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1. Introduction and statement of results

Let JRΠ (n^2) be the n-dimensional euclidean space. For a nonnegative
(Radon) measure μ on Rn, we set

if the integral exists at x. We note here that Lμ is not identically — oo if and only if

(1)

Denote by B(x, r) the open ball with center at x and radius r. For £cΰ(0,
2), define

where the infimum is taken over all nonnegative measures μ on Rn such that Sμ

(the support of μ) c J3(0, 4) and

log-μ^zjj-dvty) ^ i f o r e v e ry * e E -

If £c5(x°, 2), then we set

C(£) = C({x-x°;xe£}).

One notes here that this is well defined, i.e., independent of the choice of x°.
Throughout this paper let k be a positive and nonincreasing function on the

interval (0, oo) such that

fe(r) ^ Kk(2r) for any r, 0 < r < 1,

where K is a positive constant independent of r. A set E in £ π is said to be fc-
logarithmically thin, or simply fc-log thin, at x° e Rn if

where E'j = {xeB(x°9 2)-B(x°9 1); jc° + 2-^x-x o )e£} . If /c(r)=logr"1 for
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r sufficiently small, then a set E which is fc-log thin at x° is called simply logarith-
mically thin at x°. Then the following result is well known (see [1 Theorem IX,
7] for n=2) :

THEOREM A. Let x° e Rn and μ be a nonnegative measure on Rn satisfying

(i).
(i) There exists a set E in Rn which is logarithmically thin at x° and

satisfies

limx^xotX€Rn-E Lμ(x) = Lμ(x°).

(ii) There exists a set E in Rn which is logarithmically thin at x° and
satisfies

Our first aim is to give a generalization of Theorem A.

THEOREM 1. Let h be a nondecreasing and positive function on the interval
(0, oo) such that h(2r)^Mh(r) and

'^ \ =o ΛWαogrOί/ + Z) = Kr)

for any r, 0 < r < l , where M is a positive constant independent of r. Let μ be a

nonnegative measure on Rn satisfying (1),

and

where /ϊ(0) = oo and h(r) = h(r)k(r) for r>0. Then there exists a set E in Rn

which is k-log thin at x° and satisfies

REMARK 1. For δ>0, define

- 1 ) -* if

δV " Gog 2)-* if r > 2 ~ 1 .

Then hx satisfies all the conditions on h in Theorem 1.

REMARK 2. If h(r)=Gog r"1)"1 and fc(r)=logr~1 for r sufficiently small,
then Theorem 1 implies Theorem A, (ii).
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Hereafter, when a positive function h on (0, oo) is given, we let β be as in

Theorem 1.

THEOREM 2. Let h be a nonincreasing and positive function on the interval

(0, oo) such that rh(r) is nondecreasing on (0, oo) and l im r l 0 rft(r) = 0. Suppose

furthermore h(r)log(r/s)^Mfi(s) whenever 0 < s < r ^ l , where M is a positive

constant independent of r and s. Let μ be a nonnegative measure on Rn satis-

fying (1) and

^fί(\x<>-y\)dμ(y)<oo.

Then there exists a set E in Rn which is k-log thin at x° and satisfies

REMARK. If ft(r) = 1 and fc(r) = log r"1 for r sufficiently small, then Theorem
2 yields Theorem A, (i).

Fuglede [3] discussed fine differentiability properties of logarithmic poten-

tials in the plane R2. To state his result, we let L(x) = log(l/|x|) and set for a

nonnegative integer m,

Lm(x, y) = L(x-y) - ΣWSm

 {X~λf

where λ=(A1,..., λn) is a multi-index with length |A|=λ1H \-λm A!=A1! λn!,

x λ = x ^ ..χj» and

THEOREM B (cf. Fuglede [3; Notes 3]). Let μ be a nonnegative measure on

R2 satisfying

(3) J|x°~3;|-Mog(2 + |x 0-y|- 1)dμω < oo,

then there exists a set E in R2 which is (logarithmically) thin at x° and satisfies

(4) UiϊWjJC6κ,,_£ \x-x°\-ι\ Li(*, y)dμ(y) = 0.

For a proof of Theorem B, see Da vie and Θksendal [2; Theorem 6]. Our

second aim is to generalize Theorem B, and in fact to show, under a condition

weaker than (3), that (4) holds for a set E which will be fe-log thin at x° with an

appropriate function k.

THEOREM 3. Let h be a nonincreasing and positive function on the interval

(0, oo) such that rh(r) is nondecreasing on (0, oo) and l im r i 0 r/ι(r)=0. Let μ be

a nonnegative measure on Rn satisfying (1) and
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for a positive integer m smaller than n. Then there exists a set E in Rn which is

k-log thin at x° and satisfies

^m(x, y)dμ(y) = 0.

REMARK. In case n=2 and m = 1, if we take h(r) = 1 and fc(r) = log (2 + r~*),

then Theorem 3 coincides with Theorem B.

In case m = n, we shall establish the following result.

THEOREM 4. Let μ be a nonnegative measure on Rn which satisfies (1) and

the following two conditions:

(a) limriOr-n\μ-aΛn\(B(x°, r)) - 0 for some a,

where An denotes the n-dimensional Lebesgue measure;

(b) Aλ = limri0 \ (-5—) L \(χ0 -y)dμ(y) exists and is finite for
jR»-B(x°,r)L\OX / J

any λ with length n.
Then there exists a set E in Rn which has the following properties:

(i) l i m , ^ . x β Λ » - £ | x - ^

(ii) l i m ^ . C{E'j) - 0,

where Cλ = Aλ + aBλ for \λ\=n and Bλ will be defined later (in Lemma 4).

One may compare these theorems with fine and semi-fine differentiabilities of

Riesz potentials investigated by Mizuta [6] and [7].

REMARK. If μ is a nonnegative measure on JR" with finite total mass, then

(a) and (b) in Theorem 4 hold for almost every x°eRn (cf. [10; Chap. Ill, 4.1]).

We say that a set E in # π is fc-log semi-thin at x° if

= 0.

The set E in Theorem 4 is fc-log semi-thin at x° with fe = l. The following the-

orem gives the behavior of logarithmic potentials in terms of fc-log semi-thin sets.

THEOREM 5. Let h be a nondecreasing and positive function on the interval
(0, oo) such that l im r i 0 h(r) = 0 and

Γ1 ds M f A

where M is a positive constant independent ofr. Let m be a nonnegative integer

and μ be a nonnegative measure on Rn satisfying (1) and



Study of the behavior of logarithmic potentials 231

Then there exists a set E in Rn which is k-log semi-thin at x° and satisfies

lim^xo)JC6Rn_£ |x-x<>|-Λ(|x-x°|) J L ^ x , y)dμ(y) = 0,

where L_t(x, y) = L(x-y).

In the final section we shall be concerned with the behavior at infinity of

logarithmic potentials.

2. Proof of Theorem 1

We first prepare the following lemma, which will be used frequently.

LEMMA 1. Let h be a positive Borel function on (0, oo) such that

(5) h(s) ^ Mh(r) whenever 0 < r/2 ^ s ^ 2r ^ 1,

where M is a positive constant independent of r and s. If μ is a nonnegative

measure on Rn such that

then there exists a set E in Rn which is k-log thin at 0 and satisfies

timx^xβRn-Eh(\x\)\ • log lίl dμ(y)=0.:

PROOF. Take a sequence {aj} of positive numbers such that l im^^ aj = oo

and Σf=i aj [ K(\y\)dμ(y)<ao, where Bj = B(0, 2-J+2)-B(0, 2-J-1). Consider

h tthe sets

for j = l,2,..., and E = \J?=1EP where Aj = B(092-J+1)-B(0,2--i). By the

assumption on h9 one sees easily that

k(2~J)C(E'j) g ajh(2-J)k(2-J)μ(Bj) g const. α, \ K(\y\)dμ(y).
JBj

Hence E is fc-log thin at 0. Furthermore,

log.1Jϊ!-r dμ{y)



232 Yoshihiro MIZUTA

^ const, lim s u p , ^ supx e Λ j>£ j A(2^) ^ log J ^

^ const, lim supjto, a]1 = 0,

and hence Hmx^OtXeRn.Eh(\x\) [ log J*1 , rf/x(j) = 0.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Without loss of generality, we may assume that x°
is the origin 0. For a nonnegative measure μ on Rn satisfying (1), we write

L(x-y)dμ(y)
/2)

L(x-y)dμ(y) = L'(x) + L"(x).
{y;\χ-y\<\χ\/2)

Note here that L'(x) is finite for any xΦQ. Let

ε(δ) = sup 0 < Γ ^ ft(r)(log r~ i)μ(B(0, r)).

Then by our assumption, lim^ 0 ε(δ)=0. If x, y e B(0, 1/4) and \x - y| ̂  \x\/2 > 0,
then

0 < Ux~y) ύ const.log l

By (2), limriOh(r)=0. Hence we have again by (2),

lim sup^o /ι(|x|)|L'(x)| = lim sup^o K\x\) \ L(x-y)dμ(y)

^ const, lim sup̂ ô KM) ) β Q S log 1^ + 1

S const, lim supx^0 h(\x\){μ(B(09 δfilogiW

4- ^\(B(0, FOXIxl + r)- 1 *! g const. ε(δ)

for δ, 0<5<l/4. This implies that limx_*0 A(|x|)L'(x)=0. Since limx_0

(log \x\)μ(B(x, |x|/2))=0, with the aid of Lemma 1 we can find a set E in Rn which
is fc-log thin at 0 and satisfies

3. Proofs of Theorems 2 and 3

Before giving proofs of Theorems 2 and 3, we recall the next result.



Study of the behavior of logarithmic potentials 233

LEMMA 2 (cf. [9; Lemma 4]). Ifx9yeB(0, 1) and |x-y |^ |x |/2>0, then

when m = 0,, | γ i v

\Lm(x, y)\ ύ const. min(l, -g[ ) x
I W | Γ A m ̂  1.

We shall give only a proof of Theorem 3, since Theorem 2 can be proved
similarly by the use of Lemma 2.

PROOF OF THEOREM 3. We may assume that x°=0. Let μ be a nonnegative
measure on Rn satisfying (1) and

\m\y\)K\y\W(y)< π,

where H(r) = r~mh(r) for r>0. By the assumptions on ft, H satisfies condition (5)
with h replaced by H. We write

\Lm(x,y)dμ(y) = \ Lm(x, y)dμ(y)

, y)dμ(y) + \ Lm(x, y)dμ(y)
)B(0t2\x\)-B(x,\x\/2)

= L\x) + L^x) + Z/"(x).

If >^6KΛ-B(0, 2|x|), then Lemma 2 implies that

|Lm(x, .v)| ̂  const. |x|w+1|j>l~m""1,

so that Lebesgue's dominated convergence theorem gives

<i const, lim sup x^ 0 I^IKI^I) \
JK"-β(0,2

= const, lim sup^o |JC|Λ(|X|) ( \y\"m~ιdμ{y) = 0
jB(0,l)-B(0,2|x|)

since lim r i 0 rh(r) = 0 and rΛ(r)^fc(l)~1sfc(s)fe(s) for 0 < r < s < l .
If yeB(0, 2|x|) and |x-}>|^|x|/2>0, then Lemma 2 implies that

\Lm(x,y)\^ const. |x | m | j | - w .

Hence we obtain

^ const, lim sup^0 KM) \ \y\ "mdμ(y) = 0
VB(0,2|*|)
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since h{r)SKs)^h{2s)^2k(\)-'ίh{2s)k{2s) whenever 0<s<r<l/2.

As to L'", we note that

ύ const. H{\x\) \ log M
)B(X,\X\/2) \χ—y

+ const, ί H(\y\)dμ(y).
jB(x,\x\/2)

The second term of the right hand side tends to zero as x-+0 by the assumption.

In view of Lemma 1, the first term of the right hand side tends to zero as x-^09

xeRn — E, where E is fc-log thin at 0. Thus the proof is complete.

REMARK 1. Theorem 3 is best possible as to the size of the exceptional set.

In fact, if h and iί are as in Theorem 3 and £ is a subset of Rn which is fc-log thin

at x°, then one can find a nonnegative measure μ on Rn with compact support

such that

and
r

•Jx, y)dμ(y) = oo.

REMARK 2. Let / ί b e a nonnegative measure on Rn satisfying (1) and let h

be as in Theorem 3. If \ \x°-y\-mh(\x° — y\)dμ(y)<oo and there exist M, r o > 0

such that

h(\x-x°\)μ(B(x, r))^

for any xeB(x°, r0) and any r, 0<r^ |x-x° | /2 , then E appeared in Theorem 3

can be taken to be an empty set and Lμ is m times differentiable at x°.

To prove this, assume that x° = 0. For the first assertion, in view of the

proof of Theorem 3, it suffices to show that

J ί L = 0.(6) lim^o \x\-mh(\x\) \
JB(X,\

log-JίL
\χ-y\

For <5>0, set ε(δ) = supo<rgδr-mh(r)μ(B(0, r)). If 0<<5<|x|/2, then

\x\-"h(\x\)\

\χ—y\

gj^r dμ(y)
\χ—y\

\x\/2)-B{x,δ)
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^ const. | ( - ^ ) m l o g M + \x\-"h(\x\)μ(B(0,2\x\))lθf>ψ}

^ const. {(-A-)™ + ε(2|x|)| log M .

Since lim J C_o

ε(2|x|)=0, for x sufficiently close to 0 we can choose <5>0 so that

Since limx_>0 (<5/|x|) = 0, we derive (6).

To prove the second assertion, we first note that

\ \x-y\~m+1dμ(y) < oo for every x e £ ( 0 , r 0 ) ,

and hence Lμ is m — 1 times differentiable at x e B(0, r0) and

for any x e # ( 0 , r 0) and any multi-index λ with |λ| = m — 1 . As in the proofs of

Theorem 1 and Remark 4 in [6; Section 2], we can show that

l im^o | X | - 1 Λ ( | X | ) { M A W - W Λ ( O ) - Σ ? = I α Λ } = 0 ,

where x = (x l 5..., xπ) and uλ = {djdx)λLμ for a multi-index A with length m —1 and

α = \ -=—(-=—j L \( — y)dμ(y). This implies that Lμ is m times differentiable

at 0.

4. Proof of Theorem 4

We first recall the following results.

LEMMA 3 (cf. [7; Lemma 1]). Let μ be a nonnegative measure on Rn such

that l im r l 0 r*~nμ(B(0, r)) — 0 far some real number α. Then the following

statements hold:

(i) lfβ<09thenlimriorβ[ \y\Λ-^ndμ{y) = 0;
JB(0,r)

(ii) J / n - α + l > 0 and β > 0, then

B(0,ί)

LEMMA 4 (cf. [7; Lemma 4]). Set u(x)=\ L(x-y)dy. Then ue
JB(X°SI)

C°°(B(x0, 1)). Moreover, if λ is a multi-index with length ή? then
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where λ = λ' + λ" and |Λ'| = 1.

Now we prove Theorem 4 by assuming that x°=0. Let μ be a nonnegative
measure on Rn satisfying (1), (a) and (b) with x°=0. For xeB(0, 1/2)-{0},
we write

Ln(x, y)dμ(y)
Rn-B(0,l)

Lm(x9y)dlμ-aΛΛ ](y)
B(0,l)-B(0,2\x\)

B(O,2|Λ|)-B(O,Γ)

a\x\-»\limri0 { Ln(x, y)dy -

B(xt\x\/2)

= ttx(Λ:) + u2(x) - ι/3(x) + αt/4(x) + us(x) + u6(x).

lfyeRn-B(0, 2|x|), then \Ln(x, j;)|^const. |x|n + 1 | ); |-n-1 and hence

lim^oUiO) = 0.

For simplicity, set v = | μ - aΛn\. Then lim r i 0 r""v(β(0, r))=0 by (a), and we have

lim sup^o |w2(*)l ^const, lim sup^o 1*1 \ (1*1 + \y\Yn~ιdv(y) = 0
JB(O,I)

because of Lemma 3, (ii).
If 0 < IA| < n, then Lemma 3, (i) yields

B(0,2|JC|)

^ const. limsupΛ-,n | * I | A | ~ W \ \y\~]λ]dv(y) = 0.
JB(0,2|JC|)

If μ| = n, then, by [5; Lemma 3.1], ί \(dYι\-y)dy=Q for any
JB(O,Γ)-B(O,S) IN OX / J
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r, s>0. Hence by the definition of Aλ9

{ jB(0t2\x\)-B(0,r)L\VX / J )

Therefore, lim^o w3(x)=0.

Since u{x) = ( L{x - y)dy e C°°(J5(0, 1)) and
JB(O,1)

in view of Lemma 4, we see that limx_,0 u4(x)=0.

As to M5, we obtain

|«5(x)| g const. W

^ const. IAΓI1-" \ \y\~ιdv(y)i
JjB(0,2|*|)

which tends to zero as x-^0 by Lemma 1, (i).

Applying the following Lemma 5 with h(r) = r~n and fc(r) = l, we see that

u6(x) tends to zero as x->0, x e Rn — £, where £ is a set in Rn satisfying (ii) of the

theorem. The proof of Theorem 4 is now complete.

LEMMA 5. Let h be a positive function on (0, oo), and define f>jV=sup

2~~J^r<2~J+1}. If v is a nonnegative measure on Rn such that

lim,.^ bjk(2-J)v(B(09 2^ ' + 2 )-β(0, 2-J-1)) = 0, ίften ίfiβre exisίs α set E in Rn

which is k-log semi-thin at 0 and satisfies

limx^OtXeRn.Eh(\x\) \ log-j-Jίl rfv(^) = 0.

)B(X,\X\/2) \χ-y\

The proof is similar to that of Lemma 1.

REMARK 1. If lim^Όo C(£})=0, then we can find a nonnegative measure

μ on Rn with compact support such that limΓ i 0 r~nμ(J3(0, r))=0 and

= .oo.

REMARK 2. Let /zbea nonnegative meaδure on Rn satisfying (1), (a), (b) and

(c) There exist M, r o > 0 such that μ(B(x, r))^Mrn for any xeB(x°9 r0)

and any r^r0.

Then the set E in Theorem 4 can be taken to be empty and, moreover, Lμ is n
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times differentiable at χ°.

This fact can be proved in the same way as in Remark 2 in Section 3.

5. Proof of Theorem 5

As before we assume that x° = 0. Let μ be a nonnegative measure on Rn

satisfying (1) and

(7) lim l.,or-/ϊ(r)μ(β(0,r)) = 0.

Define ε((5) = supo<^, r-mh(r)μ(B(0, r)). By (7), lim,,0

If m = 0, then

whenever 0<r<δ<l,on account of the assumptions on h and β. Since \ μ(B(0,

s))s~ xds^μ(β(0, r)) log (δ/r), it follows that limsuprU) h(r) (log r-^(B(09 r))^
Mε(<5). Thus

(8) Iimr,0fι(r)(logr^)μ(β(0,r)) = 0.

Then the case m = 0 can be proved in the same way as in Theorem 1 by using
Lemma 5 in place of Lemma 1.

Let m ̂  1, and write

\ Lm_i(x, y)dμ(y) = \ Lm_t(x, y)dμ(y)
) jB(x,\x\/2)

Lm_ x(x, y)dμ(y) = L\x) + L"(x).
B ( | | / 2 )

Since lim r i 0 r~mh(2r)k(r)μ(B(0, 4r)) = 0 by (7), Lemma 5 implies that |x|~m

h(\x\)L'(x) tends to zero as x->0 except for x in a set which is fc-log semi-thin at 0.
What remains is to prove that |x|~mft(|x|)L//(x) tends to zero as x->0. For this we
deal only with the case m = l, because the case m^2 can be proved similarly.

Let m = 1. By Lemma 2,

\x\->h(\x\)\L"(x)\ g 1x1-^(1*

. + const. h(\x\)[ \y\^dμ(y)

= Ix(x) 4- const. I2(x).

Note, that:
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Λ(x) g const. \x\~ih(\x\)\μ(Bφ, 2|x|)) + $*'*'

g const. |x|- ιh(\x\){μ(B(0, 2|x|)) + ε(<5) £ '

g const. {ixl-iAdxIMBCQ, 2|x|)) + ε(δ)h(\x\)

g const. {[2x|~ 1^(2|x|)Λ*(iB(0, 2|x|)) + Mε(<5)}

whenever 0<2|x|<<5. Similarly,

I2{x) <Ξ fc(|x|){ί |j>|" idnOO + 5" V(B(0, ί)) + ε(<5)

ύ K\x\)\\ \y\-idμ(y) + δ-iμ{B{^ δ))\ + 2Mε(δ).

These yield that limx_*0 \x\~ίh(\x\)L"(x) = 0. Thus we conclude the proof of

Theorem 5.

REMARK. The set E in Theorem 5 can be taken to satisfy

(9)

where H(r) = r~mh(r). In fact, take a sequence {dj} of positive numbers such that

= 0 and

Σ?-ι(*ABj)ύ2aiΣ?-ιtiBj) for each i,

where B^ are defined as in the proof of Lemma 1 this is possible as will be shown

in the Appendix. As in the proof of Lemma 1, define Ej with h replaced by H

and E = \Jf=ί Ey It is easy to see that £ satisfies (9).

The next proposition shows that (9) gives a best possible condition as to the

size of £, in case H(2r)^ const. H(r).

PROPOSITION 1. Let h be as in Theorem 5 and define H as above. If a set

E in Rn satisfies (9), then there exists a nonnegative measure μ on Rn satisfying

(1), UmrioH(r)k(r)μ(B(0, r)) = 0 and

l i m ^ o ^ β H(2\x\) J Lw_± (x, y)dμ(y) = oo.

PROOF. We assume that C{E)) > 0 for each j . By definition of C( ), for each

j we can find a nonnegative measure μj such that μj(Rn — B(0, 2" J + 2)) = 0,
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f 2~J+3

) l o g I ^ - ^ I dVj(y) ^ 1 for every χeEj9

where £ , = E n J?(0, 2"/+ 1)-B(0, 2"J). Take a sequence {α;} of positive numbers
such that limy ̂ oo α̂  = oo,

and

Σ7-I aJ m v A ^2α< Σ7-i ^ - Λ n for each i

(see Lemma 6 in Appendix). Denote by μ) the restriction of /ιy to the set 2?,
, 2~J+2)-B(0, 2'J"1), and define a nonnegative measure μ by

Let i be a positive integer. Then we see that

0, 2-0)

0 as i > oo,

so that limr; 0 H(r)k(r)μ(B(0, r)) = 0.

On the other hand, if x e £,., then

H(2\x\)\
JBJBj |Λ J

^ 2 - m α j { l - 4 ( l o g 2 ) | i / B ( 0 , 2"-/-1))} •—• oo as j • oo.

Since limrt 0 H(r)μ(B(0, r))=0,

= 0

and

Hence it follows that
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in case m^ 1. This also holds in case m = 0 on account of (8). Noting that h(2f)

satisfies all the conditions on h in Theorem 5, we derive

lim^o H(2\x\) \ L ^ ί x , y)dμ{y) = 0,

in view of the proof of Theorem 5. Thus \imx_>OxeE H(2\x\) \ Lm-ί (x, y)dμ(y) = oo.

By Theorem 5 we can establish the following result.

PROPOSITION 2. Let h be as in Theorem 5, and μbe a nonnegative measure

on Rn satisfying (1). Then the following statements are equivalent:

( i ) There exists a set E in Rn which is logarithmically semi-thin at x°

and satisfies

n-E h(\x - x°\)Lμ(x) = 0.

(ii) There exists a sequence {xU)} in Rn such that xU)-+x° as j-+oo,

x°|} is bounded and

μ( )) = 0.

(iii) limrXOh(r)(\ogr-i)μ(B(χθ9 r))=0.

PROOF. Without loss o f generality, we may assume that x ° = 0. The

implication (iii) —^(i) follows readily from Theorem 5.

(i)-(ii): Let B=B(0, 1). Then B}=B(0, 2)-B(0, 1) and l im^^ CίJB}-

Ej) = oo. Hence we can find a sequence {x^>} such that x ^ e ^ O , 2~J+1)-

B(0,-2-J)—E for large;. This sequence satisfies all the conditions in (ii).

(ii)->(iii): Let { x o ) } be a sequence in (ii). Then one notes that

9 \x<»\))

— * 0 as j — > oo.

Take M>ί such that |xW)|gAf|x«+1)| for each j . Then (0, M\χW\]c

ISM-ι

h(M~ »r)(log Mr- ^KBφ, M"1/-))

g const. ft(|x<»|)(log -φjγ)μ(B(O, \χU}\)) • 0 as j • oo,
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from which (iii) follows readily. The proof in now complete.

For similar results on semi-fine limits of Riesz potentials, see Mizuta [8;

Theorems 2 and 2'].

REMARK. Let h(r) be nonincreasing on the interval (0, 1) and define

E = {xeRn; lim s u p r i 0 fi(r)μ(B(x9 r))>0}

for a nonnegative measure μ on Rn. If μ(£)=0, then Λti-i(E)=09 where A^-i

denotes the Hausdorff measure with respect to the measure function h'1; in

particular, if μ is absolutely continuous with respect to the n-dimensional Lebesgue

measure and lim r U ) rn/ι(r) = 0, then ΛΛ-i(JEΓ) = O.

5. Logarithmic potentials of functions in Lp

For a nonnegative measurable function/ on Rn such that

(10) \ίlog(l + \y\)Wy)dy < oo,

we define

If in addition feLp(Rn), p>l, then Lf is continuous on Rn.

PROPOSITION3 . Let m be a positive integer smaller than n, and f be a

nonnegative function in Lp(Rn) satisfying (10). Then there exists a set E in

Rn such that 5n_m t P(£) = 0 and for any x°eRn-E,

(11) l i n w |x-x°|-« J Lm(x9 y)f(y)dy = 0.

Here Bap denotes the Bessel capacity of index (α, p) (see [4]).

PROOF OF PROPOSITION 3. Consider the sets

χ rf(y)pdy >

Then, in view of [4 Theorem 21], BB_m,p(£1 u E2)=0. We have only to show that

lim».» I* -x°\-m { log \*~x°)f(y)dy = 0[ log I*
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(see the proof of Remark 2 in Section 3). For this, without loss of generality,

we may assume that x° = 0. By Holder's inequality,

|Λτ|~m \ log i i f(y)dy
jB(x,|x|/2) I*-JΊ

^ \x\~m\[ flog |Λ:| , Y dy\1/P If Λy)pdy\ί/P

g const . ^|xKπ~m>^~w \ f(y)pdy> ,
I JB(0.2 |X | ) J

which tends to zero as x-*0, where l/p + l/p' = l.

In the same way we can prove the next result (see also [7; Theorem 3 and its

corollary]).

PROPOSITION 4. / / / is as above, then (11) with m = n holds for almost

every x°eRn.

6. Fine limits at infinity of logarithmic potentials

We say that a set E in Rn is logarithmically thin at infinity if E* = {x/\x\2;

x e E} is logarithmically thin at 0. Then it is easy to see that E is logarithmically

thin at infinity if and only if

Σ7-iJC(ELj) < oo, ELj = {xe£(0, 2) - B(0, 1); Vx eE}.

By inversion we can establish the next result.

THEOREM A'. Let μ be a nonnegative measure on Rn satisfying (1). Then

the following statements hold:

(i) There exists a set E in Rn which is logarithmically thin at infinity and

satisfies

i")log|x|] = 0.

(ii) There exists a set E in Rn which is logarithmically thin at infinity and

satisfies

limμ^oo^Rπ-B [log MT1^ L0(x, y)dμ(y) = - μ(Rn),

where L0(x, y) = L(x-y) if\y\£l and L0(x, y) = L(x-y)-L(y) if\y\>L

REMARK 1. Let μ be a nonnegative measure on Rn. Then \ \L0(x, y)\dμ{y)

<oo for almost every x if and only if \ (\ + \y\)~1dμ(y)<co on account of [9;

Lemma 4],
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REMARK 2. Let μ be a nonnegative measure on Rn such that Lμ(0) is finite,

and define μ* by setting μ*(A*) = μ(A) for AaRn

9 where ^4* = {x* = x/|x|2; xeA}.

Then

Lμ\x*) = Lμ(x) + μ(R*) log |x| - Lμ(0).

We say that a set £ in Rn is logarithmically semi-thin at infinity if l im^^

jC(ELj)=0. By Proposition 2 we have the following result.

PROPOSITION 2''. Let h be a nonincreasing and positive function on (0, oo)

such that

J 00 dt

2 A(/)(log/)

1
< const. y / x /or any r > 1.
- A() y ^

Let μbe a nonnegative measure on Rn with finite total mass. Then the following

statements are equivalent:

( i ) There exists a set E in Rn which is logarithmically semi-thin at infinity

such that

|J L0(x, y)dμ(y)+μ(Rn)log |x| | = 0.

(ii) There exists a sequence {x^} in Rn such that li

{\xu+ί)\l\xU)\} is bounded and

, {J ») log \χU)\} = 0.

(iii) Iimriofc

Theorems 1 and 2 can be reformulated similarly; but we do not go into

detail.

Finally, corresponding to Theorems 3 and 5, we give generalizations of

Theorems 1 and 2 in [9].

THEOREM 3'. Let h and k* be nondecreasing positive functions on (0, oo)

such that

(a) r"1/^) is nonincreasing on (0, oo) and lim,.^^ r~1Λ(r) = 0;

(b) k*(2r)^Mk*(r)forr>0;

(c) ~ log -j ^ M - | ^ - whenever 0 < s < r,

where h = hk* and M is a positive constant independent of r and s. Let μ be a

nonnegative measure on Rn satisfying
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for a nonnegative integer m. Then there exists a set E in R" having the following

properties:

(i) lim,,,^...,.*,,^ |*|-"-»Λ(W) j ί j * . yW<j) = 0;

(ϋ) Σΐ=i k*(2J)C(ELj) < oo.

Here Lm(x,y)=L(x-y) if \y\<l and lm(x,y)=Ux-y)-

THEOREM 5'. Let h and fc* be as above. Assume further that

dt ^ M r Λ

-W) for r > ι >
where M is a positive constant independent of r. If μ is a nonnegative measure

on Rn satisfying limrirOr"m~ιh(r)μ(B(0, r)) = 0 for a nonnegative integer m,

then there exists a set E in Rn having (i) of Theorem 3' and

(ii)' limj^

Appendix

Here we prove the next elementary fact.

LEMMA 6. Let {bj}, {Cj} be sequences of positive numbers such that

Iimj^00bj=oo and Σ y ^ i ^ ^ 0 0 - Then there exists a sequence {α7} of positive

numbers such that aj^bjfor each j , limj^^ 0/=oo and

Σ?=kCijCjύ2akΣ7=kCj for each fc.

PROOF. We may assume that bj^bJ + ί^pbj for each j , where l<p<2.

For given q>0 we can find a sequence {fcf} of nonnegative integers such that

fco=0, kί = l, ki<ki+ί for ΐ = l, 2,... and

Σ?=ki + ί+ιCjύqΣ%Vi+ίCj for 1 = 1,2,....

Define α y = b t if ki<jgtki+ί. For fcf <fc^fcf + 1 we have

= *ι ΣJiV O + Σ?-ι

^ + (Σ?-
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if pq<l. Hence if q is chosen sufficiently small, then {aj) satisfies all the con-
ditions in the lemma.

References

[ 1 ] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Math.
175, Springer, Berlin Heidelberg New York, 1971.

[ 2 ] A. M. Davie and B. (Dksendal, Analytic capacity and differentiability properties of
finely harmonic functions, Acta Math. 149 (1982), 127-152.

[ 3 ] B. Fuglede, Fonctions BLD et functions finement surharmoniques, Seminaire de
Theorie du Potentiel, No. 6, Lecture Notes in Math. 906, Springer, Berlin-Heidelberg*
New York, 1982.

[ 4 ] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand.
26 (1970), 255-292.

[ 5 ] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima
Math. J. 4 (1974), 375-396.

[6] Y. Mizuta, Fine differentiability of Riesz potentials, Hiroshima Math. J. 8(1978),
505-514.

[ 7 ] Y. Mizuta, Semi-fine limits and semi-fine differentiability of Riesz potentials of functions
in Lp, Hiroshima Math. J. 11 (1981), 515-524.

[ 8 ] Y. Mizuta, On semi-fine limits of potentials, Analysis 2 (1982), 115-139.
[ 9 ] Y. Mizuta, On the behaviour at infinity of superharmonic functions, J. London Math.

Soc. 27 (1983), 97-105.
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton

Univ. Press, Princeton, 1970.

Department of Mathematics,
Faculty of Integrated Arts and Sciences,

Hiroshima University




