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1. Introduction and notations

The aim of this paper is to clarify the relation between energy forms on a

self-adjoint harmonic space (X, J f) studied by Maeda in [7] (cf. also [6]) and

Dirichlet forms on L2(X; m) in the sense of Fukushima [5] and Silverstein [11].

Here X denotes a locally compact Hausdorff space with a countable base, con-

nected and locally connected, Jί? the harmonic sheaf and m a positive Radon

measure on X. More precisely: we determine the set of all positive Radon

measures m on X such that Maeda's energy form E with domain <f0 can be

considered as an ,,extended Dirichlet space with reference measure m" as defined

in [5] und [11].

Let us recall the basic definitions and notations and give a brief review of

Maeda's construction of energy forms.

Let {X, <&) be a self-adjoint harmonic space as defined in [6] §1.2. In

particular we assume that the constant function 1 is superharmonic (Axiom 4

in [6]). Let G denote the symmetric (up to a multiplicative constant unique)

Green function of X. Let *Jί?+(X) denote the set of all positive hyperharmonic

functions on X. (X, *Jί?+(X)) is a standard balayage space in the sense of [2].

Let τf denote the *Jf+(X)-fine topology on X; i.e., the coarsest topology o n l

such that each function in *3>f+(X) is continuous with respect to τf. Notations

with respect to τf will be designated by the prefix ,,fine(ly)-". For a numerical

function g on X let § denote the greatest lower semi-continuous minorant of g.

Define for u e *3f+(X) and AaX

RA

u: = in{{ve*3f+(X): υ> u on A},

then RA is the so-called balayage of u on A. Let ̂ d e n o t e the set of all Radon

measures on X and Jί+ : = {μ e Jt\ μ>0} . We define for μ e" uf-+

Gμ:=\}G(',y)dμ(y)

and for μ e Jί and x e {Gμ+ < oo} (J {Gμ~ < oo}

(x) = Gμ+(x)-Gμ-(x)y
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where μ+ : = sup(μ, 0), μ~ : = — inf (μ, 0) in the lattice vector space Jί. If p

is a potential on X, then S(/?) shall denote the smallest closed subset of X such

that p is harmonic on its complement. For every potential p on X there exists a

unique μeΛ+ such that /?=Gμ and S(p) = supp μ (i.e., the support of the

measure μ). Let ^ denote the set of all real continuous potentials on X and let

A : ={μG^f + : jpdμ<oo for every p e ^ with S(p) compact}.

For μeΛ the balayaged measure of μ on A, AcX, is denoted by μA (cf.

[3] §7.1). We define the set of measures of bounded energy on X by

oo},

where \μ\ : = μ+ + μ~, and let JC\ : = { μ e ^ £ : μ>0}. Clearly Jt\aA and Gμ

is a potential for every μ e Jt\. Let for μ,veJίE

<μ, v>£: =

then (JtE, < , yE) is a pre-Hilbert space (cf. [8] Cor. 4.5 and Theorem 4.2). Let

(H, < , }E) denote its (abstract) completion and set || | | £ : =< , >£

/2.

In [7] §5.3 Maeda considers a symmetric bilinear form E* on

0*EC : ={Gμ-Gv: μ, veΛ+ Gμ, Gv bounded and continuous; μ(X), v(Z)< oo}

which is the restriction of a symmetric bilinear form defined on the larger space

BE (for the definition see [6] §2.1). By [7] Lemma 5.11 and the following

corollary we have

if / : = Gμt — Gμ2, g : = Gvt — Gv2 e ^EC. E* is strictly positive definite. Define

<f J: = {/: X-+R U { ± oo} : there exists an E*-Cauchy sequence (fn)neN in έ?FC

such that lim,,^^/,,^ quasi-everywhere on X},

where ,,quasi-everywhere", abbreviated ,,q.e.", means ,,except for a polar set".

Extending E* to &% and identifying functions in «f g, which are equal q.e., we get a

real Hubert space (<f0, E\ where £ denotes the scalar product (cf. [7] Theorem

5.1, and the following corollary). Let πc denote the canonical quotient map

from β% to <f0 and let C be the capacity introduced in [7] §5.1. By Prop. 5.3 in

[7] each element of $% is quasi-continuous with respect to C (cf. [7] §5.2).

By [7] Lemma 5.11 we know that Gμe<f0, if μ e ^ j t and by [7] Lemma

5.12 that £(Gμ, Gv) = <μ, v>£ for all μ, v e ^ J . Hence the map μ-»Gμ, μe*JίE,

is a linear map from JtE to <f0 and extends to a unitary operator from the Hubert

space (H, < , )E) to (*0, E).
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For /ί6c/ + let L\X\ μ) (resp.L\X\ μ)) denote the space of (classes of)
μ-integrable (resp. μ-square integrable) functions on X and set for/e L2(X; μ)

Let meJί+ such that suppm = X. We recall that according to [5] a pair
(^e, E) is called an ,,extended (transient) Dirichlet space with reference measure
m", if the following conditions are satisfied:

(^eΛ) &e is a real Hubert space with inner product E.
(^,.2) There exists an m-integrable, bounded function g, strictly positive m-a.e.

such that &e<^L\X\ g-m) and

\ \u\g dm < yjE(u, u) for every u eS?e.

(J*;.3) &e n L2(X m) is dense both in (L2(X m), || || 2) and in (^e, E).
{^eA) Every normal contraction operates on (^e, E)\ i.e., if u e ^ e and v is a

normal contraction of u (i.e., \v*(x)\ < |M*(X)| and \υ*(x) — v*(y)\ <
\u*(x) — w*()/)| for all x, y e X for some Borel version υ* of v resp. u* of w),
then t e,^, and E(v, v)<E(u, u).

Furthermore {^e, E) is called ,,regular", if it has the following property (which is
stronger than G^"e.3)):

&e n V0(X) is dense both in (^e, E) and in (#0W> II ID (where V0(X)
denotes the set of all real continuous functions on X with compact
support and H/IL: =suP j c e X |/(x

*e, E) is said to have the ,,local property", if it satisfies the following condition:

£(/, f̂) = 0 for all/, g e&e n L2(Z; m) such that supp (/• m), supp (g m)
are compact and disjoint.

2. The set of all possible reference measures

Let
Jίp: = {m e ^ + : m(N) = 0 for every Borel polar subset N of

and
uζ.: = { ^ 6 ^ : m(L/)>0 for every non-empty Borel, finely open subset

UofX}.
By [7] Prop. 5.1 we know that Jt\ajep. Furthermore, if μeJ£\ such that
Gμ is strict, then μ e *Jίr.

In the present and the following sections we shall essentially prove that
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(<f0, E) can be considered as an extended (transient) Dirichlet space with reference

measure m, iff me Jtr.

For (<f0, E) being an extended Dirichlet space with reference to some measure

m, tf0 should be imbedded into the space of m-equivalence classes of functions on

X. Therefore we make the following definitions.

Let &(X) denote the set of all Borel-measurable numerical functions on X

and set for

β§*(nΐ): = {/: X-+Rv {±00}:/is m-measurable on X}.

Identifying functions which are equal m-a.e. on X we obtain a new space denoted

by ^(m).

2.1. DEFINITION. Let m e ^ + . Let πm: S% n @(X)->@(m) denote the

canonical map associating to each fe£%(\ &(X) the class of functions on X,

which are equal to/m-a.e. on X. We say that tf0 is embedded in J*(m), denoted

by #oc>&(m), iff there exists an injective map Tm: £0-±@l{m) such that the fol-

lowing diagram commutes

/y n a{X)-

2.2 REMARK. Let m e ^ + . If £Όq>a(m), then the map Tm9 defined in

2.1, is unique. Obviously, Tm exists, iff for every fe g% Π &(X) the following

assertions are equivalent:

i) / = 0 m-a.e. o n l .

ii) / = 0 q.e. on X.

To proceed we need the following proposition which is valid in a more

general situation :

2.3 PROPOSITION. Let (X, iΓ) be a standard balayage space in the sense

of [2]. Let f be a numerical function on X and assume that there exists a family

^(f) of subsets of X and a strictly positive potential p such that f\F, the restri-

ction of f to F, is finely continuous for every F e^{f) and

0 q.e. on X.

Let U be a finely open subset of X and W be an open subset of R u { ± 00} such

thatf-int(U r\f-ί(W)) = 0, then U ΓΊ f'\W) is polar (where for AaX we denote

the fine iϋterior of A by/-int A).

PROOF. Let A:=UΠf-1(W). Let xe{infFe^if)R^F = 0} and ε>0.
There exists F e J ^ / ) , such that

R?F() < ε.



Self-adjoint harmonic spaces and Dirichlet forms 59

Set

B: • = X \ (/-int F).

Since/1F is finely continuous, there exists VaX, F finely open, such that

/-int v4 = 0 implies, /- int(F Π F) = 0. Hence VczB and consequently AaB.

We conclude

k*(x) < R°(x) = R™(x) < ε.

Thus R* = 0 q.e. on X9 whence R^ = 0. •

Applying 2.3 to our situation we obtain:

2.4 COROLLARY. Let meJίr and f be a quasi-continuous function on X.

Let U be a finely open subset ofX. Thenf=0 m-a.e. on U, ίfff=0 q.e. on U.

PROOF. Assume that / = 0 m-a.e. on U. Let ^ ( / ) : = { F c I : F closed,

f\F is continuous}. Since/is quasi-continuous there exists a decreasing sequence

(Vn)neN such that X \ Vn e ^(f) and C(Vn) < 1/n for every n e N. Let μ e Jί\ such

that p: =Gμ is a bounded continuous potential on X, which is strictly positive.

We have for n e N

Hence, if p<cc for α e R, then

By [7] Lemma 5.4 there exists a measure λn e Jί\ for every n e N such that

#r» = Gλn

and

c(Fn) = α , λnyE.

Therefore

Thus by [7] Theorem 5.1 (d) there exists a subsequence (V,,k)keN of (KB)neJV such

that (Ά%"k)tejv converges to zero q.e.. Consequently



60 Michael ROCKNER

i n W ( / ) i ^ F = 0 q.e. on X.

Since/=0 m-a.e. on U and meJίr, we obtain that

and thus by 2.3 that U Π {/φθ} is polar.

The converse is trivial. •

Now we are prepared to prove the main result of this section:

2.5 THEOREM. Let m e Jί*. Then the following assertions are equivalent:

ii) m e J(r.

PROOF. Assume i). By 2.2 we have that for every fe £% Π

(*) / = 0 m-a.e. on X, iff/ = 0 q.e. on X.

a) Let AT be a Borel polar subset of X. Then l/v = 0 q.e. on X, and hence

1N e *% n @(X) and m(N) = 0 by (*).

b) Let U be a non-empty Borel, finely open subset of X. Let μeJV% such

that p.:=Gμe& and p is strict. Let Uo : = { K ^ t / < p } . Then Uo is not polar

and U cr £/0. Since p9 A™ e &§ D a(X), we conclude by (*) m(U0) > 0.

Furthermore

p = JR^ ι / q.e. on X\U,

hence by a)

Assume ii). Then 2.2 and 2.4 imply i). •

3. The associated extended Dirichlet spaces and their properties

First we want to give a characterization of Jί\, which will be useful later.

We need a lemma.

3.1 LEMMA. Let μeJί\ such that Gμeg*. Then there exists a sequence

(μn)neN in JtE such that O<Gμn€0>ECO <go(X) for every neN, Gμn ΐ Gμ on X

and limw_ «, E(Gμ - Gμn, Gμ - Gμn) = 0.

PROOF. The proof is essentially the same as the proof of Lemma 6.4 in

[8]. D

3.2 PROPOSITION. Let μe^t+. Then the following assertions are

equivalent:
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(i) /leufj.

(ii) There exists a constant c>0 such that

\\f\dμ < Cy/E(f9f) for every /e<fo

(iii) There exists a constant c>0 such that

< cJΈΪfJ) for every fe*onVo(X).

PROOF. Because of [7] Lemma 5.12 it remains to show: (iii)=>(i). Assume
(iii). Consider the linear map

which is densely defined on (<f0, E) by 3.1. By Riesz's representation theorem
there exists Uμe#$ n @(X) such that

= E(Uμ, f) for every fe *0 ίl V0(X).

Let veJί\. Since Gv is the limit of an increasing sequence in «̂ , we conclude
by 3.1 and [7] Lemma 4.3

, Gv).

Using [7] Lemma 5.12 this means

{βμdv = ί Uμdv.

Since l{Gμ>Uμ} v and l{Gμ<uμ}
 v e ^h w e obtain

By [9] 2.1 it follows that {GμφΌμ} is polar, hence Gμe£0 and consequently
by [7] Lemma 6.4 we have μ e Jΐ%. •

Now we want to prove that for every μeJίp there exists a bounded, μ-
integrable function g9 strictly positive, such that gμ^Jί\. If μ is locally in Jί\,
i.e. lκ - μ e Jt\ for every compact subset K of X, then it is easily seen that by 3.2
there exists a μ-integrable function g, g>0 and gμeΛ%, which is continuous and
vanishes at infinity (and vice versa). But not every element of Jϊv is locally in
ufj. Consider e.g. the classical case, where X = Rd, d>3, and (Rd, «#0 is the
self-adjoint harmonic space associated with the Laplacian. Let λd denote the
Lebesgue measure on Rd and B(r) :={xeRd: |x| <r}. Define for k e N
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and

Then μeJtp with supp μ compact, but

3.3 LEMMA. Let μe*Jί+ such that μ(X)<oo. Assume that there exists
a constant c such that for every Borel subset A of X

μ(A)<cC(A).

Then

PROOF. By [7] Lemma 5.13 we have for any constant α>0

C ( { / > α } ) < ^ £(/,/) for every fe*0.

Hence the same argument as in the proof of [5] Lemma 3.2.4. leads to

<\j\f\dμ<(μ(X) + 4c)E(\f\,\f\yf2 for every fe*0.

Since

E(\fl\f\) <E(fJ) for every fe<?0

(cf. [7] Theorem 6.4), this means by 3.2 that μ e Jί\. •

3.4 LEMMA. Let μeJίv such that μ(X)<oo. Then there exists a de-
creasing sequence (Un)neN of open subsets of X such that

and for every neN

μ(A) < 2nC(A) for every Borel subset A of X\ Un.

PROOF. The proof can be done in exactly the same manner as the proof of
Lemma 3.2.5 in [5]. •

3.5 PROPOSITION. Let μeJtr Then there exists an increasing sequence
(Kn)neN of compact subsets of X such that

ii) limπ_a, C(K \ Kn) = 0 for every compact subset K of X,
iii) lKn μe Jί\ for every neN.

PROOF. By 3.3 and 3.4 we can use the same arguments as in the proof of
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Theorem 3.2.3 in [5].

REMARK. The existence of an increasing sequence (Kn)neN of compact subsets

of X having the properties i) and iii) of 3.5 may also be derived from Theorem

2.6 in [4].

3.6 COROLLARY. Let μeJΐr Then there exists a bounded, μ-integrable

function g on X, strictly positive, such that

PROOF. Choose (Kn)neN as in 3.5, let A : =X \ \j™=ί Kn and define

with

0Ln: = 2-»(μ(Kn)+ \\lKnμ\\E+iyι for neN.

Then 0 < g < 1 on X and J gdμ < 1.

Set for NEN

μN'.= ΣN

n=i*n(lκn'μ).

Then μN e Λ\ and (/%)#<=* vaguely converges to g μ. Since

\\μN\\E < ΣN

n=i «n\\lKnμ\\E < 1 for every NeN,

we conclude by [9] 3.5 that g μ e JίJ. •

Given m e Jί* we know that by 2.5

# 0 ĉ  ^(m), iff m e ĉ fr.

Hence, if m 6 « r̂, we may define

ETm:Tm(<?0)x T m (^o)—>Λ

by

ETm(Tmf, Tmg) = E(f, g), f,ge *0.

Now we can prove our main theorem.

3.7 THEOREM. Let m e l r . Then (Tm(^0), ETm) is a regular extended

(transient) Dirichlet space with reference measure m, which has the local

property.

PROOF. Let T: = Tm and ^ : = Γ(<f0) n L2(X; m). Then the restriction

E'τ of Eτ to J5" x IF is a non-negative definite, symmetric bilinear form on the

Hubert space L2(X\ m) with domain &. By [7] Lemma 4.2 the set {Gv: v e e^£}

Π # o P ϋ i s dense in L2(X; m), hence E'τ is densely defined in L2(X; m). By 3.6
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there exists a bounded, m-integrable function g on X, strictly positive, such that

g -me Jt\. This means by 3.2:

1) There exists a constant c>0 such that

\ ITu\g dm < Cy/Eτ(Tu, Tu) for every u e <fo

In particular Ti^czL^X; g m). We now claim that E'τ is a closed form.

Indeed, let (vn)neN be a sequence in J*\ which is a Cauchy sequence with respect to

both E'τ and || | | 2. Let υ be the limit in L2(X; m). Since (T(^o), Eτ) is a Hubert

space, there exists υ' e Γ ^ c L ^ I ; g m) such that lim,,.^ Eτ(vn — vf, vn — v')=0.

By 1) we conclude that (vn)neN converges to vf in L*(X; # m). Thus there exists

a subsequence (vnk)keN such that

i? =limfc_ooι;Mk m-a.e. on Jf

v' = l im^^ ι;,,k (^ m)-a.e. on X,

and hence v = υ' m-a.e. Therefore we have:

2) £'Γ is a non-negative definite, symmetric, densely defined bilinear form

on L2(X; m), which is closed.

By [7] Theorem 6.4 and Prop. 6.4 we know:

3) The unit contraction operates on (^, E'τ); i.e., given ue^, then v

: = min (max (u, 0), 1) e & and E'τ(v, v) < E'τ(u, u).

Furthermore by 3.1 and [7] Lemma 4.2:

4) Γ W n W is dense both in ( V ) , || | | J and in (Γ(^o), Eτ).

In particular, this means:

5) (T(<f0), Eτ) is a completion of (J5*, £'Γ).

Combining l)-5) and using [5] Theorem 1.4.1 and Theorem 1.5.2 (ii) we conclude

that (T(^Ό)ί Eτ) is a regular extended (transient) Dirichlet space with reference

measure m.

Now it is easily seen (e.g. by [7] Lemma 5.12, [9] 3.11 and [5] Theorem

3.3.4) that the balayage of measures in the sense of [5] is identical to that defined

in [3]. By [3] Prop. 7.1.3 we know that, if μeΛ% and V<=X, Fopen, with

supp μczF, then

F a dV.

It is known that this property is equivalent to the local property of (T(<f0), Eτ)

(for an analytical proof, cf. [10]; see also [1] (14.5)). •

3.8 REMARK, i) A substantial part of [5] and [11] is devoted to the con-

struction of a Hunt process starting from a Dirichlet space. On the other hand it

is well known by results of Meyer, Boboc-Constantinescu-Cornea, Hansen e.a.

that given a self-adjoint harmonic space (X, «#*) (or more generally a standard
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balayage space (X, iΓ)) one can construct an associated Hunt process, i.e. a process

of which the set of excessive functions is equal to *«^+ (resp. #"). It is now inter-

esting to compare these two constructions. Starting from a self-adjoint harmonic

space one can choose an arbitrary measure m e ^ ζ . to get a Dirichlet space

(Tw(ί?0), ETm) (cf. 3.7), and then it is possible to construct the process as described

in [5] or [11]. This freedom of choice of the reference measure in a sense cor-

responds to the freedom of choosing the strict potential for the potential kernel

one starts with in the second construction mentioned above.

(ii) By 3.7 for every self-adjoint harmonic space (X, J^) there is an associated

Dirichlet space. (X, J f) is uniquely determined by (Γm(<f0), ETJ, i.e., if (X\ 3tf")

is a second self-adjoint harmonic space and (Tm(tf0)9 ETm) is associated to it in

the above sense, then (X, e^)=(X\ Jf ') (This is obvious, since the real con-

tinuous potentials of bounded energy must coincide.) The next question, arising

naturally, is whether every regular extended (transient) Dirichlet space having the

local property is associated with some self-adjoint harmonic space. Let us

consider the following example. Let X = R2. We define a form on L2(R2

9 λ2)

by

υ) = \4ϊu{Xi y)Tϊv(x> y)dλ2(χ> y) + \<x> yM*> y)dλ2(x9 y)

where &o(R2) denotes the set of all infinitely differentiable functions on R2 with

compact support. By [5] §2.1 (Γ.a) this form is closable and by [5] Theorem

1.5.2 ii) its closure (^(£), E) gives rise to a regular extended Dirichlet space with

reference measure A2, which has the local property. This Dirichlet space is

connected with the differential operator L on R2 defined by

However, there is no harmonic space which belongs to L.
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