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1. Introduction Many diffusion processes are well modelled by parabolic
equations of the form

(1.1) u, = a(u,, — p(x, Hu + q(x, Hu

where a, p, and g are nonnegative coefficients representing phenomena which
underlie the diffusion process. For example, in population dynamics the term
au,, corresponds to diffusion due to local concentration, while — pu and qu cor-
respond to death and birth rates, respectively.

Since such phenomena may not lead to instantaneous changes in population
size, it is natural to include delays in the models under consideration. Thus in
problems of population dynamics, chemical reactions, etc., it is important to
be able to generalize (1.1) to delay parabolic equations of the form

(12) U, = a(t)uxx - p(x’ t)u(x7 t—O') + q(x’ t)u(xa t—p)

where the delays o and p are nonnegative constants.

The values to be assigned to such delays will depend largely on an under-
standing of the mechanics of the diffusion process itself. However, in many
situations an additional constraint arises from the fact that the solution of the
diffusion process is inherently positive. The purpose of the present paper is to
establish upper bounds on delays which result from the requirement that u(x, 1)>0
for t>0.

In case the coefficients of (1.2) are constants such conditions can sometimes
be obtained by assuming solutions of the form u(x, t) = e*’e#~, leading to the
characteristic equation

(1.3) ' A= au® — pe*e 4 ge *r,
If (1.2) is accompanied by boﬁndary conditions such as
u(, t) —au(0,) =0
u(L, t) + pu (L, ) =0
with o, §>0, then it follows that u? <0 and the absence of real solutions to

(1.4) A+ pete < geme
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is inconsistent with the inherent positivity of u(x, t). For example, in case g =0
it is readily shown that (1.4) has no real solution for A whenever > 1/pe, and
we see that 0 < 1/pe is a necessary condition for a delay of o to be allowable.

We shall be interested in establishing some general upper bounds on the
allowable delays in (1.2) in the case of nonconstant coefficients.

To determine a unique solution of the delay partial differential equation
(1.2) it is necessary to impose spatial boundary conditions such as

u©,)=u(L,t)=0
or '
(1.5) u, 0, ) =u(L,t)=0
or
lim,, , u(x, t) = lim,,_ u(x,t) =0
and initial data of the form
(1.6) u(x, 1) = (x, 1) for — M <t<0and xel

where M =max{o, p} and I=[0, L] or (— o0, ), as determined by (1.5). Exi-
stence and uniqueness for (1.2), (1.5) and (1.6) then follow from the fact that there
is a unique ‘“‘heat kernel” g(x, t; &, t) associated with the differential operator
L[ul=u,—a(t)u,, and the boundary conditions (1.5). This heat kernel satisfies

Llg] = 6(x—&)d(t—1)

g(x, t;6,1)=0 for t>t
and

lim, g(x, t; £, 1) = 6(x—¢).

The usual conclusion drawn from the existence of g(x, t; £, 1) is that the
problem

L[u] = F(x, 1),

accompanied by (1.5) and initial data u(x, 0)=f(x), is equivalent to the integral
equation
t
ue, )= { g0 13 8,00 + [ gt 136 DFCE, Dt ar

and therefore well posed. In the case of delay equations we can similarly conclude
that (1.2), (1.5) and (1.6) are equivalent to the integral equation
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A7) u(x, ) = S,g("’ t; & 0)p(E, 0)de

t

—[1{ a1 & DTaE DU, T—0) — ale, e, T p)1aE dr.

Since (1.7) can be solved by the “method of steps’’, using steps of size m=
min{o, p}, it follows that (1.2), (1.5) and (1.6) does indeed have a unique solution.

2. Sufficient conditions for oscillations. For (x, t)€[0, L] x R*, consider the
delay parabolic equation

2.1 u, = a(uy, — plx, Du(x, t—o) + g(x, Hu(x, t—p)
subject to boundary conditions such as
2.2) u, (0, 1) —u (L, t) =0.

Here the delays o and p are positive constants and the coefficients a, p, and ¢
nonnegative continuous functions. We say that a solution u(x, t) of (2.1) oscil-
lates in the strip [0, L] x R* if for every t,>0 there exists an (x,, t;)€(0, L) x
[to, o) such that u(x,, t;)=0.

In this section we begin with some properties of ordinary delay inequalities
which underlie the oscillation criteria for (2.1). The following lemma is an
extension of Theorem 3 in Ladas and Sficas [5] and, in the case of equations
with constant coefficients, was proved by Arino, Ladas and Sficas [1].

2.1 LeMMA. Consider the delay differential inequalities

2.3) U@+ POU(t—0) — Q)U(t—p) <0, t>1t,
and
2.4) U'(t) + PU(t—o0) — Q) U(t—p) =0, t>t,

where the delays o and p are positive constants and the functions P and Q are
continuous and nonnegative for t>t,. Assume that

2.5) p=lim,,, P(t) and q =lim,,, Q(t) exist,
(2.6) q9<p

2.7 p=o,

(2.8) (p—q)oe > 1,

and for t sufficiently large

2.9) S:" 0(s)ds < 1.



440 K. KreitH and G. LADAS

Then inequality (2.3) cannot have an eventually positive solution and inequality
(2.4) cannot have an eventually negative solution.

Proor. Since the negative of a solution of (2.3) is a solution of (2.4), it
suffices to prove the result for inequality (2.3). Thus assume, for the sake of
contradiction, that (2.3) has an eventually positive solution U(f). Set

(2.10) 2(f) = U@t) — S:" O(s+ p)U(s)ds.
Then
(2.11) Z'(t) + [P()—Q(t—c+p)]U(t—0) <0

and in view of (2.5) and (2.6), z(¢) is eventually strictly decreasing. We also
claim that z(¢) is bounded below. Otherwise, lim,_, , z(f)= — o0 and from (2.10)
and (2.5) if follows that U(?) is not bounded. Hence there exists a ¢, sufficiently
large such that (2.9) is satisfied for t=t, and also

z2(t)) <0 and U(t)) = max,,, U(s).
Then, from (2.10),
ty
51

0> 2(t;) = Ulty) — S:‘:”Q(s+p) U(s)ds > U(t;) — U(tl)S Qs +o)ds

= U(tl)[l - S::: Q(s+a)ds] >0

1

and this contradiction proves our claim that z(¢) is bounded below. Since z(t)
is decreasing, it follows that z(t) is bounded; that is, there exists a B>0 such.that

[z()]l < B, t=t,.

Integrating (2.11) from ¢, to t; with ¢, <t; and ¢, sufficiently large we find
0< [ [P()- 01—+ UG—0)dt < 2(1,) — 2(t5) < 2B
t2

which in view of (2.5) and (2.6) implies that U € L,(t,, 0). Then, from (2.3)
and (2.5), it follows that U’ € L,(t,, o) which implies that
lim,,, U(t) = L

exists. Furthermore L must be zero because U € L,(t,, ). Hence, from (2.10)
and (2.5), lim,, , z(f)=0 and since z(t) is also decreasing, it follows that, eventually

(212) z(t) > 0.
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Clearly z(f) < U(t) and therefore, from (2.11) and for ¢ sufficiently large, we have

(2.13) Z'(t) + [P()—Q(t—o+p)]z(p—0) < 0.

But (2.5) and (2.8) imply, (see Ladas and Stavroulakis [7]), that (2.13) cannot
have an eventually positive solution. This contradicts (2.12) and completes the
proof of the theorem.

In order to establish analogous results for the parabolic equation (2.1) we
shall employ an “averaging technique’’ which was first used for hyperbolic equa-
tions by Yoshida [8] and later by Kreith, Kusano and Yoshida [4]. It has also
been used to study delay hyperbolic equations by Georgiou and Kreith [2].

2.2 THEOREM. Set
(2.149) P(f) = ming,p p(x, 1) and Q(f) = maxoc,<r 4(X, 1)

and assume that P and Q satisfy the conditions (2.5)~(2.9) of Lemma 2.1. Then
every solution of (2.1) and (2.2) oscillates in the strip [0, L]x R™.

ProOF. Since the negative of a solution of (2.1) and (2.2) is also a solution,
it suffices to show that there is no ¢#,>0 such that a solution of (2.1) and (2.2) is
positive in (0, L) x [#y, o0). Assume, for the sake of contradiction, that u(x, )
is a solution of (2.1) and (2.2) and that

u(x, 1) >0 for (x, ©)e(0, L) x [t,, o0)
for some t,>0. Set
L
UuQ) = g u(x, H)dx, t>t,.
0

Then U(t)>0 for t>1,, and integrating (2.1), (2.2) with respect to x from 0 to L
we find,

Ut = — gz p(x, Dux, t—a)dx + g: a(x, Du(x, t—p)dx
< = P(OU(t—o0) + Q(OU(t—p).
That is,
(2.15) U'(t) + P(U(t—0) — Q()U(t—p) < 0.

But on the basis of Lemma 2.1, (2.15) cannot have a positive solution. This
contradicts the fact that U(f)>0 and completes the proof of the theorem.

3. Additional results and remarks. Using the idea of Theorem 2.2 and known
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oscillation results for ordinary delay differential equations one can obtain further
oscillation theorems for partial delay differential equations of the form

3.1 U, = a(u, — Xy px, Du(x, t—0;)

under the condition (2.2) or boundary conditions of the form

(3.2 u(0, t) — au (0, t) =0 and

u(L, t) + pu(L,t)=0
with o, $>0. In (3.1) the coefficients p; are assumed to be nonnegative and the
oscillation of its solutions can be established by utilizing the known sufficient

conditions of Ladas and Stavroulakis [6] or Hunt and Yorke [3] for delay
differential equations of the form

U@+ X-190U(t—0) =0
where
ql(t) = minosxSL p,—(x, t), i = 1, 2,..., n.

In (3.1) it is also possible to have variable delays o;=0(?).
Additional oscillation results can be obtained for the delay parabolic equation

3.3) u, = a(Hu,, + P(x, Hu(x, t—o)

where the coefficient P is not of fixed sign. Decomposing P into its positive and
negative part (as a function of ¢),

P(x’ t) = p+(x9 t) - P_(xa t)s

and using the results in Arino, Ladas and Sficas [1] we obtain sufficient conditions
for all solutions of (3.3) which satisfy the boundary conditions (2.2) or (3.2) to
oscillate in the strip [0, L] x R*.

From a physical point of view it is also tempting to consider parabolic equa-
tions with delays in the diffusion term u,,. Unfortunately, there seems to be no
satisfactory existence theory for equations of the form

U, = a(t)uxx(x’ t—V) - p(X, t)u(xs t—-G’)

when v>0. While one can use techniques such as those used above to establish
the nonexistence of positive solutions, such results run the risk of being vacuous
in the present state of knowledge concerning existence.
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