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1. Introduction

We denote by LP (1=<p=<o0) the LP-space on the real line R with norm
|-, with respect to the 1-dimensional Lebesgue measure |-|. We denote by
S® the totality of rapidly decreasing functions on R. We say that a
locally integrable function f(x) is of bounded mean oscillation if | f|gmo=

sup (1/|I|)S | f(x)—m;f|dx < oo, where m,f=(1/|I]) S f(x)dx and the supremum
I 1

is taken over all finite intervals I. The space BMO of functions of bounded

mean oscillation, modulo constants, is a Banach space with norm | - ||g)o- For

0<d<1 and a complex-valued kernel K(x, y) (x, y € R), we define wy(K) by the
infimum over all A’s with the following three inequalities:

IK(x, V)| = 4fIx—yl (x#Y)

IK(x, y)—K(x', p)I £ Alx=x"I?[Ix=p|'** (Ix—x'| S|x—yl/2, x#y)

[K(x, y)=K(x, yII = Aly=y'PPllx=yI"*? (ly=yISIx=yl/2, x#y).
(If such an A does not exist, we put wsK)=00.) We say that K(x, y) is
a Calderén-Zygmund kernel (CZ-kernel), if ws(K)< oo for some 0<d6<1,

Kf =" Keepfdy =tim|  Kx 0f()dy

-0

exists almost everywhere (a.e.) for any fe L? and |K| =sup {|[Kf ||,/ fll2;feL?}
<oo. Fora CZ-kernel K(x, y), a complex-valued function h(x) and a real-valued
function ¢(x), we put

K[h, ¢1(x, y) = K(x, y)h{ﬂ%t(ll} _

Calderon [1] showed that K[h, ¢] is a CZ-kernel if K(x, y)=1/(x—y),
¢’ e L* and h(x) is extended as an entire function, where “¢’ € L®’’ implies that
¢(x) is differentiable a.e. and its derivative is essentially bounded. Coifman-
David-Meyer [4] showed that Calderdon’s theorem is valid with the above con-
dition on h(x) replaced by “he S**°. The author [7] showed that their theorem
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is valid with “¢’ e L®”’ replaced by “¢’e BMO’’. The purpose of this paper is
to show an analogous property for CZ-kernels K(x, y) defined by pseudo-dif-
ferential operators of classic order 0.

Given a non-negative integer n, we say that an infinitely differentiable function
7(x, &) in R x R is a symbol of (classic) order n if, to any pair (p, q) of non-
negative integers, there corresponds a constant C(p, gq) such that

(D |0%0%(x, O = C(p, P(L+1ED)"™1 (x, e R).

We denote by C(p, q; ©) the infimum of C(p, q)’s satisfying (1) and put €(7)=

{C(P, qa T)}(p,q)' WC write G(T)éco;'{co(l” q)}(p,q) lf C(P, q; T)éco(Pa Q) fOI'
any pair (p, q). The pseudo-differential operator 7(x, D) from S® to C*

associated with t(x, &) is defined by
o, DIf () = | e alx, Qe (fe5%),

where f(¢) denotes the Fourier transform of f(x) and C* the totality of infinitely
differentiable functions on R. We say that K(x, y) is defined by t(x, D) if

()] Kf(x) = 1(x, D)f(x) a.e. (feS®).

Let us note that, for K(x, y) defined by a pseudo-differential operator of order 0,
there exists a sequence (K,)%_, of CZ-kernels such that lim,_ , K, (x, y)=
K(x, y) a.e. in R x R and sup,, | K[ <o ([3, p. 83]). We show

THEOREM 1. For any 0<d=<1, there exists a positive integer n; depending
only on & with the following property: If K(x,y) is a CZ-kernel with w)K)< oo
and py(ns)<oo, then K[h, ¢] is also a CZ-kernel as long as ¢’e BMO and
heS®, where ' '

px(ng) = sup {|K[", Y1ll; n =0, L,..., n,, Y[l =1 (Y" € L™)}.
As an application of this theorem, we show

THEOREM 2. Let K(x, y) be a CZ-kernel defined by a pseudo-differential
operator of order 0. Then K[h, ¢] is also a CZ-kernel as long as ¢’ € BMO
and heS™.

2. Known facts

We use C for absolute constants. Throughout the paper, we fix 0<d <1 and
use C; for constants depending only on 8. The values of C, C; differ in general
from one occasion to another. We write by Ly the totality of real-valued
functions f(x) with f'e L*. For a kernel K(x, y) with ws(K)< oo, we define an
operator K* by
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K*f(x) = sup {

S£<|x_y|<"K(x, ,V)f()’)d}’l ;0<e< ;1} (fel?).

The norm || K*|| is analogously defined to |K|. We say that K(x, y) is a 6-CZ-
kernel if it is a CZ-kernel with ws(K)<oo. For ¢ € S* and a pseudo-differential
operator 7(x, D), we inductively define operators [¢, 7(-, D)], (n=1) from S§®
to C* by:

[¢, (-, D)1 f(x) = ¢p(x)t(x, D)f(x) — 1(x, D)(¢f)(x) (feS¥),
(¢, (-, D)]f(x) = d(x) [¢, (-, D)],- 1 f(X)
—[¢, (-, D)]u-1(¢f) (x) (n22,feS%).
Here are some known facts necessary for the proof of our theorems.

LemMA 3 (The Calderon-Zygmund decomposition: Journé [6, p. 12]). Let
feL! and A>0. Then there exists a sequence {J,}5-, of mutually disjoint finite
intervals such that, with J=\Uy= Jy,

IS 11 /2 mylfl <24 (2D, |f()l =4 ae in Je

LeMMA 4 (cf. Journé [6, Chap.4]). For a kernel K(x,y), |K*|=
Cs{I Kl + ws(K)].

The following lemma is a version of David’s theorem [6, p. 110]. Since
the proof is analogous, we omit the proof.

LEMMA 5. Let B20 and let L(x, y) be a kernel with the following property:
To every finite open interval I, there corresponds a pair (E;, L;) of a Borel set
E; in I with |E;|£2|1|/3 and a kernel Ly=L(x, y) such that

IL¥ll £ B, ws(Ly) = B
and

Li(x, y) = L(x, y) (x, yeI—E)).
Then |L*| < Cs{B+wi(L)}.

LemMa 6 (Coifman-Meyer [2]). Let ¢ € S® and let 1(x, D) be a pseudo-
differential operator of order n=1. Then [, 1(-, D)], is uniquely extended as
a bounded operator from L? to itself and the norm is dominated by D (7)|¢’||%,
where D,(t) is a constant depending only on n and €(z).

Lemma 7 (Coifman-Meyer [2]). Let H(x, y)=1/(x—y). Then
IHL™, 611l < D,li¢’I% (n20, peLy),

where D, is a constant depending only on n.



514 Takafumi MURAI

3. Proof of Theorem 1

In this section, we prove Theorem 1. We begin by showing some lemmas.

LeEMMA 8. Let K(x, y) be an n-CZ-kernel (0<n<1), h(t) a function in L®
with h" € L® and let ¢e Ly". Then o, (K[h, 1)< Cw,(K) {||hllo+ 11 [l 10"}
If 0<n<1 and ¢(x) is a real-valued function with ¢' € BMO, then the above
inequality is valid with ||¢'|, and C replaced by ||@'|pmo and a constant
depending only on n, respectively.

ProOF. Since the first assertion is easily shown, we give only the proof of
the second assertion. We have |K[h, ¢](x, )| Sw,(K)llh] o/lx—y] (x#y). Let
(x, x’, y) be a triple of real numbers with 0<|x —x'|<|x—y|/2. Then

Q = [K[h, 1(x, y) — K[h, $1(x', y)|
|K(x, y) — K(x', y)”h{ﬁ(x;_:fﬁﬂ”

N IO E O COEION

IA

fIA

@, (K)||Allo|x—x"|"/]x = y[**+n
+ {0, (KA |o/1x" = yI} Mx;:f(y) o (x’ )_¢(y)

X

To estimate Q' =|(¢(x)—Pp(Y)/(x—y)—(d(x)—d(¥))/(x'—y)|, we consider the
interval Y with endpoints x, x’ and put ¢(s)=@(s)—(my¢’)s. Let v be the smallest
integer such that 2m|Y|=2|x—y| (m=1) and let ¥ be the interval with midpoint
x and of length 2¥|Y|. Then we have v=Clog(|]x—y|/|[x—x']) and |my¢’'—
med'| SCv I pmo (cf. [5, p. 142]). Thus

|¢(x) () _ ¢(x) <l3(y)|

—x) $0) -4 )
= | Gy B —d0N + |

< Clr=xlix=y- | 169 —my'lds + cnx—yl-gy 16/(5)—mylds
= Cv||9'lamolx—x'l/1x—yI.
Consequently we have, with a constant C; depending only on 7,

Q = 0, (K]l olx—x|"/|x = y|!*" + Caoy(K)h'|| 1"l BmovIx — X' [(x — y)2
= Cuoy(K) {lIhllw + I w9l Mo} [ —X|"/]x — y|1*n.
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In the same manner, we have, for any triple (x, y, y') with 0<|y—y'| S|x—y|/2,

IK[h’ ¢] (x7 .Y) - K[h’ ¢] (X, J”)I
s Coo,(K){[lhllo + 1h loll@’Bmo} 1y — ¥ 1" Ix =yt *m.
Hence the required inequality holds. Q.E.D.

LEMMA 9. There exist two constants ng and My depending only on 6 such
that, for any 6-CZ-kernel K(x, y),

3 IKLe", @1*I = {px(ns) + 0s(KNIM3|¢'|5  (n2ns, p€Ly).

PrOOF. We choose n;=1 and M, later. Put

p¥(n) = sup {|K[/, Yy1*[;j =0, L., m, [¥']l, S L (Y e Ly)} (n20).

Then we have
(4) px(n) =sup {|K[t/, yJ*|l;j=0,1,....,n, |¥']l, =1 (Y eS)}.

To see this, for Y € Ly”, we choose a sequence (¥,)i2; in S® so that lim,_, , Y¥,(x)=
Y(x) (xeR) and Yil.=I¥'l, (I21). Then, for any feL?, 0<j<n and
xeR, K[, y1*(x)<liminf,, , K[#, ¥, ]*f(x). Hence Fatou’s lemma shows
that |K[#/, y1*| ssup {|K[/, AT*[; VoS 1¥ Il (A€S)} (0<j<n), which
gives that p¥(n) is dominated by the quantity in the right-hand side of (4). Since
the inverse inequality evidently holds, we have (4).

Now let n=n;. For a while we assume that p¥(m)<oo for all m=0 and
estimate p¥(n). To do this, we choose Y € S® so that |y'||,<1. With L=
K[t", ], we shall associate pairs {(E;, L;)}, asin Lemma 5. Given a finite open
interval I =(a, b), we may assume that Y(a) <y/(b); otherwise we deal with —y(x).
We define 6(x) by

Y(a) (x<a)
5 O(x)=( inf{A(x); A=y on I, 2 = —v/2,1eS®} (a<xZbh)
6(b) (x>b),

where v=|{'|,. Let
(6) E;={xel; 0(x) # y(x)}.
Since —v/2Z6'(x)<v everywhere and E;c{xeI; 6'(x)= —v/2}, we have
0 < 6(b) — 0(a) = S 0'(x)dx = S + S
I Er I-Ef

= — olEfl/2 + ol - Ey| = o(|I| -3|E||[2),
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and hence |E; =2|I|/3. - We put L;=K[t", 6]. Using Lemma 8 with h(f)=
{(sign H) min (|t|, 1)}, we have ws(L)=wyK[h, 0])SCnwyK). To estimate
[ILYl, we put

@) 0(x) = 0(x) — ov(x—a) (c=1/4).
Then [|#'|| ,<1—0 and

Ly = 3uo (Yoo~ —aYKTH, 81 o).

Hence we have
IL#1 < Tgeo () ouy=4(1= o) |KT¥, 01 —0)1*]
< Sieo ()0 (1= 0V pk()) S (1=0)"pk(n) + pi(n—1).

Thus the pair (E;, L,) satisfies the conditions in Lemma 5 with B=(1—0)"p¥(n)+
p¥(n—1)+ Cnws(K). By Lemma 5, we have, with a constant M¥,

() K[, ¥1*| = Cs{B+w,(L)} = MF{(1—0)"pi(n) + pk(n—1) + nw(K)}.

Since € S® is arbitrary as long as ||Y'|, =1, (4) shows that p¥(n) is dominated
by the last quantity in (8). Now we choose n;=1 so that M¥(1—o)"¢<1/2.
Then we have
) pk(n) = CM3) {pk(n—1) + nwy(K)} <--
< M3 epk(ng) +{CMH)n+ (M3 (n— 1)+ - + 2M3)" " ns}w4(K)
< {pk(n;)+ w(K)}C3.

To remove the assumption that p¥(m) < oo for all m >0, we consider K (x, y)=
K(x, y)u(x—y) (0<e=1/2), where u/s) is the even function on R defined by

0 (0=<s5=<¢)
(1/e)(s—e) (e<s=2e)

u(s) =( 1 (2e<s=1/e)
e2/e—s)  (lle<sZ2[e)
0 (s>2/e).

Then elementary calculus yields that ws(K,) < CwsK), pE (m)<ow (0<e=1/2,
m=0). We put §(l)=supo<.<1,2 p¥.(I) (120) and show that

(10) Pk(D = A(D) = p¥(D) + Coy(K).
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We have, for any fel?, yely, 0<j<I and xeR, K[V, y]*/(x)<
liminf,, K,[t/, y]*f(x). Hence Fatou’s lemma shows that |K[t/, yJ*f|| <
SUPo<e<1/2 I K[/, ¥I*f|, which gives the first inequality in (10). For any
0<e<1/2,0<n <n”, we have

‘Sil’<lx—y|<,," K‘[tj’ !ﬁ](x, J')f(J*)dy’

<
- gﬂ’<|x—y|<11",£<]x-y|<20: Sﬂ’<|x—y[<;,”,2e<|x—y|<1/£
+ g (=R;+ R;,+ Rj, say).
N <|x—y|<n",1/e<|x—y|<2/e
We have
R < KLt 41 (x ) ()ldy
e<|x—y|<2e

<oKWL 1 Ollx—yldy = ColR)IW IR,

£<|x—y|

where M f(x) denotes the maximal function of f(x) [6, p.7]. We have

analogously R; < Cay(K)|[Y'|LMf(x). We can write R, = IS K[t/,y]-
i’ <|x—y|<q{”

(x, y)f(y)dyt with some pair (7', 7"), and hence R,=<K[#, y]*/(x). Thus

K[, YT () S K[, y1* (x) + Co(K) Y[ LM (x), which shows K, [#/, y]*|
SIK[H, Y1*|| + Co K| |4 (cf. [6, p. 7]). This inequality yields the second
inequality in (10). Consequently (10) holds.

Since p¥ (m)<oo for all m20, (9) is valid with K(x, y) replaced by K,(x, y).
Since 0<e=1/2 is arbitrary, we have, by (10) and w4 K,) < Cw4K),

pk(n) = p(n) < {p(n;) + Co(K)}C3 = {pk(ns) + Ca(K)}C.

By Lemmas 4 and 8, we have pg(n;) < C;{px(n;)+ns;ws(K)}. Hence we have, with
a constant M; depending only on §, pE(n) < {px(n;) + ws(K)}M% (n=n;).
Since |K[#", ¢1*[ =IK[", ¢/l ¢l 1*Il |¢’]%, we have (3). Q.E.D.

LEMMA 10. There exists a constant Ns;=1 depending only on 6 such that,
for any CZ-kernel K(x, y),

IKLe, ¢1* = Csfpr(ns)+ws(K)} (1+]19"1%} (¢ €Li),
where ng is the constant in Lemma 9.
Proor. We put
k(@) = sup {|K[e”, Y1*[I; Il S « (W eLr)} (x21).

Then, in the same manner as in the proof of (4), we have x(«x)=sup {|K[e**, ¥]1*|;
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WleZa (Y €S®)}). Lemma9 shows that x(a)<oo for all a=1 and k(1)<
Cs{px(n;s)+ws(K)}. To estimate k() (2> 1), we choose € S® so that |[y'| , So.
With L=K[e¥, ], we shall associate pairs {(E;, L,)}; as in Lemma 5. Given
I=(a, b), we may assume that y(a)<y(b). We define 6(x), E, and (x) by (5),
(6) and (7), respectively and put L,=K[ei’, 8]. Then [0’ ,<(1—0)ax and
IL¥) = K[et, 01*| Sx((1—0)x). Lemma 8 gives wy(L;)< Coawy(K). Thus the
pair (E,, L;) satisfies the conditions in Lemma 5 with B=x((1 — o)) + CawsK).
By Lemma 5, we have

11) IKLe™, yT*|| = Co{B+w(K[e", Y]} = Cs{r((1— o)) + aw(K)} .

Since yy € S® is arbitrary as long as |||, <«, k(«) is dominated by the last quan-
tity in (11). Consequently, we have, with a constant N;>1,

k(o) £ oa¥o{k(1) + 0(K)} £ Colpr(ng) + wo(K)} {1 +aVe} (xz1).  Q.E.D.

LemMA 11. Let K(x,y) be a 3-CZ-kernel such that pg(ns)<oo. Then
K[e', ¢] is also a 6-CZ-kernel as long as ¢p € Ly .

ProoF. By Lemma 8, we have wy(K[e't, ¢]) S Cwy(K) {1+ |¢'|l,}. Lemma
10 shows that ||[K[e¥*, ¢]*|| <oo. Hence it is sufficient to show that K[e*, ¢]f(x)
exists a.e. for any fe L2

Let fe L? and Yy € S®. Then

S|x-y|>e K[, y1(x, »)f(y)dy = S L K& W) +0Gx =} (3)dy

e<|x-y|
+ g,x_yp, K[, Y10x, f(»)dy (0<e<l).
Since K(x, y) is a CZ-kernel, this shows that K[, y]f(x) exists a.c.. Note that

(12) s K[t ¥1*9(x)> Al = Colpr(D) + @,(K) {11Y7 1l llglly /23172
(A>0; y',gell).

(See for example [7, Lemma 11].) Using this inequality, we show that
K[t, ¢]1f(x) exists a.e. in a finite open interval I. Let I* be an interval with the
same midpoint as I and of length 3|I|. We denote by y(x), x*(x) the characteristic
functions of I, I*, respectively. Since K[t, ¢]1{(1—yx)f}(x) exists everywhere in
I, we show that K[t, ¢](xf)(x) exists a.e. in I. Note that, for xel, K[t, ¢]-
(xf) (x) exists if and only if K[¢, x*¢](xf)(x) exists. Choose a sequence ()2,
in S® so that lim,_ . |x*¢ —¥,|l;=0. Then we have {xel; K[t, x*¢1(xf)(x)
does not exist}c{xel; liminf,., K[t, x*¢—y,1*f(x)>0}. Inequality (12)
shows that the measure of the second set equals zero, and hence K[t, ¢](xf)(x)
exists a.e.in I. Thus K[¢t, ¢]f(x) exists a.e.in I. Since I is arbitrary, K[t, ¢]f(x)
exists a.e.. '
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Lemma 9 shows that, for any finite interval I,

[ (S50 (UnDKD, $1F (0} dx < Tino (UKL, 6171
< IS 12 Eieo (nDIKL, $3°1] < o,

and hence 3 ;% (1/n)K[t", ¢1*f(x)< o0 a.e. in I. Thus the Lebesgue dominated
convergence theorem shows that K[e', ¢1f(x)= 2, (i"/n)K[t", ¢]f(x) exists
a.e.in I. Since [ is arbitrary, K[e'’, ¢]f(x) exists a.e.. Q.E.D.

Now we give the proof of Theorem 1. Since w,(K) is increasing with respect
to n, we may assume that 6<1. By Lemma 8, we have

ws(KLh, ¢1) = Cs0K) {[|h]l .+ 11| lI¢" Bmo} -

To estimate ||[K[h, ¢1*|, we discuss | K[e¥, ¢]*|. With L=K[e¥, ¢], we as-
sociate pairs {(E;, L;)}; asin Lemma 5. Given a finite open interval I, we use the
preceding notation I*, x*(x). Since K[e¥, ¢p]=e!“K[e¥*, ¢] (u=mpnd’, ¢(x)=
¢(x)—ux), we may assume that mp¢’'=0. We put ¢,(x)=¢'(x)¢*(x). Then
ld«lli ECll¢' Il smolll. By Lemma 3 (A=C|@’|smo), there exists a sequence
{Ji}i=1 of mutually disjoint finite intervals such that, with J=\UJi%, J,,

[ [JI £ 11/10, my, |4l < Clid'llamo (kZ1)
&) = Cll¢' gm0 ae. in Je.

We define 0,(x) and 6(x) by

O4(x) = 'nlk¢* (xedy, k=1), 04(x) = du(x) (xeJ°)
(13)

X

0(x) = $(d) + g 0,(s)ds (d: a point in I\J).

d

Then {0, =0l SClld'Ilsmo- We put E,=InJ and L,=K[e'*,0]. Then
wy(L) S Cws(K) {1+ 11¢' pmo}. Lemma 10 shows that [[LT]| < Cs{px(n,) + ws(K)}
A14]¢'I3406). Thus the pair (E,, L,) satisfies the conditions in Lemma 5 with
B=Cy{px(n;)+ w(K)} {1+1¢'l 530} We have

IK[e¥, ¢1*| < Cs{B+ws(K[e'*, ¢])} < Cs{px(ns)+ws(K)} {1+ 1¢" 540} - -
Since K[h, ¢]=C Sf (OKTeH, ¢41de, we have
(14 IKDh, 7% = 7 1h@)1IKTe", ¢41¥1d¢

< Callpx(n)+ @K} | 1ROH1L+(E1 I wo)*}dé < oo.
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It remains to show that K[h, ¢]f(x) exists a.e. for any fe L2, Given fe S®, we
begin by discussing K[e¥*, ¢]f. For a finite open interval I, we use the preceding
notation I*, y(x) and y*(x). We show that K[e't, ¢]f(x) exists a.e. in I. To do
this, it is sufficient to show that K[e¥*, ¢](xf)(x) exists a.e. in I. We may assume
that m@'=0. Let 0<n<1/10. For any ¢ (0<e<mn), there exists a sequence
{J,}5, of mutually disjoint finite intervals such that, with ¢,=¢'x* and Je=
Vis1 i
[ |2 = elll, my|éxl = (ClO)1@" B0 (kK21)
|p«(X)| = (Cle)l 'l Bmo ae. in Jo.

We define 65(x) and 6%(x) in the same manner as in (13). Then 6?e Ly . Let
J*¥e=\Ux , J¥, where J¥ is an interval with the same midpoint as J, and of length
2|J,|. Then, for any x € I\J*2,

Mix) = |* IKTe, ¢1(x »)=KIe, 01, 2 ) 0)ldy
< oK) | 1600 =00 =02 1N DIy
= oK) 521§ 160)=0DIx= 37 [N Wldy

O T || ], 16 =m s} 5=y

IIA

IA

S 0K f ol Mo =1 14l SJk 1/(x—y)*dy,

and hence
g Me(x)dx
I \J*e

< (KIS a9 swo T Wil |, dx | 1/0e= 2y

Jk

= 20K f <l Bmo Zi=1 Sjk dy £ 2elllo (K f 110" smo-

We have, with I°={x e I\J*¢; M¥(x)<./¢},
o] 2 1| — 2/ el K fll 19"l sro — 1%
= [I]{1 _Zx/Ewa(K)”f”m”‘ﬁ'” BMo — 28} .

Since K[e, 8°](xf)(x) exists a.e. in I for any O<e<n, K[e', ¢](xf)(x) exists
a.e. in I,=Nj-, I, where g;=27/n. Since lim,_ ¢ |I,|=]I|, K[e", ¢](xf)(x)
exists a.e. in I. Consequently, K[e¥, ¢]f(x) exists a.e.. Since feS® is arbi-
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trary, K[e', ¢]f(x) exists a.e. for any fe L2.
Let fe L2. By (14), we have, for any finite interval I,

({17 imikTe, co1readefax < VAL |7 IRQIIKLe", E1*1de <o,

and hence Sio |h(&)|K[e', EPT*f(x)dé <o a.e.. This yields that K[h, ¢1f(x)

exists a.e. .

4. Proof of Theorem 2

Let K(x, y) be a CZ-kernel defined by a pseudo-differential operator a(x, D)
of order 0. Then K(x, y) is a 1-CZ-kernel [3, p.87]. By Theorem 1, it is
sufficient to show that pg(n;)<oo. We shall deduce this fact from Lemmas 6
and 7. We write simply €(c)=C,={Co(p, 9)}p,q)

Let f(s) be a non-negative even function in S® such that

181 24 1Bl =2, supp(§) = {1125l <1),

where supp (B) denotes the support of B(s). We put B,,(s)=(1/m)B(s/m), Bu..(s)=
Is|"*1B,(s) (m=1, n=0). We easily see that

1Bwilly < Au 1B S Ty (1 +1sl)" (n, ¢20),

where  A,=2""'(n+1)!max {|fP],;; 0=Lj<n+1} and TI,,=29n+1)!x
max {|fD]|,; 0= j=q}.

LEMMA 12. Suppose that o(x, &) satisfies a(x, £)=0 (||=m) for some
positive integer m. We inductively define two sequences (ai(x, €))%, (¢=+) of
symbols by

4 4
035, 8 = | Gims (s s = by ] P sHds (e= £, 021, 03=0),
where

L0

i1 = { " ik, s} {1 B (515}

0
Then o;(x, &) is a symbol of order n with €(a;) <€, ={C(p, 9)}(,,o and oi(x, &)=
0 (¢¢zm) for any ¢=+, n21, where C,(p, q) depends only on n, I',_; , and
and Co(j, k) (0= j<p, 0sk=q).

ProoF. The symbol o =0 is of order 0 and satisfies €(g3)=C, and
ag(x, ©)=0 (¢=m). Suppose that o}_,(x, &) satisfies the required conditions,
Then we have, for any pair (p, q) with g=1,
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1626407 (x, &) < 1020807 y(x, O] + |DPb} ((X)DT By 1 ()
S Cpey(p, g =D (A +]Er1-GD
+ {gm Ca-r(p, O)(l“)""ds/g ﬂm,n-l(S)dS}lD"“ﬂ,..,..-1(6)(
0 m/2

< Com s, g= DI+ + 47C, (P, OF -y gy (LH[E] 7D,
and hence
(15) l@,’c’@ga,’;(x, f)l é C"(p, q)(] +|§l)n—q (X, CGR),
where
(16) Cn(p9 ‘I) = Cn—l(p9 ‘7) + 4"C,._1(p, O)I‘,,_m (fi:max {q_._ 1, 0})

Here note that (15) is valid for any pair (p, 0) with C,(p, 0) defined by (16). Thus
oy is of order n and satisfies €(0;)<C,={C,(p, 9)},.s> Where each C,(p, q) is
inductively defined by (16). Since o;}_,(x, &)=Pfp,-((&)=0 (=m), we have
of(x, )=0 (¢2m). Thus o} satisfies the required conditions. In the same
manner, we see that o, satisfies the required conditions with €, defined by (16).

: S - Q.E.D.

LemMma 13. Suppose that ao(x, f) sdtisﬁes a(x, &)=0 (|¢|=m) for some
m=1. Then :

17 IKL, 11l < DCo)l'll% (n 20, pe5=),
where D,(€,) is a constant depending only on n and €,.

Proor. In the case n=0, (17) evidently holds. Let n=1. By (2), we have
Kix, ) = |7 et olx, E)de.
Repeating the integration by parts, we have

S‘m e g (x, )dE = [—i(x—y)]™ Sow el g(x, &)dE

0

- X [—ix=»]7bi_[(x) S: g (E)dE (e=+),
and hence

18) KD ¢10n ») = (=i |7 e ai(x, 9de9(x) - )"
(=i ettoir, 9de9 ) - ()"
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T (miyt [T et B, L (@dEBE (G0 =) (= 3
# S =iy [ eemep, ety (@) - $ON(x— )

= (=i [T et oix, 9@ () - 9 ()"
+ (=[] e a(n, dEd® - $()
g | e BRI e ()@ () = ()] = 3!
Fi g | e IO Aty () (G - () (x = )
(=L3(x, )+ Ly(x, y)+i Elay Li-f(x, y) + i X<y Laof(x, ), say).

Note that [b;_;ll,<4""/C,_;0,0) and recall that | 40,4, ; (¢=+,
1£j<n). By Lemmas 7 and 12, we have

(19) 1451 S WHD™, @11 1bi- ;1o 1BSE5 1

< {C4"7IC,_ 0, 04, -}l (e=%,15j<n).
To estimate ||L;|| (¢= 1), we choose a non-negative function ye C* so that
¥s)=1 (s € [0, 0)), supp (y)=[—1/2, ), and put

L; (x, y) = (=0)" S_w e gi(x, O(e)di(P(x)— ()" (¢e=1).

Then Lemmas 6 and 12 show that

1L, = I[¢, ai(-, D)p(¢eD)],l < Dyllg'll% (¢= =),
where D), depends only on n, €, f(s) and y(s). We have

Ly (x, y) = Li(x, »)

n,y

0

= =iy |7 e gy, ONEHED)— B0

~u/2

=i et o (x OB~ I x— )

— tia(x, 0)(p(x) — p(Y)"/(x —y)+1,
and hence

1L, — Lal

< {|f7, 1er it o lade |+ ot 0L IHT, 4]
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< Dylg'lln (=),
where D), depends only on n, €;, f(s) and y(s). Thus

(20) IL: = lfL:.,ylll+ 1L, = Ll S(DL+ D¢ 5 (¢= ).

n,y

Consequently, (18), (19) and (20) show (17) with D (C&,)=C{D,+D;+
D,4C,(0, 0)4,}. Q.E.D.

Now we prove Theorem 2. To do this, we show that

(21) IKLe", ¢l = DR(Cy)lI¢'l% (n 20, pely),

where D}¥(€,) is a constant depending only on n and €,
We define a function ve S* so that v(s)=1 (se[—1/2, 1/2]) and supp (v) =
[—1, 1], and put

Kalx, ) = {7 etoniorx, o ede mz1),

where v,(§)=v(¢/m). Note that o(x, &)v,(&) is of order 0 and satisfies €(ov,,) <
C¥ for some C¥={C¥p, 9)}(,  Where each C¥(p, q) is independent of m.
Also note that @,(K,)<C Y 3., C¥(0, j) (m=1) ([3, p.88]). Let y€S®. Then
Lemma 13 shows that |K,[t", ¥]| <D (C¥|y'[n. Lemma 8 yields. that
cbl(K,"[t", yD=C(n+1w,(K,)¥'|% Hence we have, by Lemma 4,

(22) K[t ¥1*) S CODLEDIYI1% + wi(K, L1, Y1)}
< C{DL(€3) + (n+ Doy (K} Yl
< C{D,(CF) + (n+1) T3=0 CEO, NHIY' 1% (=DXHE)IY'[1%, say).

By (2), we have, for any xe R and fe S* with x&supp (f), lim,,_ ., K, .f(x)=
Kf(x). Since sup,, w,(K,)<oo, the Ascoli-Arzela theorem yields that K, (x, y)
converges locally uniformly to K(x, y) in Rx R—{(x, x); xe R} as m—o0. By
(22) and Fatou’s lemma, we have |[K[t", y1*| <D¥*(Cy)|¢¥'||%. Given ¢ e Ly,
we can choose a sequence (Y;)%,; =S*® so that lim;,, y;=¢ and [V}, =|¢'[| -
Hence, again by Fatou’s lemma, we have |K[t", ¢]*| <D*(Cp)|¢’|l%, which
shows (21).

By (21), we have immediately pgx(n,)<oco. Thus Theorem 1 yields Theorem 2.

Note. Recently, the author estimated n; and obtained that n;=2 is
sufficient. Perhaps the condition ““py(n,) < o0 is not necessary.
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