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Introduction

In this paper we consider the following problem: Find a curve x = l(t)>0

on [0, oo) and a function u = u(x, t) on Ωh Ωι being the set {(x, t); 0<x<l(t),

0 < ί < o o } , satisfying

(0.1) ut-uxx = 0 in Ωh

(0.2) u(x, 0) = uo(x) for 0 < x < Zo,

w(0, 0 ^ g(t) for 0 < t < oo,

(0.3) ux(0 + ,t) = 0 for t ι(O,ί)>0(O,

.11,(0 + , 0 ^ 0 for u(0,t) = g(t)9

(0.4) w(/(ί), 0 = 0 for 0 < t < oo, and

ί /'(*)(= (d/Λ)/(0) = - « x(/(ί)-, 0 for 0 < t < oo,
(0.5)

I /(0) = l09

where /0 is a given positive number, w0 a given initial function and g is an obstacle

function given on the fixed boundary x = 0. This is regarded as a Stefan problem

of type different from those treated so far. Recently the author (cf. [8]) employed

a method which has evolved in the theory of nonlinear evolution equations

involving time-dependent subdifferential operators in Hubert spaces in order to

show that our system admits global solutions to this problem. The purpose of

this paper is to study the asymptotic behavior of the global solutions.

As to the usual Stefan problem which is described as a system with (0.3)

replaced by the boundary conditions such as w(0, t)=f(t) or ux(0 + , t)=f(t), the

existence and uniqueness as well as the asymptotic behavior of the solutions have

been studied by many authors. See for instance [2-5, 9]. On the other hand,

in case g is a non-negative constant function on [0, oo), Yotsutani [10, 11] dis-

cussed the system (0.1)-(0.5) and gave detailed results concerning the asymptotic
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behavior of the solutions. However these methods do not directly apply to the
above-mentioned system with non-constant obstacle g. In order to investigate
the system (0.1)-(0.5) there arise some difficulties because of the nonlinearity in
the boundary condition (0.3), which never occur in the case of constant obstacle.
In this paper we establish a new method which makes it possible to treat nonlinear
boundary condition of the form (0.3), and this is the principal virtue of our
approach.

In this paper we restrict ourselves to the obstacle g satisfying either of the
following:

(0.6) g is non-increasing on [0, oo); or

(0.7) g has a non-increasing majorant g on [0, oo),

and discuss three subjects as listed below:
(a) The monotone dependence of solutions on Stefan data {/0, uo9 g) and

the uniqueness of solutions.
(b) The asymptotic behavior of the free boundary x = l(t); and sufficient

conditions on g in order that l i m , ^ l(t) <oo.
(c) The asymptotic behavior of u; and evaluations of liminf^^ u(x, t)

and lim sup^^ u(x, i) in terms of g.
In [8; Theorem 1.3], the uniqueness of the solution was verified for a specific
class of initial values. In section 3 of this paper we show that the uniqueness
theorem is valid for a more general class of initial values, and that the uniqueness
theorem is a direct consequence of the monotone dependence of solutions on Stefan
data {l0, u0, g}. The crucial step for the investigation of (b) is to obtain the
inequality

0 ^ ux(0 + , t) ^ Kg(t) for a.e. t ^ 0 and some constant K ^ 0

and to prove that l im^^ l(t) <oo under the assumption that (0.6) (resp. (0.7))
holds and g eL\0, oo) (resp. geL^O, oo)).

The main results of this paper will be given in section 4.

1. Quasi-variational formulation of the problem

Throughout this paper we use the Hubert space

H = L2(0, oo)

with norm | \H and inner product ( , ) H , and the Sobolev space

X = Pfl.2(0j oo)

Given a curve x = l(t)>0 on [0, oo), a function g on [0, oo) and a point



Asymptotic behavior of solutions

ί^O, we define a function φ\>g on H by

ί (l/2)|z,li if zeK

Φ\J& =
[ oo otherwise,

where

= 0 on [1(0, oo)}.
Clearly, the function φx

Ug is proper, lower semi-continuous (l.s.c.) and convex on
H and the effective domain D{φ\tg) is exactly the set Klg(t). The subdifferential
dφ\ig is a multivalued operator in H. For the definition and general properties
of subdifferential operators, we refer to [1]. We then consider the Cauchy
problem CP(φ\ig; uo) on [0, T]:

CP(Φ\,g; uo)\

[ u(0) = u0

where 0<T<oo, the initial-value u0 is given in H and u'(f) denotes the strong
derivative (dldt)u(t) in H of u(t). By a solution u of CP(φ\tg; u0) on [0, T] we
mean the ϋ-valued function satisfying

(1.1) u e C([0, T]; H) Π L2(0, T; X) n W^2(δ, T; H) r\ L°°(̂ , T; X)

for every 0 < δ < T,

- M'(0 6 dφ\Jμ(t)) for a.e. ί 6 [0, T] .

Also, we say that u is a solution to CP(φ\ιβ; u0) on [0, oo), if it is a solution to
CPiφlgi u0) on [0, T] for every finite T>0.

We identify a function u = u(x, t) in L2((0, oo)x(0, T)) with an /ί-valued
function u = u(t) on (0, Γ) in such a way that

[f*(0] (*) = «(*» 0 for 0 < x < oo and ίe(0, T).

Using the functions 05jί7 we give a quasi-variational formulation of the problem
(0.1M0.5).

DEFINITION 1.1. Let 0<Zo<oo, uoeH and g a function on [0, oo). Then
we say that a pair {I, u} of a positive function / in C([0, oo)) and a function u
in C([0, oo); H) is a solution to QV(l0, w0, #), if it fulfills the following conditions:

(QV1) u is a solution to CP(φ\tg; u0) on [0, oo).

(QV2) / e Wi'Hδ, T) for every 0<δ < T< oo, 1(0) = Zo and
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(1.2) Z'(ί) = - ux(l(f)-, 0 for a.e. t ^ 0.

Existence of a solution to QV(/0, u0, g) can then be discussed under the fol-

lowing assumptions (A) (or (A)') and (B):

(A) 0 ^ 0 on [0, oo) and g e Wx'2φ9 T) for every finite T > 0 .

(A)' g^.0 on [0, oo) and g is non-increasing on [0, oo).

(B) 0<Z o<oo, uoeH, u o ^ 0 a . e . on [0, oo), andwo = 0a.e. on [Zo, oo).

In fact, we have:

THEOREM 1.1 (cf. [8; Theorems 1.1, 1.2]). Suppose (A) (or (A)') and (B)

hold. Then we have:

( i ) QV(lo>
uo>9) admits at least one solution {/, u} such that tί/2Γe

L2(0, T), tWu'eU φ, T; H) for every finite Γ>0, the mapping t^t\ux(-, t)\2

H

is bounded on (0, T]for every finite Γ>0, and u(0, t)^g(t)for all ί>0.

(ii) // in addition uoeX and uo(0)^#(0), then QV(l0, u0, g) has at least

one solution {/, u} such that leW1'2^, T), u e W1'2^, T; H) for every finite

T>0, the mapping t-+\ux(-, t)\H is locally bounded on [0, oo), and u(0, t)^.g(t)

for all t^0.

(iii) // {Z, u} is a solution to QV(l0, uo9 g), then I is non-decreasing on

[0, oo) and u is non-negative on [0, oo)x(0, oo).

REMARK 1.1. According to the results given in [7; Chapter 1], CP(φyg; u0)

admits one and only one solution on [0, oo) under conditions (A) (or (A)') and (B).

Also the solution u is continuous in (x, t) e [0, oo) x (0, oo), since

ueWi>2(δ, T; H) Π L°°(<5, T; X) (<=C([0, oo) x [5, T]))

for every 0<(5<T<oo by (1.1). Moreover we note (cf. [8; §1]) that a function

u: [0, αo)-»i/ is a solution of CP(φ\t9\ u0) if and only if (1.1) holds and u satisfies

the following system:

u£ ,t)-uJ,.,t) = 0 in L2(0, Z(0) for a.e. t ^ 0,

u(',0) = uo in H,

u( , t) = 0 on [/(0, oo) for all t ^ 0,

u(0, 0 ^ g(t) for all t > 0,

ux(Q +, 0 = 0 for a.e. ί 6 {* ^ 0; M(0, i) > g(t)},

0 ^ 0 for a.e. t e {t ^ 0; M(0, ί)

Therefore QF(Z0, u0, g) is understood to be a weak formulation of the problem

(0.1M0.5).
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REMARK 1.2. Let {/, u} be a solution to QV(l0, u09 g). If we write/(ί) for

M(0, ί)> then {I, u} is regarded as a solution to the usual Stefan problem with (0.3)

replaced by the boundary condition u(0, ί ) = / ( 0 for 0 < ί < o o . Thus it follows

from [2; Theorem 1] that the solution {/, ύ) has the following properties:

( i ) ut and uxx are continuous on Ωt.

(ii) ux(l(t) - , t) exists and (1.2) holds for all t > 0.

(iii) / is continuously differentiate on (0, oo).

We here recall the expressions of the free boundary x = l(i) which are useful

in the later argument.

LEMARK 1.1 (cf. [2-4]). Let {/, u} be a solution to QV(l0, u0, g). Then:

(1.3) 1(0 = l(s) + Γ u(x, s)dx - Γ u(x, t)dx - Γ 11,(0"+, τ)dτ
Jo Jo Js

for every 0 < s ^ t < oo.

(1.4) J(02 = Z(s)2 + 2 Γ xu(x9 s)dx - 2 ί" XM(X, Odx + 2 f M(0, τ)dt
Jo Jo Js

for every 0 ^ s ^ ί..< oo.

2. Some lemmas

We first prepare the following lemma.

LEMMA 2.1. Let 0 < T < o o , k a constant, I a function in C([0, T]) wiίΛ

/>0 on [0, Γ], αnrf to t;, w be functions in C ( [ 0 , Γ ] ; f l ) ( i r 2 ( ί , T ; H ) Π

L°°(<5, Γ; X) SMC/I ί/iαί i;XJC, wXJC e L2(Z)5)/or eι;er>; δe(0, T), where Dδ = {(x, t);

0<x<l(t), δ<t<T}. Assume further that

wt - wxx ^vt- vxx a.e. on {(x, 0; 0 < x < l(t)9 0 < t < T},

w(x, 0) g φ ; , 0) + fc /or Λ.^. x ^ 0,

w Sv + k on {(x, 0; '(0 ^ x < oo, 0 < ί ^ T}, and

, 0 - tf*(0+, 0)(w(05 0 ~ <0, 0 - k)+ ^ 0 /or α.e. ί e [0, T] .

w <>v + k on [0, oo) x (0, Γ].

PROOF. Note that v and w are continuous on [0, oo)x(0, T]. Since the

support of (w-v-k)+ is contained in {(x, 0; 0gx^Z(0, O^ί^Γ}, it follows from

the assumptions that
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(wr(x, ί) - υ,(x, t))(w(x, t) - v(x, t) - k)+dx
o

'(')
{wxx{x, t) - vxx{x, ί))(w(x, f) - υ(x, t) - k)+dx

O

= - \ (wx(x, t) - vx(x9 t)){(w(x, t) - v(x, t) - k) + }xdx
Jo

+ (wx(l(t)~, t) - υx(l(t)-, t))(w(l(t), t) - υ(l(t), 0 - Q +

- (wx(0 + , ί) - ^(0 + , ί))(w(0, 0 - ί<0, 0 - kY

^ 0 for a.e. t e [0, T ] .

Integrating this over the subinterval [<5, 5] with 0<δ^s^ T, we get

_ υ(δ) _ k γ \ H .

Since |(w(^)-ι;(δ)-fc)+ |H^|(w(0)-t;(0)-/c)+ |H = 0 as δ 10, we obtain

| ( w ( s ) - φ ) - fc)+|H = 0 for all s e [0, T]. Thus we have the conclusion.

COROLLARY 1. Let 0 < T < o o , / a function in C([0, T]) wiί/i />0 on [0, T],

^ α non-negative function on [0, T] and let u0 be a non-negative function in H.

Let u be the solution to CP{φt

Ug\ u0) on [0, T\. Then M ^ 0 on [0, oo)x(0, T].

In addition, if u0 e L°°(0, 00) and g e L°°(0, T), then

u ^ max {|uo|L~(0}O0), |fif|L-(o,r)} ^^ [0, 00) x (0, T] .

PROOF. Recalling Remark 1.1 and applying Lemma 2.1 with w = 0,v — u and

fc = 0, we have « ̂ 0 on [0, 00) x (0, T] . Next, the application of Lemma 2.1 with

w = u, v = 0 and /c = max{|wJL~(0>oo), |^|Lco(0 Γ)} implies w^fe on [0, oo)x(0, T].

COROLLARY 2. Lei 0 < T < o o , Z^ l2 a pair of functions in C([0, T]) wiί/i

0 < / i ^ / 2 ow [0, T], 04, #2 fl Pair of non-negative functions on [0, T] and let

ulo, u2t0 be non-negative functions in H. Further let uί and u2 be the solutions

of CP{φ\ugi\uUo) and CP(φ]2>g2; u2>0) on [0, T], respectively. If gί^g2 on

[0, Γ] and ultO^u2o a.e. on [0, 00), then

ux S u2 on [0, 00) x (0, T ] .

PROOF. We infer from Remark 1.1 and Corollary 1 that

u u - uUxx = 0 = u2tt - u2tXX a.e. on {(x, t); 0 < x < lx{t), 0 < t < T},

u^x, 0) = wlί0(x) S u2t0(x) = u2(x, 0) for a.e. x ^ 0,

«! = 0 ^ u 2 on {(x, 0; ίχ(0 ̂  x < 00, 0 < t <: Γ}, and
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, 0 = 0, u2tX(0 + , 0 ^ 0 for a.e. te {t ^ 0; M^O, t) > w2(0, i)}.

Hence, the application of Lemma 2.1 with w = uί9 V — U2 and fc = 0 yields the

desired conclusion.

Next we recall a notion of the convergence for proper l.s.c. convex functions.

Given a family {ψ*; 0 ^ ί < oo} of proper l.s.c. convex functions on H and a proper

l.s.c. convex function °̂° on H, we say that φt converges on H to ψ00 in the sense

of Mosco as ί->αo, if the following two conditions (a) and (b) hold:

(a) If zn-*z weakly in H and ί(n)->oo (as n-»oo), then

(b) For each ZGD(I^°°) and each sequence {t(n}} with ί(n)->oo there is a

sequence {z j such that zn-+z in H and ψt(n\z1ύ-+ψCD(z).

The following lemma is elementary.

LEMMA 2.2. Let I be a positive non-decreasing function in C([0, oo)) and g a

non-increasing function on [0, oo) with c^im^^ g(t)> — oo. Γ/iβn D(φs

lg)c:

Dfjφ^gX Φsι,g(z) = φt

lfg(z)for 0 ^ s ^ ί < o o and zeD(φs

lfg) and φj^ converges on H

to </>°° in ίfte sense of Mosco as ί-»oo, w/iere φ0 0 is the function on H defined by

( l/2) | z , | | if Z6X, z(0) ^ c and z = 0 on [/w, oo),
(2.1) φ«(z) =

[ oo otherwise,

and /00 = limf_00 /(ί); in (2.1), ί/ie restriction that z = 0 on [/„, oo) is not necessary

in the case o//oo = oo.

LEMMA 2.3. Lei / be a positive non-decreasing function in C([0, oo)) with

/00=lim ί_>00 Z(ί)<oo, g a non-negative non-increasing function on [0, oo) with

c^im^oo a(ί), and let u0 be a function in H satisfying uo = 0 a.e. on [/(0), oo).

Then CP(φt

ltβ; uo) has one and only one solution u on [0, oo) such that

weL°°(0, oo H) and

u(t) >uO0 in X as t > oo,

where

f c ( l - x / / J for O^x^l^

(2 .2) u^x) =
[0 for l^ < x < oo.

PROOF. The existence and uniqueness of the solution follow from [7;

Theorems 1.1.1, 1.2.1] and Corollary 1 to Lemma 2.1 implies that we

L°°(0, oo H). Moreover, using Lemma 2.2 for the case of l^ < oo, we can apply

the result of [6; Theorem 1] to obtain that u(t) converges to some MW in H as

ί->oo and φt

ltg(u(t))-^φco(ua0) = minφco as ί->oo, where φ™ is as mentioned in
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(2.1). Hence w(ί)-»Woo in X as ί->oo and we see that u^ is expressed as in (2.2).

LEMMA 2.4. Let I be a positive non-decreasing function in C([0, oo)), g = 0

on [0, oo) and let uo be a non-negative function in H such that uo = 0 a.e. on

[/(0), oo). Then CPffilg; u0) has one and only one solution u on [0, oo) such that

u(x, t) > 0 as t • oo uniformly in x e [0, oo).

PROOF. The existence and uniqueness of the solution follow from [7;

Theorems 1.1.1, 1.2.1]. By the definition of subdifferential dφ\tg we have

(ιι'(τ), iι(τ) - z)H ί φ*φ) - tf>I>(τ)) for z e D(φlg),

for a.e. τ^O. Letting z = 0, then integrating the resultant inequality over [(5, ί],

0<<5<ί<oo, with respect to τ and finally letting δ-*0, we get

\<t)\2H + Γ |n,( , τ)\%dτ ^ \uo\l for t ^ 0.
Jo

Therefore u e L°°(0, oo H) and in view of Lemma 2.2 we can apply the result

[6; Theorem 1] to show that w(ί)-*Woo weakly in H and φtι)g(u(t))-+φco(u00) =

minφ00 ( = 0), where φ*° is as defined by (2.1) with c = 0. From this it follows

that MOO = 0 and u(x, ί)-*0 as ί-»oo uniformly in x e [ 0 , oo).

3. Monotone dependence on Stefan data

In this section we establish the following result.

THEOREM 3.1. Let {l0, w0, g) and (l0, ΰ0, g] be two Stefan data satisfying

(A) (or (A)') and (B). Let {I, u} and {7, ΰ} be solutions to QV(l09 u0, g) and

QV(l0, ΰ0, g), respectively. Suppose that lo^~lo, uo^ΰo a.e. on [0, oo) and

g^g on [0, oo). Then

(3.1) I ST on 10, co) and u g U on [0, oo) x (0, oo).

PROOF. (Case 1) Assuming /0<70, we first show that /<] on [0, oo) and

u ^ ΰ on [0, oo) x (0, oo). For the contrary suppose that there is a positive number

to such that l(t0) = ~l(t0) and l(t) < 7(0 for 0 <; t < t0. Then Corollary 2 to Lemma 2.1

implies that w p o n [0, oo)x(0, to~]. Now denoting u(0, ί) (resp. i/(0, ί)) by

f{f) (resp. /(0), we see that f£j on (0, ί j , and that {/, M} (resp. {7, ΰ}) is the

solution to the usual Stefan problem with the boundary condition M(0, t)=f(t)

(resp. M(0, t)=f(t)) for 0<t^to. Hence it follows from a well-known result

concerning the monotone dependence of solutions on Stefan data (see [2]) that

/<7 on [0, ί j . This is a contradiction. Thus /<7 on [0, oo) and u p on

[0, oo)x(0> oo).
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(Case 2) We next consider the case when lo=Ίo. In this case, a sequence

{h,n}
 c a n be taken such that l0

<h,n+i<h,n

 a n d I0,n^o a s n-+co. Evidently,

{ίo,«> "o» 9} satisfies (A) (or (A)') and (B). Therefore, denoting by {/„, un) the

solution to QV(lon, ΰ09 g) that is given by Theorem 1.1, we infer from the proof

of Case 1 that

7 < ln+ί < K on [0, 00), ΰ^un+ί^un on [0, 00) x (0, 00),

I < ln on [0, 00), and u ^ un on [0, 00) x (0, 00).

Also, taking account of (1.3) of Lemma 1.1, we have

Kit) - 7(0 = φ) - 7(s) + [°(uH(x9 s) - ΰ(x, s))dx - {"(u^x, t)
Jo Jo

(3.3)
, τ) - ϊϊx(0 + , τ))dτ

for 0 < s ̂  ί < 00. Moreover we have

(3.4) wπ>x(0 + , τ) ^ ΰx(0 + , τ) for a.e. τ ^ 0.

In fact, uw>x(0 + ,τ) = 0 and Mx(0 + , τ ) g 0 for a.e. τ e { τ ^ 0 ; wπ(0, τ)>w(0, τ)

(^^(τ))}, and (3.2) yields

n(x, τ) - MM(0, τ))/x

, τ) - ΰ(0, τ))/x = Ux(0 + , τ)

for a.e. τ e { τ ^ 0 ; uM(0, τ) = ΰ(0, τ)}. Hence (3.4) holds. Consequently, (3.3),

(3.2) and (3.4) together imply

0 < /„(*) - 7(0 ^ φ ) - 7(s) + Γ( W π (x, s) - δ(
JoJo

for 0 < s ̂  ί < 00. Letting s | 0 in this inequality, we have

0 < ln(t) - 7(0 ύ lo,n ~ ~Ό for ί ^ 0 and π.

This shows that ln converges to 7 uniformly on [0, 00) as n-+co. Thus we can

apply the convergence result [7; Theorem 2.7.1] (or [8; Proposition 3.3]) to

obtain

un > u in C([0, T] H) as n > 00

for every finite Γ>0. Therefore (3.1) follows from (3.2).

COROLLARY. Suppose (A) (or (A)') and (B) hold. Then QV(l0, u0, #) has

at most one solution.
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4. Asymptotic behavior of the solutions

The first main result of the present paper is stated as follows.

THEOREM 4.1. Suppose (A)' and (B) hold. Let {I, u} be the solution to

QV(l0, u0, g). Then / 0 0=lim ί_ 0 0 l(t)<co if and only ifgeLγφ, oo). Moreover,

in this case, w( , t)-+0 in X as ί-*oo.

In order to prove this theorem, we need the following

LEMMA 4.1. Suppose (A)' and (B) hold. Let {I, u) be the solution to

QV(l0, u0, g). Then there are numbers T>0 and 0<δ<lo such that

(4.1) u(x, t) ̂  (l-x/δ)g(t) for x e [0, (5] and t ^ T.

PROOF. We first choose T > 0 and 0<<5</o satisfying

u(x, T)^{\-xjδ)g(T) for xe[0,<5];

we see from the facts as mentioned in Remark 1.1 that such Tand δ exist. Next,

we take a sequence {gn} of smooth functions on [0, oo) such that gn is non-

increasing on [0, oo), gn^g on [0, oo) and gn(t)->g(t) as n-»oo for a.e. ί^Ό.

Then, comparing u with the function v(x, t) = (l—x/δ)gn(t) on [0, (5] x [T, oo),

we have

(4.2) u ^ v on [0,(5] x [Γ, oo).

In fact, we have

vt - vxx = (l-x/δ)g'n(t) ^0 = ut-uxx on (0, δ) x (T, DO) ,

v(x, T) = (l-xlδ)gn(T) ^ (l-x/δ)g(T) ^ u(x, T) for 0 ^ x ^ δ,

v(O,t) = gn(t)^g(t)^u(O,t) for T^ t < oo, and

v(δ, 0 = 0 ^ u(δ, t) for T <, t < oo,

so that the maximum principle for the linear heat equation implies (4.2), i.e.

u(x, t) ̂  (\-xlδ)gn{f) for x e [0, <5] and t e [Γ, oo).

Letting n-»oo in this inequality now gives (4.1).

COROLLARY. Under the same assumptions as in Lemma 4.1, we have

(4.3) ux(0 + , t) ̂  - δ-tgit) for a.e. ίe[T, oo).

PROOF. Since ux(O + ,t) = O for a.e. te{t^O; u(0, f)>g(t)}, it suffices to
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show that (4.3) holds for a.e. ίe{ίΞ>0; u(0, 0 = 0(0}- At such point t9 Lemma

4.1 yields

x~Ku(x9 t) - g(t)) ^ -δ^g(t).

Therefore, letting x I 0 gives (4.3).

PROOF OF THEOREM 4.1. First assume Ẑ  < oo. In this case, u e L°°(0, oo H)

by Corollary 1 to Lemma 2.1. Also, taking account of (1.4) of Lemma 1.1,

we have

2 \ g(τ)dτ ^ 2 \ w(0, τ)dτ
Jo Jo

= l(t)2 - II - 2 [ °° xuo(x)dx + 2 Γ°
Jo Jo

^15,-/8-2 Γxu£x)dx
Jo

which implies that # e l ^ O , oo). Since ^ ( 0 ^ 0 as ί-»oo, it follows from Lemma

2.3 that w( , 0->0 in X as ί->oo.

Conversely, assume geL^O, oo). Then by the Corollary to Lemma 4.1

and (1.3) of Lemma 1.1 we have

u(x, T)dx - Γιι(x, 0 ^ - Γ wx(0 + , τ)dτ
o Jo JT

u(x, T)dx + δ
Jo

for all ί ^ T. Thus /^ < oo.

THEOREM 4.2. Suppose (A) and (B) hold. Let {I, u} be the solution to

QV(l09 uo, g). Then we have:

(a) If g is bounded on [0, oo) and /o ϋ<oo, then geL^O, oo). Moreover,

'/ίKO-^O α s ί-»oo, ί/ien M( , 0 ^ 0 ί« ^ ^5 ί—>oo.

(b) // there exists a non-increasing function g in 1^(0, oo) such that

g^g on [0, oo), then /o o<oo.

PROOF. Assertion (a) is obtained in the same way as in the proof of the

"only if" part of Theorem 4.1. In order to show (b), consider the solution

{7, u} to QV(lω u0, g). Then Theorem 3.1 implies that l^Ί on [0, oo). Since

lim^oo 7(ί)< oo by Theorem 4.1, it follows that Ẑ  < oo.

Finally, we establish the following result:

THEOREM 4.3. Suppose (A) (or (A)') and (B) hold. Let {/, u} be the solution

to QV(l0, u0, g). Furthermore, set
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g^ = lim inf^^ g(t) and g°° = lim s u p ^ ^ g(t).

Then

(4.4) liminf^^ u(x, O^0oo uniformly on each bounded interval of x, and

(4.5) lim s u p ^ ^ u(x, t) g g™ uniformly in x e [0, oo).

PROOF. First we show (4.4). If ^ ^ = 0 , (4.4) is.trivial. Assume g^>0.

In this case we infer from Theorem 3.1 and (a) of Theorem 4.2 that /^ =lim ί_>00 l(t)

= oo. Let ε be any positive number with ε<gO0 and L an arbitrary positive

number. Then there is a number ί ε > 0 such that

l(t) > L and g(t) > g^ - ε for t = tE.

We then consider the Cauchy problem CP(φ; u(tε)) on the interval [fε, oo):

- v'(t)edψ(v(ή), tE < t < oo, v(tε) = u(tε),

where φ is a proper l.s.c. convex function on H defined by

(l/2)\zx\
2

H ifzeX, z(0) = g^ - ε and z = 0 on [L, oo),
φ(z) = ,

oo otherwise.

By virtue of Lemma 2.3, CP(ψ; u(tj) admits a unique solution υ such that

ι;(0 > v8tL in X as t > oo,
where

ί (gO0-ε)(ί-x/L) for 0 = x ^ L,

[ 0 for L< x < oo.

Furthermore, Corollary 2 to Lemma 2.1 yields

u = v on [0, oo) x (tε, oo).

Therefore

lim inf,^ u(x9 t) ^ vBtL{x) uniformly in xe [0, oo),

from which we obtain (4.4).

Next we show (4.5). To this end, it suffices to prove (4.5) under the as-

sumption that 0°°< oo. Let ε > 0 and choose tε>0 such that

g(t)<g°° + ε for t = tB.

Also, let /i = 0 on [ίε, oo) and let t; be the solution to CPiφ\th; u(Q) on the interval
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[ίε, oo). Then it follows from Lemma 2.1 that

u ^ v + 000 + ε on [0, oo) x (tε9 oo),

since

ut - uxx = vt-υxx = 0 on {(*, ί); 0 < x < l(t), tε < t < oo},

u = v = 0 on {(x, t); l(t) S x < oo, tε < t < oo},

w(O = v(tε), and

u x (0 + , 0 = 0, vx(0 +, 0 ^ 0 for a.e. ί e {ί ^ ίε; u(0, ί) > v(0, t) + °̂° + ε} .

Moreover, Lemma 2.4 implies that t;(x, 0-^0 as ί-»oo uniformly in Λ:G[0, OO),

and so

l imsup^^ u(x, t) ^ g™ + ε uniformly in x e [0, oo).

Since ε is arbitrary, we get the desired estimate.
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