On the elliptic equation $\Delta u=\phi(x) e^{u}$ in the plane

Hiroyuki Usami
(Received May 1, 1984)

1. Introduction

Recently Ni [4] has considered the elliptic equation

$$
\begin{equation*}
\Delta u=\phi(x) e^{u}, \quad x \in R^{2}, \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right), \Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}$, and $\phi: R^{2} \rightarrow(0, \infty)$ is locally Hölder continuous, and presented conditions under which (1) has entire solutions with various orders of growth at infinity. By an entire solution of (1) [or another equation] we mean a function $u \in C^{2}\left(R^{2}\right)$ which satisfies (1) [or that equation] at every point of R^{2}.

The purpose of this paper is to obtain conditions guaranteeing the existence of entire solutions which are eventually positive and have logarithmic growth as $|x|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} \rightarrow \infty$. Our method is different from that of Ni [4]; we heavily rely on the results and techniques developed by Kawano, Kusano and Naito [2] in the study of the equation

$$
\Delta u=\phi(x) u^{\gamma}, \quad x \in R^{2},
$$

where γ is a positive constant.
We note that the equation (1) in higher dimensions has been studied by Kawano [1] and Ni [4].

2. Main result

In what follows we assume that $\phi: R^{2} \rightarrow(0, \infty)$ is locally Hölder continuous with exponent $\theta \in(0,1)$, and define the functions $\phi^{*}, \phi_{*}:[0, \infty) \rightarrow(0, \infty)$ by

$$
\phi^{*}(t)=\max _{|x|=t} \phi(x), \quad \phi_{*}(t)=\min _{|x|=t} \phi(x) .
$$

The main result of this paper is the following theorem.
Theorem 1. Suppose that there exists a positive constant c such that

$$
\begin{equation*}
\int_{0}^{\infty} t^{c+1} \phi^{*}(t) d t<\infty . \tag{2}
\end{equation*}
$$

Then, equation (1) has an eventually positive entire solution u such that
(3)

$$
k_{1} \log |x| \leq u(x) \leq k_{2} \log |x|, \quad|x| \geq R,
$$

for some positive constants k_{1}, k_{2} and R.
The proof of this theorem is done via the following result which asserts that equation (1) has a positive entire solution provided the value of the integral in (2) is small enough.

Theorem 2. Consider the equation

$$
\begin{equation*}
\Delta u=\lambda \phi(x) e^{u}, \quad x \in R^{2} \tag{4}
\end{equation*}
$$

where λ is a positive constant. If (2) holds for some $c>0$ and if λ is sufficiently small, then (4) has an entire solution u which is positive throughout R^{2} and satisfies (3) for some positive constants k_{1}, k_{2} and R.

Proof of Theorem 2. We show that there exists a constant $\lambda>0$ and positive functions $v, w \in C_{\text {loc }}^{2+\theta}\left(R^{2}\right)$ such that

$$
\begin{equation*}
\Delta v \leq \lambda \phi(x) e^{v}, \quad \Delta w \leq \lambda \phi(x) e^{w}, \tag{5}
\end{equation*}
$$

and $w \leq v$ in R^{2}, with the additional requirement that v and w have logarithmic growth as $|x| \rightarrow \infty$. Then, the existence of an entire solution u lying between v and w follows from Theorem 2.10 of Ni [3].

We wish to construct v and w as solutions of the equations

$$
\begin{equation*}
\Delta u=\lambda \phi_{*}(|x|) v^{1 / 2}, \quad x \in R^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w=\lambda \phi^{*}(|x|) e^{w}, \quad x \in R^{2} \tag{7}
\end{equation*}
$$

respectively. It is easy to see that such v and w satisfy (5) in R^{2}. Furthermore we require that v and w depend only on $|x|: v(x)=y(|x|), w(x)=z(|x|)$. We then have the following one-dimensional initial value problems for $y(t)$ and $z(t)$:

$$
\begin{align*}
& \begin{cases}y^{\prime \prime}+\frac{1}{t} y^{\prime}=\lambda \phi_{*}(t) y^{1 / 2}, & t>0, \\
y(0)=\eta, \quad y^{\prime}(0)=0,\end{cases} \tag{8}\\
& \begin{cases}z^{\prime \prime}+\frac{1}{t} z^{\prime}=\lambda \phi^{*}(t) e^{z}, \\
z(0)=\zeta, \quad z^{\prime}(0)=0,\end{cases}
\end{align*}
$$

where ' $=d / d t$, and η and ζ are positive constants.
In order to solve (9) we transform it into the equivalent integral equation

$$
\begin{equation*}
z(t)=\zeta+\lambda \int_{0}^{t} s \log (t / s) \cdot \phi^{*}(s) e^{z(s)} d s, \quad t \geq 0 \tag{10}
\end{equation*}
$$

Define the functions $k, \ell:[0, \infty) \rightarrow(0, \infty)$ by

$$
\begin{aligned}
& k(t)=1 \text { for } 0 \leq t \leq 1, \quad k(t)=\mathrm{t} \text { for } t \geq 1 \\
& \ell(t)=1 \text { for } 0 \leq t \leq e, \quad \ell(t)=\log t \text { for } t \geq e
\end{aligned}
$$

Choose $\zeta \in(0, c / 2]$, define the set Z by

$$
Z=\{z \in C[0, \infty) ; \zeta \leq z(t) \leq 2 \zeta \ell(t) \text { for } t \geq 0\}
$$

and consider the mapping $F: Z \rightarrow C[0, \infty)$ defined by

$$
F z(t)=\zeta+\lambda \int_{0}^{t} s \log (t / s) \cdot \phi^{*}(s) e^{z(s)} d s, \quad t \geq 0
$$

Finally let λ be small enough so that

$$
\lambda \int_{0}^{\infty} k(t) \phi^{*}(t) e^{2 \zeta \ell(t)} d t \leq \zeta / 2 .
$$

Then proceeding as in the proof of Theorem 1 of [2], it is shown that F is continuous and maps Z into a compact subset of Z, so that the Schauder-Tychonoff fixed point theorem implies that F has a fixed point z in Z. This fixed point z is a solution of (10) [hence of (9)], and so the function $w(x)=z(|x|)$ satisfies (7) in R^{2}. It is clear that $w(x)$ has logarithmic growth as $|x| \rightarrow \infty$.

We now turn to equation (8) with λ chosen as above. Since condition (2) implies that $\int_{1}^{\infty} t(\log t)^{1 / 2} \phi^{*}(t) d t<\infty$, from the proof of Theorem 1 of [2] we see that (8) has a positive solution $y(t)$ with logarithmic growth provided η is sufficiently large. The function $v(x)=y(|x|)$ then gives a solution of (6) in R^{2}. We require additionally that η be so large that

$$
\eta>\lambda \eta^{1 / 2} \int_{0}^{e} t \phi_{*}(t) d t>2 \zeta .
$$

Then, it follows that with this choice of λ, η and ζ the functions v and w satisfy $w \leq v$ in R^{2} (see the proof of Theorem 1 of [2] again), and so the functions v and w have all the required properties. This completes the proof.

We note that Theorem 2 allows a slight extension as follows.
Theorem 3. Consider the equation

$$
\begin{equation*}
\Delta u=\lambda \phi(x) e^{u}+\mu \psi(x), \quad x \in R^{2}, \tag{11}
\end{equation*}
$$

where $\phi, \psi: R^{2} \rightarrow(0, \infty)$ are locally Hölder continuous (with exponent $\theta \in(0,1)$)
and λ, μ are positive constants. Suppose that (2) holds for some $c>0$ and

$$
\int_{0}^{\infty} t \psi^{*}(t) d t<\infty,
$$

where $\psi^{*}(t)=\max _{|x|=t} \psi(x)$. Then equation (11) has a positive entire solution with logarithmic growth as $|x| \rightarrow \infty$ provided λ and μ are sufficiently small.

Proof of Theorem 1. Choose a constant $\lambda>0$ so that equation (4) has a positive entire solution \tilde{u} satisfying (3) for some k_{1}, k_{2} and R. For this $\lambda>0$ there exist positive constants C_{1} and C_{2} large enough so that $\lambda e^{-C_{1}} \leq 1$ and $\lambda e^{C_{2}} \geq 1$. Define the functions $V, W \in C_{\text {Ioc }}^{2+\theta}\left(R^{2}\right)$ by

$$
V(x)=\tilde{u}(x)+C_{1}, \quad W(x)=\tilde{u}(x)-C_{2} .
$$

Then we have

$$
\begin{aligned}
& \Delta V=\lambda e^{-c_{1}} \phi(x) e^{V} \leq \phi(x) e^{V}, \\
& \Delta W=\lambda e^{c_{2}} \phi(x) e^{W} \geq \phi(x) e^{W}
\end{aligned}
$$

in R^{2}. Since $W \leq V$ in R^{2}, from Theorem 2.10 of [3] we conclude that there exists an entire solution u of (1) squeezed between W and V. It is obvious that this solution has the required asymptotic property. This completes the proof.

Acknowledgment. The author wishes to express his sincere thanks to Professor Takaŝi Kusano for a number of helpful suggestions and stimulating discussions.

References

[1] N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), (to appear).
[2] N. Kawano, T. Kusano and M. Naito, On the elliptic equation $\Delta u=\phi(x) u^{\tau}$ in R^{2}, Proc. Amer. Math. Soc. (to appear).
[3] W. M. Ni, On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalizations, and its applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[4] W. M. Ni, On the elliptic equation $\Delta u+K(x) e^{2 u}=0$ and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), 343-352.

Department of Mathematics,
Faculty of Science,
Hiroshima University

