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0. Introduction

Let G be a connected noncompact semisimple Lie group with finite center,
and let K be a maximal compact subgroup of G. Let M be the symmetric space
G/K. We endow M with a G-invariant metric. We assume throughout this
paper that rank (Λ?) = 1.

Let Γ be a discrete torsion-free subgroup of G such that the quotient Γ\G
is compact. Γ acts on the symmetric space M by left translations and the quotient
space Γ\M is also compact. We give to the quotient manifold Γ\M which we will
call M, the push down Riemannian metric. Then M is the most general compact
locally symmetric space of negative curvature. Also, the simply connected
covering manifold of M is M, and we have πί(M) = Γ.

Let T be a finite dimensional unitary representation of Γ on a vector space
Eτ with character χτ. Since Γ is unimodular, there exists a G-invariant measure
dx on the quotient space Γ\G. We denote by L2(Γ\G, T) the space of Eτ valued
measurable functions / on G such that (i) f(yx) = T(γ)f(x) for yeΓ, xeG and

(ii) \ \\f(x)\\2dx<co. Since Γ is cocompact, the right regular representation
J 7" \G

πΓ)T of G on L2(Γ\G, T) decomposes

πr,τ = Σπe<5 πr,τ(π)π

and nr>τ(π) < oo for any π e G. Here G stands for the set of all equivalence classes
of irreducible unitary representations of G. Suppose that a function / is a C°°
element of L2(Γ\G, T) with compact support on G. Then the operator πΓ}Γ(/) =

\ f(x)πr τ(x)dx on L2(Γ\G, T) is well defined and is of trace class. Therefore
JG
trπΓjT(/)=Σπeenr,τ(π)®π(/)> where <9π denotes the character of the class π.
On the other hand, we may compute a trace of πΓjΓ(/) in a different manner by
using the Selberg trace formula.

In this paper, applying a suitable function in ^(G) to the trace formula, we
will consider the generalization of the following results.

Let X be a compact Riemann surface of genus bigger than 2. Then X = Γ\H
where H = SL(2, R)/SO(2) is the upper half plane, and Γ is a discrete subgroup of
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SL(2, /?), acting freely on H via fractional linear transformations. Let χ be a
character of a finite dimensional unitary representation of Γ. In an important
paper [25], A. Selberg constructed a function of complex variable ZΓ(s, χ), which
is called Selberg's zeta function attached to the data (Γ, χ), and showed how the
location and the order of the zeros of ZΓ(s, χ) give us information about the
spectrum of the Laplace-Beltrami operator of X on the one hand and about the
topology of X on the other hand. Furthermore, in a well known paper [7], R.
Gangolli constructed a certain zeta function for the general compact locally
symmetric space of negative curvature, and also he showed that this zeta function
has all of the properties possessed by Selberg's zeta function.

In essence our object is as follows.

Let (τ, Vτ) be an irreducible unitary representation of K. We consider the
homogeneous vector bundle Eτ = GxτVτ over M = G/K. There is a unique
G-invariant connection V on Eτ such that if s is a C°° cross-section, YE TeK(M)
(e is the identity element of G), π: G->M is the canonical projection and dπ des-
ignates the differential of π at e, then Fdπ(y)(s) = ί//dί(s(exp(ίY)K))|f=0. We
denote the connection Laplacian on Eτ by F2, and we put D= — Γ2. Now, let
GτtT be a subset of ό defined by {πeL2(Γ\G, T);π| x9τ}. The operator D
induces an operator Dτ on L2(Γ\G, T). Hence one can consider about the
spectrum of Dτ on L2(Γ\G, T). The principal aim of this paper is to investigate
a certain zeta function ZtjT(s) (of a complex variable s) attached to the data (G, K,
Γ, T, τ), which provides information about the spectrum of Dτ. This means that
our zeta function gives us information related to the determination of the subset
όΐίT of ό (see Remark 1 in Section 7). In particular, if τ is a trivial one dimen-
sional representation of K, then our zeta functions are nothing but the zeta
functions constructed by Selberg and Gangolli.

We will show that Zτ>Γ is holomorphic in a half plane Res>2p0 where p0

is a positive real constant depending only on (G, K), and that ZT>T has a merom-
orphic continuation to the whole complex plane. In addition to this property of
Zt>Γ, we will determine the location and the order of zeros and poles of ZTjΓ in
connection with the distribution of the series of representations which belongs to
6TtΓ (Theorem 7.1).

We shall prove that ZT>Γ satisfies a functional equation (Theorem 7.2), and
that ZtjT has an Euler product expansion (Theorem 7.3). Moreover, we shall
show that if ZT}Γ is an entire function then the order of Zτ>Γ as an entire function
can be related to the structure of (G, K) and it equals to dim (G/K) (Theorem 7.4).

In the previous paper [27], we have dealt with the case when G = SU(n, 1)
and τ is the one dimensional unitary representation of K = S(U(ή)x t/(l)).

The problem that we will treat in this paper has been studied in the case when
the zeta function is associated with the group G = 5L(2, C) (for detail, see [24]).

We use the standard notation Z, /?, and C for the ring of integers, the field
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of real numbers, and the field of complex numbers, respectively. We denote by
R+ the set of nonnegative real numbers. Furthermore, for any finite set F, we
denote the number of elements of F by the notation either [F] or #JF.

1. Preliminaries

Let G be a connected noncompact semisimple Lie group with finite center,
K a maximal compact subgroup of G. Let g, ! be their respective Lie algebras
and let g = ϊ + p be a Cartan decomposition of g with respect to the involution
θ determined by ϊ. Let α^, be a maximal abelian subspace of p. Let M and M *
be the centralizer and the normalizer of Ap in K respectively, where of course
Ap = exp dp . Let W= M*/M be the Weyl group of (g, ap). Throughout this paper
we will assume that G has real rank one, that is, dim α^, = 1. Extend αp to a maxi-
mal abelian 0-stable subalgebra α of g, so that α = αf + αp, with α f = α n ϊ , αp =
α n p. Then α is a Cartan subalgebra of g.

For any subsapce I of g, we denote by Ic and I* the complexification and the
real dual of I respectively. Furthermore denote by I*, the complexification of I*.
Let A = A(Qe, αc) denote the set of roots of (gc, αc). Order the dual spaces of
αp and αp+iαk compatibly, as usual (cf. [13]), and let A+ be the set of positive
roots under this order. Let

P+ = {αeJ + ; α φ 0 on αj,

; α = 0 on α } .

Put p = (l/2)Σαep+ α. For αe A + , let Xa be a root vector belonging to α, and put

n = Σαep+ CXΛ (Ί g. Let N be an analytic subgroup of G corresponding to n.
Then we have the Iwasawa decompositions g = i + ap + n, G = KA^N. Since

dim 0^ = 1, there is an element λ in α* such that n = nλ@n2λ with nJλ = {Xe$ι
adH(X)=j-λ(H)X, for any Heα p} (; = 1, 2). Namely if Σ is the set of re-
strictions to dp of elements of P+ then λeΣ and 2λ is the only other possible
element in Σ. Let p be the number of roots in P+ whose restriction to αp is A,
and let q be the number of the remaining elements of P+. Choose H0ea^ so
that λ(H0) = l.

Let < , > denote the Killing form of g, that is,

<X, Y> = tr (ad X ad Y) for X, Ye g.

Put \X\2= — <X, ΘXy, then | | is a norm on g. Also, the restriction of < , >
to αp x dp puts in duality αp with itself. Given μ e αj there is a unique element
Hμ e dp so that μ(H) = <#μ, ίί> for all H e αr On α* we use the dual inner pro-
duct, that we also denote by < , >. With respect to these inner products, one

knows that
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<tf 0, Hoy = 2p + tq, p(H0) = (1/2) (p + 2q) ,

Hλ = (2p + SqγiH0 and <p, p> = (1/4) (p + 2q)

Throught this paper, we will denote by p0 the number p(H0).

For any x e G, let #(x) e αp be defined by x = k exp H(x)n, kεK, nεN.

For any /i e A^ we put u(h) = λ (log /i). Then u = u(h) may be regarded as a
parameter on the group Ar By this parametrization A^ can be identified with

R. Let Jw be the standard Lebesgue measure on R. Via the identification of

A) with R, we get a Haar measure d/i on A^ which we fix from now on. On
the other hand, for any v e α j f , we put r = r(v) = v(H0). Then r is a parameter on

αj, and maps αj isomorphically onto R. In these parameters, v(log/ι) = w(/ι)r(v)
for veα*, heAp. Let dr be the Lebesgue measure on R. Then dr/2π is the

measure on R dual to the measure du on 1? in the sense of Fourier transforms.
We denote by dv the measure on αf that we obtain from dr/2π. Then dh, dv

are dual in the sense of Fourier transforms.

Let dk and dm denote the normalized Haar measures on K and M respec-

tively. On N we fix a Haar measure normalized by the following condition:
Let n = θ(n~1) for each n in N. The measure dn is to satisfy the condition

\ exp( — 2p(H(n)))dn = \. Having fixed the above measures on K, A^, N, we
J N

normalize the Haar measure dx on G so that

( f(χ)dx = ( /(fcfcn) exp 2p(log h)dk dh dn.
JG

These normalization will be adhered to throughout in this paper.

For any subgroup L of G, let £ be the set of all equivalence classes of ir-

reducible unitary representations of L. If π e £ is a finite-dimensional representa-
tion, then we put χπ = trπ and dπ = dimπ.

If v e α*c and (σ, Hσ) e M put

and
f(K)\\2dk < oo

JK\M

I f g ε G , f e H σ v define

Then πσjV defines a represntation of G on Hσ v. If r = r(v) e J? then this represen-

tation is called a (unitary) principal series representation of G. We denote by

Qu the set of all equivalence classes of irreducible unitary principal series re-
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presentations. On the other hand, for r = r(v)eiJ?, the representation π f f )V is
called a complementary series representation of G whenever it is unitarizable.
We denote by όc the set of all equivalence classes of the complementary series
representations.

If /e CC(G), we define the Abel transform Ff by

Ff (mh) = exp p(log h) ( /(knthnk'^dn dk
J x x N

for raeM, heA^. Let Θσ>v = Θπσv (σeM, veα£.) denote the character of
πσ>v. Then it is known that

(1.1) βσ.v(/)= Ff(mh)χσ(m)expiv(logh)dhdm.
JM JA$

Applying the Fourier inversion formula and the Peter- Weyl theorem we see that

(1.2) Ff(mh) = Σ ( Θσ)V(f)εxp(-iv(\ogh))ϊ3m)dv.
σeJfr Ja$

Define for m e M, v e α*,

(1.3) D(mK) = exp (p(log /0)|det (Ad (m/i)'1 -I)|n| .

Clearly D(mh) Φ§\ϊhΦe. Moreover, if h^e then it is known that

(1.4) Ff(mh) = D(mh) ( Kgmhg-^dg.
JG/AΪ

Here the measure dg on G/Ap is defined by

φ(g)dg = \ φ(gh)dhdg.
JA\>

Now let όd be the set of all equivalence classes of the discrete series re-
presentations of G, that is, those classes ω e G that contain a square integrable
representation of G. Let Θω denote the character of ω e &d. Then we state the

version of the Plancherel formula for G (see [11]):

(1.5) f(e) = Σ d(ω)Θω(f) + [̂ T1 Σ̂  * Θσ>v(f)μσ(v)dv
ωeGd σeM J α p

for any K-finite (on both sides) function / in C^(G). Here d(ώ) stands for the
formal degree of ωeόd and μσ(v) is the Plancherel measure corresponding to
σ e M. Of course, the quantity d(ώ) and the function μσ(v) depend on the choice
of the Haar measure on G.

Throughout this paper, for simplicity, if /(v) is a function on α*c, then we

will write
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Then μσ(r) (σ e JVf ) is a meromorphic function on C that restricts to an even,
nonnegative, analytic function on R that has polynomial growth.

Let m be the Lie algebra of M. Then αf is a maximal abelian subalgebra of
m. Let ΔM be the root system of (mc, αf >c). We define an order on ΔM so that
the set P_ is the set of all positive roots in ΛM.

If σeΛΪ, we denote by Λσ its highest weight and we put ρM=l/2 Σ«ep-α

Both Λσ and pM are trivially extended to αc. Put

Let b denote the number of different positive restricted roots of αr Then
it is known that, up to a constant factor depending only on G, μσ(r) is given by the
formula (see [15])

Here φσ(r) = l, if g = so(2n + l, 1), and otherwise <£σ(r) = tanhr or cothr, de-
pending on σ. The choice of tanh or coth is done roughly as follows. There
exists a distinguished element y e exp αf of order at most two. If H* e α, satisfies
exp (#*) = ?, then exp(Λσ + pM)(H*)= ±1. The tanh is used when the sign is —
and the coth when the sign is + (see [23]).

Since

we see that qσ(r) can be written

qσ(r) = c-dσ pσ(r)

where c is a constant depending only on G and on the normalization of the Haar
measure on G, and pσ(r) is a monic polynomial of degree dim(G/K) — l = p + q.

We will need a very explicit formula of μσ(r). Miatello has computed it for
each particular group, but he uses a different normalization from our Haar
measure on G. Now we list them below in our normalization of the Haar

measure:

(I) G = S
The Satake diagram:

«3 «„-

Λ Or
«„ ( J , if «=1),
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α, = e, - εί+1 (i = 1, 2,..., n), αn+1 = εn + εn+1 (see [2]).

J+ = {εf ± ε, ; 1 < ί < y < n + 1} .

P+ : εi ± BJ (1 < 7 < Λ + 1) (They all restrict to λ) .

The general form for a highest weight:

Λσ= Σiί2St ει(s2 > s3 >•••>*„> \sn+ί\, s,e

Then

241

+ n ""7*)2)

(II) G = S00(2n5l)
The Satake diagram :

Φ=» , if « = 2)
«2

α, = ε, - εί+1 (i = 1, 2,..., n - 1), απ = en.

A + = {εf; 1 < i < n} U {εf ± εy 1 < i < j < n} .

P+ ' ε1? εt ± εj (1 < 7 < n) (They all restrict to λ) .

The general form for a highest weight:

0,

Then

(III) G = S£7(n,

The Satake diagram:

'+ n ~j

(o o , if it-2)
«ι <X2

αf = ε f-ε ί + 1 (i = 1, 2,..., n).

A+ = {εf - e j+1; 1 < i < j < n}.

P+: εx - εy+1 (1 < j < n) restrict to A,

εi"~ β«+ι (1 < l ^ n) restrict to A,

εx — επ+1 restricts to 2A.
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The general form for a highest weight:

Λσ = Σ?=2 SI BI + (s/2) Σ?=2βι (s2 > ̂  >-> >V-ι > 0, j,, jeZ) .

If we set sM = 0, then

where </><y(r) = tanh πr or coth πr, and ψσ(r) = tanh πr if and only if s + n is an odd

integer.
For SL(2, R) there are two representations of M, one trivial and one not.

The Plancherel measures in the two caces are of πr tanhπr and πr cothπr,

respectively.

(IV) G =

The Satake diagram :

«ι = δ| - εi+ι C1' = !> 2' » w), αrt+1 = 2εw+1.

J+ = {2βf; 1 < i < n + 1} U {εf ± BJ\ 1 <

P+:ε2± Sj (3 < j < n + 1) restrict to A,

βi ± fiy (3 < 7 < n + 1) restrict to λ,

βj + ε2, 2εί and 2ε2 restrict to 2λ.

The general form for a highest weight :

Then

0, 5ί5 2seZ).

where φσ(r) = tanh πr or coth πr and φσ(r) = tanh πr if and only if s e Z.

(V) G=F4(_20)J gc^/4.

The Satake diagram :
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• •=
α2 α3 α4

aί = e2- ε3, α2 = ε3 - ε4, α3 = ε4, α4 =

Λ + = {εf; 1 < ί < 4} U {εf ± ε, ; 1 < i <; < 4} U {y (ε1±ε2±ε3±ε4)J .

P+: -y (ε1±ε2±ε3±ε4) restrict to A,

ε! and εx ± BJ (2<y<4) restrict to 2λ.

The general form for a highest weight :

Λσ = sl £2 + 52 £3 + 53 ε4 (si > 52 > S3 > 0, 2sf E Z9 S, - Sy E Z) .

Then

where φσ(r) = tanh πr or coth πr and φσ(r) = tanh πr if and only if sf e Z.

Suppose that (π, H) e Q. Then (π, H) is K-fmite, that is, as a representation

of X, it is the unitary direct sum #=Στe* #τ=Στe* mτK> where π|H τ^mττ
(mτ < oo) for any τ e K.

For/e CC(G) and Λ e C(X), we define the convolution products of them by

, (Λ*/)(x) =
JK

Let £τ: H^Hτ be the orthogonal projection onto Hτ. For any τej£, we

observe that if dt/*χτ=/then

(1.6) Θπ(f) =

If (π, #) = (πσjV, /ίσ'v) (σeM, veα*c) then the τ-primary component Hτ =

H?>v is identified with Fτ(χ)HomM(Fτ, Ht) via the map A given by
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A(v®T}(khn) = exp(-(iv + p)(log/ι))Γ(τ(fe-»,

where v e Fτ and Te HomM (Fτ, #σ).
Let τ, ye£, TeHomM(Fτ, Fy), veα*, and xeG. We define an Eisenstein

integral by

y, t(Γ:iv:x)=f
JK

These integrals are essentially the matrix coefficients of the principal series.
That is, it can be easily seen that

<πσ,v(xμ(w®pi), A(v®p$y = <Eτ)τ(pΪPk

σ' - iv: x)w, t»

where {/?i;j = l,..., ασ} is the basis of HomM(Fτ, Vσ) and pj

σ* is the adjoint
operator of pi [28].

Let us fix τ e £. Put Mτ = {σ e Λ?; [σ: τ|M] ̂ 0}. Then we have

^ = ΣαetfτΣ^l#i With (τ|M, ̂  ί) 6 σ.

Let qi = p*σ

jpj

σ 0' = !,..., ασ). The following lemma will be used below.

LEMMA 1.1 [11]. For each σeM t, let aσ(v) be a C°° function on α*c. Let

«τ(v)=Σσe^τΣ^l«σ(v) .̂

Then we have

Σ f fetfτ tr(£tπσjV(x)Et)ασ(v) = tr(ατ(v): - iv: x)

/or αn.y v e αjc.

PROOF. By the matrix expression for Eτπσ>v(x)Eτ we get

tr (£τπσ,v(x)£τ) = Σ^i tr E^: - iv: x)

for each σeΛΪτ. Hence by the very definition of 0τ(v), we have the desired
result.

We now refer to the important property of Eisenstein integrals.

THEOREM 1.2 [11] [32]. // G is a real rank one semisimple Lie group with
finite center, then there exist a meromorphic EndM (Vτ)-valued function cτ(r) =
cτ(v) (r = r(v)) on α*c and a meromorphic Endc(EndM (vτ))-valued function

σ(r\ u) = σ(v: h) (u = u(h), heA^) on α*c so that for any TeEndM(Fτ) and w>0,
we have

(1.7) Eΐίτ(T:ir:h)

= e-P°u{exp(iru)σ(r: u)Tcτ(r)
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+ exp(-irw)σ(-r: u)τ(m*Ylcτ(r)*Tτ(m*}}

for each τ e fc. Here m* e M* — M.

In connection with the function cτ(r), the following results are known.

PROPOSITION 1.3 [11]. For any τeK, define

Mτ(r)=Σ^Σ3£ιAαr) «ί.

There exist constants foσe R depending only on σ so that, if

then

(1.8) cτ(r).cτ(r)* = μτ(r)-^τ.

PROPOSITION 1.4 [26]. There is a rational function q^r) such that iflm r<0,

(1-9) lkτW-Ί<l*ι(r) | .

Here \\ \\ stands for the operator norm in EndM(Fτ).

We turn our attention to the function σ(r: ύ).

PROPOSITION 1.5 [26] [32]. There exist Endc(EndM(Vτ))-valued rational
functions Γk(r) on αjc such that σ(r: u) is given by a series

(1.10) σ(r: u) = Σΐ=oΓk(ir-p0)e-««.

Furthermore, for any k (/c = 0, !,...)> there exist a rational function q2(r) and a
constant c such that ϊ/Im r>0 then we have the estimates

(1.11) \\Γk(ir-Po)\\<c*\q2(r)\.

Let X lv.., Xm be a basis of m such that <Xί? Xy> = —δtj. Put

Then, since ωM lies in the center Z(m) of the universal enveloping algebra C/(m)
of m, for a given σ e M, there is λσ such that

The functions Γk(r) are defined by means of complicated recurrence relations.
But, by the very definition of that relations, one can find the following proposition.

PROPOSITION 1.6 [26]. The poles ofΓk(i r — p0) lie in the set
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{ _ i / 3 _ κ \ ./ = 1 ? 2,..., AT,
'=V-0' + k/ )eC;

2 V •> ' σ,ξeM t

Now let # = {r e C; Im r>0}. Let H be its closure. Set

Ptτ = H nP*, τ .

Then we get

Also it is seen that this chain is stationary if k is sufficiently large. Accordingly

we put

00

k=ί

On the other hand, it is known that the matrix entries of cτ(r) are expressible
as linear combinations of products of beta functions [29]. Therefore, as a
consequence of Proposition 1.3 and Proposition 1.4, we know the fact that the
poles of c/f)*"1 form a discrete subset of the imaginary axis. Furthermore we
see that only finitely many of those poles lie in H. Let

and put

pτ = P: u z+.
Then one finds the fact that the set of poles of tr (σ(r: u)bτcτ(r)*~*) in H is

contained in the finite set Pt. So, let r = i zl9 i z2,..., i zp (z7 >0) be the poles of

trσ(r: ii^c^r)*"1) that occur as a pole of tr(Γfc(ir — pjft^f)*"1) for some k
so that fc + z7 <p0, and let JV/ be the order of i zj as a pole of tr(σ(r: ii)^/?)*'1).

Let now Xl9..., Xn be a basis of g. Let ylv.., 7Π be defined by (Xi9 7y> =
δίy. Set Ω = Σ X / Y l , the Casimir element of g. Suppose that lξ>r = lξίV is the
eigenvalue of Ω on the class πξtV. Then it is known that

Now we define a polynomial which will play an important role in our argu-

ment as follows :

(1.12) Pt(r)= Π (r-λ^/Λ
ξe^τj = l ..... p J

Here we put

(1.13) Aίi,
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2. The trace formula

Let Γ be a discrete, torsion free subgroup of G such that Γ\G is compact.
Fix a G-invariant measure dx on Γ\G by requiring that for each/6 CC(G) we have

f(x)dx =
JG JΓ\G

We denote the volume of Γ\G in the invariant measure dx by vol (Γ\G).
Let (Γ, Eτ) be a finite dimensional unitary representation of Γ with character

χr. Let L2(Γ\G, T) denote the set of functions/: G->EΓ such that

f(γx) = T(y)/(x) for all x e G, y e Γ

and

Γ \ G

where || || τ is the norm on Eτ.
Because Γ\G is compact the right regular representation πr>τ of G on

L2(Γ\G, T) splits into a direct sum of irreducible unitary representations of G
and we can write

πr,τ = πeo Hr.rOO - π, rcr>τ(π) < oo.

Here nΓ)T(π) is the number of summands of πr>r which lie in the class π e <3.
We now discribe the trace formula on L2(Γ\G, T). Let/eL2(Γ\G, T). If

<£ e C?(G) then we get

(xeG)

Γ\G

Γ\G

General theory implies

tr π
Γ \G

For y e Γ, let CΓ denote the set of representatives in Γ for the Γ-conjugacy
class of elements of Γ and let Gy be the centralizer of y in G. We put Γy =Γ n Gr
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Also we normalize the measure on Gy and Gy\G so that for/, h e CC(G)

\ f(9)dg = ( \ f(xg)dx dg,
JG JGγ\GJGγ

JΓγ\Gγ

With these normalizations,

t τ π Γ f T ( φ ) = r

Σδerv\rΦ((δg)~1y(δg))dg
tΓ\G

\
J Γγ\

\ \ φ(g-ίx~ίyxg)dxdg
J Gy \G J Γγ\Gγ

φ(g-1yg)dxdg
Gγ \G J Γγ \Gγ

Φ(g~1yg)dg.
Gγ\G

Since all elements y e Γ are semisimple and Γ has no elements of finite order,
it follows that every element y e Γ is conjugate in G to an element of the Cartan
subgroup A = AtA^. Choose an element h(y) of A to which 7 is conjugate, and
let h(y) = myhp(y) (myeA{, h^(y)eA^). We now further demand that h(y) be
chosen so that h^(y) lies in ^4+ = exp αj, where α£ is the positive Weyl chamber in

αr We then define uγ = λ(log ^00)==w(^(y)) Of course uy depends only on y.
Also, my is determined up to conjugacy in M . Therefore, the following are well
defined :

= D(yΓl =

V(y) = vol (Xp\GΛ(y)) (A^\Gh(y) is compact) ,

χσ(my) = tr σ(my) and Fφ(y) = Fφ(h(y)) = Fφ(myh,(y» .

Now since

φ(gh(y)g-ί)dg,
Gγ\G

using (1.4) we get
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φ(g~ljg)dg =
JGγ \G

Hence we have the trace formula,

(2.1) tr πΓtT(φ) = Σπee nΓ)T(π)Θn(φ)

= χτ(e)vo\(Γ\G)φ(e)

vol (Γy\Gy)V(yriC(y)Fφ(y) .

An element y e Γ (y^e) is called primitive if it can not be expressed as δj'
for some7>l, δεΓ We denote the set of all primitive elements of Γ by PΓ.
It is well known that every y (^e) is equal to a positive power of a unique primi-
tive element δ. The integer j(y) is defined by y = δj(^. Then we have wy =
j(y)uδ. Moreover, it is known that

Hence the trace formula is rewritten as follows :

(2.2) tr πr>τ(φ) =χτ(e) vol (Γ\G)φ(e)

If φeLl(G) insted of φeC^(G), the operator πΓtT(φ) is still defined but it
need not be true that πΓtT(φ) is of trace class. Now we refer to a sufficient con-
dition for φeLl(G) to be put into the trace formula. That is to say, it is a
sufficient condition that φ is an admissible function (cf. [6] [8]). The fact that
φ is admissible means that both sides of the trace formula converge absolutely.

At first, we prepare several notations.
Let Ξ(x) be the spherical function of weight zero, that is,

Ξ(x) = ί exp - p(H(xk))dk.
JK

Let ^(G) be the set of all C°°-functions on G such that for any positive in-
teger m and each D, la product of a left invariant differential operator and a
right invariant differential operator on G, there exists a constant K(m, D) such
that

sup*6G |D/(x)| < K(m, D)Ξ(x)2(l + σ(x))--.

Here σ(x) = X if x = k - exp X (k e K, X ε p) is a polar decomposition of x e G.
Then ^\G) with the topology defined by the seminorms
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is a Frechet space. It is clear from the definitions that /e^^G) implies that
Ωkfε <β\G) for all k and that

PROPOSITION 2.1 [8] [21]. Let /e^G). Suppose that f is K-finite and
K-central (Le.f(kxk~1)=f(x)for all fceX). Then f is admissible.

3. The series ητ>τ(r)

In this section, we shall define a series nτ)τ(r) = rlr,τ,τ(r) (τe^) by means of
applying a suitable admissible function to the trace formula. This series is the
most important one for defining the zeta function of Selberg's type. The first
half of this section, we devote ourselves to studying the function which we will
need for the sake of defining ητ>T(r).

In the first place, we define a new polynomial P?(r) for each σ e Mτ through
the use of the polynomial Pτ(r) which is defined at the end of Section 1 as follows:

(3.1) P ;(r) = Pτ(λσ>r) = Π (λσ,r-λξfiZj)
NJ

ξe&τj=l,...,p

= Π (-r*-z]-λσ + λξyj.
ξetiτj=l,...,p ς

Let Ό° be the differential operator on R(~A^) whose Fourier transform is P*.
Let ε0 be a fixed positive real number and let g be a real valued function in

C°°(/?) such that: (i) g is even, (ii) g vanishes in some neighborhood of zero,
(iii) g is constant, equal to K, say, in {xeR; \x\>ε0} and (iv) 0<0<?c. Such
functions surely exist. The value of K and of ε0 will be chosen conveniently later
on.

Let τM = τ|M. For any complex number s, define a function τ&s on MA^ by

(3.2) τ<Zs(mh) = Σσe;*τ [

meM, h e Ar Since g vanishes in a neighborhood of zero, τ^s is a smooth
function on MA^ for fixed s.

Let

H(r) = Γ g'(x) exp (i rx)dx (r e C).
Jo

Because of the properties of g, we see that g' is in C™(R) and gfr(x) = 0 if |x|>ε0.
Hence H(Ό) = κ = g(ε0) — g(0). Moreover H(r) can be viewed as the Fourier trans-
form of the function G(x) defined by

f g'(x) if x>0
G(x) =

I 0 if x < 0.



Zeta functions of Selberg's type 251

Hence an application of the Paley- Wiener theorem gives us the following
lemma.

LEMMA 3.1. H is an entire function of r. Furthermore, for any integers
n>l and w>0, we can find the positive constant Cm>n such that we have the
estimates

tJ v,^ , Yn if I m r > 0
\dmH(r)dι*\ <

( Cm,π(l + |r|)-» exp (εjlm r\) if Im r < 0.

Using this function H(r), we can calculate the Fourier transform τ&s(σ, v)
of ^§s at the character (χa, v) of MA9.

LEMMA 3.2. Let

χσ(m)exp(iv(logΛ))τar j(»ιA)dmdA.
M

Then we have

(3.3) A(σ, r) = [σ: τ^PfW { ̂

for any seC satisfing Re(s — p0 + ir)>0 αn^ σeM. Here o/ course we put
r = r(v).

PROOF. By the Peter- Weyl theorem we get

Γ ί 0 if σ φ ξ
\ Xσ(m)Xξ(™)dm =
JM [ 1 if σ ~ ξ.

Hence,

τ^(σ, r) = [σ: τM] Γ D (g(uy)πp(-(s-pJ\u\)exp(iru)du
J-oo

= [σ: τM]Pf(r) Γ flf(ιι)exp(-(s-pβ)|ιι|+inι)dιι
J-oo

= [σ: τM]P?(r) {J%(W)exp(-(s-

+ \ gf(w) exp (s - p0 + i r)u du\
J-oo J

U
o

^

+ \
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because g is an even function. Integration by parts yields

Γ°°\ g(u)
Jo

s-p,-r

for Re (s — ρ0 — i r) > 0. Similarly we obtain

ir)u du =

for Re (s — p0 + i r) > 0. The assertion now follows.

Now let

h (x) _ H(i(s-Po)-x) H(i(s-p
Λ*W ~ s-Po+ix + s-pg-ix

We now prove an estimate that we will need lator on.

PROPOSITION 3.3. Let f be a meromorphic function on H={zε C; Imz>0}
such that \f(z)\^\q(z)\ for any zeH, q(z) being a rational function. Suppose
also that the poise z1?..., zk off in H all lie in the upper half plane H and that
Nj is the order of the pole zj (j = l,..., fe). We put, for a complex s with Res>p0

=
J

Let a be a positive number. 'Then we have the following estimates:
If s — p0 + iZjϊ£Q for all j (j = l,..., fc), then there exist polynomials Pj(i),

depending on s, of degree Nj—l and a constant cs, depending only on s such that

expαί2(/s(ί) - Σy=ι

= O(exp(ε0|Res — p0 — at\)) as t - > oo.

If s — p0 + izm = Q for some m (l<m</c), then there exist polynomials p/t)
) of degree Nj — l and a polynomial pm(t) of degree Nm, all of them de-

pending only on s, such that

Qxpat2(Is(t) - ΣJ=ι pXOexp(iz/) - Pm(0exp(-ί(s-p0)))
j+m

= 0(exp (εJRe s - p0 - at\)) as t - > oo.
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PROOF. Since the latter half of assertions can be proved same as the proof
of first one, we will prove only the first assertion.

Since we are interested in large values of f, we may assume ί>Im zj for allj.
Let x=y t. Then we get

(3.4) r

s(0 = t J^ hs(yt) exp (i t2y)f(yt)dy.

Also we may assume ta>lmZj (j = l,...,k) and ta>Re(s — p0). Now we
will shift the contour of integration up to the line {y e C; Im y = a}. Let C± =
{}> = ±# + i r; 0<r<α}. We assume that the integrand of (3.4) have no poles
on the lines C±. We consider the following rectangular contour integration.

Im

c_ /
Zj/t

-R

a

R
Re

All the poles of the integrand of (3, 4) lie in the interior of this rectangle and
these are at Zj/t (j = l,..., fc) and i(s — p0)/t. Therefore, by the residue theorem
we obtain

foo

/s(0 = t \ hs(u t + i a t) exp (i t2(u + i ά))f(u t + iai)du
J-oo

+ 2π i t ΣJf=ι Res3>=Zj/f (hs(yi) exp (i t2y)f(yi))

+ 2πit Resy=ί(s_po)/f (hs(yf) exp (i t2y)f(yf))

+ t lim^+00 ( hs(yt) exp (i t2y)f(yf)dy.
JC++C-

Let y = R + ir (0<r<α) on C+, then

-ir)t)e\p(it2(R + ir))f((R + ir)t)\

s-p0 + i(R + ir)t
,

s-ρ0-i i}
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By Lemma 3.1, for any integer n, there exists a constant C2Π)0

 such that the right
side of this inequality is dominated by

exρ(εJRes - ρ0 - rί|)exp(-ί2r)

for some constant K (>0), if .R is sufficiently large. Since n is arbitrary we get

limj^+oo ( hs(yf) exp (i t2y)f(yt)dy = 0.
Jc+

Similarly we have

lim^+αo Jc hs(yi) exp (i t2y}f(yt)dy = 0.

Therefore we see that

(-00

Is(t) = tQXp(-t2a)\ hs(ut + iat)exp(it2u)f(ut + iat)du
J-oo

(3.5) + 2π i t Σ5-ι Res,=z ./, Λ^ί) exp (i t2y)f(yt)

+ 2πit Resy=i(s_po)/ί Λ^ί) exp (i t2y)f(yt) .

In this place, if we put ut = x in the first term of (3.5), then the following
equality holds.

foo

t exp ( - t2ά) \ hs(ut+ i at) exp (i t2u)f(ut + i ai)du
J-oo

f GO

= exp ( - t2a) \ hs(x + i at) exp (i tx)f(x + i αί)d*
J-oo

By means of the assumption on/, if we let |z| be sufficiently large, then there
exists a non-negative integer N such that

|/(z)| < X'|z|",

where K' is a certain constant. Accordingly, if t is so large then

Therefore, if we use Lemma 3.1 again then, for each n, we can find a constant
C'n such that the above expression is dominated by
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Hence we have

(3.6) f°° hs(x+iai)exp(itx)f(x+iat)dx = O(exp(ε0|Res-p0-αf|)).
J-OO

On the other hand, since

we have

(3.7) 2π i ί ReSj,=ί(s_p<))/ί (hs(yf) exp (i ί2y)/OΌ)

= 2//(0)exp(-(s-p0)ί)/(i(s-p0)) = c,ex.p(-(s-p.)ί).

Here we put cs=2πί/(0)/(i(s-p0)).
Suppose that

/(*) = Σf=-wΛXz-z7)'
Then

2π i ί Res,.,,,, (hjyί) exp (i ίWOΌ)

If we apply the Leibniz rule to the last expression, then we see that there exists a
polynomial pj(t) such that

(3.8) 2π i t Resy=Σj/t (hs(yt) exp (i t2y)f(yf)) = Pj(t) exp (iz/),

and

The assertion of our proposition follows from the equalities (3.5), (3.7), (3.8) and
the estimation (3.6).

We next use a wave packet to define a function τgs(x) on G closely related to

the series ητ>T(s).

PROPOSITION 3.4. For each τeK and se C, with Res>2p0, put

(3.9) τgs(x) = d-^Wrl Σσe^τ[σ: τM]-ι ( tr (Eτπσ,v(x)Eτ\%s(σ9 v)μσ(v)dv.
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Then τgs has the following properties:
( i ) τgs is K-central and dτχτ*τgs = dτ τgs*χτ=τgs, in particular τgs is K-finite.

(ii) Λ6»i(G).
(iii) 6>ff,v(τ0s)=A(<r, v).

PROOF, (i) This is immediate from the definition of τgs. (iii) Frobenius
reciprocity says that

tr(EτπffίV(e)Eτ) = dτ\τ\ π^JJ = dτ[σ: τM] .

Hence, by definition,

Therefore, by means of the Plancherel formula, we have the desired result.
(ii) For the sake of simplicity, we put

A.W = Λ.(r(v)) =5V sv s-pa-ιr

Then, by Lemma 3.2,

= (l/4πdτ) Γ Σ,ε*τ tr (E^σ,,(x)EJP (r)hJ[
J—CO

If we put (see, Section 1)

then

τ ŝ(x) = (l/4πdτ) f °° tr £τ,τ(^τ(r)μt(r): - i r: x)hs(r)dr,
J-oo

by Lemma 1.1. Let n = w(/ι) (/ιe^4p). Using (1.7), τgs(h) can be put into the
following form.

τgs(h) = (l/4πdτ) e-p- Γ fts(r) tr (eίruσ(r : M)^τ(
J-oo

Thanks to the relation (1.8), we have

(3.10) τgs(h) = - - " hs(r) {e»» t r (σ(r : M^/r^
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We now consider the above integral breaking into two pieces. By (1.10),
we have

Γ hs(r)e»«tϊ(σ(r: u)bτq
J-oo

Γ hs(r) e™ tr (Σ?=o Γk(i r-Po) e'"" bτqτ(r)cτ(f)*-i)dr.
J-OO

By the definition of qτ(r)9 the integrand has no poles on the real line. Therefore,
by (1.9) and (1.11), there is a rational function q(r) and a constant c so that

if r e H. Hence the integrand is dominated by

\hs(r)e»»q(r)l(\-ce-»)\ < \hs(r)q(r)\,

if 11 >1. Therefore, since hs(r) is a rapidly decreasing function by Lemma 3.1,
the dominated convergence theorem implies that the above integral is

= Σ?=o Γ hs(r) e»« tr (Γk(i r-p0)bτqτ(r)cτJ-oo

The poles of tΐ(Γk(\r-ρ^bτqτ(r)cτ(r)*-^) in H are all pure imaginaly numbers.
Let i r !,..., irpk be the poles of this function in H. Then, by the definition of
qτ(r)9 we have

r/> Po (J = 1, 2,...5jpΛ).

Now let Njtk denote the order of pole at i r,-. Then, thanks to the estimate of
Proposition 3.3, there exist polynomials pj)k(u) of degree Njtk-l or Njtk and a
constant cs so that

Σ?=o Γ
J-oo

= Σ =o

Here ^Λ(tι) is a function which satisfies

|0fc(w)|<ckO(exρε0|Res-p0-tfiι|) as u - > oo,

for some constant c. Hence we have

IΣ?=o0*(wKfc1 < (l/(l-cβ-«))0(expε0|Res-Po-αu|)

= O(exp εJRe s-p0-au\) .
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Next, we consider the other half of the integral in (3.10). Since the poles of
σ( — r: u) and ^(r)"1 are the negative of the poles of σ(r: u) and c^r)*"1 respec-
tively, and the function hs(r) and the polynomial qτ(r) are even, we have the
similar estimates of the first one.

Therefore, we easily see that there are polynomials qj)k(u) and a constant
cs such that

+ exp ( — au2)O(exp ε0\Re s — p0— au\)} as u -> oo.

Since rj>p0 = (p + 2q)/2, e2p°u

τgs(h) decays exponentially as w->oo. Let
us consider the Cartan decomposition G = KA^K. Then, since the Haar measure
dg on G can be written by

dg = (constant) (smhu)p(sinh2u)qdk du dk\

we see that

for all non-negative m e Z. On the other hand,

: - r :

Therefore, arguing as in the case of τg&9 we obtain a similar estimate to show that

for all m, fee Z (>0). It follows that τ#se ^(G) and Proposition 3.4 is proved
(see [21]).

Suppose that Res>2p0. Then, if we apply the results (i) and (ii) of Pro-
position 3.4 to Proposition 2.1, we see that the function τgs is admissible. Hence,
trπr,τ(τ#s) can t>e evaluated by the right hand of the trace formula (2.2). It
implies

) ϊ. M J (?)"
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where both sides converge absolutely for Res>2p0.
In order to parametrize the elements of 6 which appear in the left side of trace

formula, we now refer to the result of Langlands concerning the classification of

representations.

PROPOSITION 3.5 [16] [19]. If TIE Q then π satisfies one of the following
conditions:
(a) π e Gd (the discrete series).
(b) π e Gu (the irreducible unitary principal series).
(c) π e {π+>0, π~>0} (σ e Λ?) (the limit of discrete series).
(d) πeόc, the complementary series, that is, π^πσ j V(^πσ j_v)/0r some v e i α j

(e) π is infinitesmally equivalent with Lσv = πσjV/Ker A(v) with 0< — ir(v)<p0,
where A(v): Hσ>v-»HσS>~y (e^seW) is the canonical intertwining operator
(cf. Wallach [28]). Moreover Lσ^Lσ,ίV iffσ~σ' and v = v'.

We now put

βτ = {π 6 G; π c πΓ}Γ, Θπ(τgs) Φ 0} .

For σ e Mτ we set

ιρ? = {r = r(v) e R+ πσ>v e 0, πσ>v c πΓ)Γ} ,

2β? = {r = Kv)ei/?+\{0}; π σ j Ve6 5 πff,v c πr,r}.

By the definition of τgs9 it is clear that

For convenience' sake, we set up the following agreements: 1°. Suppose that
the representation πσ>0 is reducible. Then it is known the fact that at the least one
of Θπ+σt0(τgs) and Θπ-f0(τgs) is zero. Hence we make a change in the definition
of π f f j0 to the following effect:

2°. Let π^Lσ>v = πσjV/Kerv4(v) as an infinitesimal representation, where A(v):
Hσ>v-+HσS-\ Ίf ker^(v)n(//σ'v)τ = 0, then one finds that ΘLσ>v(τgs) =
Θσ,v(τ9s)' If Ker^(v) n(Hσ'v)τ^O, then it turns out, by the definition of Pτ(v),
that Pτ(Aff)V) = P?(v) = 0. Thus 6>σ,v(τ ŝ) = 0. In either case, we define π by πσjV.

Under these agreements, we let

Then we have
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Also we put βf = {r = r(v) e βτ

σ; Pτ

σ(v) ̂ 0}. Set

βτ= VΛe^β?.

Recall that ΘσjV(τgs)=τ&5(σv). Therefore, by (1.2), we have

Moreover, it is well known that the numbers uy(γeCΓ\{e}) are bounded away

from zero. If we choose and fix ε0 so small that it is smaller than the smallest of

these numbers, namely 0<ε0<wy for all γ(^e)eΓ, then we have

D?(g(uy) exp ( - (5 - p>y)) = κP?(i (s - p0)) exp (- (5 - p>y),

by the definition of the function g. Hence we can rewrite the trace formula as

follows:

(3.11) ΣπeG nΓtT(π)Θn(τgs) = χτ(e) vol (Γ\G\gs(e)

.MyC(y)exp(-(s-p>y).

PROPOSITION 3.6. For Re 5 > 2p0, set

(3.12) ι,tβl<5) = κΣσe*tτ Lσ: τM]Pf(i (s-p.))

Tftβn iytfT(s) is holomorphic in the half plane Res>2p0. Moreover, the

series (3.12) converges uniformly with respect to χτfor each s in the half plane

Res>2p0.

PROOF. Since τgs is admissible, the series is absolutely convergent and

uniformly convergent in any half plane Res>2p0 + (5 with <5>0. Therefore the

series defines a holomorphic function in the half plane Re s > 2p0. The uniformly

statement with respect to χτ comes from observing that |χΓ(7)|<χτ(β) = dimT,

and that C(y)>0 for every γ. Thus the series (3.12) is dominated by a multiple

of ητ,x(s) where χ is the trivial character of Γ.

Because of (3.11), we can easily see that

*7t,τOO = Σπee"r,r(π)6>π(t<7s) - χτ(e) vol (Γ\G\gs(e).

Next, we will show that each term on the right side of the above expression
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has a meromorphic continuation to the whole complex plane. This gives us a
meromorphic continuation of ηT)T(s).

In the first place, we note that

PROPOSITION 3.7.

where we put nr(σ, v) = nΓtT(πfffV) for the sake of simplicity. Then the function
Aτ(s) is holomorphic in the half plane Res>2p0, and has a meromorphic con-
tinuation to the whole complex plane. The poles of Aτ(s) occur at the points
Po + i^σ j where rσ e β?(σ e Λ?τ). These poles are all simple. The residues at
p0 + irσ and p0-irσ both equal nτ(σ, rσ)Pσ

τ(rσ) [σ : τM] (σ e Mτ) if rσ Φ 0. Finally,
i f r σ = Qfor some σeM t, the residue of Aτ(s) at p0 is 2κnT(σ, 0)Pf(0)[σ: τM].

In order to prove this proposition, we need the following result due to Wallach.

PROPOSITION 3.8 [30], There exists a positive number x0 such that for any
τeK and all x with x>x0 we have0

Σπee 0: π|κ]nr>Γ(π)(l + |π(Ω)|)-* < oo.

PROOF OF PROPOSITION 3.7. Note the fact that Re(s-p0-irσ)>0 for all
σ e Mτ (τ e K). By (3.3) we have

/o 1 ox A ί \ X"1 Γ

H(i(s-Po)-rβ)\

if Re s>2p0. Each term in the series is a meromorphic function of s.
A consequence of Proposition 3.8 says that {p0 + irσ; rσeQ°} contains no

finite accumulation points. If 0 is a compact set that is disjoint from {p0±i rσ;
rσ E Q°} then the distance between them is positive, so there is a positive constant
C so that for all s e 0,

n (σ r)P* ( r )nτ(σ,rσ)fτ(rσ)

, rσ)\P;(rσ)H(i(s-Po) - rσ)\ .

Since nfftV(Ω) is a polynomial in v and Θ is compact, using Lemma 3.1 we see that
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supse,,Γσeβ, \Pσ

τ(rσ) (l + \πσ)rσ(Ω)\)*H(i(s-Po) - rσ)\ < oo ,

where x is an arbitrary real number. Hence, if x>x0, then there exists a positive
constant M such that

Σ,σeg; ΛΓ(σ, rσ)|P?(rσ)H(i(s-pβ)-rσ)|

< M Σr,eθ? %(σ> r«,)(l + KΓσ(Q)|)-* < oo,

by Proposition 3.8. Similar analysis is valid for the term involving H(i (s — ρ0) + r).
Hence the series

Σ,.,δ; r, (OM,. ,

converges uniformly on any compact subsets that are disjoint from [p0±\rσ\
rσeQσ

τ}. If we turn our attention to the fact that %{Mτ} is finite, then the
series gives us the meromorphic continuation of Aτ(s). The assertion about the
poles of Aτ(s) follows from the direct calculations. This completes the proof of
the proposition.

We next investigate the analytic continuation of the second term of (3.3).
By definition,

τgs(e) = (l/2π[fΠ)Σ<,6*. Γ A(σ, r)μσ(r) d
J-oo

= d/4π) Σ«*. [σ: τj Γ P?(
j-oo

s-ρ0-\r

Since P?(r) and μσ(r) are even, we see that

(l/2π) Σ,.Λw [σ: τM] Γ P?
j-oo

The function r^μσ(r) is meromorphic in the upper half plane, and can only
have simple poles (see, Section 1). Let rj (/c>0, σeMτ) be the poles, if any,
and let dσ

k be the residue of μσ(r) at the pole r £.
We now shift the integration into the complex plane by using a rectangular

contour with vertices at —R, +R, R + iR, — R + iR as in the figure below. Of
course, we assume that there is no poles on the rectangular contour.
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Re

Using the residue theorem we see that

Here

ϋ = (W2.) £...[.:

and

- (I/J.) £..„,[

Let 0<r<l?. Then, since Im(i(5-/90) + (±^ + ir)) = Re(s-p0 + r)>0, Lemma

3.1 implies that for any n (>0) there is a constant CΠj0 such that

|H(i(s-pβ) + (±Λ + ir))| < CBi0(l + |i(s-pβ + r) ± Λ|)-».

Also, since μσ(±RH-i r) is a polynomial growth function, there exists a polynomial

so that the integrand of /$ is dominated by

Since n is arbitrary, it can be easily seen that

lim^+βo 7ξ = 0.

Similarly one finds that limΛ^+00 J
R = 0. Hence we get

(3.14) τgs(e) = i Σ^ [σ: τM] Σ?=o
s~ Po~lrk
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Of course, if μσ(r) (σ e J\ϊτ) has no poles in the upper half plane, that is, if
g^so(2n + l, 1) then this sum is to be interpreted as zero.

If g#so(2n + 1, 1) then, as we have seen in Section 1,

μ<r(r) = c - dσpσ(r) x (tanh (πr/ί?) or coth (πr/fc)) ,

where pσ(r) is a polynomial and b is the number of distinct positive restricted
roots. Hence we see that rj is purely imaginary, r£ = 0(fc), and d£ = 0(fcα)
where a is a positive integer depending only on σ (e ΛΪτ) and G.

We now claim that the series on the right side of (3.14) converges absolutely,
uniformly with respect to s varying over a compact subset Θ of the complex
plane, provided that φ is disjoint from the points {p0 + irk; fc>0, σeJVΪJ. In-
deed, for s e Θ, we see that

Im(i(s-pβ) + ιD>0

for large enough fc. For such fc, the estimate

|H(i(5-Λ) + rjOl < C.i0(l + |i(s-Λ) + rf|)-«

of Lemma 3.1 is available. Since s is confined to which misses p0 + i r£, we get

for large fe, with C(σ, n) independent of k. Using the facts on rj and dj, as we
have mentioned above, we conclude by choosing n large that the series on the right
side does indeed converge.

It follows that the series defines a meromorphic function of s with simple
poles at the points ρ0 + ir% (fc>0, σ e jfrt), and the residue of this function at the
pole p 0+irj is equal to iκ[σ: τM]P£(r£)d£. We summarize these observations.

PROPOSITION 3.9. For Res>2p0, we have

(3.15) χτ(e)vol(Γ\G)τgs(e)

= iχT(e)vol(Γ\G) Σσ6^τ [σ

Here {rj; fe>0, σeMJ are the poles of the function μσ(r) in the upper half
plane and da

k is the residue of that function at the pole r%. The series converges
absolutely and uniformly for s in any compact set disjoint from {p0 + Ίrk\ fc>0,
σeΛΪJ, and define a meromorphic function of s in the whole complex plane.
Thus it gives us a meromorphic continuation of the left side of (3.15). This
function has simple poles at the points p0 + i rj, fc>0, σe J\?τ, and has the residue
i κχτ(e) vol (Γ\G) [σ : τM]Pf (r0d{ at the pole Po + i r'k.

We now have the following proposition on account of the studies that we have
seen up to the present.
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PROPOSITION 3.10. For Res>2p0, the function

„ /c\ v V ^ Vrr r ~\ P<r(i fc n \\
^τ,ΓW — K λ*σetίτ Lσ τM-KτVKS ~ Po))

•ΣyeCr\{β}

is holomorphic. Moreover, this function has meromorphic continuation to the

whole complex plane, via the relation

(3.16) ιjτtl<s) = A,(s) - χΊ(e) vol (Γ\G\gs(e) .

The poles of ητtT are all simple, and are as follows:

Pole Residue

p0 ± i rσ κnτ(σ, rσ)P?(rσ) [σ : τM] rσ e Q?(σ 6 Λft)

Po + i rj - i κχr(e) vol (Γ\G) [σ : τM]P?(rf )d{ fc >0, σ e Λ?t.

Here, of course, ι/P^(rJ) = 0/or some fc, σ, ί/ien we understand that there is no
pole at p0 + ir%, and ifr% = r j f o r some (σ, k), (ξ,j), then the residue of ηΐtT(s) at

s = Pa + i n Js - i κχτ(e) vol (Γ\G) ([σ : τM] Pf (r βdf + [{ : τM] Pξ

τ(ή)dj). More-
over, ϊ/Oeβ? ίften the residue of ητ>T(s) at s = ρ0 is 2κnτ(σ, 0)P?(0)[σ: τM],
if rl = rξfor some (σ, k), ξ, then the residue at s = p0 + i r j is κ(nτ(ξ,

lξ : τM] -i Xτ<e) vol (Γ\G) [σ:

4. Another expression of ητ>T

In order to prove the functional equation of ητ>τ we now define a new function
Lt)Γ, which we can call a sort of modified theta function. For the purpose of
defining this function we need the following proposition.

PROPOSITION 4.1. Let τeK. For each ί>0, define the function τht(x) on

Gby

tr(Eτπσ>v(x)Eτ)P*τ(v)expλσfVtμσ(v)dv,
$

Then τht possesses the following properties:

(i) dτ χτ*τht = dτ τht*χτ = τht.

(ii) AeίfKG).
(iii) βσ^Λ) = [σ: TM]P?(r

This proposition follows immediately from the result in [21, Theorem 4.12],
so we omitt the proof.

This proposition implies that the function τht is admissible. We now put the
function τht into the trace formula.
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By means of (iii) of Proposition 4.1 and (1.2), we have

17 /Λ l\ /I /O-rrWV «, /w,*τht\y) — (Llzπ)(2^σe^τXσ\m,

Hence we get the trace formula

(4.1) Σπee nΓtT(π)Θπ(τht) - χτ(e) vol (Γ\G)A(<0

= (l/2π) Σσe^τ [σ: τM] Zyecr\{e} xMxJΪJm

• Γ exp (-(r2 + pl)t)P°τ(r) exp (-i ruy)
J-oo

Since

according to the definition of D? we see that

(l/2π) J"β exp ( - (r2 + pj)ί) Pf (r) exp ( - i r«y) dr = -^i_D?(exp ( - (p0

2ί + «

Therefore, if we define LtιT by the left side of (4.1), we see that

(4.2) Lt>Γ(0 = Σ^β, [?: τM] Σ^cr-(

«,C(y)

Since τ/ιί is admissible, we note the fact that the series (4.2) converges
absolutely for ί>0.

By the very definition of Z)£, D° can be written as the form

tt, πτ-1
where C and cjtff are certain constants. But, since

*• + c) exp ( ~ "2/4° = (̂ ?~ ~ ̂ r + c) exp ( ~ "2/4ί) -
we can easily see that

(4.3) β?(exp(-(pjί+ιι?/40)) = P(wy, Γ

where P(w, x) is a polynomial in two variable u and x, with the property that if
we write

P(u,x) = Σi.jai

then αjj—0 in case of i>j.
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Recall the fact that the constant ε0 is defined to be satisfied 0<ε0<My for all
γ e CΓ\{e}. We now find the following lemma.

LEMMA 4.2. There exists a constant M such that

SUp f>o5yeCr\{e} l^0y> 0 ̂ P (~(uy~ββ/4)f)| < M.

PROOF. Since ι/y>ε0, we have t<ίε~1uγt. Hence, if z< j then

Therefore we obtain

\P(uΓt)\^Σij\aij\u^

< ΣU \ai,M-j(uyty,
where we used the property that «i,7 = 0 if i>j. Now we put

^)=Σιj|Λjeί-'xΛ

On the other hand, one finds that

exp ( - (ιιy - ε0/4)ί) < exp ( - uyf) exp (ιιy ί/4) = exp ( - (3ιιy ί/4)) .

Hence

eCr\{β} l-P(Wy, 0

< supx>0 P(x)

The lemma now follows.

Now we have the following theorem, which asserts the fact that the function
ηΐίT(s) is related via an integral transform to a sort of modified theta function

THEOREM 4.3. Suppose that Re s > 2p0. Then we have

ητfT(s) = 2κ(s-Po)

PROOF. First we assume that s is real and s>2ρ0. Note that u* =
ε0/2)2 + (wy-ε0/4)ε0. By (4.3) we get
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The assertion of Lemma 4.2 implies that one can find a constant fiί such that

Hence we obtain

^
= tt(2(s-pj)~ 1 exp (-(5-p0)(Wy - £-))

1 exp ((s-p0)ε0/2) exp(-(s-p>y).

Here we used the well known formula

(4.4)

valid for x>0, y>0.
Therefore we have an estimate

ί
oo
^ exp(-5(s-p0)0 Σ«A. [σ: τM]

χc(y)-^i)f(eχp(-^

ΣyeC r\{β}

•MyC(y)exp(-(s-p>y),

for s real and s>2p0. But, since the series 77τ>Γ(s) converges absolutely and
uniformly on compacts of Re s>2ρ0 as we have seen in Proposition 3.5, it is clear
that the series of the above expression converges on compacts with respect to
s (>2p0). Hence the dominated convergence theorem implies that

(4.5) 2κ(s-Po) \n exp(-(s-Po)ί)^,τ(Orfί

o XrO'kX'

Ϊ(exp(-(p2

0t+u2

γl4i)))dt.

Since
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and the right side of this inequality is integrable by means of the formula (4.4),
the same argumentation that we have used in the above says that we can change
the order of the differentiation and the integration in (4.5). If we use the formula
(4.4) again, then

exp (-S(s-p0)0 -(pit + if2/4f)))Λ

-*($: 1

= (2(s-p0))-1P?(i(5-p0))exp(-(5~p»,

for u >ε0. Hence, by (4.5) we obtain for s real and s>2p0,

2κ(s-p0) \ exp(-s(s-p0)ί)^τ,r(0 = ^?t,r(s).
Jo

The procedure can be justified easily by the analytic continuation, since the
function ηΐtT(s) is holomorphic in the half plane Res>2p0. This completes the
proof of Theorem 4.3.

We now have the following inversion formula.

COROLLARY 4.4. Let ε be a positive number. Let us consider the part of
hyperbolic curve C+ = {s = σ+iμ; (σ — p0)

2 — μ2 = p2 + ε, σ>p0}, as in the
figure below.

Re

Then we have
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(4.6) Lτ,τ(0 = -2 -̂ J^ exp (s(s-2Po)t)ητ)T(s)ds,

for f>0.

PROOF. Note the fact that Res(s-2p0) = (σ-p0)
2-p2

0-μ2 = ε>0 and
Res>2p0 for s = σ + iμeC+. Hence the formula of Theorem 4.3 is available

for any s in C+. For s in C+, we put s = ρ0 + ̂ Jp2 + p (s(s — 2p0) = p) on that
formula. Then one finds that

-ί exp <-,0^(0 A,
o

for Re p > 0. This says that the function ητtT(p0 + ̂ /p2 + p)/2κ^/p2 + p is a Laplace
transform of the function LXjT(t). Hence, by the Laplace inversion formula
we see that

Since p = s(s — 2p0)9 we see that ds = dp/2^/p2

J + p. Hence we obtain the desired
formula.

REMARK. Let Ωκ be the Casimir operator of K. Then there exists a scalar
At such that τ(Ωκ) = (2p + 8q)λτ I. Now let D = - Ω + Aτl (see §0). Consider the
vector bundle Γ\Eτ=Γ\GxτVτ^M=Γ\GIK. Then D is a second order, elliptic,
formally selfadjoint differential operator on Γ\£τ. The spectrum of D is the
sequence of eigenvalues 0 = A0<11</12< , and lim^oo A, = 00. Let C°°(Γ\
Eτ: M) denote the space of C°° cross-sections of Γ\£τ. Put C%(Γ\Eτ: M) =
{/eC°°(Γ\£;τ: M); Df=λf}. As it is well known, e~tD exists and is of trace
class for ί>0. Moreover, if we put m^dim C£(Γ\Eτ: M) then

N. Wallach shows in [30] that this can be written

Here (2p + Sq)~1λπ is the eigenvalue of Ω on the class πeό.
If we define the function τht(x) (ί>0) on G, which is similar to the function

then we find that 6)<TjV(τ/ϊr) = [σ: τM]e<Aσ v~Aΐ) ί. In general, ̂  does not belong to
), so it is not admissible. But, at least formally, one finds that
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For this reason, we called 7T>Γ a sort of modified theta function. One can
find details in [5], [21] and [30] on these matters.

5. Functional equation of ηΐjT

In the first place, we prove several estimates of ηΐιT that we will need later on.

LEMMA 5.1. Put

Aa(,\ _ y pσ(r \n (σ r \ί H(i(s-p0) + rσ) H(i(s-p0)-rσ)Aτ (s) - Σrσea<r P* (r9)nτ(σ, r̂ ——^—- + s-

Then by (3.13) we have

For any real numbers a, b (a<b), we take a subset θ± of {se C; α<Res<b}
which satisfies a condition that ^ 1 n{p 0 ±ir σ ; rσEQ°} = 0. Then there exists
a polynomial Px such that

for any s in 0±.

PROOF. Since the set {ρ0 + irσ;rσe Qσ

τ}( ci {Re s = ρ0} U {s = ix 0 < x < 2p0})
has no finite points of accumulation, there exists a positive constant δ such that

Infseo^a^s-Po + ir^ > δ (>0),

by means of the definition of Φ^. Also, by the same reason, there exists a poly-
nomial P and a constant C so that

for any n e Z, and

Σrσei[θ,2Po]n^lwr(σ, rσ)P^(rσ)\ < C.

Now we have

Kσ(*)l < δ-i Σr^Q njtσ, rσ)|PS(rσ)| {|H(i(5-pβ) +

(5.1) =
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+ Σrσei[o,2p0]n^ nτ(σ, rσ)\P (nσ)\

•{\

If we put

then, since the function H is rapidly decreasing, K is also rapidly decreasing.
Hence we see that

The fact that X is rapidly decreasing implies that there exists a polynomial β,

with deg β as large as we please, so that

for any s in 0! (see, Lemma 3.1). Hence the last expression of the above in-
equality is dominated by

If degβ>2 + degP then it is easy to show that ΣnezQ(\n-Ims\YlP(ri) is of
polynomial growth as a function of s.

On the other hand, since the set {nσ e iz[0, 2p0~\ n β?} is finite, the function
defined by the sum with respect to rσ e i [0, 2ρ0] n β? is rapidly decreasing relative
to Im 5 on account of Lemma 3.1.

Finally, similar analysis on the term involving H(i(s — p0) — rσ) shows that
\A°(s)\ is of at most polynomial growth in seΘ^. This proves the assertion of
our Lemma.

LEMMA 5.2. Set

Then by (3.15) we have

Let δ be a positive number. Let a and b be real numbers so that a<b. Put
@2=={sl |Ims|><5, α<Res<b}. Is seΘ2 then there exists a polynomial P2

such that
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| tGj|<|P2(Ims)|.

PROOF. Since r£ is pure imaginary, it is easy to see that

|s-pβ-ir2l > |Ims| > δ,

for any s in Θ2 Also, since |r£| = 0(fc) and \d%\ = O(kc) for some positive c

(cf. Section 3), there is a polynomial P so that |PjODd*|<P(fc) On the other
hand, we see that Im(i(s — p0) + r£)>0 for large enough k. For such fc, we find
that for any integer n, one can find a constant Cn such that

because of Lemma 3.1. Hence,

Since n is arbitrary, we conclude by choosing n large that \τG
σ

s\ is of at most
polynomial growth in Im s (s e 02) as claimed.

The following lemma is an immediate consequence from the relation

Vτ.r(j) = Σσe*. l> •' ^M] ί^f W " ί Xr(0 Vθl

and above two lemmas.

LEMMA 5.3. There is a polynomial P3 such that

for all s in (Pί n 02

The following lemma is a immediate result of [6, Theorem 4.4].

LEMMA 5.4. Define for any j ^ 0,

T/ien we hαt e

2pβj.exp(-2poj)6(j) - ̂ 1 as j - > oo.

Using Lemma 5.4, we get the following estimate.

LEMMA 5.5. Suppose that Res>2p0. Then there exists a polynomial M
such that the following estimate holds:

\ητ>T(s)\ < |M(Ims)exp(-(s-p0)ε0/2)|.

PROOF. If we put



274 Masato WAKAYAMA

δϋ) = *ίr e CΓ\M 7 < ιι7 <7 + 1} ,

then, by Lemma 5.4, one can find a positive integer jβ such that the following
estimate holds: I f j ^ j 0 then there is a positive constant c0 such that

cj- 1exp2p0;.

Let

(-(s-p0)wy) .

Then it is clear that

ίτ,τ40 = Σσe^τ [>: τM]P?(i(s-p0))F-T(s).

We now split up sums of F*tT(s) on CΓ\{e} into two sums over {yeCΓ\{e};

My<7*0} and {γeCΓ\{e}; u>j0} and denote them by Σi and Σa respectively.
Since the set {yeCΓ\{e}; uy^j0} is finite, if we note the fact that wy>ε0,

then we can find a constant cx such that

I Σ i Xτ(y}Xa(™j)J(yYluyC(y) exp ( - (s - p>y)| < c± |exp ( - (s - pβ)εβ)|

for Res>2ρ0.
On the other hand, we obtain the following estimates :

)! < c29 \j(γ)'l\ < 1 and

C(y) =
Here c2 and c3 are certain constants.

Therefore, we see that

I Σ 2 Xr(y)XσK)Λy)- 1 »yc(y) exp ( - (s - p>y)|
W y l exρ(-(s-p>y)| exp(-wyp0)

1 exp(-s/)lδθ )

β + 1)77 ' Σy>;0 1 exp ( - (s - 2pβ)j)l

|exp(-C?-2p0)yo)|
l-|.exp(-(j-2pβ)| '

if Res>2p0. Since -Re(s-2p0)j0= -Re(s-p0)j0 + p0j0 < -Re(s-p0)ε0

p0705
 tne last expression of the above inequality is dominated by

exP (PoJo) I exp (-(s-

Therefore, if Re s>2pσ then there is a constant K such that
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Hence we obtain

\ητ>τ(s)\ <

where we put

/?(«) = l>: τM]P?(i(s-pJ)exp(-(s-p0)ε0/2), (σeMJ.

But, since the function f°(s) is rapidly decreasing with respect to the variable
Re s and is of polynomial growth with respect to the variable Im s, there exists a
polynomial R° such that

|/?(s)|<|Λ?(Ims)|,

for each σ e Mτ. Hence, if we define the polynomial M by

then we get the desired result.

Recall the fact that all the poles of the meromorphic function τgs(e) lie below
p0 on the real line discretely. Let rτ = max {r<0; re {the poles of τgs(e)}}.
We now select a small positive number ε which satisfies rτ< — ε<0. Then we
get the following result from Corollary 4.4.

PROPOSITION 5.6. Suppose that ί>0. Then the following relation hold:

(i) Lτ>T(t) = * ( £+1°°exp (φ-2pβ
Zr/tl/C J-g-joo

+ 2 Σσ

+ (l/^) ΣσeΛϊ τ Σpβ+irί6[0,Po]

1 (*-ε+ioo

(ii) ^τ>r(0 = 9ff1v \zπi/c j_g_ i o o

PROOF, (i) By Lemma 4.4,

L'»τW = 2πiιc

where C+ = (s = σ + iμ (σ - p0)
2 - μ2 = pi + ε, σ > p0} .

Let μ0 be a suciffiently large positive number. Let σ0 + iμ0 be a point of
intersection of C+ with the line {se C; Ims = iμ0}, that is, (σ0-p0)

2-μ2 = p£ + ε
holds. We note the fact that σ0>2p0. We now shift the integration by using
the following contour, as in the figure below.



276 Masato WAKAYAMA

Using the residue theorem one finds

1 (•-?+!

^.riO = 2πiκ \zπικ; j_g_ i o

^

> Re

ir, exp (φ ~2po)t)ητ)T(s)

where βτ=W f f6^τβ?.
Combining Proposition 3.10 with Proposition 4.1, we see that

po ± irβp exp (s(s - 2p0)f)ητ>τ(s)

so the fourth term of (5.2) equals
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Therefore, to prove (i), it is sufficient to show that the second term and the third
term are equal to zero. To begin with, we shall prove the assertion concerning
the second term. It is clear that

Cσ0+\μ0\ Q\p(s(s-2p0)t)ητfT(s)ds
J-Z+iμo

= exp ( - (μj + p2)ί) (σ[ exp {(σ - p0)
2t + 2 i (σ - pQ)μ0t} - ητ>τ(σ + i μ0)dσ.

Let α be a positive real number such that α>2p0. Since we are interested in
large values of μ0, we may assume that σ0>α. Then by Lemma 5.3 and 5.5,
we can find polynomials P3 and M such that

exp (s(s-2Po)t)ητ>τ(s) ds

< exp (-Gtf+P2)0 J"β exp ((σ-Po)
2t) \P3(μ0)\dσ

+ exp(-(μJ + Pί)0 Γ°exp((σ-p0)
20|M(μ0)| exp(-(σ-p0)β0/2Xσ.

Jα

We can see easily that

Hmμo^εxp(-(μ2

0 + p3t)\P3(μ0)\ ^exp((σ-Po)
2t)dσ = 0.

We now put

I(μ0: f) =

It suffices to show that li
yields

I(μ. 0

= exp (-(μ* +

+ (1/20 ί" exp ((σ-

exp((σ-p0)
20 exp(-(σ-p0)ε0/2)Jσ.

/(//„: ί)=0 for our aim. Integration by parts

exp "

Because (σ0 ~pj2 = μ2, + p2 + c, we have

[exp ((<τ-p0)
20 exp (~(

(

σ

 σjpf
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\ exp {(α-/

On the other hand, if α<σ<σβ then we have

0 l + (σ-p0)εa/2 l + («-/>0)80/2
0< (σ-Po)2 < («-Po)2

Therefore, we get

I(μβ: 0-(l/2ί) ί"exp((g-p.)20 (1+,(ΓΓiffi/2) exp(-(g-pα)β./2)rfg
Jx \σ Po)

(α-p.)ε,/2)

Hence we have an estimate

0 < / ( u : f ) i- (l + («-ρ0K/2)

by means of (5.3).

Since the functions μβ->exp (-^/μj + pj + ε ε )̂ and μβ->exp(-(μ2 + P5)0
are rapidly decreasing with respect to μ0, it is clear that Hm/ίo^00/(jU0: t) = Q, if
ί^(l+(α-p0)ε0/2)/2(α-p0)

2, on account of the inequality (5.4). But, since
the function /(μ0 * 0 is continuous with respect to the variable ί, we have limμo_oo
I(μo: ί) = 0foral l ί(>0).

Similar analysis shows that the third term of (5.2) equals zero. This proves
the assertion (i).

(ii) If we change the variable s^2ρ0 — s on the formula in Corollary 4.4,
then we see that

2 π ϊ c

where C_ = {s = σ + iμ; (σ-p0)
2-μ2

We may assume that
ε, σ<0}.
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\
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279

> Re

We shift the integration by using the contour, as in the figure above. Since the
function s-*ητ>τ(2p0 — s) does not have a pole in the region which is surrounded
by the above contour, one finds that

-σ0-\μc

'e\p(s(s-2p0)t)^tT(2p0-s)ds

exp(s(s-2p0)ί)ητ>τ(2p0-s)ds.

If we put s' — 2ρ0 — s in the second and third terms of (5.5), then it is easy to
see that these terms have the form of the third and second terms of (5.2) re-

spectively. Hence one finds that both of them are equal to zero. This shows

the formula of (ii).

We now define the function Φτ>Γ by

<MO = K Σσe^T [σ: τM]Pf(iί) vol(Γ\G)χτ(e)μσ(it).

This function contributes the functional equation of ητ>τ as follows.
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THEOREM 5.7. The function ητ>τ satisfies the functional equation

(5.6) ηΐ}T(s) + ητ,τ(2Po - s) + Φτ>τ(s - pβ) = 0, s e C.

PROOF. These terms are all meromorphic with simple poles, by Proposition
3.10. Moreover, the poles of ητ,τ(s) + ητ>τ(2p0 — s) are at ρQ±\rl (fc>0, σeΛίτ)
with residues +i/c[σ: τM]P?(r^)χΓ(e) vol(Γ\G)ί/J respectively. On the other
hand the poles of the function

Φτ,r(*-Po) = ιc Σσe^ [σ: τM]P?(i(s-pβ)) vol (Γ\G)χΓ(φσ(i (s - Po))

are at s = p 0±ir£ (fc > 0, σ e Λ?τ) and the residues are ±iκ:[σ:

vol(Γ\G)dJ respectively. It follows that the function f?τ,τ(s)-Hτ}Γ(2ρ0-s) +
ΦτT(s — p0) is an entire function of 5.

Add (i) to (ii) of the preceding proposition and divide it by 2. Then

~

(5.7) + ΣσeΛϊ, ΣrσeQ<r nτ(σ, rσ)Θσ>rσ(τht)

pβ+irί cxp (s(s~2po)t)ητtT(s) .

On the other hand, by definition

(5.8) Lt,Γ(0 = Σneo nΓtT(π)Θπ(τht) - χr(e) vol (Γ\G)ΛOO ,

for ί>0. The argument of the same kind that we have accomplished in Section 3
shows that

(5.9) Σπee nΓ)T (π)<9π(A) = Σσe^τ Σrσeβ? nτ(σ, rσ)Θσ>rσ ( t A f ) .

Furthermore, the Plancherel theorem implies that

vol

βA. Lσ: τM] Γ Pf
J-oo

Now we put — i r = 5—p0. Then, since — (r2 + p*) = s(s — 2ρ0), we see that the
last expression of the above equality is equal to

1 fp0 + i°°

Λπ lv \ exP (s(s - 2Po)t)Φτ,τ(s -Po)ds.
ttnlK Jp o_ioo '

We now shift the integration into the complex plane by using a rectangular
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contour with vertices at p0 — iμ, ρ0+Ψ> — ε+iμ, — ε— iμ, where μ is a positive
real number. Using the residue theorem one finds

χτ(e)vol(Γ\G)τht(e)
f-2+ioo

irj[e[0,p0] 5=Po + i^ - 0 τ , τ C ? - Po)

° '"

1

Let s = σ±iμ ( — ε<σ<p0). Since

exp (s(s-2p0)ί) = exp (-(μ2 + p2)ί) exp {(σ-p0)
2±2i(σ-p0)/ι}ί

and Φτ>Γ(s— p0) is a polynomial growth function with respect to μ, we can easily
see that the third and fourth terms of the above equality are equal to zero.
Therefore we see that

Lτ,T(t) = Σσetf, Σrσe£? «r(^, O^σ,rσ (A)

by means of (5.8) and (5.9).
Note the fact that

ResJ=spβ+Irί

Combining (5.7) with (5.10) we get

\ £+1

J-g-io

Here we put

Since ^τ>Γ(s) is an entire function, by the same argument that we carried out
before, we can show that if we shift the integration then we obtain

(P°+1%xp(s(s-2p0)θ4τ,τ(sMs = 0.
Jp0^-ioo
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Namely, if we put s=ρ0 + i r then we have

Γ
J-

It is clear that

Γ \(
J-OO

co.

Therefore we can change the order of the integration with differentiation. Hence,
for any non-negative integer «, we have

(5.11) (r2 + p3»exp(-(r2 + p3t)qτ>τ(p0 + lr)dr = 0.
J-oo

Since <?τ,T(Po + i r) is an even function of r, one deduces from (5.11) that

for all reR. But qτtT is entire, hence qτ)T(s) = Q This completes the proof of
Theorem 5.7.

For each σ e Mt, we put

Accordingly we have

Moreover, if we define

then it is obvious to see that

Now we have the following result as a corollary of Theorem 5.7.

COROLLARY 5.8. The function ητ(s) is holomorphic in the half plane Res>
2p0, and it has the following properties:
(i) η%(s) has meromorphic continuation to the whole complex plane, via the
relation

- iχτ(e) vol
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The poles of γfτ are all simple, and are as follows:

Pole Residue

p0±irσ κnτ(σ, rσ)P?(rσ) rσ e β?

Po + i n - i κχτ(e) vol (Γ\G)F?(r|)df fc > 0.

If some two of these poles coincide with each other, then we interpret the residue
of that pole is the sum of each residue.

(ii) ηf satisfies functional equation

η«τ(s) + ηf(2Po-s) + Φσ

τ(s-Po) = 0, s e C.

PROOF. For each σ e Mτ, we define

ί P|(r) if ξ^σ
P*(r) =

I 2Pf(r) if ξ^σ.

Using these polynomials, we now define the functions ήτtT and ΦΐtT as the same
kind that we defined ητ>τ and ΦτT by using Pf (σ e Mτ) before. Then it is easy to
see that

ήτ>τ(2ρ0-s) + Φτ,τ(s-Po) = 0, seC.

Also, by definition we have

Hence the assertions (i) and (ii) follow immediately from the results of Propo-
sition 3.10 and Theorem 5.7 respectively.

6. Definition of zeta function

For the purpose of defining the zeta function, we have to improve on the
definition of 7/TjT-function. At the first half of this section, we devote ourselves
to investigation about the analytical properties of that function.

Above all things, for each σ e Mτ, let us define

(6.1) ή*τ(s) = P'τ(i(s-Po)T1ηστ(s)

for Res>2p0, and

(6.2) Φ f (r) = Pf (i r)-lΦ$(r)

= κχτ(e)vol(Γ\G)μσ(ir).
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Then it is clear that

ή*τ(s) + ήσ

τ(2Po-s) + Φσ

τ(s-Po) = 0, s e C.

Let Eσ denote the set of all zeros of the polynomial P?(r). Define

Since the set E% is finite, we can write it as

Note the fact that the function defined by the series

has no poles at s=ρ0+ir(σ,/), j = l, 2,...,jσ. Hence the function ή%(s) does
not have a pole at the point s=ρ0+ί r(σ, j) (j = 1, 2,..., jσ).

Since the function ήf has meromorphic continuation, via the relation

H(i(s-p0) + rσ) H(i(s-p0)-rσ)l
s-ρ0-irσ

vol (Γ\G)Pΐ(\(s-p0))-ι Σ?=o P?(^)

has poles possibly at s=p0±ir (re£σ) on account of the fact that Pf is
an even polynomial.

Let P*/s) (j = l,.. , jσ) denote the principal part of Laurent expansion of
ήί(s)ats=p0±ir(σ,j):

(6&\ p± r^- Y™./ ^±(σ» 7 ; m)
(6>4) P"' W " Σm=1 (.-p0 + ir(σ,7))w '

Then we have

P± nn _ Λ — vmj _ d±(σ, j: m)
f a

Hence the functional equation of //f- says that

Pί.,(s) + P-/2PO-S) + ,_£$fftj) = 0,

where we put

d(σ, ) =
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Therefore, one finds that

d+(σ,j: 1) - d_(σ, j: 1) + d(σ,j) = 0,

d+(σj: 2fc + l) - d,(σj: 2fe+l) = 0

and d+(σ, 7 : 2fc) + d_(σ, 7' : 2fc) = 0 (2 < 2fc < my) .

We now put

(6.5) φt (r) = ΣJSl rf(σ, y) {7̂ 75- - r+i<^g> y)}

Also we put

(6.6) Ff(σ, s) = ΣίSiW./^ + P .Xs)} .

Note the fact that

(6.7) FKσ, s) + FKσ, 2p0-s) + φf(s~Po) = 0.

Let

(6.8)
and let

(6.9)

According to the relation (6.7), we can easily see that the functional equation

-Po) = 0

holds for any s e C.
Let £5 = £σ\{£i U (--EJ)}. The set ££ js aιso finite, hence this can be either

written by

{ + ?!,..., ±rίσ} or {0, ±rlv.., ±rtσ} ,

where ^^00' = !,..., fσ)

Let R*j(s) be the principal part of Laurent expansion of //r'K5) at s =

//: iπΛ R± (^ — v«j , j: n)(6.10) Λσ.χs) - Σ.4! -

Therefore, we have

D± /9Λ _,Λ _ YB, d±(σ,j: n)RσJ(2Po sJ-ΣnL, _ n _
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Because the function Jf (s—p0) has no poles at s=p0±irj (j = l9...,tσ)9

the functional equation of ήfr1 implies that

K±/s) + Ri.fip.-s) = 0.

This means that

d+(σ, j: 2k) + d-(σj: 2k) = 0 (2<2fc<n,.)

and

d+(σ,j: 2fc-l) - d-(σ,j: 2fc-l) = 0

In particular, if s = ρ0 + i r,- is a pole of //rf l(s) then s = P0~^j *s also the pole of
//f.'1^), and vice versa.

On the other hand, if 0 e E%9 let Rσ be the principal part of Laurent expansion
ofήί>l(s)ats=p0:

(6.H) *,(,) = ΣϋίiT^iΓ

The same argument as we have proceed above shows that

Λff(5) + ̂ σ(2Po-s) = 0,

hence we get

d°(2k) = Q (l<2fc<«0)

We put

(6.12)
Σ£ι W.X«) + Λ;./s){ + ^σ(s) if

We now define the function H%(s) by

(6.13) H*τ(s) = ή*τ>i(s)-F2

τ(σ,s).

Summing up these observations, we have the following proposition.

PROPOSITION 6.1. The function H%(s) is holomorphic in the half plane
Res>2p0, and is a meromorphic function of s in the whole complex plane.
The poles of H%(s) are all simple, and are as follows:

Pole Residue

ρ0±irσ κnτ(σ,rσ) rσeβ?

p0 + in -iκχτ(e)vol(Γ\G)d«k fe> 0, r£ §έ EJ.
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Furthermore, the following functional equation holds:

H*τ(2p0 -s) + Af(s- p0) = 0, s e C.

Note the fact that Oe β? implies that 0<£ E2

σ.
It is easy to see that the residue dσ

k of the Plancherel measure μσ(r) is pure
imaginary in all cases. Hence the residue — iκχτ(e) vol(Γ\G)d% is real (see,
Section 1).

Also it is known [7] that the number vol (Γ\G) is a rational number, for our
normalization of Haar measure. Furthermore, we can find the fact that i d^ is
a rational number, whose denominator depends only on σ e Mτ, and not on k.
Let κσ denote this denominator. We now choose κ = H(Q) to be equal to the
least common multiple of the integers κσ (σ e Mτ). It turns out that the function
HτT defined by

(6.14) Hτ>τ(s)= Σ^r #?(sK fe = O: τM])

has only simple poles with integer residues. Therefore, we can find a mero-
morphic function ZTjT(s) such that

(6.15) (d/J5)(lθgZτ}Γ(5)) = ̂ τ(5).

The function ZτΊ will be defined up to a multiplicative constant, which we will
now fix. As we have seen, if 0 e β£, for some σ e Mτ, then HτT has a pole at p0

with a residue 2κΣσettτ,oe& nτ(σ> 0)ασ Hence, ZτT will have a zero at p0 of order
2κ Σ<re^τ,oeQr nτ(σ, 0)ασ. We will denote this even integer by m0. Of course,
m0 = 0 if 0^ βτ. We now normalize ZτT by requiring that

\\ms^po(s-p0Y
m°Zτ>τ(s) = 1.

This determines Zτ>T completely. We shall call this the zeta function attached
to the data (G: K, τ: Γ, T).

In the forthcoming section, we shall study on the various properties of the
zeta function ZτT.

7. Zeta function ZTjT

In this section we shall describe the main results of this paper, that is, the
fact that the zeta function Zτ>Γ defined in the preceding section has the same kind
of the properties possessed by Selberg's and Gangolli's ones.

At the first place, we state the following theorem concerning the location of
the zeros and the poles of Zτ Γ.

THEOREM 7.1. The function Zτ>τ(s) is holomorphic in the half plane Res>
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2p0, and it has a meromorphic continuation to the whole complex plane. The
zeros and the poles described below are the only zeros and the poles 0/Zτ>τ:
(i) ZT)T(s) always has certain zeros that we can call spectral zeros. These are
located at the points p0±irσ (rσeβ£, σeMΓ) with at most finite exceptional
points (see (iii) below). The order of the zero at ρ0±irσ equals κnτ(σ, rσ)ασ

where αff stands for the number [σ: τM~], and K is the positive integer mentioned
in Section 6. Of course, ifrσ = rξfor some σ and ξ in Mτ, then we understand the
order of the zero at the point p0±irσ is equal to κ(nτ(σ, rσ)(xσ + nτ(ξ, rξ)uξ).
Moreover, the spectral zeros lie on the line Res = p0 except for a finite number
of rσ. Thus ZT)T(s) satisfies a sort of modified Rίemann hypothesis. The
representations πσ>Γo. which correspond to the rσ e R\{Q} (that is, Re (p0 + i rσ) = ρ0)
are all in the unitary principal series. Those p0±irσ which are off the line
Res = p0 are all real, and lie in the interval [0, 2ρ0], symmetrically about ρσ.
The corresponding representations πσ>rσ are almost all in the complementary

series.
(ii) Apart from the spectral zeros of Zτ>τ, there may exist a certain series of
zeros and poles of ZτT. These exist only when άim(G/K) is even. These are
located at the points p0 + ir% (r£<£Ej, see Section 6) where rσ

k is a pole of the
Plancherel measure μσ(r) in the upper half plane Imr>0. Whether we have
zeros or poles depends on the sign of the number i dl, where d% is the residue of
μσ(r) at r%. If this sign is positive, then ZτT has poles at the points p0 + i r% (k ̂  0,
σeMτ, r£^E*). In the opposite case, ZτT has zeros at p0 + ir%. In any case,
the order of the zero or the pole is always equal to κχτ(e) vol (Γ\G)\d%\aσ.
Furthermore, ifr% = rj££i U E\ (σ, ξeMJfor some σ, ξ, k and j, then we must
obviously change the above statement. Namely, if the sign of idl<xσ + idjciξ
is positive (resp. negative) then Zτ>T has a pole (resp. zero) at the point p0 + i r£
with the order κχτ(e)\ol(Γ\G)\dfaσ + dj<xξ\. Of course, if djασ + ̂ αξ = 0 then
there exists neither a pole nor a zero at this point.

(iii) Suppose that rξ = r%^E* for some ξ, σ in Mτ and k. In this case, if the
sign of κnτ(ξ, rξ)θLξ — iκχτ(e)vol(Γ\G)djασ is positive (resp. negative), then
ZΐiT has a zero (resp. pole) at the point p0 + i rξ. At any rate, the order of the
zero or the pole equals κ\nr(ξ, rξ)(xξ — iχτ(e)\ol(Γ\G)d%oίσ\.

PROOF. It is well known that the rσ which are real correspond to represen-
tations of the principal series, and the purely imaginary rσ correspond to represen-
tations either in the complementary series or the series of representations described
in (e) of Proposition 3.5. Hence the assertion of this theorem now follows from
Proposition 6.1, (6.14) and (6.15).

REMARK 1. The zeros described in the statements of (i) are called spectral
because their location and order provides us spectral information, in the following
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sense: Let πr>τ be the representation of G induced from the representation T
of Γ (see Section 2). Then the certain representations πσ>r (σeMτ) re C) of G
occur as summands in πΓjΓ. The assertion of (i) implies that the order of the
zero at ρ0±irσ is essentially equal to the multiplicity nr(σ, rσ) with which the
representation πσifσ occurs in πΓ}T.

REMARK 2. Note the fact that if rσeQτ satisfies rσeR\{0} then the points
ρ0±i rσ belong to the set of spectral zeros.

REMARK 3. The point described in the statement of (iii) is somewhat special
in that the behavior of Zτ>T at this point has both spectral and structural aspects

of G/K.

REMARK 4. Suppose that rξ = rσ = = rμ = rl'=rf = = j
rf'ί ££,,..., r^^E^) for some ξ9 σ,...,μ, ξ'9 σ',...,μ' in Mτ and non-negative

integers fe, /,..., m. We denote this by r. Then the judgment of whether the

point p0 + ir is a zero or a pole is carried out by the same procedure as
we mentioned above.

The proof of the following theorem is the same as that of [7, Theorem 2.9].

But we include its proof for completeness.

THEOREM 7.2. ZTjΓ satisfies the following functional equation:

ZTjΓ(2p0 — s) = Zτ>Γ(s) exp (\ Aτ>T(r)dr J , s e C.

Here we put Aτ>τ(r)= Σσejfrr Af(r)aσ.

PROOF. It is obvious to see that

Hτ)T(s) + Hτ)T(2Po-s) + AΐiT

for all s e C. Since

it is evident that the functional equation of Hτ>τ leads by integration to

(7.1) Zτ,Γ(2Po-s) = c - Zτ>Γ(s) exp

where c is a nonzero constant. Note that the expression exp( \ Aτ T(r)dr) is
ΓS-PO y° ' /

well defined, when \ Aτ T(r)dr is interpreted as a contour integral. Indeed,
Jo

Ar>T(r) is meromorphic and its residues at the poles are always integral. It follows
Γs-po

that two different contours from 0 to s — ρ0 will lead to values for \ Aτ T(r)dr
Jo
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G S-PO \
Aτ T(r) dr } is

o ' /
clearly well defined.

We now claim that c = 1.

Recall that the multiplicity m0 of zero of ZτT at ρ0 (m0 = 0 if ρ0 is not a zero)

is an even integer. Hence we have (s — p0)
m°=(p0 — s)m°. Thus from (7.1) we

obtain

(7.2) (Po-sTm°

S~P° AτtT(r)dr).

Let F(s) = (s — p0)~m°Zτ>Γ(s) in a neighborhood of p0. Then the definition of

the normalization of ZTjΓ implies that F(ρ0) = 1 . On the other hand ZTjT(2p0 — s) =

(po-s)m°F(2p0-s) in a neighborhood of p0, so (p0-s)-m°ZTjT(2p0-s)->l as

s->p0. Thus letting s-»p0 in (7.2), we see that c = l. This completes the proof

of Theorem 7.2.

For any linear form λ on αp c, let £A denote the character of the Cartan sub-

group A = AtAp defined by ξλ(h) = exp λ(log h) (h e A).

We now enumerate the roots in P+ as α l 5..., αf. Let L be the semi lattice

in α*}C defined by L = {Σi=ι m/αii m^O, mt eZ}. For ΛeL, define mA to be

the number of distinct orderd ί-tuples (m1?..., mt) such that A = Σ ξ = ι m/αi
Let Fj^(σ, s) (ι = l, 2, σeMτ) be the meromorphic functions defined at

Section 6. Recall the fact that all of the poles of F^σ, s) lie in the half plane

Res<2p0, because the function ήf(s) is holomorphic in Res>2p0. Choose a

point s0 e C such that Re s0>2p0. We now put

(7.3) /r(σ, s) = exp ° {Ffa, r) + F£(σ, r)}dr
JSo

for each σ e Mτ, and further we put

(7.4) /σ,rω = Πσe^/ι<σ,5).

Here, of course, we demand that the contour of the expression (7.3) should be

chosen so that the poles of Fl

T(a, r) (i = l, 2, σeM t) do not lie on it. Since the

residue of the pole of Fl

τ(σ, r) need not be an integer, /Γ(σ, s) is not well defined
for a general choice of contour from s0 to s — p0. Thus, we take a particular path.

With these understood, we have the product representation of ZτT as follows.

THEOREM 7.3. Zτ τ has an infinite product representation in the half plane

Res>2p0. That is, if the point s-p0 (Res>2p0) is not a pole of Fl

τ(σ, r) (i=l,

2, σeMτ), then there exists a non zero constant Ct(s0) depending on s0 such that
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>τ(j) = cΛo/τ.τ(j)Πσ.Λ.ruι.ΓΠjι.L
.-(det (I- T(δ)χσ(mdΓ

1ξλ(h(δ)Γ1 exp (-«/,)))""»-

/ denotes the identity matrix of degree = dim T, fl«d det means determinant.

PROOF. Let us consider first of all the series

valid for Re s>2p0. Now, it is easy to see that

Recall the fact that

Combining with these facts we have

(7.5) flf(s) = κΣ*ePr Σj>ιXτ(δJ)χJmΛr
ju*

' Π«eP + (1 - ίαCltf))-')-1 OX? (- 5/fla)

Now expand (1 — ̂ (Λ^))"-7')"1 as a power series,

This series converges because ξΛ(h^(δ))~1<l by our choice of h(δ), namely hp(δ) e
Λ +
Λ p .

Next, multiply together these series for the various α e P+. Then we see that

Therefore (7.5) becomes, with a rearrangement,

if(j) = * Σδepr ΣλeL Σ,>ι uδmλχτ(δ^)ξλ(h(δ))'ίχσ(mδ)-^ exp ( - ̂ wδ).

If e ί̂?), ε2(^),..., εd(^) are the eigenvalues of T(δ), then we get

Hence we can easily see that

ήf(s) = K Σf=1 ΣSεPr ΣιeLmλus Σy>ιβι(^WΛ(«))- 'χσ(mί)--' exp (
(7.6)

(OT,) 1exp(-Jt<3)

These manipulations are valid for Re s > 2ρ0 because of the absolute convergence

of the series which defines the function ήτ(s) Since
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Kσ, s)),

integrating this along the particular path mentioned above, we can find a non
zero constant Cσ(s0) such that

exp \ ° Hf(r)dr
Js0

= Ca(So)fτ(σ, s) Π?=ι Π^PrU^ίί-^δ^Mδ^χ^rn,)-1 exp (-

= Ca(s0)Ma, s)ΓLePr ΓLeL (det (I- T(δ)ξλ(h(S)Y^σ(ms}^ exp (-

by means of the expression (7.6). If we put Ct(s0) = c ΓUeJβ. Cff(sβ) for a certain
non zero constant c, then the formula

implies that the assertion of this theorem.

We finally come to the assertion concerning the order of ZT)Γ when it is an
entire function. That is to say, we have the following theorem.

THEOREM 7.4. //Zτ Γ is an entire function, then the order of it is finite and
equals dim(G/K).

PROOF. Let <5 be a fixed positive real number. If Re s > 2p0 + δ, then the
same argument as in the proof of Lemma 5.5, in particular, says that the function
ή% is bounded. Also, it is easy to see that the function F^(σ, s) (i = 1, 2, σ e Mτ) is
bounded in the half plane Re s>2ρ0 + δ. Hence, in the half plane Re s>2p0 + δ,
HTiT(s) is bound. Accordingly, we see that |ZT)T(s)|<exp^41|s| for some constant

Now let n = dim(G/K) = p + q — 1. Then, it is easy to see that there is a
constant C such that |μσ(r)|<C(l + M)""1. Therefore, in absolute value, the

Γs-po
function \ Δτ T(r)dr which appears in the functional equation for Zτ Γ is less

Jo
then or equal to A2\s\n for some constant A2. It follows from the functional
equation for Zt>T that

|Ztpl<s)|

for some constant A39 whenever s is in the half plane Re s< — δ.
On the other hand, since Zt>Γ(s) is holmorphic in — (5<Res<2p0 + (5, using

the maximum modulus principle, one can easily prove that

|Zτ>Γ(s)| < exp(B±\s\N + B2)9 -δ < Res < 2p0 + δ

for |Ims| sufficiently large, on account of Lemma 5.1 and 5.2. Here B^ and B2
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are certain constants, and N is some integer (cf. [7]). This verifies the hypothesis

of Phragmen-Lindelof theorem and we conclude that, as an entire function, Zτ>Γ

has finite order which is less then or equal to n.

We shall show that the order of Zτ<T is more than or equal to n by means of

a different point of view. For any r >0, let

Nτ.TW = Σaetiτ Σ | λσ>r J<r,πσ>r

Furthermore we put

£τ,r(0= Γexp(-fr)dΛΓτiI<r)
Jo

for any f>0. We now set (5τT = {πe(j; π|κaτ, nr(π)=^0}. Then, since %{GτtT\
(όu n 6τ,r)} is finite, the same argument as in [30] implies that there exists a
constant CG such that the equality

lim, , o ί » /2 LtjT(ί) = CG dt vol (Γ\G)χr<»

holds. Hence, applying the theorem of Karamatata one gets

as r->oo.

Since ίσ,rσ= -(2p + 8^)~1(^ + Po + ̂ X this fact leads without difficulty to
the following: The series Σσ Σp0+irσ*o nτ(σ> rσ)<Xσ/\P0 + irσ\k converges if k>n,
and diverges if fc<n. It follows that the exponent of convergence of the zeros
of the entire function Zτ>Γ is at least n. This says that the order of ZT)T is more

than or equal to n. Hence, together with what we showed above, this implies

the assertion.
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