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Introduction.

In the paper [6], the author discussed boundary value problems for the
linear equation Δu — qu = 0 (g^>0) with respect to an ideal boundary of a locally
euclidean space X. There we considered a resolutive compactification X* of X
and boundary conditions of the form

\ u = τ on d*X\Λ
(1)

[ u has normal derivative βu + γ on A
for a subset A of the ideal boundary d*X = X*\X and for given functions τ on
d*X and β,yonA(β^ 0). The notion of normal derivatives on an ideal boundary
is denned by means of Green's formula (cf. [5], [6]; also [2], [4]) and its defini-
tion relies on the notion of Dirichlet integrals. Thus, once the notion of Dirichlet
integrals is introduced on abstract harmonic spaces (see [7], [8]), we can define
normal derivatives of functions on harmonic spaces with respect to an ideal
boundary. In fact, Kori [4] and the author [8; §8] discussed Neumann prob-
lems on a self-adjoint (or, symmetric) harmonic space with respect to the Martin
boundary and the Royden boundary, respectively.

The purpose of the present paper is to discuss semi-linear boundary value
problems on a self-adjoint harmonic space (X, J>ίf) with respect to the ideal bound-
ary d*X of a resolutive compactification X* of X, with boundary conditions of
type (1), but with non-linear form. As in [6], we seek solutions of the form
u = Hφ + g with a function φ on d*X and a function of potential type g on X,
where Hφ denotes the Dirichlet solution. We regard φ as the boundary values
(or the trace) of w.

In the special case where X is a Riemannian manifold and Jf is given by
3f(U) = {ue&2(U)\Au = 0}, where A is the Laplace-Beltrami operator, our
boundary value problem includes the problem of the type

Au(x) = F(x, u(x)) on X

φ = τ on d*X \ A

dnu = β(ξ, φ(ξ)) on A.
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Here, F (resp. β) is a function on XxR (resp. ΛxR) which is locally Lipschitz

continuous in the second variable, τ is a given boundary function and dnu denotes

the normal derivative of u with respect to d*X.

To the proof of our main existence theorem (Theorem 3), we apply the so

called monotone iteration method, which is used to prove similar results for

problems on euclidean domains with smooth boundary (see, e.g., [3] and [10]).

However, the final convergence arguments in our case are more potential theoretic.

§ 1. Preliminaries

Throughout this paper, let (X, Jίf) be a self-adjoint P-harmonic space (see

[7], [8]). We assume that X is connected and has a countable base, and that

1 e 3f(X). By definition there exists a symmetric Green function G(x, y) on X.

For a non-negative measure μ on X, we denote

Gμ(x) = \ G(x, y)dμ(y)9 xeX.

We know that Gμ is a potential on X if Gμφ H-oo. In this case Gμ(x) is finite

q.e., i.e., except on a polar set. Thus, if v is a signed measure on X such that

G\v\ ψ + oo, then Gv = Gv+ —Gv~ is defined q.e. on X.

For an open set U in X, let JίyjJ} be the set of non-negative measures μ on

U such that for each compact set K in U, x«-> \ G(x, y)dμ(y) is continuous on X.

Let ΛC(Ό) = {v 11v| 6 Jt%(XJ)}. Then the mappings

Jt+C\ U I > Jtt(XJ) and ^fc: U I • ΛC(U)

are sheaves of measures. We further consider the following classes of measures

o n l :

JC\ = {μ^O I Gμ is bounded on X}, JC+BC = JC% Π ^ £

μ dμ< +ooj, ^ c = ufj Π ̂ £(JQ,

Note that ^ £ F C < = ^ £ F C . For Z = £, £C, E, £C, BFC or £FC, let

= {Gv\

It is easy to see that if μe«^J and |v| gμ, then v e Jίz.

As in [7] and [8], let @ be the sheaf of functions which are locally expressible

as the difference of two continuous superharmonic functions. There is a canonical
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measure representation σ (see [8, p. 69]), i.e., a sheaf homomorphism @-*Jΐc with

linear structures in 0t{ϋ) and ^(£7) such that for/e #(17), / - ( G( , y)dσ(f)(y)

is harmonic on Ffor any relatively compact open set Fwith F c U. In particular

σ(ft + Gv) = v for hejf(X) and v e J i c U 4 c We shall also write σ(/) = v

if/= ft + Gv with ft e JT(X) and v e ufB U uT£.
For/, g e@(U), their mutual gradient measure is defined by

and the gradient measure of fe 0t{JS) by

(see [7], [8]). We know that δf^0 on (7 for any/e#(£/). The Dirichlet in-
tegral of fe ®{X) is given by £ [ / ] = δf(X). Let

^ D = {fe JT(X) I D[/] < + oo} .

@c is a linear space and 3^D is a linear subspace of ^ c . For/, g e ^ c , /)[/, 5f] =
δUtg](X) is well-defined and it is a symmetric bilinear form on 9)c. We know
that £>[/] = 0 implies/= const. ([8; Theorem 5.4]). For a continuous potential
p on X, D[p] < 4- oo if and only if p e 0>EC ([8; Theorem 4.3 and Proposition 6.5]).
Thus,

LEMMA 1.1. ([8; Proposition 2.16, Proposition 3.5 and Corollary 3.2])
(i) ///, g € @c, then max (/, g), min (/, g) e 2>c and

D[max(/,0),min(/,0)]=0,

D[max(/, flf)] + D[min(/, 0)] = D[/]

(ii) Iffe @c> then D [ / - min (/, n)] -• 0 (n-+ 00).

LEMMA 1.2. Lei uί9 u2e3fD and

hί = the least harmonic majorant o/max(wl9 u2),
h2 — the greatest harmonic minorant ofmm(ul9 u2).

Then, hί9 h2e3fD9 fti-maxίM^ M2)e^£ C and min(u l9 w2)~/

This lemma follows from [8; Lemma 6.1 and Theorem 6.2].

The space jfD is complete with respect to the semi-norm D[ ] 1 / 2 ([8; The-
orem 6.5]). £EC is a pre-Hilbert space with respect to the inner product D[ , ].
Let ^ 0 be the completion of J2EC. Then
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there is a sequence {gn} in «0£C such that
#0 = ^9

gn-*g q.e. on X and D[_gn-gm~\-*<d (n, m-
ί

two functions which are equal q.e. being identified ([7; Theorem 6.1]).

and D[gί9 g2~] are defined naturally for g, gί9 g2e %-

LEMMA 1.3. (i) ([7; Proposition 6.1]) £E^@0.

(ii) IffeJί?D + £E and g e %, then g is \σ(f)\-summable and

(1.1) D[f,gl = \ gdσ(f).

In particular D[h, #] = 0 if he3fD and g e %.

PROOF of (ii). Equality (1.1) is shown for feJfD + £EC and ge£EC in [8;

Theorem 5.2]. If qeJ2E, then we can choose qne£EC such that qn-*q q.e. and

\ (q — qJdσiq — qn)^® (n->oo) ([7; Lemma 1.5]). Then D[q — qn~]-+0 and \
Jx Jx
g dσ(q — qn)^>0 for any g e £EC. Hence (1.1) holds for fe Jί?D + £E and g e J2EC.

If g G ̂ 0 , then choose gn e <HEC such that gn-*g q.e. and D[gn — ̂ m ] ^ 0 (n, m->oo).

Then by Fatou's Lemma

\χ \9n-9\d\σ(f)\ ύ lim i n f ^

^ liming

-> 0 (n ̂ oo) .

Hence # is |σ(/)|-summable and (1.1) holds f o r / e ^ + . ^ and ge%.

Let ^ = «#i) + ̂ o> and for / ί = /z.+^. with / I ^ G ^ and gte%, i = l, 2,

define

Then, ^ is complete with respect to the semi-norm D[ ] 1 / 2 ; £>[/] = 0 implies

/ = const, (q.e.) ([7; Theorem 7.3]).

§ 2. Normal derivatives and a comparison principle

Let X* be a resolutive compactification of X and let ω = ω x be the harmonic

measure on δ*X=X* \ X (at the point xeX) (cf. [1 §4]). For each

let
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Hφ(x)=\ φdωx, xeX.
Ψ Jd*X

Then Hφ e 3tif (X). We identify functions on d*X which are equal ω-a.e. on d*X.

LEMMA 2.1. ([1 Theorem 4.5]) For φx,φ2eSe\ω),

HmΆχ(φί,φ2)
 = t^e least harmonic majorant of Hφι and Hφ2,

Hmin(φuφ2) =the greatest harmonic minorant of Hφί and Hφ2.

LEMMA 2.2. For φeSe\ω\ Hφ^0 if and only if φ^O ω-a.e. on d*X.

PROOF. Obviously, φ^O ω-a.e. on d*X implies Hφ^0. Suppose Hφ^0.

Then, by the above lemma Hφ-=0, and hence φ~ = 0 ω-a.e.

COROLLARY. For φe&\ω) and ge£B\j£E, Hφ + g^0 implies φ^
ω-a.e. on d*X.

We consider the classes

, ΦBD = ΦD Π JT°(ω),

These are linear spaces and contain constant functions. By Lemmas 2.1 and

1.2, we see that ΦD and ΦBD are closed under max. and min. operations. Fur-

thermore, as in the proof of [7; Theorem 7.2], we can prove

LEMMA 2.3. Jί?D(X*) + £EC is closed under max. and min. operations.

In fact, iff=Hφ + g with φeΦD and ge£EC, then max(/, 0) = Hmax(<PtO) + gl

LEMMA 2.4. For each XEX, there is Mx>0 such that

for all φeΦD.

This lemma can be proved in the same way as [5; Lemma 3] (also cf. [2],

[8; Lemma 8.2]). As a consequence of this lemma, we have (cf. [5; Theorem 1])

PROPOSITION 2.1. Jt?D(X*) is closed in Jί?D, so that ΦD is complete with

respect to the semi-norm \\φ\\D=D[Hφ]
1/2.

Let A be an ω-measurable subset of d*X. We write

ΦBD(Λ) = {φ e ΦBDI φ = 0 ω-a.e. on d*X\Λ}.
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We denote by J^(A) the set of all measures γ = ψω on A such that ψ is ω-measurable

and \ \φ\ d\γ\ = \ \φψ\dω< + oo for all φ e ΦBD(Λ). Given / e ̂  + J £ F C and
•/ Λ J A

y e ./Π>1), we write

? (resp. £y, =γ) on /I

if

DίHφ,f\ - \ Hφdσ(f) +\ φdγ^O (resp. ^0, =0)
J X J Λ

for all φe Φ%D(Λ) = {φ e ΦBD(Λ) \φ^0 ω-a.e.}. In case N(f) = γ, we say that /

has a normal derivative γ on A.

THEOREM 2.1 (Comparison principle). Let F: &-*Λc be a sheaf morphism

satisfying

(F.I) f^g on U implies F(f)^F(g) on U for any open set U in X.

Let A be an ω-measurable subset of d*X and let β: ΦD-+Λ~(A) satisfy

(β.ϊ) for any ω-measurable subset Σ of A, φί^φ2 ω-a.e. on Σ implies

β(φ2) on Σ.

Suppose u = Hφ + g, v = Hψ + q with φ,ψeΦD and g,qe£>EFC satisfy the

following three conditions:

(a) σ(u) + F(u) ̂  σ(v) 4- F(v) on X,

(b) φ ^ φ ω-a.e. on d*X \ A,

(c) N(u-Ό)£β(φ)-β(φ) on A.

Then

(i) u^vonX, in case ω(d*X\A)>0;

(ii) u^v on X or v = u + c with a constant c>0, in case ω(d*X\A)=0;

the latter occurs only when F(ύ) = F(u + c) on X and β(φ)=β(φ + c) on A.

PROOF. Put / = (w - ύ ) ~ , fn = min (/, w), φo = (φ-ψ)- and φn = min (φθ9 n),

n = l, 2,.... By Lemma 2.3 and condition (b), φoeΦ£, φneΦ%D{A) for all n

and f=Hφo+g0, fn = Hφn+gn with gθ9 gne£EC (n = l, 2,...). By condition (c),

we have

(2.1) DlHφn9 u-v ]-{ Hφndίσ(u)-σ(vy] + ( φnd[β{<l>)-βWi\ ̂  0
J X J A.

for each n. Let Σ={ξeA\φo(ξ)>0}. Since φ£ψ on Σ9 β{φ)^β(φ) on I

Hence

(2.2) \ φnd\β{φ)-Pm = ( Ψndίβ(φ)-β(Ψ)l £ 0.
JΛ JΣ
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On the other hand, using Lemma 1.3, we have

DίHφn, u-i,] = D[/M, i i-ϋ] -

Hence, in view of (2.1) and (2.2), we obtain

(2.3) D[fn, u^υ]^

Let A = {xeX\f(x)>0}. Then A is an open set in X and u<u on A. Hence

F(u)^F(v) on A, and condition (a) implies σ(u)^.σ(v) on A Thus

- σ{υ)] > 0.

Hence !)[/„, M - I ; ] ^ 0 by (2.3). Since D[/,,-/]-»0 (n-^oo) by Lemma 1.1, (ii),

it follows that £>[/, u-υ]^0. Since M~t;=(M-i;)+~/, by Lemma 1.1, (i) we

conclude that D[(u — ϋ)"]=0. Hence (w —1;)~ = const. = c^0, and φo = c ω-a.e.

by Lemma 2.2. Thus, if ω(d*X\A)>0, then condition (b)implies that c = 0, so

that u ̂  v. In case ω(d*X \ A) = 0, if c = 0 then M ^i? if c>0, then the connected-

ness of X and the continuity of u — t; imply that (u — υ)+=0, so that I; =

In this last case, σ(t;) = σ(w), and hence condition (a) implies

F(u)^F(v)9 namely F(M) = F(M + C). Furthermore, by (2.1) and (2.2), we see that

β(φ) = β(φ) on A, i.e., β(φ)=β(φ + c) on Λ.

§ 3. Linear boundary value problems

In this section, we consider linear boundary value problems which are gener-

alizations of those discussed in [6].

For λe^i(X), A^O, let

2>λ = {/e ® I ( f2dλ< oo} = ^ fl
Jx

and

= {u e ®c n

Note that any polar set is of A-measure zero, and any/e Of is locally λ-summable.

Q)λ is a Hubert space with respect to the inner product
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LEMMA 3.1. If λe^%c, then @oa@λ; in fact

(3.1) \ g2dλ£\\Gλ\\ΛD[jg ] for all ge%.

Jx

PROOF. We know that (3.1) holds for ge£EC ([7; Theorem 1.2] or [8;

Lemma 4.2]). If g e @0, then choosing gn e £EC such that gn->g q.e. on X and

9']-*Q (n-^oo), we obtain (3.1).

LEMMA 3.2. ([7; Lemma 1.10]) // λeJf%c and fe&2(λ\ then

and

COROLLARY 1. If λ e Jt\c^f^ ^2W and f is locally bounded (in particular,

f is continuous) on X, then fλ e JίEC.

COROLLARY 2. If λeJ(%c (resp. ^BFC)> t n e n ^D^^D+^EC (resp.3fD +

£EFC). In fact, u e 3>ίf έ implies u + G(uλ) e JfD and G(uλ) e £EC (resp. £EFC)

LEMMA 3.3. Let λ e ^ c . Ifve@λ and @λ[υ, g~\ = 0 for all g e %, then

v + G(vλ)eJί?D (modifying the values of v on a polar set, if necessary). If fur-

thermore v + p^0 (q.p.)for some pe^E, then v^O (q.p.).

PROOF. By Lemma 3.2, vλeJίE. Put h = v + G(vλ). Then he® and for

any g e %,

Dlh, g-] = D[v, g] + D[G(vλ), g] = - ί υg dλ + [ gvdλ = 0
Jx Jx

by Lemma 1.3. It follows that heJί?D (by modifying the values of v on a polar

set).

Next, suppose υ + p ̂  0 with p e 0>E. We can write

v = -min(ι?, 0) = -min (ft + G(v~λ\ G(υ+λ)) + G(v+λ).

g = min(ft + G(v~λ), G(υ+λ)) is superharmonic on X. Since h^—p — G(v~λ)9

ft^O. Hence g is a potential dominated by G(v+λ). Since v+λe^E, it follows

that ge0>E. Hence v~e^E. On the other hand, σ(v~)= -σ(g) + v+λ<^v+λ.

Hence, by Lemma 1.3,

D[tr] = { v'dφ-) ^ { v~v+dλ = 0.

Thus, v~ =0, and hence v^.0.

PROPOSITION 3.1. Let λ e Jt%c, λ # 0. Then
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i = {u E 2>λ I Dλ\u, g] = Oforallg

so that J^k is a closed linear subspace of &λ and @λ =

PROOF. First, let ue^f^. By Corollary 2 to Lemma 3.2,

Hence by Lemma 1.3

w, g\ = D[u9 gl + ^ugdλ = ^g dσ(tι) + J 0iι dλ = 0

for any g 6 ^ 0 .

Conversely, assume that w e Qιλ and DA[w, #] = 0 for all g e @0. By Lemma

3.3, h = u + G(uλ)ejeD. If u^O on X, then G(i*λ)^0, SO that 0<*u£h. Since

/ί is continuous, u is locally bounded on X. Hence, by Corollary 1 to Lemma

3.2, G(uλ)e£EC, and hence « e % Since σ(u)=-uλ, it follows that uGJίT^.

In the general case, we consider u + . We know that u+ e3fD + £E (cf. [7; The-

orem 7.2]). Let u be the orthogonal projection (with respect to D λ [ , •]) of

u+ to the space {ue @λ\Dλ[μ, gf] = O for all ge@0). By Lemmas 3.2 and

3.3, we see that u e ^ D + i f . Hence u-u+ e%r\(JfD + £E) = £E. Thus,

ύ^—p for some pe0>E, and hence MΞ^O by Lemma 3.3. Hence, by the above

result, we have ίίeJίfi,. Since Dλ[u — w, gf]=O for all ge@0 and ύ — u^ύ —

u+ e J2E, by the same argument as above we see that u—ue Jί?έ Hence w e

LEMMA 3.4. Lei λe Jt%ΈC> Then, given μeJίBC, there exists a unique

ge£BC such that σ(g) + gλ = μ on X. IjμeJtB¥C, then gε£BFC and

PROOF. The unique existence of gelBC is given in [9; Proposition 1.4].

Since

± Lσ(g) + gλ] =±μ^\μ\= σ(G\μ\) ^ σ(G\μ\) + (G\μ\)λ,

a comparison theorem (see, e.g., [9; Proposition 2.1], or our Theorem 2.1 with

Λ = φ) implies that |#|<;G|μ|. Since g is bounded and j dλ<+co, gλeJtB¥C.

Hence, if μ e JtBFC > t n e n σ(θ)e ^ W o a n ( * hence g e £BFC- Furthermore,

gHλ =

In what follows in this section, let λ e ~£BFC, λΦO and A be an ω-measurable

subset of δ*X. Set

Φλ

D(A) = {φeΦΪ,\φ = 0 ω-a.e. on d*X\A}.

For each φ e Φ^, let Hλ

φ be the orthogonal projection of Hφ to Jf έ> w i t n respect to
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» ]• By Corollary 2 to Lemma 3.2,

Since jtf^ is complete with respect to the norm Dλ\_>~\112 and JfD(X*) is closed

in Jί?D, we easily obtain (cf. [6; Lemma 5.2])

LEMMA 3.5. Φj> is a Hubert space with respect to the inner product

is a closed subspace of Φ^

The corresponding norm in Φfa is denoted by || \\Dtλ, i.e.,

LEMMA 3.6. For ψ e Φέ,

\χHidλ S (l

PROOF. Since Hφ-H* = G(H*λ)e£EFC<=%, using Lemmas 3.1 and 3.2

we have

(Hφ-Hλ

φ)
2dλ = [ G(Hλ

φλydλ
Jx

g \\Gλ\\i \χ(Hλ

φ)
2dλ.

Hence

THEOREM 3.1. Let μe^BFC, τeΦL β, yeJ^(Λ), β^O, \ dβ< + co and

r JΛ

assume that \ τ2dβ< + oo,
JΛ

[μ]: there is a(μ)>0 such that

\^χHφdμ\^a(μ)\\φ\\Dtλ for all ψeΦ&Λ),

[jβ-y]: there is b(β, y)>0 such that

\\Λψdγ\ ύ W, y){^2^+ll^llέ,λ}1 / 2 for all ψeΦ&Λ) D <£\β).

Then there exists a unique u=Hφ+g with φsΦ^ and ge^EFC which satisfies

σ(u) 4- uλ = μ on X

φ = τ ω-a.e. on d*X \ A

N(u) = φβ 4- γ on A.
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Furthermore,

^ 2||τ||DiA + (2+\\Gλ\\JDlG\μ\γ^ + a(μ) + Q / 2 ^ ) 1 / 2 + b(β, y).

PROOF. The uniqueness follows from Theorem 2.1, since λφO. By Lemma

3.4, there is qe£BFC such that σ(q) + qλ = μ on X. We define a linear form /

on Φλ

D(Λ) n ̂ 2(j8) by

JO/0 = - <ψ, τ}Dtλ -\ Hψqdλ+\ Hψdμ - \ ψτdβ - [ ψdy.
J X JX J Λ J Λ

By Lemma 3.5, we see that Φι>(Λ) Π &2(β) is a Hubert space with respect to the

inner product

<<p, Ψ>D,λ,β = <φ,Ψ>D,λ + \ φψdβ.
J A

Let \\φ\\Dtλiβ = <φ, φ>Mi^. We shall show that / is continuous on Φλ

D(Λ) Π

with respect to this norm.

First, we have

By Lemmas 3.4, 3.5 and 3.6,

By Schwarz inequality,

D,λ,β'

Thus, in view of conditions [μ] and [jS-y], we see that / is continuous with the

operator norm

(3.2) 11/11 ^ | | τ | | w + (l + \\GλUD[G\μ\Y'2 + a(μ)

Hence, there is φoeΦj>(Λ)n J?2(β) such that ||ΦOIIDΛ/I = PII a n d

>D,Λ^ for all ψ e Φ&Λ) 0<?2(β), i.e.,
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(3 3) ' ( ( ( (
\, H}~] - \ Hψq dλ + \ Hψdμ - \ ψτdβ - \ φdγ

JX JX JΛ JΛ

for all φ e Φλ

D{A) n Se\β). Since \ dβ<+ao, ΦβD^^Hi^) Π &\βX so that
J Λ

(3.3) holds for all φ e ΦBD(Λ). NOW, let φ = φ0 + τ and u = H*, + q. Then φeΦj>

and φ = τ ω-a.e. on d*X \ A. Let

^ = Hi - Hφ + q = 11 - i/^.

By Corollary 2 to Lemma 3.2, H*-Hφe£EFC, so that ge£EFC. Furthermore

σ(u) + uλ = σ(q) + qλ = μ on Jί.

For any ^ e ΦβD(yl), by (3.3) we have

J χ Hφq dλ - ^ Hψdμ + ̂  ψφdβ + ^ φdγ = 0.

Since

Φ, ύ] + ̂  Hφu dλ - ^χ Hψq dλ9

it follows that

DLHψ, II] - ( Hφdσ(u) + { φφdβ +[ φdγ = 0
JX JΛ JΛ

for any ψ e ΦBD(Λ), i.e.,

N(u) = φβ + y on i .

Hence this M is the required solution.

Since u = Hλ

φo + H* + q, (3.2) and Lemma 3.4 imply

S 2\\τ\\Dtλ + (2+||G^||00)D[G|μ|]1/2 + a(μ) + §fdβjl% + b(β, y)

§ 4. Semi-linear boundary value problems

We now prove our main existence theorem for semi-linear problems.
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THEOREM 4.1. Let F: 8%-*Jίc be a sheaf morphism satisfying

(F.2) F ( 0 ) e ^ B F C and for each M>0 there is λMeJί\ΈC such that

\F(fi)-F(f2)\^(f2-fi)λM on X

whenever fuf2e@(X) and -M^f^f^M on X.

Let A be an ω-measurable subset of d*X and let β: ΦD-*Jf(Λ) satisfy

(β.2) \ d|j8(0)|<oo and for each M>0 there is aMeJ^+(Λ) such that\ daM<
JΛ JΛ

oo and
\β(ψί)-β(φ2)\ ύ {Ψ2-ΨI>M on A

whenever φu φ2eΦD9 —M^φί^φ2^M on A.

Let τeΦBD and suppose there are u0 = Hφo + g0 and uo = Hφo + go with φ0,

φoeΦBD and g0 goe£BFc s u c n tnat "o^ w o on x>

σ(u0) + F(u0) ^ 0 ^ σ(u0) + F(u0) on X,

(4.1) <p0 ^ τ ^ φ0 ω-a.e. on d*X\A,

N(u0) ^ β(φ0) and N(u0) ^ β(φ0) on A.

Then there exist w* = i/φ* + gf* and ύ=Hφ + cj with φ*, φeΦBD and g*, §e£BFC

such that
( i ) u o ^ u ^ w * ^ u o on X;
(ii) w = w* and φ = φ* (resp. u = ύ and φ = φ) satisfy

(σ(u) + F(u) = 0 on X,

(4.2) J φ = τ ω-a.e. on d*X\A,

{ N(u) = β(φ) on A;

(iii) if u = Hφ + g with φeφBD and ge£BFC satisfies (4.2) and ίϊo = w = wo>
then ύ^

PROOF. Since w0, ύ0 are bounded, there is M>0 such that

- M ^ ύ0 ^ u0 S M on X.

Put λ = \F(O)\+λM if \F(O)\+λMΦθ. Then λeJί\ΈC. If |F(O)|+AM = O, then
take any λ e Jί%ΈC with λ Φ 0. For any fe &(X) with \f\^M, \F(f)\ ̂  |F(0)| +
MλM ^ (1 + M)λ, so that fλ - F(f) e JίBΈC and

(4.3) |/λ

Next, put j8 = |j8(O)|+αM. Then βejr+(A) and ί dj8<oo. If φ e Φ D and

\φ\SM, then |j8(φ)|^|]8(0)| + MαM^(l+Aί)j8, so that
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\β(φ)-φβ\g(l+2M)β.

Now we define a sequence {un} of functions on X by induction as follows.

Suppose w0, u λ,..., un _ ί (n ̂  1) have been so chosen that Uj = Hφj + gj with ψj e ΦBD

X

and

(4.5)

F(uj) ^ on Z ,

ω - a . e . on

on ^ ,

7 = 0, 1,..., n - 1 . Note that by Lemma 2.2,

— M ^ φ 0 ̂  φn-ί = '" = Ψι =. Ψo = M

\ Λ,

ω-a.e. on d*X.

Let μ^Un-^-Fiu^J and y^βiφ^J-φ^J. Since \uH.t\^M and I φ ^ J ^

M ω-a.e. on 5*X, |μj = ( 1 +2M)A and |yj ^ ( 1 +2M)β by (4.3) and (4.4). Hence

in view of Lemma 3.6, μn and γn satisfy conditions [μ] and \_β-y] in Theorem 3.1,

respectively. Since τ is bounded, \ τ2dβ<co. Therefore, by Theorem 3.1,
JΛ

there exist unique φn e Φfa and gn e £EFC such that un = Hφn + gn satisfies

σ(un) + unλ = un-tλ- F(μn.t) on X

φn = τ ω-a.e. on d*X\Λ

on

We shall show that if v = Hφ + q with ψ e ΦBD and q e J2BFC satisfies

— M ^v ^ Mn_x on X

and

σ(i ) + F(v) g 0 on Z

ψ S τ ω-a.e. on

N(v)^β(ιl/) on Λ,

then I ̂ M ^ ^ M , , . ! ; in particular, w o ^ w n ^ w n - i by (4.1).
Since — M^v^un^ί^M and λ^AM, condition (F.2) implies

Obviously,

{σ(un) + unλ} — {σ(v) + vλ}

^ un-tλ -F(un-t) - vλ + F(v)^O on X.
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φn = τ ^ ψ ω-a.e. on d*X \ Λ.

Since — M^^φn.x^M and β^βM> condition (β.2) implies

N(un-υ) ^ φnβ + βfa.J - φn.xβ - β(ψ) ^ (φn-ψ)β on Λ.

Hence by Theorem 2.1 (with F(f)=fλ and β(φ) = φβ)9 we conclude that i rg

o n l .

On the other hand, by (4.5) w i t h i n —1 and (4.6), we have

' {σ(un) + unλ} - {σiun-i) + un^λ} g O on X,

φn — φn-χ ^ 0 ω-a.e. on d*X\Λ9

un-un-.1)Z(<Pn-<Pn-iW on A.

Hence, again by Theorem 2.1, un?^un-ί on X.

By (4.6), (F.2) and (0.2), we see that (4.5) holds for j = n. Therefore, by

induction, we obtain {un} such that un = Hφn + gn with φn e ΦBD and gn e ^ £ F C , and

v ^ •• ^ un ^ «„_! ^ ••• ^ Mx ^ u0 on X

for any t; as above. In particular, we may take u = u0, and hence {wj is bounded

below. Let φ* = limn_00 φπ and M*=limn_00 MΠ. Then H ,̂* exists and Hφn-+Hφ*

by Lebesgue's convergence theorem. Let g* = u* — Hφ*. Then gn-+g* (n-»oo).

By Lebesgue's convergence theorem, G(wnA) decreases to G(u*λ). Since M* is

bounded, G(u*λ) is continuous. Hence, by Dini's theorem, G(unλ) converges

to G(u*λ) locally uniformly on X. Since

9n = G(σ(un)) = Giu^λ) - G(unλ) - (KF(μΛ-t))9

g* = -lim,,.,,, G(F(un)). Furthermore, by (F.2), we see that {G(F(un))} converges

locally uniformly on X.

Since F(un)^(l+M)λ9 (l+M)Gλ-G(F(un))e&>BC. It then follows that

(/ + M)GA+^*e^ B C , which shows that g*e£BCcz@(X). Hence u*e^(X) .

Furthermore, by (F.2), G(F(un)) -+ G(F(u*)) (n->oo), so that g*= - G ( F ( M * ) ) .

Hence σ(u*) = σ(g*)= - F ( M * ) on X. Since |u* |^M, F(u*)eΛBFC9 and hence

f̂* e ^ B F C . Obviously, φ*=τ ω-a.e. on d*X \ A.

Next, we show that φ* e ΦBD and N(u*)=β(φ*) on >4. If m > n ^ l , then by

(4.6)

( π 1 ) On X

~Φn=0 ω-a.e. on d*X\A

)iϊ + i ϊ ( ) i 8 ( i ) on

Let Λ ι μ i =(tι I l l . 1 -ιι J I - 1 μ-F(tt l l l -i )+ί i (ιι»-i ) . Then
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0^μm>n^ - 2 ( M r t _ 1 - M m _ i μ .

Hence in view of Lemma 3.6 μmn satisfies condition [μ] in Theorem 3.1 with

a(μmfn) = 2(1

Similarly, if we put γmin = (φn-ί-φm-1)β-{β(φn-1)-β(φm-ί)}, then
2(φn-ί—φm-.1)β, so that ymn satisfies condition [β-y] in Theorem 3.1 with

Hence, by Theorem 3.1,

which tends to 0 as m, n-χχ), by Lebesgue's dominated convergence theorem.

Here note that

Therefore

D C f f ^ - f l ^ ] ^ D C ^ - I I J ύ Dλlun-um-] —• 0 (π, m - o o ) ,

that is, {(̂ >n} is a Cauchy sequence in ΦD. By Proposition 2.1 and Lemma 2.4,

we conclude that φ* e ΦD. Since it is bounded, φ* e ΦBD. Also, we see that

u* e& and D[un — u*]->Ό (n-^oo).

The last equality in (4.6) means that

(4.7) D\Hψ9 i i j - ( Hφdσ(un) + f φ{φn-φn-,)dβ + ί φ d j S ^ - ! ) = 0

for all φeΦBD(Λ). As we have seen above, D[Hφ, un1-*D[_Hφ, u*] (n-*co).

Since σ(u n )-σ( M *)=(« B _ 1 -«,,μ.-/•(«._O

by (F.2), so that

^ I ^\Hφ\{um_x-u )dλ-^<i (n-,00).

By 0?.2), we have
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\\ φdβ(φn-i)-\ φdβ(φ*) s[ \φ\{φn-ι-φ*)dβ >0 (n-*α>).
\JΛ JA JA

Obviously, \ φ(φn — φn-γ)dβ^>§ (n-»oo). Hence, letting n->oo in (4.7), we
J A

obtain

D[_Hφ,u*-\-\ Hφdσ(u*)+\ φdβ(ψ*) = 0
J X J A

for all φ e ΦBD(A), which means that iV(w*) = 0(φ*) on A.

Thus, M = M* and φ = φ* satisfy (4.2), and furthermore if u = Hφ + g with

φ e ΦBD and g e £BFC is another solution of (4.2) such that M0 =
 w = w o » t n e n taking

v = u in the above argument we see that w^w*.

Starting with u0 instead of w0, we similarly obtain ύ = Hφ + g satisfying (i),

(ii), (iii) of the theorem.

For a Radon measure v o n l such that j d\v\ < + oo, let ω v denote the element

of jr(d*X) defined by the linear form φ »-» { Hωdv for ωetf(6*X\ i.e.,
C C Jx
\ ωdωv = \ Hωdv for ω e W I ) . Then the last equality holds for all ωe
Jd*x Jx ψ

^f°°(ω). If v G JίEFC, then N(Gv) = ω v on

THEOREM 4.2. Suppose F: ®^>Jίc satisfies (F.I) and (F.2) and β: ΦD->

JΓ(A) satisfies (β.l) and (β.2). Suppose furthermore that there exist ί0, JoeR

and φ 0 , φ0 e ΦBD such that

(4.8) N(Hφo)SωF(to) + β(t0) and N(Hφo) ^ ω F ( ? o ) + β(ϊ0) on A.

Then, given τeΦBD, there exists u = Hφ + g with φeΦBD and ge£BFC which

satisfies (4.2). u is uniquely determined ifω(d*X\A)>0. In case ω(d*X\A) = 0,

ίs another solution of (4.2), then ύ = u + c with a constant c such that

on X and β(φ + c) = β(φ) on A.

PROOF. The last assertion follows from Theorem 2.1. To prove the exis-

tence, we may assume that ? o ^ o by virture of (F.I) and (β.l). Furthermore,

by adding constants, we may assume

φ 0 ^ max(ί0,

a*χ φ0 ^ min(?0, i

Let w0 = Hφo - G(F(t0)) and u0 = Hφo - G(F(t0)). Then

u0 ^ max (ί0, sup e + x τ) and u0 ^ min (ϊ 0, infa*x τ).

Hence u o ^w o ,

σ(u0) + F(u0) = - F(ί0) + F(u0) ^ 0
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and

σ(u0) + F(u0) = - F(ϊ 0 ) + F(β 0) ^ 0

o n l ;

<Po = τ = Φo ω-a.e. on

Furthermore, by (4.8), we have

N(μ0) ^ β(t0) ^ β(φ0) and N(ύ0) ^ β(ϊ0) ^ β(φ0) on A.

Therefore, by Theorem 4.1, (4.2) has a solution u=Hφ + g with φe ΦBD and g e

REMARKS, (i) In Theorem 4.2, condition (4.8) is also necessary for the

existence of a solution of (4.2). In fact, if u=Hφ + g is a solution of (4.2), then

N(Hφ) = ωF(U) + β(φ) on A, so that (4.8) is valid with φo = Φo — (P^ ίo = s u P x w

and ϊo=infyw.

(ii) If F ( / o ) = 0 for some bounded function foe&(X), then (4.8) can be

replaced by

N(Hφo)^β(t0) and N(Hφo)^β(1o)

for some φ0, φ0 e ΦBD and ί0, ?0 e I?; in particular, if F(/ o) = 0 for some bounded

foe@(X) and β(ψo)=0 on /I for some ΨO€ΦBD> then (4.8) is satisfied (with
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