Study of the behavior of logarithmic potentials by means of logarithmically thin sets

Yoshihiro Mizuta
(Received September 5, 1983)

1. Introduction and statement of results

Let R^{n} ($n \geqq 2$) be the n-dimensional euclidean space. For a nonnegative (Radon) measure μ on R^{n}, we set

$$
L \mu(x)=\int \log \frac{1}{|x-y|} d \mu(y)
$$

if the integral exists at x. We note here that $L \mu$ is not identically $-\infty$ if and only if

$$
\begin{equation*}
\int \log (1+|y|) d \mu(y)<\infty \tag{1}
\end{equation*}
$$

Denote by $B(x, r)$ the open ball with center at x and radius r. For $E \subset B(0$, 2), define

$$
C(E)=\inf \mu\left(R^{n}\right),
$$

where the infimum is taken over all nonnegative measures μ on R^{n} such that S_{μ} (the support of $\mu) \subset B(0,4)$ and

$$
\int \log \frac{8}{|x-y|} d \mu(y) \geqq 1 \quad \text { for every } \quad x \in E .
$$

If $E \subset B\left(x^{0}, 2\right)$, then we set

$$
C(E)=C\left(\left\{x-x^{0} ; x \in E\right\}\right)
$$

One notes here that this is well defined, i.e., independent of the choice of x^{0}.
Throughout this paper let k be a positive and nonincreasing function on the interval $(0, \infty)$ such that

$$
k(r) \leqq K k(2 r) \quad \text { for any } \quad r, 0<r<1,
$$

where K is a positive constant independent of r. A set E in R^{n} is said to be k logarithmically thin, or simply k-log thin, at $x^{0} \in R^{n}$ if

$$
\sum_{j=1}^{\infty} k\left(2^{-j}\right) C\left(E_{j}^{\prime}\right)<\infty,
$$

where $E_{j}^{\prime}=\left\{x \in B\left(x^{0}, 2\right)-B\left(x^{0}, 1\right) ; x^{0}+2^{-j}\left(x-x^{0}\right) \in E\right\}$. If $k(r)=\log r^{-1}$ for
r sufficiently small, then a set E which is k-log thin at x^{0} is called simply logarithmically thin at x^{0}. Then the following result is well known (see [1; Theorem IX, 7] for $n=2$):

Theorem A. Let $x^{0} \in R^{n}$ and μ be a nonnegative measure on R^{n} satisfying (1).
(i) There exists a set E in R^{n} which is logarithmically thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n}-E} L \mu(x)=L \mu\left(x^{0}\right)
$$

(ii) There exists a set E in R^{n} which is logarithmically thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n-E}}\left(\log \frac{1}{\left|x-x^{0}\right|}\right)^{-1} L \mu(x)=\mu\left(\left\{x^{0}\right\}\right)
$$

Our first aim is to give a generalization of Theorem A.
Theorem 1. Let h be a nondecreasing and positive function on the interval $(0, \infty)$ such that $h(2 r) \leqq M h(r)$ and

$$
\begin{equation*}
\int_{0}^{1 / 2} \frac{d t}{h(t)\left(\log t^{-1}\right)(r+t)} \leqq \frac{M}{h(r)} \tag{2}
\end{equation*}
$$

for any $r, 0<r<1$, where M is a positive constant independent of r. Let μ be a nonnegative measure on R^{n} satisfying (1),

$$
\lim _{r \downarrow 0} h(r)\left(\log r^{-1}\right) \mu\left(B\left(x^{0}, r\right)\right)=0
$$

and

$$
\int \tilde{h}\left(\left|x^{0}-y\right|\right) d \mu(y)<\infty
$$

where $\tilde{h}(0)=\infty$ and $\tilde{h}(r)=h(r) k(r)$ for $r>0$. Then there exists a set E in R^{n} which is k-log thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n}-E} h\left(\left|x-x^{0}\right|\right) L \mu(x)=0
$$

Remark 1. For $\delta>0$, define

$$
h_{\delta}(r)= \begin{cases}\left(\log r^{-1}\right)^{-\delta} & \text { if } 0<r \leqq 2^{-1} \\ (\log 2)^{-\delta} & \text { if } r>2^{-1}\end{cases}
$$

Then h_{δ} satisfies all the conditions on h in Theorem 1.
Remark 2. If $h(r)=\left(\log r^{-1}\right)^{-1}$ and $k(r)=\log r^{-1}$ for r sufficiently small, then Theorem 1 implies Theorem A, (ii).

Hereafter, when a positive function h on $(0, \infty)$ is given, we let \tilde{h} be as in Theorem 1.

Theorem 2. Let h be a nonincreasing and positive function on the interval $(0, \infty)$ such that $r h(r)$ is nondecreasing on $(0, \infty)$ and $\lim _{r+0} r h(r)=0$. Suppose furthermore $h(r) \log (r / s) \leqq M \tilde{h}(s)$ whenever $0<s<r \leqq 1$, where M is a positive constant independent of r and s. Let μ be a nonnegative measure on R^{n} satisfying (1) and

$$
\int \tilde{h}\left(\left|x^{0}-y\right|\right) d \mu(y)<\infty
$$

Then there exists a set E in R^{n} which is k-log thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n}-E} h\left(\left|x^{0}-y\right|\right)\left[L \mu(x)-L \mu\left(x^{0}\right)\right]=0 .
$$

Remark. If $h(r)=1$ and $k(r)=\log r^{-1}$ for r sufficiently small, then Theorem 2 yields Theorem A, (i).

Fuglede [3] discussed fine differentiability properties of logarithmic potentials in the plane R^{2}. To state his result, we let $L(x)=\log (1 /|x|)$ and set for a nonnegative integer m,

$$
L_{m}(x, y)=L(x-y)-\Sigma_{|\lambda| \leqq m} \frac{\left(x-x^{0}\right)^{\lambda}}{\lambda!}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right]\left(x^{0}-y\right)
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a multi-index with length $|\lambda|=\lambda_{1}+\cdots+\lambda_{n}, \lambda!=\lambda_{1}!\cdots \lambda_{n}$!, $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}$ and $(\partial / \partial x)^{\lambda^{2}}=\left(\partial / \partial x_{1}\right)^{\lambda_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\lambda_{n}}$.

Theorem B (cf. Fuglede [3; Notes 3]). Let μ be a nonnegative measure on R^{2} satisfying

$$
\begin{equation*}
\int\left|x^{0}-y\right|^{-1} \log \left(2+\left|x^{0}-y\right|^{-1}\right) d \mu(y)<\infty \tag{3}
\end{equation*}
$$

then there exists a set E in R^{2} which is (logarithmically) thin at x^{0} and satisfies

$$
\begin{equation*}
\lim _{x \rightarrow x^{0}, x \in R^{n-E}}\left|x-x^{0}\right|^{-1} \int L_{1}(x, y) d \mu(y)=0 . \tag{4}
\end{equation*}
$$

For a proof of Theorem B, see Davie and Øksendal [2; Theorem 6]. Our second aim is to generalize Theorem B, and in fact to show, under a condition weaker than (3), that (4) holds for a set E which will be k-log thin at x^{0} with an appropriate function k.

Theorem 3. Let h be a nonincreasing and positive function on the interval $(0, \infty)$ such that $r h(r)$ is nondecreasing on $(0, \infty)$ and $\lim _{r+0} r h(r)=0$. Let μ be a nonnegative measure on R^{n} satisfying (1) and

$$
\int\left|x^{0}-y\right|^{-m} \tilde{h}\left(\left|x^{0}-y\right|\right) d \mu(y)<\infty
$$

for a positive integer m smaller than n. Then there exists a set E in R^{n} which is k-log thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n}-E}\left|x-x^{0}\right|^{-m} h\left(\left|x-x^{0}\right|\right) \int L_{m}(x, y) d \mu(y)=0 .
$$

Remark. In case $n=2$ and $m=1$, if we take $h(r) \equiv 1$ and $k(r)=\log \left(2+r^{-1}\right)$, then Theorem 3 coincides with Theorem B.

In case $m=n$, we shall establish the following result.
Theorem 4. Let μ be a nonnegative measure on R^{n} which satisfies (1) and the following two conditions:
(a) $\lim _{r \downarrow 0} r^{-n}\left|\mu-a \Lambda_{n}\right|\left(B\left(x^{0}, r\right)\right)=0$ for some a, where Λ_{n} denotes the n-dimensional Lebesgue measure;
(b) $A_{\lambda}=\lim _{r \downarrow 0} \int_{R^{n-B\left(x^{0}, r\right)}}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right]\left(x^{0}-y\right) d \mu(y)$ exists and is finite for any λ with length n.
Then there exists a set E in R^{n} which has the following properties:
(i) $\lim _{x \rightarrow x^{0}, x \in R^{n-E}}\left|x-x^{0}\right|^{-n}\left\{\int L_{n-1}(x, y) d \mu(y)-\sum_{|\lambda|=n} \frac{C_{\lambda}}{\lambda!}\left(x-x^{0}\right)^{\lambda}\right\}=0$;
(ii) $\lim _{j \rightarrow \infty} C\left(E_{j}^{\prime}\right)=0$,
where $C_{\lambda}=A_{\lambda}+a B_{\lambda}$ for $|\lambda|=n$ and B_{λ} will be defined later (in Lemma 4).
One may compare these theorems with fine and semi-fine differentiabilities of Riesz potentials investigated by Mizuta [6] and [7].

Remark. If μ is a nonnegative measure on R^{n} with finite total mass, then (a) and (b) in Theorem 4 hold for almost every $x^{0} \in R^{n}$ (cf. [10; Chap. III, 4.1]).

We say that a set E in R^{n} is k-log semi-thin at x^{0} if

$$
\lim _{j \rightarrow \infty} k\left(2^{-j}\right) C\left(E_{j}^{\prime}\right)=0
$$

The set E in Theorem 4 is k-log semi-thin at x^{0} with $k \equiv 1$. The following theorem gives the behavior of logarithmic potentials in terms of k-log semi-thin sets.

Theorem 5. Let h be a nondecreasing and positive function on the interval $(0, \infty)$ such that $\lim _{r \downarrow 0} h(r)=0$ and

$$
\int_{0}^{1} \frac{d s}{\widetilde{h}(s)(r+s)} \leqq \frac{M}{h(r)} \quad \text { for } \quad r>0
$$

where M is a positive constant independent of r. Let m be a nonnegative integer and μ be a nonnegative measure on R^{n} satisfying (1) and

$$
\lim _{r \downarrow 0} r^{-m} \tilde{h}(r) \mu\left(B\left(x^{0}, r\right)\right)=0
$$

Then there exists a set E in R^{n} which is k-log semi-thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n}-E}\left|x-x^{0}\right|^{-m} h\left(\left|x-x^{0}\right|\right) \int L_{m-1}(x, y) d \mu(y)=0
$$

where $L_{-1}(x, y)=L(x-y)$.
In the final section we shall be concerned with the behavior at infinity of logarithmic potentials.

2. Proof of Theorem 1

We first prepare the following lemma, which will be used frequently.
Lemma 1. Let h be a positive Borel function on $(0, \infty)$ such that

$$
\begin{equation*}
h(s) \leqq M h(r) \quad \text { whenever } \quad 0<r / 2 \leqq s \leqq 2 r \leqq 1 \tag{5}
\end{equation*}
$$

where M is a positive constant independent of r and s. If μ is a nonnegative measure on R^{n} such that

$$
\int \tilde{h}(|y|) d \mu(y)<\infty
$$

then there exists a set E in R^{n} which is $k-\log$ thin at 0 and satisfies

$$
\lim _{x \rightarrow 0, x \in R^{n-E}} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y)=0
$$

Proof. Take a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty$ and $\sum_{j=1}^{\infty} a_{j} \int_{B_{j}} \tilde{h}(|y|) d \mu(y)<\infty$, where $B_{j}=B\left(0,2^{-j+2}\right)-B\left(0,2^{-j-1}\right)$. Consider the sets

$$
E_{j}=\left\{x \in A_{j} ; \int_{B_{j}} \log \frac{|x|}{|x-y|} d \mu(y) \geqq h\left(2^{-j}\right)^{-1} a_{j}^{-1}\right\}
$$

for $j=1,2, \ldots$, and $E=\cup_{j=1}^{\infty} E_{j}$, where $A_{j}=B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right) . \quad$ By the assumption on h, one sees easily that

$$
k\left(2^{-j}\right) C\left(E_{j}^{\prime}\right) \leqq a_{j} h\left(2^{-j}\right) k\left(2^{-j}\right) \mu\left(B_{j}\right) \leqq \text { const. } a_{j} \int_{B_{j}} \tilde{h}(|y|) d \mu(y)
$$

Hence E is k-log thin at 0 . Furthermore,

$$
\lim \sup _{x \rightarrow 0, x \in R^{n-E}} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y)
$$

$$
\begin{aligned}
& \leqq \text { const. } \lim \sup _{j \rightarrow \infty} \sup _{x \in A_{j}-E_{j}} h\left(2^{-j}\right) \int_{B_{j}} \log \frac{|x|}{|x-y|} d \mu(y) \\
& \leqq \text { const. } \lim \sup _{j \rightarrow \infty} a_{j}^{-1}=0
\end{aligned}
$$

and hence $\lim _{x \rightarrow 0, x \in R^{n-E}} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y)=0$.
We are now ready to prove Theorem 1.
Proof of Theorem 1. Without loss of generality, we may assume that x^{0} is the origin 0 . For a nonnegative measure μ on R^{n} satisfying (1), we write

$$
\begin{aligned}
L \mu(x)= & \int_{\{y ;|x-y| \geqq|x| / 2\}} L(x-y) d \mu(y) \\
& +\int_{\{y ;|x-y|<|x| / 2\}} L(x-y) d \mu(y)=L^{\prime}(x)+L^{\prime \prime}(x) .
\end{aligned}
$$

Note here that $L^{\prime}(x)$ is finite for any $x \neq 0$. Let

$$
\varepsilon(\delta)=\sup _{0<r \leq \delta} h(r)\left(\log r^{-1}\right) \mu(B(0, r)) .
$$

Then by our assumption, $\lim _{\delta+0} \varepsilon(\delta)=0$. If $x, y \in B(0,1 / 4)$ and $|x-y| \geqq|x| / 2>0$, then

$$
0<L(x-y) \leqq \text { const. } \log \frac{1}{|x|+|y|} .
$$

By (2), $\lim _{r \downarrow 0} h(r)=0$. Hence we have again by (2),

$$
\lim \sup _{x \rightarrow 0} h(|x|)\left|L^{\prime}(x)\right|=\lim \sup _{x \rightarrow 0} h(|x|) \int_{B(0, \delta)-B(x,|x| / 2)} L(x-y) d \mu(y)
$$

$$
\leqq \text { const. } \lim \sup _{x \rightarrow 0} h(|x|) \int_{B(0, \delta)} \log \frac{1}{|x|+|y|} d \mu(y)
$$

$$
\leqq \text { const. } \lim \sup _{x \rightarrow 0} h(|x|)\left\{\mu(B(0, \delta)) \log (|x|+\delta)^{-1}\right.
$$

$$
\left.+\int_{0}^{\delta} \mu(B(0, r))(|x|+r)^{-1} d r\right\} \leqq \text { const. } \varepsilon(\delta)
$$

for $\delta, 0<\delta<1 / 4$. This implies that $\lim _{x \rightarrow 0} h(|x|) L^{\prime}(x)=0$. Since $\lim _{x \rightarrow 0} h(|x|)$. $(\log |x|) \mu(B(x,|x| / 2))=0$, with the aid of Lemma 1 we can find a set E in R^{n} which is k - \log thin at 0 and satisfies

$$
\lim _{x \rightarrow 0, x \in R^{n}-E} h(|x|) L^{\prime \prime}(x)=0
$$

3. Proofs of Theorems 2 and 3

Before giving proofs of Theorems 2 and 3, we recall the next result.

Lemma 2 (cf. [9; Lemma 4]). If $x, y \in B(0,1)$ and $|x-y| \geqq|x| / 2>0$, then

$$
\left|L_{m}(x, y)\right| \leqq \text { const. } \min \left(1, \frac{|x|}{|y|}\right) \times \begin{cases}\log \left(2+\frac{|x|}{|y|}\right) & \text { when } m=0 \\ |x|^{m}|y|^{-m} & \text { when } m \geqq 1\end{cases}
$$

We shall give only a proof of Theorem 3, since Theorem 2 can be proved similarly by the use of Lemma 2.

Proof of Theorem 3. We may assume that $x^{0}=0$. Let μ be a nonnegative measure on R^{n} satisfying (1) and

$$
\int H(|y|) k(|y|) d \mu(y)<\infty
$$

where $H(r)=r^{-m} h(r)$ for $r>0$. By the assumptions on h, H satisfies condition (5) with h replaced by H. We write

$$
\begin{aligned}
& \int L_{m}(x, y) d \mu(y)=\int_{R^{n-B(0,2|x|)}} L_{m}(x, y) d \mu(y) \\
& \quad+\int_{B(0,2|x|)-B(x,|x| / 2)} L_{m}(x, y) d \mu(y)+\int_{B(x,|x| / 2)} L_{m}(x, y) d \mu(y) \\
& \quad=L^{\prime}(x)+L^{\prime \prime}(x)+L^{\prime \prime \prime}(x)
\end{aligned}
$$

If $y \in R^{n}-B(0,2|x|)$, then Lemma 2 implies that

$$
\left|L_{m}(x, y)\right| \leqq \text { const. }|x|^{m+1}|y|^{-m-1}
$$

so that Lebesgue's dominated convergence theorem gives

$$
\begin{aligned}
& \lim \sup _{x \rightarrow 0}|x|^{-m} h(|x|)\left|L^{\prime}(x)\right| \\
& \quad \leqq \text { const. } \lim \sup _{x \rightarrow 0}|x| h(|x|) \int_{R^{n-B(0,2|x|)}}|y|^{-m-1} d \mu(y) \\
& \quad=\text { const. } \lim \sup _{x \rightarrow 0}|x| h(|x|) \int_{B(0,1)-B(0,2|x|)}|y|^{-m-1} d \mu(y)=0
\end{aligned}
$$

since $\lim _{r \downarrow 0} r h(r)=0$ and $r h(r) \leqq k(1)^{-1} \operatorname{sh}(s) k(s)$ for $0<r<s<1$.
If $y \in B(0,2|x|)$ and $|x-y| \geqq|x| / 2>0$, then Lemma 2 implies that

$$
\left|L_{m}(x, y)\right| \leqq \text { const. }|x|^{m}|y|^{-m} .
$$

Hence we obtain

$$
\begin{aligned}
& \lim \sup _{x \rightarrow 0}|x|^{-m} h(|x|)\left|L^{\prime \prime}(x)\right| \\
& \quad \leqq \text { const. lim } \sup _{x \rightarrow 0} h(|x|) \int_{B(0,2|x|)}|y|^{-m} d \mu(y)=0
\end{aligned}
$$

since $h(r) \leqq h(s) \leqq 2 h(2 s) \leqq 2 k(1)^{-1} h(2 s) k(2 s)$ whenever $0<s<r<1 / 2$.
As to $L^{\prime \prime \prime}$, we note that

$$
\begin{aligned}
|x|^{-m} h(|x|)\left|L^{\prime \prime \prime}(x)\right| \leqq & \text { const. } H(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y) \\
& + \text { const. } \int_{B(x,|x| / 2)} H(|y|) d \mu(y) .
\end{aligned}
$$

The second term of the right hand side tends to zero as $x \rightarrow 0$ by the assumption. In view of Lemma 1, the first term of the right hand side tends to zero as $x \rightarrow 0$, $x \in R^{n}-E$, where E is $k-\log$ thin at 0 . Thus the proof is complete.

Remark 1. Theorem 3 is best possible as to the size of the exceptional set. In fact, if h and \tilde{h} are as in Theorem 3 and E is a subset of R^{n} which is k-log thin at x^{0}, then one can find a nonnegative measure μ on R^{n} with compact support such that

$$
\int\left|x^{0}-y\right|^{-m} \tilde{h}\left(\left|x^{0}-y\right|\right) d \mu(y)<\infty
$$

and

$$
\lim _{x \rightarrow x^{0}, x \in E}\left|x-x^{0}\right|^{-m} h\left(\left|x-x^{0}\right|\right) \int L_{m}(x, y) d \mu(y)=\infty .
$$

Remark 2. Let μ be a nonnegative measure on R^{n} satisfying (1) and let h be as in Theorem 3. If $\int\left|x^{0}-y\right|^{-m} h\left(\left|x^{0}-y\right|\right) d \mu(y)<\infty$ and there exist $M, r_{0}>0$ such that

$$
h\left(\left|x-x^{0}\right|\right) \mu(B(x, r)) \leqq M r^{m}
$$

for any $x \in B\left(x^{0}, r_{0}\right)$ and any $r, 0<r \leqq\left|x-x^{0}\right| / 2$, then E appeared in Theorem 3 can be taken to be an empty set and $L \mu$ is m times differentiable at x^{0}.

To prove this, assume that $x^{0}=0$. For the first assertion, in view of the proof of Theorem 3, it suffices to show that

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{-m} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y)=0 \tag{6}
\end{equation*}
$$

For $\delta>0$, set $\varepsilon(\delta)=\sup _{0<r \leq \delta} r^{-m} h(r) \mu(B(0, r))$. If $0<\delta<|x| / 2$, then

$$
\begin{aligned}
& |x|^{-m} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d \mu(y) \\
& \quad=|x|^{-m} h(|x|) \int_{B(x, \delta)} \log \frac{|x|}{|x-y|} d \mu(y) \\
& \quad+|x|^{-m} h(|x|) \int_{B(x,|x| / 2)-B(x, \delta)} \log \frac{|x|}{|x-y|} d \mu(y)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \text { const. }\left\{\left(\frac{\delta}{|x|}\right)^{m} \log \frac{|x|}{\delta}+|x|^{-m} h(|x|) \mu(B(0,2|x|)) \log \frac{|x|}{\delta}\right\} \\
& \leqq \text { const. }\left\{\left(\frac{\delta}{|x|}\right)^{m}+\varepsilon(2|x|)\right\} \log \frac{|x|}{\delta}
\end{aligned}
$$

Since $\lim _{x \rightarrow 0} \varepsilon(2|x|)=0$, for x sufficiently close to 0 we can choose $\delta>0$ so that

$$
\log \frac{|x|}{\delta}=[\varepsilon(2|x|)+|x|]^{-1 / 2}
$$

Since $\lim _{x \rightarrow 0}(\delta /|x|)=0$, we derive (6).
To prove the second assertion, we first note that

$$
\int|x-y|^{-m+1} d \mu(y)<\infty \quad \text { for every } \quad x \in B\left(0, r_{0}\right)
$$

and hence $L \mu$ is $m-1$ times differentiable at $x \in B\left(0, r_{0}\right)$ and

$$
\left(\frac{\partial}{\partial x}\right)^{\lambda} L \mu(x)=\int\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](x-y) d \mu(y)
$$

for any $x \in B\left(0, r_{0}\right)$ and any multi-index λ with $|\lambda|=m-1$. As in the proofs of Theorem 1 and Remark 4 in [6; Section 2], we can show that

$$
\lim _{x \rightarrow 0}|x|^{-1} h(|x|)\left\{u_{\lambda}(x)-u_{i}(0)-\sum_{i=1}^{n} a_{i} x_{i}\right\}=0
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $u_{\lambda}=(\partial / \partial x)^{\lambda} L \mu$ for a multi-index λ with length $m-1$ and $a_{i}=\int\left[\frac{\partial}{\partial x_{i}}\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y) d \mu(y)$. This implies that $L \mu$ is m times differentiable at 0 .

4. Proof of Theorem 4

We first recall the following results.
Lemma 3 (cf. [7; Lemma 1]). Let μ be a nonnegative measure on R^{n} such that $\lim _{r \downarrow 0} r^{\alpha-n} \mu(B(0, r))=0$ for some real number α. Then the following statements hold:
(i) If $\beta<0$, then $\lim _{r \downarrow 0} r^{\beta} \int_{B(0, r)}|y|^{\alpha-\beta-n} d \mu(y)=0$;
(ii) If $n-\alpha+1>0$ and $\beta>0$, then

$$
\lim _{r \downarrow 0} r^{\beta} \int_{B(0,1)}(r+|y|)^{\alpha-\beta-n} d \mu(y)=0
$$

Lemma 4 (cf. [7; Lemma 4]). Set $u(x)=\int_{B\left(x^{0}, 1\right)} L(x-y) d y$. Then $u \in$ $C^{\infty}\left(B\left(x^{0}, 1\right)\right)$. Moreover, if λ is a multi-index with length n, then

$$
B_{\lambda} \equiv\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} u\right]\left(x^{0}\right)=\int_{\partial B(0,1)} y^{\lambda^{2}}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda^{\prime \prime}} L\right](y) d S(y)
$$

where $\lambda=\lambda^{\prime}+\lambda^{\prime \prime}$ and $\left|\lambda^{\prime}\right|=1$.
Now we prove Theorem 4 by assuming that $x^{0}=0$. Let μ be a nonnegative measure on R^{n} satisfying (1), (a) and (b) with $x^{0}=0$. For $x \in B(0,1 / 2)-\{0\}$, we write

$$
\begin{aligned}
&|x|^{-n}\left\{\int_{n-1}(x, y) d \mu(y)-\sum_{|\lambda|=n} \frac{C_{\lambda}}{\lambda!} x^{\lambda}\right\} \\
&=|x|^{-n} \int_{R^{n-B(0,1)}} L_{n}(x, y) d \mu(y) \\
&+|x|^{-n} \int_{B(0,1)-B(0,2|x|)} L_{n}(x, y) d\left[\mu-a \Lambda_{n}\right](y) \\
&-|x|^{-n} \sum_{0<|\lambda| \leq n} \frac{x^{\lambda}}{\lambda!} \lim _{r \downarrow 0} \int_{B(0,2|x|)-B(0, r)}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y) d\left[\mu-a \Lambda_{n}\right](y) \\
&+a|x|^{-n}\left\{\lim _{r \downarrow 0} \int_{B(0,1)-B(0, r)} L_{n}(x, y) d y-\sum_{|\lambda|=n} \frac{B_{\lambda}}{\lambda!} x^{\lambda}\right\} \\
&+|x|^{-n} \int_{B(0,2|x|)-B(x,|x| / 2)} L_{0}(x, y) d\left[\mu-a \Lambda_{n}\right](y) \\
&+|x|^{-n} \int_{B(x,|x| / 2)} L_{0}(x, y) d\left[\mu-a \Lambda_{n}\right](y) \\
& \quad=u_{1}(x)+u_{2}(x)-u_{3}(x)+a u_{4}(x)+u_{5}(x)+u_{6}(x) .
\end{aligned}
$$

If $y \in R^{n}-B(0,2|x|)$, then $\left|L_{n}(x, y)\right| \leqq$ const. $|x|^{n+1}|y|^{-n-1}$ and hence

$$
\lim _{x \rightarrow 0} u_{1}(x)=0
$$

For simplicity, set $v=\left|\mu-a \Lambda_{n}\right|$. Then $\lim _{r \downarrow 0} r^{-n} v(B(0, r))=0$ by (a), and we have

$$
\lim \sup _{x \rightarrow 0}\left|u_{2}(x)\right| \leqq \text { const. lim sup } x_{x \rightarrow 0}|x| \int_{B(0,1)}(|x|+|y|)^{-n-1} d v(y)=0
$$

because of Lemma 3, (ii).
If $0<|\lambda|<n$, then Lemma 3, (i) yields

$$
\begin{aligned}
& \lim \sup _{x \rightarrow 0}|x|^{|\lambda|-n} \int_{B(0,2|x|)}\left|\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y)\right| d v(y) \\
& \quad \leqq \text { const. } \lim \sup _{x \rightarrow 0}|x|^{|\lambda|-n} \int_{B(0,2|x|)}|y|^{-|\lambda|} d v(y)=0
\end{aligned}
$$

If $|\lambda|=n$, then, by [5; Lemma 3.1], $\int_{B(0, r)-B(0, s)}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y) d y=0$ for any
$r, s>0$. Hence by the definition of A_{λ},

$$
\lim _{x \rightarrow 0}\left\{\lim _{r \downarrow 0} \int_{B(0,2|x|)-B(0, r)}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y) d\left[\mu-a \Lambda_{n}\right](y)\right\}=0 .
$$

Therefore, $\lim _{x \rightarrow 0} u_{3}(x)=0$.
Since $u(x) \equiv \int_{B(0,1)} L(x-y) d y \in C^{\infty}(B(0,1))$ and

$$
u_{4}(x)=|x|^{-n}\left\{u(x)-\sum_{|\lambda| \leqq n} \frac{x^{\lambda}}{\lambda!}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} u\right](0)\right\}
$$

in view of Lemma 4, we see that $\lim _{x \rightarrow 0} u_{4}(x)=0$.
As to u_{5}, we obtain

$$
\begin{aligned}
\left|u_{5}(x)\right| & \leqq \text { const. }|x|^{-n} \int_{B(0,2|x|)} \log \left(2+\frac{|x|}{|y|}\right) d v(y) \\
& \leqq \text { const. }|x|^{1-n} \int_{B(0,2|x|)}|y|^{-1} d v(y),
\end{aligned}
$$

which tends to zero as $x \rightarrow 0$ by Lemma 1 , (i).
Applying the following Lemma 5 with $h(r)=r^{-n}$ and $k(r)=1$, we see that $u_{6}(x)$ tends to zero as $x \rightarrow 0, x \in R^{n}-E$, where E is a set in R^{n} satisfying (ii) of the theorem. The proof of Theorem 4 is now complete.

Lemma 5. Let h be a positive function on $(0, \infty)$, and define $b_{j}=\sup \{h(r)$; $\left.2^{-j} \leqq r<2^{-j+1}\right\}$. If v is a nonnegative measure on R^{n} such that $\lim _{j \rightarrow \infty} b_{j} k\left(2^{-j}\right) v\left(B\left(0,2^{-j+2}\right)-B\left(0,2^{-j-1}\right)\right)=0$, then there exists a set E in R^{n} which is k-log semi-thin at 0 and satisfies

$$
\lim _{x \rightarrow 0, x \in R^{n-E}} h(|x|) \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} d v(y)=0 .
$$

The proof is similar to that of Lemma 1.
Remark 1. If $\lim _{j \rightarrow \infty} C\left(E_{j}^{\prime}\right)=0$, then we can find a nonnegative measure μ on R^{n} with compact support such that $\lim _{r \downarrow 0} r^{-n} \mu(B(0, r))=0$ and

$$
\lim _{x \rightarrow 0, x \in E}|x|^{-n} \int L_{n-1}(x, y) d \mu(y)=\infty
$$

Remark 2. Let μ be a nonnegative measure on R^{n} satisfying (1), (a), (b) and
(c) There exist $M, r_{0}>0$ such that $\mu(B(x, r)) \leqq M r^{n}$ for any $x \in B\left(x^{0}, r_{0}\right)$ and any $r \leqq r_{0}$.

Then the set E in Theorem 4 can be taken to be empty and, moreover, $L \mu$ is n
times differentiable at x^{0}.
This fact can be proved in the same way as in Remark 2 in Section 3.

5. Proof of Theorem $\mathbf{5}$

As before we assume that $x^{0}=0$. Let μ be a nonnegative measure on R^{n} satisfying (1) and

$$
\begin{equation*}
\lim _{r \downarrow 0} r^{-m} \tilde{h}(r) \mu(B(0, r))=0 \tag{7}
\end{equation*}
$$

Define $\varepsilon(\delta)=\sup _{0<r \leqq \delta} r^{-m} \tilde{h}(r) \mu(B(0, r)) . \quad$ By $(7), \lim _{\delta \downarrow 0} \varepsilon(\delta)=0$.
If $m=0$, then

$$
\int_{0}^{\delta} \frac{\mu(B(0, s))}{r+s} d s \leqq M \varepsilon(\delta)[h(r)]^{-1}
$$

whenever $0<r<\delta<1$, on account of the assumptions on h and \tilde{h}. Since $\int_{r}^{\delta} \mu(B(0$, $s)) s^{-1} d s \geqq \mu(B(0, r)) \log (\delta / r)$, it follows that $\lim _{\sup _{r \downarrow 0}} h(r)\left(\log r^{-1}\right) \mu(B(0, r)) \leqq$ $M \varepsilon(\delta)$. Thus

$$
\begin{equation*}
\lim _{r \downarrow 0} h(r)\left(\log r^{-1}\right) \mu(B(0, r))=0 . \tag{8}
\end{equation*}
$$

Then the case $m=0$ can be proved in the same way as in Theorem 1 by using Lemma 5 in place of Lemma 1.

Let $m \geqq 1$, and write

$$
\begin{aligned}
\int L_{m-1}(x, y) d \mu(y)= & \int_{B(x,|x| / 2)} L_{m-1}(x, y) d \mu(y) \\
& +\int_{R^{n-B(x,|x| / 2)}} L_{m-1}(x, y) d \mu(y)=L^{\prime}(x)+L^{\prime \prime}(x)
\end{aligned}
$$

Since $\lim _{r \downarrow 0} r^{-m} h(2 r) k(r) \mu(B(0,4 r))=0$ by (7), Lemma 5 implies that $|x|^{-m}$. $h(|x|) L^{\prime}(x)$ tends to zero as $x \rightarrow 0$ except for x in a set which is k-log semi-thin at 0 . What remains is to prove that $|x|^{-m} h(|x|) L^{\prime \prime}(x)$ tends to zero as $x \rightarrow 0$. For this we deal only with the case $m=1$, because the case $m \geqq 2$ can be proved similarly.

Let $m=1$. By Lemma 2,

$$
\begin{aligned}
|x|^{-1} h(|x|)\left|L^{\prime \prime}(x)\right| \leqq & |x|^{-1} h(|x|) \int_{B(0,2|x|)} \log \left(2+\frac{|x|}{|y|}\right) d \mu(y) \\
& + \text { const. } h(|x|) \int_{R^{n-B(0,2|x|)}}|y|^{-1} d \mu(y) \\
= & I_{1}(x)+\text { const. } I_{2}(x)
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1}(x) & \leqq \text { const. }|x|^{-1} h(|x|)\left\{\mu(B(0,2|x|))+\int_{0}^{2|x|} \mu(B(0, s)) s^{-1} d s\right\} \\
& \leqq \text { const. }|x|^{-1} h(|x|)\left\{\mu(B(0,2|x|))+\varepsilon(\delta) \int_{0}^{2|x|} \frac{d s}{\tilde{h}(s)}\right\} \\
& \leqq \text { const. }\left\{|x|^{-1} h(|x|) \mu(B(0,2|x|))+\varepsilon(\delta) h(|x|) \int_{0}^{2|x|} \frac{d s}{\tilde{h}(s)(|x|+s)}\right\} \\
& \leqq \text { const. }\left\{|2 x|^{-1} \tilde{h}(2|x|) \mu(B(0,2|x|))+M \varepsilon(\delta)\right\}
\end{aligned}
$$

whenever $0<2|x|<\delta$. Similarly,

$$
\begin{aligned}
I_{2}(x) & \leqq h(|x|)\left\{\int_{R^{n-B(0, \delta)}}|y|^{-1} d \mu(y)+\delta^{-1} \mu(B(0, \delta))+\varepsilon(\delta) \int_{2|x|}^{\delta} \frac{d s}{\tilde{h}(s) s}\right\} \\
& \leqq h(|x|)\left\{\int_{R^{n-B(0, \delta)}}|y|^{-1} d \mu(y)+\delta^{-1} \mu(B(0, \delta))\right\}+2 M \varepsilon(\delta)
\end{aligned}
$$

These yield that $\lim _{x \rightarrow 0}|x|^{-1} h(|x|) L^{\prime \prime}(x)=0$. Thus we conclude the proof of Theorem 5.

Remark. The set E in Theorem 5 can be taken to satisfy

$$
\begin{equation*}
\lim _{i \rightarrow \infty} H\left(2^{-i}\right) k\left(2^{-i}\right) \sum_{j=i}^{\infty} \frac{C\left(E_{j}^{\prime}\right)}{H\left(2^{-j+1}\right)}=0 \tag{9}
\end{equation*}
$$

where $H(r)=r^{-m} h(r)$. In fact, take a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty, \lim _{j \rightarrow \infty} a_{j} H\left(2^{-j+1}\right) k\left(2^{-j+1}\right) \mu\left(B\left(0,2^{-j+2}\right)\right)=0$ and

$$
\sum_{j=i}^{\infty} a_{j} \mu\left(B_{j}\right) \leqq 2 a_{i} \sum_{j=i}^{\infty} \mu\left(B_{j}\right) \quad \text { for each } \quad i
$$

where B_{j} are defined as in the proof of Lemma 1 ; this is possible as will be shown in the Appendix. As in the proof of Lemma 1, define E_{j} with h replaced by H and $E=\cup_{j=1}^{\infty} E_{j}$. It is easy to see that E satisfies (9).

The next proposition shows that (9) gives a best possible condition as to the size of E, in case $H(2 r) \leqq$ const. $H(r)$.

Proposition 1. Let h be as in Theorem 5 and define H as above. If a set E in R^{n} satisfies (9), then there exists a nonnegative measure μ on R^{n} satisfying (1), $\lim _{r \downarrow 0} H(r) k(r) \mu(B(0, r))=0$ and

$$
\lim _{x \rightarrow 0, x \in E} H(2|x|) \int L_{m-1}(x, y) d \mu(y)=\infty
$$

Proof. We assume that $C\left(E_{j}^{\prime}\right)>0$ for each j. By definition of $C(\cdot)$, for each j we can find a nonnegative measure μ_{j} such that $\mu_{j}\left(R^{n}-B\left(0,2^{-j+2}\right)\right)=0$, $\mu_{j}\left(B\left(0,2^{-j+2}\right)\right)<2 C\left(E_{j}^{\prime}\right)$ and

$$
\int \log \frac{2^{-j+3}}{|x-y|} d \mu_{j}(y) \geqq 1 \quad \text { for every } \quad x \in E_{j}
$$

where $E_{j}=E \cap B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right)$. Take a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty$,

$$
\lim _{i \rightarrow \infty} a_{i} H\left(2^{-i}\right) k\left(2^{-i}\right) \sum_{j=i}^{\infty} \frac{C\left(E_{j}^{\prime}\right)}{H\left(2^{-j+1}\right)}=0
$$

and

$$
\sum_{j=i}^{\infty} a_{j} \frac{C\left(E_{j}^{\prime}\right)}{H\left(2^{-j+1}\right)} \leqq 2 a_{i} \sum_{j=i}^{\infty} \frac{C\left(E_{j}^{\prime}\right)}{H\left(2^{-j+1}\right)} \quad \text { for each } i
$$

(see Lemma 6 in Appendix). Denote by μ_{j}^{\prime} the restriction of μ_{j} to the set $B_{j}=$ $B\left(0,2^{-j+2}\right)-B\left(0,2^{-j-1}\right)$, and define a nonnegative measure μ by

$$
\mu=\sum_{j=1}^{\infty} \frac{a_{j}}{H\left(2^{-j+1}\right)} \mu_{j}^{\prime}
$$

Let i be a positive integer. Then we see that

$$
\begin{aligned}
H\left(2^{-i}\right) k\left(2^{-i}\right) \mu\left(B\left(0,2^{-i}\right)\right) & \leqq H\left(2^{-i}\right) k\left(2^{-i}\right) \sum_{j=i}^{\infty} \frac{a_{j}}{H\left(2^{-j+1}\right)} \mu_{j}^{\prime}\left(B_{j}\right) \\
& \leqq 4 a_{i} H\left(2^{-i}\right) k\left(2^{-i}\right) \sum_{j=i}^{\infty} \frac{C\left(E_{j}^{\prime}\right)}{H\left(2^{-j+1}\right)} \\
& \longrightarrow 0 \quad \text { as } i \longrightarrow \infty
\end{aligned}
$$

so that $\lim _{r \downarrow 0} H(r) k(r) \mu(B(0, r))=0$.
On the other hand, if $x \in E_{j}$, then

$$
\begin{aligned}
& H(2|x|) \int_{B_{j}} \log \frac{2^{-j+3}}{|x-y|} d \mu(y) \\
& \quad \geqq 2^{-m} a_{j}\left\{1-4(\log 2) \mu_{j}\left(B\left(0,2^{-j-1}\right)\right)\right\} \longrightarrow \infty \quad \text { as } j \longrightarrow \infty
\end{aligned}
$$

Since $\lim _{r \downarrow 0} H(r) \mu(B(0, r))=0$,

$$
\lim _{j \rightarrow \infty} \sup _{x \in E_{j}} H(2|x|) \int_{B_{j}-B(x,|x| / 2)} \log \frac{|y|}{|x-y|} d \mu(y)=0
$$

and

$$
\lim _{j \rightarrow \infty} \sup _{x \in E_{j}} H(2|x|) \Sigma_{1 \leqq|\lambda| \leqq m-1} \int_{B(x,|x| / 2)} \frac{x^{\lambda}}{\lambda!}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right](-y) d \mu(y)=0
$$

Hence it follows that

$$
\lim _{x \rightarrow 0, x \in E} H(2|x|) \int_{B(x,|x| / 2)} L_{m-1}(x, y) d \mu(y)=\infty
$$

in case $m \geqq 1$. This also holds in case $m=0$ on account of (8). Noting that $h(2 r)$ satisfies all the conditions on h in Theorem 5, we derive

$$
\lim _{x \rightarrow 0} H(2|x|) \int_{R^{n-B(x,|x| / 2)}} L_{m-1}(x, y) d \mu(y)=0,
$$

in view of the proof of Theorem 5. Thus $\lim _{x \rightarrow 0, x \in E} H(2|x|) \int L_{m-1}(x, y) d \mu(y)=\infty$.
By Theorem 5 we can establish the following result.
Proposition 2. Let h be as in Theorem 5, and μ be a nonnegative measure on R^{n} satisfying (1). Then the following statements are equivalent:
(i) There exists a set E in R^{n} which is logarithmically semi-thin at x^{0} and satisfies

$$
\lim _{x \rightarrow x^{0}, x \in R^{n-E}} h\left(\left|x-x^{0}\right|\right) L \mu(x)=0
$$

(ii) There exists a sequence $\left\{x^{(j)}\right\}$ in R^{n} such that $x^{(j)} \rightarrow x^{0}$ as $j \rightarrow \infty$, $\left\{\left|x^{(j)}-x^{0}\right| /\left|x^{(j+1)}-x^{0}\right|\right\}$ is bounded and

$$
\lim _{j \rightarrow \infty} h\left(\left|x^{(j)}-x^{0}\right|\right) L \mu\left(x^{(j)}\right)=0 .
$$

(iii) $\lim _{r \downarrow 0} h(r)\left(\log r^{-1}\right) \mu\left(B\left(x^{0}, r\right)\right)=0$.

Proof. Without loss of generality, we may assume that $x^{0}=0$. The implication (iii) \rightarrow (i) follows readily from Theorem 5 .
(i) \rightarrow (ii): Let $B=B(0,1)$. Then $B_{j}^{\prime}=B(0,2)-B(0,1)$ and $\lim _{j \rightarrow \infty} j C\left(B_{j}^{\prime}-\right.$ $\left.E_{j}^{\prime}\right)=\infty$. Hence we can find a sequence $\left\{x^{(j)}\right\}$ such that $x^{(j)} \in B\left(0,2^{-j+1}\right)-$ $B\left(0,2^{-j}\right)-E$ for large j. This sequence satisfies all the conditions in (ii).
(ii) \rightarrow (iii): Let $\left\{x^{(j)}\right\}$ be a sequence in (ii). Then one notes that

$$
\begin{aligned}
& h\left(\left|x^{(j)}\right|\right)\left(\log \frac{1}{\left|x^{(j)}\right|}\right) \mu\left(B\left(0,\left|x^{(j)}\right|\right)\right) \\
& \quad \leqq h\left(\left|x^{(j)}\right|\right) \int_{B\left(0,\left|x^{(j)}\right|\right)} \log \frac{2}{\left|x^{(j)}-y\right|} d \mu(y) \\
& \quad \leqq h\left(\left|x^{(j)}\right|\right) \int_{B(0,1)} \log \frac{2}{\left|x^{(j)}-y\right|} d \mu(y) \\
& \quad \longrightarrow 0 \text { as } j \longrightarrow \infty .
\end{aligned}
$$

Take $M>1$ such that $\left|x^{(j)}\right| \leqq M\left|x^{(j+1)}\right|$ for each j. Then $\left(0, M\left|x^{(1)}\right|\right] \subset$ $\cup_{j=1}^{\infty}\left[M^{-1}\left|x^{(j)}\right|, M\left|x^{(j)}\right|\right]$. If $M^{-1}\left|x^{(j)}\right| \leqq r \leqq M\left|x^{(j)}\right|<1$, then

$$
\begin{aligned}
& h\left(M^{-1} r\right)\left(\log M r^{-1}\right) \mu\left(B\left(0, M^{-1} r\right)\right) \\
& \quad \leqq \text { const. } h\left(\left|x^{(j)}\right|\right)\left(\log \frac{1}{\left|x^{(j)}\right|}\right) \mu\left(B\left(0,\left|x^{(j)}\right|\right)\right) \longrightarrow 0 \quad \text { as } \quad j \longrightarrow \infty,
\end{aligned}
$$

from which (iii) follows readily. The proof in now complete.
For similar results on semi-fine limits of Riesz potentials, see Mizuta [8; Theorems 2 and $\left.2^{\prime}\right]$.

Remark. Let $\tilde{h}(r)$ be nonincreasing on the interval $(0,1)$ and define

$$
E=\left\{x \in R^{n} ; \lim \sup _{r \downarrow 0} \tilde{h}(r) \mu(B(x, r))>0\right\}
$$

for a nonnegative measure μ on R^{n}. If $\mu(E)=0$, then $\Lambda_{\hbar^{-1}}(E)=0$, where $\Lambda_{\hbar^{-1}}$ denotes the Hausdorff measure with respect to the measure function \tilde{h}^{-1}; in particular, if μ is absolutely continuous with respect to the n-dimensional Lebesgue measure and $\lim _{r \downarrow 0} r^{n} \tilde{h}(r)=0$, then $\Lambda_{h^{-1}}(E)=0$.

5. Logarithmic potentials of functions in L^{p}

For a nonnegative measurable function f on R^{n} such that

$$
\begin{equation*}
\int[\log (1+|y|)] f(y) d y<\infty \tag{10}
\end{equation*}
$$

we define

$$
L f(x)=\int L(x-y) f(y) d y
$$

If in addition $f \in L^{p}\left(R^{n}\right), p>1$, then $L f$ is continuous on R^{n}.
Proposition3. Let m be a positive integer smaller than n, and f be a nonnegative function in $L^{p}\left(R^{n}\right)$ satisfying (10). Then there exists a set E in R^{n} such that $B_{n-m, p}(E)=0$ and for any $x^{0} \in R^{n}-E$,

$$
\begin{equation*}
\lim _{x \rightarrow x^{0}}\left|x-x^{0}\right|^{-m} \int L_{m}(x, y) f(y) d y=0 \tag{11}
\end{equation*}
$$

Here $B_{\alpha, p}$ denotes the Bessel capacity of index (α, p) (see [4]).
Proof of Proposition 3. Consider the sets

$$
\begin{aligned}
& E_{1}=\left\{x ; \int|x-y|^{-m} f(y) d y=\infty\right\}, \\
& E_{2}=\left\{x ; \lim \sup _{r+0} r^{(n-m) p-n} \int_{B(x, r)} f(y)^{p} d y>0\right\}
\end{aligned}
$$

Then, in view of [4; Theorem 21], $B_{n-m, p}\left(E_{1} \cup E_{2}\right)=0$. We have only to show that for $x^{0} \in R^{n}-E_{1}-E_{2}$,

$$
\lim _{x \rightarrow x^{0}}\left|x-x^{0}\right|^{-m} \int_{B\left(x,\left|x-x^{0}\right| / 2\right)} \log \frac{\left|x-x^{0}\right|}{|x-y|} f(y) d y=0
$$

(see the proof of Remark 2 in Section 3). For this, without loss of generality, we may assume that $x^{0}=0$. By Hölder's inequality,

$$
\begin{aligned}
& |x|^{-m} \int_{B(x,|x| / 2)} \log \frac{|x|}{|x-y|} f(y) d y \\
& \quad \leqq|x|^{-m}\left\{\int_{B(x,|x| / 2)}\left(\log \frac{|x|}{|x-y|}\right)^{p^{\prime}} d y\right\}^{1 / p^{\prime}}\left\{\int_{B(x,|x| / 2)} f(y)^{p} d y\right\}^{1 / p} \\
& \quad \leqq \text { const. }\left\{|x|^{(n-m) p-n} \int_{B(0,2|x|)} f(y)^{p} d y\right\}^{1 / p},
\end{aligned}
$$

which tends to zero as $x \rightarrow 0$, where $1 / p+1 / p^{\prime}=1$.
In the same way we can prove the next result (see also [7; Theorem 3 and its corollary]).

Proposition 4. If f is as above, then (11) with $m=n$ holds for almost every $x^{0} \in R^{n}$.

6. Fine limits at infinity of logarithmic potentials

We say that a set E in R^{n} is logarithmically thin at infinity if $E^{*}=\left\{x /|x|^{2}\right.$; $x \in E\}$ is logarithmically thin at 0 . Then it is easy to see that E is logarithmically thin at infinity if and only if

$$
\sum_{j=1}^{\infty} j C\left(E_{-j}^{\prime}\right)<\infty, \quad E_{-j}^{\prime}=\left\{x \in B(0,2)-B(0,1) ; 2^{j} x \in E\right\}
$$

By inversion we can establish the next result.
Theorem A^{\prime}. Let μ be a nonnegative measure on R^{n} satisfying (1). Then the following statements hold:
(i) There exists a set E in R^{n} which is logarithmically thin at infinity and satisfies

$$
\lim _{|x| \rightarrow \infty, x \in R^{n}-E}\left[L \mu(x)+\mu\left(R^{n}\right) \log |x|\right]=0
$$

(ii) There exists a set E in R^{n} which is logarithmically thin at infinity and satisfies

$$
\lim _{|x| \rightarrow \infty, x \in R^{n-E}}[\log |x|]^{-1} \int \tilde{L}_{0}(x, y) d \mu(y)=-\mu\left(R^{n}\right)
$$

where $\tilde{L}_{0}(x, y)=L(x-y)$ if $|y| \leqq 1$ and $\tilde{L}_{0}(x, y)=L(x-y)-L(y)$ if $|y|>1$.
Remark 1. Let μ be a nonnegative measure on R^{n}. Then $\int\left|\tilde{L}_{0}(x, y)\right| d \mu(y)$ $<\infty$ for almost every x if and only if $\int(1+|y|)^{-1} d \mu(y)<\infty$ on account of [9; Lemma 4].

REMARK 2. Let μ be a nonnegative measure on R^{n} such that $L \mu(0)$ is finite, and define μ^{*} by setting $\mu^{*}\left(A^{*}\right)=\mu(A)$ for $A \subset R^{n}$, where $A^{*}=\left\{x^{*}=x /|x|^{2} ; x \in A\right\}$. Then

$$
L \mu^{*}\left(x^{*}\right)=L \mu(x)+\mu\left(R^{n}\right) \log |x|-L \mu(0)
$$

We say that a set E in R^{n} is logarithmically semi-thin at infinity if $\lim _{j \rightarrow \infty}$ $j C\left(E_{-j}^{\prime}\right)=0$. By Proposition 2 we have the following result.

Proposition 2^{\prime}. Let h be a nonincreasing and positive function on $(0, \infty)$ such that

$$
\int_{2}^{\infty} \frac{d t}{h(t)(\log t) t(t+r)} \leqq \text { const. } \frac{1}{r h(r)} \quad \text { for any } \quad r>1
$$

Let μ be a nonnegative measure on R^{n} with finite total mass. Then the following statements are equivalent:
(i) There exists a set E in R^{n} which is logarithmically semi-thin at infinity such that

$$
\lim _{|x| \rightarrow \infty, x \in R^{n-E}} h(|x|)\left\{\int \tilde{L}_{0}(x, y) d \mu(y)+\mu\left(R^{n}\right) \log |x|\right\}=0
$$

(ii) There exists a sequence $\left\{x^{(j)}\right\}$ in R^{n} such that $\lim _{j \rightarrow \infty}\left|x^{(j)}\right|=\infty$, $\left\{\left|x^{(j+1)}\right| /\left|x^{(j)}\right|\right\}$ is bounded and

$$
\lim _{j \rightarrow \infty} h\left(\left|x^{(j)}\right|\right)\left\{\int \tilde{L}_{0}\left(x^{(j)}, y\right) d \mu(y)+\mu\left(R^{n}\right) \log \left|x^{(j)}\right|\right\}=0
$$

(iii) $\quad \lim _{r \downarrow 0} h(r)(\log r) \mu\left(R^{n}-B(0, r)\right)=0$.

Theorems 1 and 2 can be reformulated similarly; but we do not go into detail.

Finally, corresponding to Theorems 3 and 5, we give generalizations of Theorems 1 and 2 in [9].

THEOREM 3^{\prime}. Let h and k^{*} be nondecreasing positive functions on $(0, \infty)$ such that
(a) $r^{-1} h(r)$ is nonincreasing on $(0, \infty)$ and $\lim _{r \rightarrow \infty} r^{-1} h(r)=0$;
(b) $k^{*}(2 r) \leqq M k^{*}(r)$ for $r>0$;
(c) $\frac{s}{r} \log \frac{r}{s} \leqq M \frac{\tilde{h}(r)}{h(r)} \quad$ whenever $0<s<r$,
where $\tilde{h}=h k^{*}$ and M is a positive constant independent of r and s. Let μ be a nonnegative measure on R^{n} satisfying

$$
\int|y|^{-m-1} \tilde{h}(|y|) d \mu(y)<\infty
$$

for a nonnegative integer m. Then there exists a set E in R^{n} having the following properties:
(i) $\lim _{|x| \rightarrow \infty, x \in R^{n-E}}|x|^{-m-1} h(|x|) \int \tilde{L}_{m}(x, y) d \mu(y)=0 ;$
(ii) $\sum_{j=1}^{\infty} k^{*}\left(2^{j}\right) C\left(E_{-j}^{\prime}\right)<\infty$.

Here $\tilde{L}_{m}(x, y)=L(x-y)$ if $|y|<1$ and $\tilde{L}_{m}(x, y)=L(x-y)-\Sigma_{|\lambda| \leqq m} \frac{x^{\lambda}}{\lambda!}\left[\left(\frac{\partial}{\partial x}\right)^{\lambda} L\right]$ $(-y)$ if $|y| \geqq 1$.

Theorem 5'. Let h and k^{*} be as above. Assume further that
(d) $\int_{1}^{\infty} \frac{d t}{\tilde{h}(t)(t+r)} \leqq \frac{M}{h(r)}$ for $r>1$,
where M is a positive constant independent of r. If μ is a nonnegative measure on R^{n} satisfying $\lim _{r \downarrow 0} r^{-m-1} \tilde{h}(r) \mu(B(0, r))=0$ for a nonnegative integer m, then there exists a set E in R^{n} having (i) of Theorem 3^{\prime} and
(ii) $\lim _{j \rightarrow \infty} k^{*}\left(2^{j}\right) C\left(E_{-j}^{\prime}\right)=0$.

Appendix

Here we prove the next elementary fact.
Lemma 6. Let $\left\{b_{j}\right\},\left\{c_{j}\right\}$ be sequences of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty$ and $\sum_{j=1}^{\infty} c_{j}<\infty$. Then there exists a sequence $\left\{a_{j}\right\}$ of positive numbers such that $a_{j} \leqq b_{j}$ for each $j, \lim _{j \rightarrow \infty} a_{j}=\infty$ and

$$
\sum_{j=k}^{\infty} a_{j} c_{j} \leqq 2 a_{k} \sum_{j=k}^{\infty} c_{j} \quad \text { for each } \quad k .
$$

Proof. We may assume that $b_{j} \leqq b_{j+1} \leqq p b_{j}$ for each j, where $1<p<2$. For given $q>0$ we can find a sequence $\left\{k_{i}\right\}$ of nonnegative integers such that $k_{0}=0, k_{1}=1, k_{i}<k_{i+1}$ for $i=1,2, \ldots$ and

$$
\sum_{j=k_{i+1}+1}^{\infty} c_{j} \leqq q \sum_{j=k_{i}+1}^{k_{i+1}} c_{j} \quad \text { for } \quad i=1,2, \ldots
$$

Define $a_{j}=b_{i}$ if $k_{i}<j \leqq k_{i+1}$. For $k_{i}<k \leqq k_{i+1}$ we have

$$
\begin{aligned}
\sum_{j=k}^{\infty} a_{j} c_{j} & =\sum_{j=k}^{k_{i+1}+1} a_{j} c_{j}+\sum_{\ell=i}^{\infty}\left(\sum_{j=k_{\ell+1}+1}^{k \ell+2} a_{j} c_{j}\right) \\
& =b_{i} \sum_{j=k}^{k_{i+1}} c_{j}+\sum_{\ell=i}^{\infty}\left(b_{\ell+1} \sum_{j=k_{\ell+1}+1}^{k_{\ell \ell+}} c_{j}\right) \\
& \leqq b_{i} \sum_{j=k}^{k_{i+1}} c_{j}+\left(\sum_{\ell=i}^{\infty}(p q)^{\ell-i}\right) b_{i+1} \sum_{j=k_{i+1}+1}^{k_{i}+2} c_{j} \\
& \leqq \frac{p}{1-p q} b_{i} \sum_{j=k}^{\infty} c_{j}=\frac{p}{1-p q} a_{k} \sum_{j=k}^{\infty} c_{j},
\end{aligned}
$$

if $p q<1$. Hence if q is chosen sufficiently small, then $\left\{a_{j}\right\}$ satisfies all the conditions in the lemma.

References

[1] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer, Berlin•Heidelberg•New York, 1971.
[2] A. M. Davie and B. $\begin{aligned} & \text { ksendal, Analytic capacity and differentiability properties of }\end{aligned}$ finely harmonic functions, Acta Math. 149 (1982), 127-152.
[3] B. Fuglede, Fonctions BLD et fonctions finement surharmoniques, Séminaire de Théorie du Potentiel, No. 6, Lecture Notes in Math. 906, Springer, Berlin•Heidelberg. New York, 1982.
[4] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[6] Y. Mizuta, Fine differentiability of Riesz potentials, Hiroshima Math. J. 8 (1978), 505-514.
[7] Y. Mizuta, Semi-fine limits and semi-fine differentiability of Riesz potentials of functions in L^{p}, Hiroshima Math. J. 11 (1981), 515-524.
[8] Y. Mizuta, On semi-fine limits of potentials, Analysis 2 (1982), 115-139.
[9] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math. Soc. 27 (1983), 97-105.
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

> Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

