9 ΩXn_1]-*ίXn, K(πn, n)] in (3.7.1). Further-

more, the converse is also true when Xn~1=Xn~2.

PROOF. We consider the commutative diagram

lXn, ΩXn~\ ± Ά IX", ΩXn-\ IU lX»-\ ΩXn~\ = [SAT-*, JΓJ Ά nn{Xn)

(3.9.1) \(ΩPn)* [(ΩPn)* sf/.*

where j n \ XnaX and : Xn~iczXn. Because jn,j,fn and pn are n-, (n-1)-,

(n +1)- and n-connected, respectively, by (1.1.6) and (3.6.2-3), we see the following

by (1.1.1), (1.1.3) and (3.6.2):

(3.9.2) In (3.9.1), the maps indicated by £ are all isomorphic; and

(3.9.3) the right (Ωpn)# is epimorphic, and is isomorphic if Xn~ί=Xn~2.
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Furthermore, the upper - i ! U ( ^ ^ is exact by the Puppe sequence of the cofibering
S"-1 JL*X»-i.i->χ», and

(3.9.4) ί/ie lower (<S#)* is trivial if and only if the upper j * is epimorphic.

Since the left (Ωpn)* and (Ωfcw+1)Ht in the lemma form the exact sequence of the

fiber sequence (3.6.4), these imply the lemma. q.e.d.

Part II. Application to //-complexes of rank 2 with 2-torsion

§4. The Postnikov system of the //-space G2)b

We now recall the 1-connected //-complex G2jfc of rank 2 with 2-torsion in

homology.

Let G2 be the compact exceptional Lie group of rank 2, and

(4.1.1) F7 > 2 = SO(7)/SO(5) = M 6 u eil (M 6 = S 5 U2e
6 is the mapping cone of 2c5)

be the Stiefel manifold. Then we have the principal bundle

(4.1.2) S3 - i - G 2 JL> VΊt2 with classifying map / : Vla > BS3,

which has the following properties by [17, Lemmas 4.3, 4.2]:

(4.1.3) G2 = ( G 2 ) 9 U / 1 U e 1 4 , (G 2 ) 9 (the 9-skeleton of G2) = jp"1(M6),

ω e π l o ( ( G 2 ) 9 ) = Z 1 2 O is a generator, and the homomorphism π l o (S 3 )(=Z 1 5 )-> '

π l o ((G 2 ) 9 ) induced by the inclusion S3a(G2)
9 maps a generator α e π l o ( S 3 )

to 8ω.

Now, for each integer b, consider bcc e π l o (S 3 ) = π 1 1 (5S 3 ) and the composition

(4.1.4) fb = V(fvboι)φ: VΊt2^->VΊt2vSlί f w b a > BS3vBS3-¥-> BS3,

where φ is the map collapsing the equator S10 x {1/2} in F 7 > 2 = M 6 u CSί0. Then

we have

(4.1.5) the principal bundle S3-L*G2tb—>V7t2 with classifying map fb in

(4.1.4)

(e.g., G 2 j 0 ^ G 2 ) , and Mimura-Nishida-Toda [17, §§5-6] proved the following

(4.1.6) G2b is a 1-connected H-complex of type(39ίί) so that the inclusion

S3aG2)b is an H-map with respect to the usual multiplication on S3.

In fact, consider the collection Pγ of all primes Φ2>, 5. Then, there are a

Pi-equivalence hx: G2-+G2b and a {3, 5}-equivalence h2: Eb-+G2tb such that
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hji~i (i: the inclusion), where Eb is the S3-bundle over S 1 1 induced by a {3, 5}-

equivalence Sn-+V7t2 from (4.1.5). There are also ^-equivalences h3: Eb^G2

or h4: S3xS11-+Eb for p=3, 5 such that hji~i. These hj induce a multipli-

cation on G2fb so that i is an ϋ-map by [16], since i: S3-+G2 and iip): Sfp)-+

SfP) x S^yfor odd prime p, are //-maps with respect to the usual multiplication

on .S3.

Furthermore, they proved the following

(4.1.7) ([17, Th. 5.1]) Let X be a 1-connected H-complex of rank 2 such

that H#(X; Z) has a 2-torsion. Then X is homotopy equivalent to G2b for

some b; and there are just 8 homotopy types of such H-complexes: G2b for

By the results obtained in [17], Glb satisfies the following properties:

(4.2.1) H*(G2ib Z 2) = Z2[x3]/(x$)® Λ(x5), Sq2x3 = x5, 5^4x5 = 0 (deg xt = i),

H*(G2fb; Zp) = Λ(y3, yxl) for each odd prime p (degy t =i).

(4.2.2) G2b has a cell structure given by

G2>b - X = S3 U e5 U e6 U e 8 U e9 U e 1 1 U e 1 4 ( - 2 ^ f c g 5 ) .

(4.2.3) F o r ίΛe n-skeleton Xn of this H-complex X, X9~(G2)
9 in (4.1.3)

and

X5 = S3 \Jη3e
5 (ηneπn+1(Sn) = Z2 is a generator, n ̂  3),

X6/S3 = M 6 , Z 9 / Z 6 = M 9 (MM + 1 = Sn \}2e
n+\ 2 = 2cneπn(S")),

(4.2.4) ([18, Lemma 3.3]) πM = πn(X) = πn(G2tb) (n^ 14) is 0 except for

π 3 = Z, π 6 = Z 3 ,

π 1 1 = Z ® Z 2 ,

Z 1 5 (6 = —2),

Z 3 (6 = 1,4),

Z 5 (6 = 3),

π 1 3 = Z 3 ( Z > = -2,1,4),

ί z 6 (&=
π14~-Z/168vt'I

[ Z 2 (6 =

-2,1,4),

-1,0,2,3,5)

In the rest of this paper, we study the group <^H{X) — ̂ H ( G 2 J & ) of self in-

equivalences of the //-complex X~G2ib in (4.2.2), by applying Corollary 3.7 and

by using some results obtained in the previous paper [18], where the group

&(X) = &(G2tb) of self equivalences is determined up to extension (we notice that

S. Oka [20, Th. 9.4] has determined it in case bΦ-2).

In this section, we prepare some results on the cohomology of the Postnikov

system
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(4.3.1) {Xn,fn: X^Xn, Pn: XH-+Xn-l9 k^ePH-+\Xn.ι; πn)\

of the J/-complex X^G2tb in (4.2.2), (cf. (3.6.1)).
In the first place, we have the following lemma on the induced homomorphism

(4.3.2) p*:H"(XH-i;πH)^H"(XH;πJ of pn in (4.3.1).

LEMMA 4.4. (i) Hn(Xn; πn) = 0 z /4^ng l3 and nΦ%, 9 and 11.
(ii) J/π = 8, 9 and 14, then p% is isomorphic and

H»(Xn; πn) * H»(Xn Z2) = Z2 (n = 8, 9), H^(X 1 4; π1 4) = π 1 4 .

(iii) //n = ll, ίften i / 1 1 ^ ! ! ; π1 1) = π 1 1 = Z 0 Z 2 ,

"H n (^io; π n ) s H U ( I 1 O ; Z2) = Z2 ^ ^ w k e ί : Z 2 c Z 0 Z 2 = π u ,

αncί p\γ\ Z2^>Z@Z2 is equal to the inclusion c.

PROOF. Since pnfn=fn-ί in [X, Xn-i\ w

(4.4.1) fU =f*nP*n'. ϋn{Xn-ύ πn) -*L H»(Xn; πn)-^H»(X; πn),

where /* is isomorphic because/„ is (n + l)-connected.
(i) follows immediately from the cell structure of X in (4.2.2), π 5 =0 and

π6 = Z3 in (4.2.4) and H\X Z3) = 0 in (4.2.1).
(ii) We notice that Xm is 2-connected by (4.2.2) and (Zn, Xm) is m-connected

for m<n. Therefore by the Blakers-Massey theorem, π£Xn, Xm)^niXnjXm)
if i ̂  m H- 2, and it holds the exact sequence

(4.4.2) πi(Xm) -*πiXn) -> πlXn/Xm) -> πf_ ̂ Z"1) ̂  for i ^ m + 2.

Since X9/X6 = M9 = S8 Ό2e
9 by (4.2.3), we have the exact sequence

(4.4.3) π8(Z6) -> π8(χ9)( = π 8 ) _> π8(M9)( = Z2) ̂  π7(X6) ^ π7(JP)( = π 7),

where π 7 =0, π8 = Z2 by (4.2.4), and π7(X6) = Z2 by [18, Lemma 3.7]. Therefore,

(4.4.4) j 6 H ί : π8(Z6)->π8(Z) ( = Z2) is epimorphic, where j 6 : X6aX.

This and the definition (1.3.2) of Xn imply that (XΊ)
9 = X9 u e\ where e? is attached

to X6. Thus

(4.4.5) /7*: JΪ8Cϊ) ^ H8(X7), w/iβre »„( ) = //*( Z).

Furthermore/M_ls|!: H ^ ^ J O s f ί , , - ^ ^ - ! ) , and

(4.4.6) H7(X) = 0, HS(X) = Z29 H9(X) = 0 = H9(X8) (by (4.2.2-3) and (1.3.2)).



100 Norichika SAWASHΓΓA

Therefore, for n = 8 and 9, we see that/J- ! in (4.4.1) is isomorphic and (ii) holds

since π 8 = Z 2 and π 9 = Z 6 .

Since X=Xn[)eί4r by (4.2.2), we have the exact sequence πί4(Xn)-+

π 1 4 (X)->π 1 4 (S 1 4 )( = Z) by (4.4.2), which implies that

(4.4.7) y11Hc: πί4(Xlί)-+πί4(X)( = πί4. in (4.2.5)) is epίmorphic (since π 1 4

is finite).

Therefore, we have samely/13sie: Hί4(X)( = Z)^Hί4(X13) and (ii) for n = 14.

(iii) Consider the exact sequence

(4.5.1) ntl(X9) Ji*+ π11(X)( = π11) J*+ n^XjX^^π^S^^Z) J-+ πί0(X9)

of (4.4.2), where j 9 : X9czX. Then (4.1.3) and X^^X9 Uω(b)e
11 in (4.2.3) show

that

(4.5.2) πί0(X9) = Zί20 and Imd are generated by ω and (l + 8£?)ω,

respectively.

Therefore,

(4.5.3) Imp* = Kerd = mbZ, where mb = 120/(|l + 86|, 120), and

(4.5.4) Imj9* = Ker p* = Z2 c Z 0 Z 2 = πx x (cf. (4.2.4)).

Thus, by (4.2.2) and the definition (1.3.2) of Z 1 0 , we have X12=X9 u e11 and

(4.5.5) (Xίoy
2 = X9Uelί\je{2ϋeί

2

2 with de\2 = mbe
ίί, de1

2

2 = 0 in the

chain complex.

Therefore/ 1 0*: Hlί(X) = Z-*Hίί(X10) = Zmb is epimorphic, and we see (iii) by

(4.4.1) and by noticing that mb in (4.5.3) is a non-zero even integer. q. e. d.

On the subgroup PHn(Xn; π) consisting of primitive elements, we have the

following

LEMMA 4.6. PHn(Xn; πn) = 0 i/n = 8, 9, 14, and PH11(X11;Z2)=0.

PROOF. By Lemma 4.4 (ii) and (4.2.1), H»(Xn πn) s Hn(X ;Z2) = Z2(n = S, 9)

and Hlί(Xίl; Z2)^Hll(X; Z2) = Z2 are generated by x3x5, x | and x|x 5, re-

spectively. We see easily that these elements are not primitive by definition,

and the lemma holds for n = 8, 9 and 11.

To show the lemma for n = 14, it is sufficient to prove that

(4.6.1) Pm\X14;Zq)^PH^(X;Zq) = 0 for q = 2, 3, 7 and 8,

by (4.2.4) for π 1 4 . When q is a prime, (4.2.1) shows that HX\X\ Zq) = Zq is
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generated by x%x5 if q = 2 and by y3ylί if qφl, which are not primitive. Thus

(4.6.1) holds for g = 2, 3 and 7.

HX\X\ Z) = Z is generated by z3zίX where z^WiX; Z) = Z (i = 3, 11) is a

generator by (4.2.1). Therefore, by considering the reduction mod 8, we see that

# 1 4 ( X ; ZS) = ZS is generated by u 3 i * n where I I J E H ^ X ; ZS) = Z8 (i = 3, 11) is a

generator. Suppose that u = £u3uίί is primitive. Then its reduction mod2 is

also primitive and hence is 0 by (4.6.1) for q — 2. Thus jβ — 2jβ'. Furthermore,

we see that 2Hi(X; Z8) = 0 if 4 ^ * ^ 1 0 by (4.2.2-3). Hence, for the ΐ-th pro-

jections pt: Xx X^X (ί = 1, 2),

in H 1 4 ( I x I ; Z 8 ) ,

which shows ^ = 0 mod 8. Thus (4.6.1) holds for q = 8. q. e.d.

§ 5. The triviality of self /^-equivalences of G2, b

We now study the group &H{X) = ̂ (^2^) °f s elf H-equivalences of the

/ί-complex X^G2,b in (4.2.2). The notations given in §4 are used continuously.

By the cell structure of X in (4.2.2), Proposition 1.4 and (1.7.3) show the

following

LEMMA 5.1. (i) fnjn: XnaX-*Xn induces the isomorphism

(fJn)1: <?(Xn) = A * Ό M n = 3, 6, 9, 11, 12 and 14.

(ii) The induced homomorphism Φ w = / n ! : ^W(-X')( = ̂ H(G2,6))->^fl(-Xn) ι n

(3.6.5) is monomorphic if n ^ 14 and isomorphic i / n ^ 2 8 .

We investigate the group #H(Xn) by using Corollary 3.7. Consider the

exact sequence

(5.2.1) 0 - . H r t - > ^ ( X π ) ^ 5 π ^ l (n^3) in (3.7.2) for X ^

and the diagram

(5.2.2) | ( ^ n + 1 ) * |pϊ j<*(κ=Π) |ί.*

lXn9 K(πΛ, n)-] = H*(Xn; πn) M H»(Xn A Xn; πn) = [ Z κ λ Xn,K(πn, >ι)]

of (3.7.1), (3.7.4) and ^ for n = l l , where ί: Z 2 c = Z e Z 2 = π u (cf. (4.2.4)). Then

we have the following assertion, which will be proved in §§6-7:

ASSERTION 5.3. In (5.2.2), ΐM* (n = 8, 9, 14) and in^c^ are monomorphic.

By this assertion, we see the following
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LEMMA 5.4. Let 4 ^ n ^ l 4 . Then Im(φp*) n Ker ϊBJ|e = 0 m (5.2.2)

Hn = 0ίn (5.2.1).

PROOF. Lemma 4.4 (i), (iii) and the above assertion imply the first equality

which assures the assumption (3.7.5). Thus Hn is the quotient group of p*-

(PHn(Xn_ί; π j ) by Corollary 3.7 (iii), and we see that Hn = 0 by Lemmas 4.4

(i), (iii) and 4.6. q.e.d.

Furthermore, by using some results obtained in [18], we can prove the

following

LEMMA 5.5. β'Gn^>ρ(Gn)(c:£H(Xn_ί)) in (3.7.7) is isomorphic for

PROOF. When 4 ^ n ^ l 4 and nΦll, the lemma is seen immediately from

Corollary 3.7 (iv) and Lemma 4.4 (i)-(ii). To show the lemma for n = 11, consider

the commutative diagram

Hn -J fr») Λ

(5.5.1)

where the two vertical isomorphisms are the ones in Lemma 5.1 (i), the homomor-

phism;1 induced from j : I 9 c l u is defined by Proposition 1.4 (i) and (4.2.2), the

upper homomorphisms are the ones in (3.7.2) and (3.7.7), and the commutativity

is seen by the definition (1.2.1-2) and pjn =fn_ί in [X, Xn-{\ (cf. (3.6.3)). Then,

(5.5.2) Ker/ = Z 2 (by [18, Proof of Lemma 4.2]).

Furthermore, Hίί=lmpf1/Im(Ωk12)^ (see (3.7.3)) is Z 2 because• I m J p f 1 = Z 2

by Lemma 4.4 (iii) and Jm(Ωk12)*=0 by X11=X9\jω(b)e
11 in (42.3), Lemma

3.9 and [18, Lemma 3.11]. Thus

(5.5.3) Gn^^CAΊO/Imic, lmκ^Hlί=Z2 (by the exactness.of (3.7.2))..

These imply that the epimorphism p : Gίl-^p(G11) in the commutative diagram

(5.5.1) is isomorphic, and so is its restriction p: Gίl-^p{Gιi). q.e.d.

By the above two lemmas, we have the following

PROPOSITION 5.6. For X~G2)i, (with any multiplication), Φ3=f3ι: £H

^ f f ( Z 3 ) in (3.6.5) is monomorphic, where X3 = K(π3, 3), π 3 = Z and £H(

£B(K(Z9 3)) = Z 2 . Thus the group £H(G2ih) is trivial or Z 2 .

Now, to prove Theorem II in the introduction, we notice the following
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LEMMA 5.7. The inclusion j 3 : S3c=X(~G2 > b) induces the epimorphism

73*: π 6(S 3)( = Z 1 2 ) -> π6(X)( = Z 3) (cf. (4.2.4)).

PROOF. Consider the exact sequence π6(S3)->π6(X6) (==π6(Λ) = z,3)->

π 6(M 6) of (4.4.2) for {X\ Z 4 ) = (X6, S3) with X6/S3 = M 6 = S 5 U2e
6 (cf. (4.2.3)).

Then π 6(M 6) = Z 2 and we see the lemma. q. e. d.

Consider the usual multiplication m: S3 x S3-±S3, m(x, y) = xy (the product

of unit quaternions x and j) . Then, we have the following

THEOREM 5.8. The group £H(G2,b) is trivial for the H-space G 2 j 5 (

such that the inclusion j 3 : S3czG2}b is an H-map with respect to the usual multi-

plication m on S3 (cf. (4.1.6)).

PROOF. Contrary to the theorem, suppose that £H(X)Φ\ for X~G2ib,

where

(5.8.1) the inclusion j 3 : (S3, m)->(X, m) is an H-map, i.e., j3m~m(j3 xj3):

S3xS3-*X.

Then, by Proposition 5.6 ana tne demiition ot Φ 3 = / 3 I , we see that

(5.8.2) there is ne&H{Λ) wun <p3{n)=—l in <fH(X3) = Z 2 , i,e., h*=— 1:

^onsiαer tne nomeomorphism σ: S3->S3, σ(x) = x~ί (the inverse oi a unit

quaternion x). Then σ*= - 1 : π3(S3)->π3(S3), and by (5.8.1-2), we see the

following

(5.8.3) h: X-+X satisfies hm-*m(hxh): XxX-*X and hj3σ~j3: 53->Z.

(5.8.4) The maps m, mT\ S3xS3->S3 (T(x, y) = (y, x)) satisfies m = mT

on S3vS3 and

j3m = m{hj3σxhj3σ) = hm(j3σxj3uj -

= j3σm(σ x σ) = j3mT in [S 3 x S3, X] ,

i.e., the separation element d = d(in, fh~T)eπ6(S3) satisfies j3d = 0 in π6{Λ)

(cf. (1.5.4)).

Oil the other hand, since m is the usual multiplication on S3,

(5.8.5) ([9, p. 176]) π6(S3) = Z 1 2 is generated by d = d(m9 mϊ) in p.δ.4>.

Thus, j3d=0 in (5.8.4) contradicts Lemma o. i ana we see tne tneorem. q. c. u.

By this theorem, ineorem n in tne introduction is provea except ior tne

proof of Assertion 5.3.
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§ 6. Proof of Assertion 5.3 for n = 8, 9 and 11

To prove Assertion 5.3, consider the exact sequence

(6.1) [7, OXJ ί ^ ^ > [7, flX,^] W*"")*, [7, X(πBf n)]

( = tf«(7; πn)) J ώ , [7, XJ J H [7, X n _J

of the fiber sequence (3.6.4) for X ~ G2b. Then

LEMMA 6.2. //n = 8, 9, ί/ien [XWΛXM, ί2ZΠ_1]=0 and Assertion 5.3 AoZtfa.

PROOF. Since /„: X->XH is (n + l)-connected, (1.1.6-7) and (4.2.2) imply
that

(6.2.1) AΛft: XmΛXm-+XnΛXH is (m + 3)-connected, where h=fjm: Xma

Therefore, by (1.1.1) and πf(ΩZM_1) = πi+1(XM_1) = 0 ( i ^ n - l ) , we see that

(6.2.2) (h A h)*: [Xn A Xn, ΩXn. J s IX»~4 A X*-*9 ΩXn.J

(A=/jB.4:r4c^IΛ).

When n = 8, ^ 4 = S3 by (4.2.2) and π6(Ω*7) = π7(X) = 0 by (4.2.4). Thus

When n = 9, Z 5 = 5 3U^ 5 by (4.2.2) and I 5 Λ I 5 / S 3 Λ S 3 is 7-connected.
Therefore, in the Puppe exact sequence

[X5 Λ X5IS3 A S3, ΩZ8] -> [X5 Λ X5, ΩZ8] -^ [S3 Λ 53,

the first term is 0 by (1.1.2). Thus [X5 Λ X5, ΩX%~]=0, and we see the lemma by

(6.2.2) and (6.1). q.e.d.

We now study the case n = 11. Consider the cofiber sequence

(6.3.1) S3-J-+X*JUM6-±+S*-SL>SX6 > ••• of X6/S3 = M6 = 5 5 U2e
6 in (4.2.3).

Then, because X5 = S3 [)η3e
5 by (4.2.3), we see that

(6.3.2) g: M6->S4 in (6.3.1) is an extension ext*/4 ofη^ = Sη3eπ5(SA).

The cofiber sequence obtained from (6.3.1) by smashing 7 induces the Puppe
exact sequence

(6.3.3) [ 7 Λ 5 3 , W] ίlAJ)* [ 7 Λ X 6 , W] <(lA/?)*

IYAM6, W]PAg)* [ 7 Λ 5 4 , W]+-'~.

The following (6.3.4) is proved in [18, Lemmas 3.2-3 and 3.5]:
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(6.3.4) π8(X) = Z2 is generated by p8 ( = <f/6»> Pβfβ G n9(X) = Z6

 I S °f order
2, and

[M 1 0 , X'] = Z2 is generated by an extension ext(p8^8) of ρsηs.

LEMMA 6.4. (i) (S 4#)*: π 8(Z)->[M 1 0, X] is isomorphic (Mn+6 = SnM6).

(ii) [M 1 1 , W] and IM6ΛM6, W] are trivial for W=X99 Xί0 and ΩXί0.

(iii) [ S 4 Λ I 6 , W] are trivial for W=Xn (n^lO) and ΩX10.

PROOF, (i) (6.3.2) shows that (S40)*p8=ext(p8ff8). Thus (6.3.4) implies

(i).

(ii) For W=X9 and ΩXί0, (ii) follows from (1.1.2) and (1.3.1), since M 1 1

and M 6 Λ M 6 are 9-connected. (ii) for W=X10 is seen by the exact sequence

where the first term is 0 since Mn = Sn~ί \S2e
n and π l o = Z 3 , Z 5 , Z 1 5 or 0 by (4.2.4).

(iii) The exact sequence (6.3.3) for Y=S 4 implies (iii) by (i) and (ii), because

π7(X) = 0 by (4.2.4), /„*: [Y, X]^[Y, X J if dim Y^n by (1.1.3) and (1.3.2), and

[Y, ΩW] = ISY, W]. q.e.d.

Denoting simply by (Y)A2=Y Λ Y, we consider the commutative diagrams

(6.5.1)

^ [Λf Λ Jf , QXιχ

epi

[p* [p*

^ JT6; π u ) ,

(6.5.2)

epi

6, X1X]
 ( 1 A 5 ^ * , [Λ/IO, j r Π ] ( - Z 2 ) - ^ π9(ΛrΠ) π n ( = Z Θ Z 2 l see (4.2.4)),

where E = hΛh, h=fίίj6: XβczX^Xlli p' = ΩpίU fc' = Ωfc12and

(6.5.3) the vertical sequences in (6.5.1) continued to i n * in (6.5.2) are the

ones in (6.1),
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(6.5.4) j , p9 g are the maps in (6.3.1) and (1 Λ Sj)*9 (1 Λ g)*9 (1 Λ p)* in (6.5.2)

form the exact sequence (6.3.3),

(6.5.5) Sn Λ M " H ( = Sn v2e
n+ί)-USn+ί is the cofibering, and

(6.5.6) [M 1 0 , ^ U ] ^ [ M 1 0 , X~\ = Z2 is generated by ext (p8η8) and i* ext (p8η8)

= p8η8 (cf. (6.3.4)).

LEMMA 6.6. (i) In (6.5.1-2), the homomorphisms indicated by epi or £ are

epimorphic or isomorphic, respectively, and so are the ones on the cohomology

for any coefficients instead of'πn.

(ii) [M11, X1 1] = Z 2®Z 2 andq*: π n ^ n ) - ^ ^ 1 1 , I π ] is epimorphic.

(iii) (ϊΛl)*(lΛ^)*ext(p8^8) = (S5^)*(p8^8) is not contained in q*(Z2)

PROOF, (i) is proved for R* by (6.2.2) and Z 7 = X 6 in (4.2.2), for g* by the

Puppe exact sequence

(6.6.1) πn+ί(W) 2<l πH+1(W) ^U [M»+ 1, W\ - ^ π n ( H 0 - ^ πB(WO

(of the cofibering in (6.5.5)) with n = 10 and VF=K(π, 11), and for the others

by the exact sequences (6.3.3), (6.1) and Lemma 6.4 (ii)-(iii).

(ϊi) is proved by the exact sequence (6.6.1) for n = 10, W=Xtl'and by

(1.3.1) and (4.2.4).

(iii) Consider the commutative diagram (j9: X9czX, p: X^X/X9 is the

collapsing map)

(6.6.2)

nxι(X9) hl+ πu(X)(*πn(Xu)

CAT11, X9] ±*+ [Af11, ΛΓ](S[Λ/», J r n ] - Z 2 Θ Z 2 ) ^ ί U [Af», */**](£[AT1 1, 5 1 1 ] = Z2)

Z 1 2 O generated by ω, see (4.2.3) and (4.1.3)),

where the left and upper sequences are the ones in (6.6.1) and (4.5.1), respectively,

and the lower one is also exact by [7, Lemma 3.1] and (1.1.3). Then, by the

exact sequence (6.6.1), we see that

(6.6.3) i* induces [M11, X^/q^i^X9) £ i*lMn, X9~\ = Z2 (cZ 1 2 ( ) ),

and [M11, Sll~\=Z2.

The latter and (4.5.3) (where mh is even) show that p*q* = q*p# = 0. Thus,

(6.6.4) the lower p* is trivial by (ii) and j 9 * : [M 1 1 , X9]-+[Mn, X~\ =

Z2@Z2 is epimorphic.
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Therefore, there is aoe[_M11, X9~\ with j9*<x0φq*(Z2), which satisfies

since79^! 1 ( Z 9 ) = Z 2 by (4.5.4). Thus,

(6.6.5) if α e [ M u , X 9 ] sαίΐs/ies i*α = 60ωeπ l o (X 9 ) , then <x = ao

for some βeπxι{X9) by (6.6.3), and hence j9*cc£q*(Z2).

Now, by (6.3.2), we have the commutative diagram

π9(X9) = π9(X9) - ^ - > Λ J

(6.6.6)

π l o ( X 9 ) ^ - [M 1 1 , X 9 ]

Consider the elements

(6.6.7) p'8eπ8(X9) with 79*P8 = P8eπ 8 (Z) in (6.3.4), and p'sη8eπ9(X9).

Then, by the commutativity of (6.6.6), oc = (S5g)*(ρsη8)e [M 1 1 , X 9 ] satisfies

(6.6.8)

Therefore, (in) can be proved by (6.6.5) and by showing the equality

(6.6.9) p8f\ = 60ω in πi0(X9) for the generator ή =

To show (6.6.9), we notice the following results due to [17, Lemmas 4.1—2

and their proofs]:

(6.6.10) There are a CW-complex K = M9\J CMί0 and a map f: K^X9

(j^(G2)
9) such that /* : ^(K)->^(Z9) is an isomorphism mod2 for 4 ^ n ^ l 2

and, in the commutative diagram

(6.6.11) IV

( Ϊ : M 9 C X ) , ί/zg wpper homomorphisms are monomorphic and the lower ones

are isomorphic.

(6.6.10) implies immediately (6.6.9), because ή* for M 9 in (6.6.11) is known

to be monomorphic (cf. Araki-Toda [1, (4.2)]). q.e.d.

By the above lemma, we can prove Assertion 5.3 for n —11.

LEMMA 6.7. Let c: Z2aZ@Z2 = π11. Then Im c* n Ker z11H. = 0 for

(6.7.1)
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in (5.2.2), and Assertion 5.3 holds for n = l l .

PROOF. Consider the diagram (6.5.2). Then, Lemma 6.6 (iii) and (6.5.6)

imply that

(6.7.2) ( 1 Λ # ) * is injective, ( 1 Λ S / ) * = 0 and Ker (the lower ( 1 Λ ^ ) * ) =

Im(ίΛg)* = Z2by (6.5.4),
(6.7.3) the lower ( /ΛI)* maps G = Im(lΛ#)* monomorphically and

( I Λ 1)*G Π <?*(Z2) = 0, and /lenα?

(6.7.4) so does F = (iΛl)*(iίί*)-1=(ίίί:¥)-1(ίΛl)* and F(G) 0 Im (c*:

by Lemma 6.6 (i) and the naturality of c#. Consider also the diagram (6.5.1).

Then, the upper (1 Λ j)* ( = ( 1 Λ Sj)*) is trivial by (6.7.2), and so are the left three

j?*'s by Lemma 6.6 (i). Thus, (6.5.3) shows that fc^'s are all monomorphic and

(6.7.5) the composition F' = i n * ( ( P Λ ϊ)*(lΛp)*)-*H*: Hn((Xn)
A2; π n ) -

[ ( M 6 ) A 2 , Z n ] in (6.5.1-2) maps Ker/1 1 H s in (6.7.1) isomorphically onto G =
Im(l Λ # ) * in (6.7.2-4); and hence

(6.7.6) the composition F" = FF = ( I Λ l ) * ( ( p Λ 1)*(1 Λp)*)~1H*:Hn((X1 χ ) A 2 ;

π 1 1 ) - > H 1 1 ( M 1 1 ; π n ) in (6.5.1-2) maps Ker in* in (6.7.1) monomorphically and

F"(Ker i l t j ΓΊ I m ( ^ in (6.7.4)) = 0.

Therefore, considering F" in (6.7.6) for the coefficient Z 2 instead of π n by the

latter half of Lemma 6.6 (i), we see the lemma by the last equality in (6.7.6) and the

naturality of c # : H*( Z 2 )-»#*( π n ) . q. e. d.

§ 7. Proof of Assertion 5.3 for n = 14

In the first place, we notice the following

LEMMA 7.1. S 4 I 9 - S 4 I 6 v M 1 3 on the suspension of X9 = X6 u e* U e9

in (4.2.3).

PROOF. Since X 9 ~ ( G 2 ) 9 by (4.2.3), it is sufficient to prove the lemma for

Let X = G2. Then, we have the fiberings (cf. [30, p. 714])

(7.1.1) 5 3 > 5(7(3)( = 5 3 U e 5 U e 8 ) - ^ - > 5 5 , 5(7(3) > X( = G2) - % 5 6 . .

Consider

(7.1.2) the 8-skeleton X8 = 5(7(3) U e6, the cofibering 5C/(3)-^Z8 -2-Z8/5ί7(3)

Then, since π(5(7(3)) = *, we have a map ε: 56( = Z8/5(7(3))->56 such that
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εp = πj8 in [ Z 8 , S 6 ] . Thus, by noticing that p*: π6(Xs, Sl/(3))^π 6(S 6), we have

the commutative diagram of the exact sequences of the homotopy groups induced

by p and π including ε*: π6(S6)->π6(S6), which shows that ε* is isomorphic and

so ε = ± c6. Therefore,

(7.1.3) p/=0 in π8(S6), where f: S8->X8 is the attaching map in X9 =

X*Ufe
9,

because (±c6)pf=εpf=πj8fin πs(S6) and j 8 / = 0 in π8(X). On the other hand,

we have

(7.1.4) S 4 X 8 ~ S 4 X 6 v S 1 2 where X6 = X5 U e6 = S 3 U e5 U e6, and S4X9 =

because S4SU(3)~ S*X5 v S12 by [15, Lemma 2.1]. Thus, by the exact sequences

induced by the cofiberings S7->S4X6-£-+M10 (p = S*p) in (6.3.1) and S9-U

Mio_g_+Sio i n (6.5.3), and by using π n ( S 7 ) = 0 = π 1 2 (S 7 ) in [29, Prop. 5.8-9],

we see that

(7.1.5) j * : πί2(S4Xβ)-*πί2(S4X8) (j is the inclusion) is monomorphic,

β * : π 1 2 ( S 4 X 6 ) ^ π 1 2 ( M 1 0 ) ( = Z2®Z2 generated by β^Uv99 β2 =

(cocxtηί0)ηίί9 cf. [1, (4.2)]), and

πί2(S*Xs) = Z2@Z2®Z generated by <xu α2 and α ( α ^ ^ β ΐ K f t ) 0 = 1,2),

Zsπ 1 2(S«)),

where v 9 Gπ 1 2 (5 9 ) = Z 2 4 and ^*^2 = ^7io^ii e π i 2 ( ^ 1 0 ) = = ^ 2 a r e the elements of
order 8 and 2, respectively.

Therefore, the attaching map S 4 / e π 1 2 ( S 4 X 8 ) in (7.1.4) is represented by

(7.1.6) S 4 / = α 1 α 1 + α2α24-αα for some £̂  = 0,1 and some integer a;

and we see that a = 2 because S 4 X 9 / S 4 X 6 = M 1 3 = S 1 2 u 2 β 1 3 by (4.2.3), α 2 = 0 by

(7.1.3) because (S4p)j = qp, and α 1 = 0 because S<?4x5=0 in H*(X; Z 2) by (4.2.1)

and v9 e π 1 2 (S 9 ) is detected by Sq4. Thus, we have 5 4 / = 2 α and the lemma.

q.e.d.

In addition to the cofiber sequence (6.3.1), consider the ones

(7.2.1) X6J^X9JUM9(=X9IX6)^UsX6

i X9 JU Xn ^L>Sn(= Xn/X9),

due to (4.2.3). Then these induce the Puppe exact sequences

(7.2.2) [ F Λ X6, W] < ( l A / / ) * [ Γ Λ X9, W] < i l A p Ύ [ Γ Λ M9, W\
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(7.2.3) [ Γ Λ X9, W~\ < (1AJΎ [ Γ Λ Z 1 1 , W] <

LEMMA 7.3. (i) ( 1 Λ / ) * : [ Y Λ M 9 , X 1 4 ] - > [ 7 Λ X 9 , X 1 4] is monomorphic
forY=S4Y',X6andX9.

(ii) (1Λ/>")*: [ I m Λ 5 u , X J J - ^ C Z ^ Λ Z 1 1 , X 1 4] is monomorphic for any

PROOF, (i) By Lemma 7.1, (i) holds for Y=S*Y'. Consider the commuta-
tive diagram

, Λf14] (JΔ1F+ IX*ΛSX\ Xl4]

A-9, * 1 4 ] [ x 6 Λ x 9 , jr14] <— [ x 9 Λ j ^ 9 , ; r 1 4 ] ,

where the upper sequence is the one in (6.3.3), the others are in (7.2.2), and ( = 0)'s
are seen by Lemma 6.4 (hi) and (1.1.2). Then the left (1 Λ g')* is trivial by (i) for
γ=M6 = S*M2, and hence so is the middle ( 1 Λ # ' ) * Thus the middle ( 1 Λ / ) *

is monomorphic, and hence so is the right (1 Λ p')*.
(ii) To prove (ii), we notice that

(7.3.2) [M1 3, XJ = 0for any n, and [S4X9, X14] = 0.

In fact, [M1 3, XJ =0 is seen by the exact sequence (6.6.1) for M 1 3 and π12(Xn) = 0,
^i3(^«) = 0 or Z3 in (4.2.4). Hence [S4X9, X 1 4] = 0 is seen by Lemma 6.4 (iii)
and the exact sequence (7.2.2) for Y=S4 and W=X14.

By the latter half of (7.3.2) and the exact sequence (7.2.3) for Y= S3 = X3 = X4,
(ii) holds for m = 3 and 4. Therefore we see (ii) for m^4, because the inclusion
X4ΛS f l lc=XmΛ51 1 is 15-connected and induces the isomorphism [X m Λ5 n ,
* 1 4 ] £ [ Z * Λ S " , X 1 4 ] by (1.1.1). q.e.d.

We now consider the exact sequence (6.1) for n = 14.

LEMMA 7.4. (i) i14a | l: ff4(ImΛl«;π14)-^[ImΛl«,I14] is monomor-
phic for (m, n) = (6, 9), (9, 9), (9, 11) and (11, 11).

(ii) i 1 4 # : J Ϊ 1 4 ( X 1 4 Λ Z 1 4 ; π 1 4)-^[X 1 4ΛZ 1 4, Z 1 4 ] is monomorphic, and
Assertion 5.3 holds for n = 14.

PROOF, (i) To prove (i), we notice that

(7.4.1) [MmΛM9, Ω I 1 3 ] = 0 = [I m ΛM 9 , Ω I 1 3 ] for m = 6 and 9.
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In fact, the first equality is seen by (1.1.2). Therefore the second one is shown by

(7.3.2) and by the exact sequences (6.3.3) and (7.2.2) for Y=M9 and W=ΩX13.

We now consider the commutative diagrams

H14(XmΛX6; πί4)^H14(XmAX9; π 1 4 ) < ( l Λ / / ) * H14(Xm A M9; π14)

(7.4.2) J/14* h'i4* monol/14* (m = 6 and 9)

Γ Vm A V6 y Ί <_ Γ Ytn A V9 V Ί , v*"/' ' r γ m Λ i y 9 y T
|_Λ /\ ./x , .Λ j 4.J ^^ L 5 14J L 9 14J

mono

of the exact sequences in (7.2.2), and
£Jl4/ Vm A F 9 7Γ ^ ^ - //14Y Ym A Y11 ' 7Γ λ 4— JJl*( Ym Λ S!11 ' π \

Ml I Λ. '\ Λ. , " ' 1 4 / ~̂~ -*•*• V. ? 14/ '̂ "~ \ ' 14/

(7.4.3) ίu* μ'u* mono i14* (m = 9 a n d l l )
ψ ψ >l

( 1 Λ T) )
j_ yTL A J\. , Λ j 4 J ^ [_ Λ /\ Λ. , Λ ĵ  4 J ^ |_ -Λ /\ /L3 , Λ j 4 J

mono

of the exact sequences in (7.2.3). In these diagrams, the homomorphisms indi-

cated by mono are monomorphic by Lemma 7.3 and by the exact sequence (6.1),

(7.4.1) and[XMΛ-S1 1, ΩXί3]=0. Therefore, in each diagram, if the left /14s | ί

is monomorphic, then so is the middle one. Thus, noticing that H ι4(X6 AX6;U)

= 0, we see (i) successively for (m, n) = (6, 9), (9, 9), (9, 11) and (11, 11).

(ii) Consider h=f14.jίί: X11cX^Xί4r and the commutative diagram

L . π \ ΛAIΛflJ ί/Ί4/ Y A Y . π \
, 'i'14/ ^ •*-* \*<?*'14 14> 14/

(7.4.4)

Then the upper (h A/?)* is isomorphic by (1.1.1), because hAhis 16-connected by

(6.2.1) and X 1 1 = X13 in (4.2.2). Thus we see (ii) by (i) for m = n = 11. q. e. d.

Thus, Assertion 5.3 is proved in Lemmas 6.2, 6.7 and 7.4 (ii); and the proof

of Theorem II in the introduction is completed by the note given in the end of §5.
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