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The purpose of this paper is to present several characterizations of serially
finite Lie algebras.

For the class L(ser)5 of serially finite Lie algebras, we shall show that over a
field of characteristic 0

L(ser)g = Lg n J(ser)5 = L(lsi)ft = j(lsi)g = L(lasc)g = J(lasc)$,

where Lg is the class of locally finite Lie algebras, L(J)g is the class of Lie algebras
L such that any finite subset of L is contained in a finite-dimensional .d-subalgebra,
j(-d)(5 is the class of Lie algebras generated by finite-dimensional J-subalgebras
(J=ser, lsi, lasc), and J(lsi)g is the class of neoclassical Lie algebras introduced
in [1, §13.2]. We shall give similar characterizations of subclasses L(ser)(E$l Π g)
and L(ser)(9i n 5) of L(ser)g. Furthermore for the class L5R of locally nilpotent
Lie algebras, we shall show that L$t = L(ser) (9t n 5) a n d L$l coincides with the
class of locally finite Lie algebras each of whose 1-dimensional subalgebras is
weakly serial (resp. ω-step weakly ascendant).

1.

Throughout this paper, ! is a field of arbitrary characteristic unless otherwise
specified, and L is a not necessarily finite-dimensional Lie algebra over !. When
H is a subalgebra (resp. an ideal) of L, we denote H<L (resp. #<ιL).

Let H<L. For an ordinal p, H is a p-step weakly ascendant subalgebra
(resp. a p-step ascendant subalgebra) of L, denoted by H<p L(resp. H^pL), if
there exists an ascending chain {Hσ\σ<p} of subspaces (resp. subalgebras) of L
such that

(1) Ho = H and Hp = L,
(2) [Hσ+ί9 H ] c # σ (resp. Hσ^Hσ+1) for any ordinal σ<p,
(3) Hλ = \Jσ<λ Hσ for any limit ordinal λ < p.

H is a weakly ascendant subalgebra (resp. an ascendant subalgebra) of L, denoted
by H wasc L (resp. H asc L), if i/<"L(resp. H^L) for some ordinal p. When
p is finite, H is a weak subideal (resp. a subideal) of L and denoted by H wsi L
(resp. H si L).

For a totally ordered set Σ, H is a weakly serial subalgebra (resp. a serial
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subalgebra) of type Σ of L, denoted by H wser L (resp. H ser L), if there exists a
collection {Λσ, Vσ\σeΣ} of subspaces (resp. subalgebras) of L such that

(1) H <= Λσ and H c F, for all σ e l ,
(2) Λ τ c F σ c : Λ σ i f τ < σ ,
(3) L\tf=VΛ6l(Λσ\Fσ),
(4) [Λσ, # ] c Fσ (resp. Fσ<αΛσ) for all σ e l

Then any weakly ascendant (resp. ascendant) subalgebra of L is weakly serial
(resp. serial).

H is a local subideal of L, denoted by H lsi L, if # si <f/, Z> for any finite
subset X of L. We here introduce a similar concept. We call H a local ascendant
subalgebra of L if H asc <H, X> for any finite subset X of L. We then write
H lasc L.

A class of Lie algebras is a collection of Lie algebras over f together with their
isomorphic copies and the O-dimensional Lie algebra. We denote by g, (5, 91,
ε2ί, (£, Lg and L5R the classes of finite-dimensional, finitely generated, nilpotent,
solvable, Engel, locally finite and locally nilpotent Lie algebras respectively.

Let X be a class of Lie algebras and let A be any one of the relations ser, lsi,
lasc, etc. We write L e L(A)X if for any finite subset X of L there exists a sub-
algebra H belonging to X such that X^H A L. Furthermore we write Le J(A)X
if Lis generated by a set of subalgebras H belonging to X such that HAL. Then
over a field f of characteristic 0 J(lsi)g is the class of neoclassical Lie algebras
introduced in [1, §13.2].

LEMMA 1. Let L e g and H<L. If H wser L (resp. H ser L), then H wsi L
. iί si L).

LEMMA 2 ( [1, Proposition 13.2.4] and [2, Corollary 2.4]). Let LEL% and

H<L. Then H wser L (resp. HserL) i/ and only if H (]F wsi F (resp. H [)F

si F) for any finite ^dimenswnal subalgebra F of L.

Let X be a class of Lie algebras. X is coalescent (resp. ascendantly coalescent)
if in any Lie algebra the join of any pair of subideals (resp. ascendant subalgebras)
belonging to X is a subideal (resp. an ascendant subalgebra) belonging to X.
We now call X lsi-coalescent (resp. lasc-coalescent) if the condition is satisfied with
local subideals (resp. local ascendant subalgebras) instead of subideals (resp.
ascendant subalgebras).

Then we have

LEMMA 3. IfX is coalescent (resp. ascendantly coalescent) and is a subcalss
of ©, then X is lsi-coalescent (resp. lasc-coalescent). Especially the classes
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5, E2I Π 3 and ̂ Γϊ'S over afield of characteristic 0 are Isi-coalescent and lasc-

coalescent.

PROOF. The coalescence case is [1, Lemma 13.2.1]. The other case can be

shown quite similarly. So we omit the proof.

We now show the following

THEOREM 1. Let X be a subclass of g over afield I.

a) If X is Isi-coalescent, then

L(ser)£ = L 5 n j(ser)3E =

b) IfX is lasc-coalescent, then

L(ser)£ = Lg n J(ser)* = L(lsi)X = j(lsi)X = L(lasc)3E = j(lasc)X.

PROOF. We shall show only b), since a) is similarly shown. Let

and let H be any serial subalgebra of L belonging to X. Then for any finite

subset X of L, H ser (H, X}. Since L e L^, <#, X} e g. Therefore by Lemma

1, H si (H,Xy. Hence H lsi L. Thus we have L(ser)£ < L(1SI)Ϊ and

LgΠJ(ser)ϊ<j(lsi)3E.

Next let L e j(lasc)3£. For any finite subset X of L,

Xc(Hl9...,HHy with

Put H = (Hl9..., Hn}. Since ϊ is lasc-coalescent,

ίΠascL, HeX.

Hence LGLJJ . Furthermore for any finite-dimensional subalgebra F of L,

// asc <#, F>. Since <H, F> e g, H si <i/, F> and therefore if n F si F. Hence

by Lemma 2, // ser L. Therefore L e L(ser)3E. Thus j(lasc)X < L(ser)ϊ.

Thus we have

L(ser)£ <
IΛ

Π J(ser)£ <

L(1SI)£

IΛ
: j(lsi)ϊ

< L(lasc)ϊ
IΛ

< j(lasc)ϊ <: L(ser)ΐ

and therefore the assertion holds.

As a consequence of Theorem 1 and Lemma 3, we have

THEOREM 2. Over afield of characteristic 0,

a) L(ser)5 = Lg n J(ser)g = L(lsi)δ = J(lsi)g = L(lasc)g = J(lasc)g,

b) L(ser) (E2I n g) = M5 n J(ser) ( E « n g) = L(lsi) ( E « n g)

= j(lsi) (EW n g) = L(lasc) (E9I n g) = J(lasc) (E2I n g) ,
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(c) L(ser) (91 n © = Lft n J(ser) (91 n 5) = L(lsi) (91 n S)

= j(lsi) (91 n 8r) = L(lasc) (91 n 8) = J(lasc) (9t n

3.

To characterize locally nilpotent Lie algebras, we need some lemmas.

LEMMA 4 ([3, Lemma 2.1]). Let H wasc L. Then for a finite subset X of L

and finite subsets Yί9 Y^ of H, there eixsts an integer n = n(X, Yί9 Y2,...)>0

such that [X, Yu..., YJ^H.

Let e(L) denote the set of left Engel elements of L. Then

LEMMA 5 ([6, Lemma 2]). For any xeL, x e e(L) if and only if <x> < ω L.

Generalizing [5, Corollary to Theorem 5], we first characterize Engel algebras

in the following

LEMMA 6. For a Lie algebra L the following conditions are equivalent:

a) Le(S

b) For any xeL, <x> wasc L.

c) For any x e L, <x> <
 ω
L.

d) For any xeL, adLx is locally nilpotent.

PROOF. b)=>d) Let V be a finite-dimensional subspace of L and let yl9

y2, .>, ym be a basis of K By Lemma 4 there exists an integer nt>0 such that

Oί, „, <^>]^<^> It follows that [yi9 M. + 1 χ ] = 0 . Putting n = max {^ + 1,...,

n m + l } , we have [F, nx] = 0. Hence adLx is locally nilpotent.

d)=>c) Let xeL. For any yeL there exists an integer n>0 such that

[y? wχ] = 0. Hence x e e(L). By Lemma 5 <x> < ωL.

Since c)=>b) and a)od) are evident, we have the equivalence of a),..., d).

By using Lemma 6, we now show the following theorem which is partly known

(e.g., [4, Lemma 3.2] and [5, Corollary to Theorem 5]).

THEOREM 3. Let Lehft. Then the following conditions are equivalent:

a) LeiM.

b) LeC.

c) For any H < L, H ser L.

d) For any H < L, H wser L.

e) For any xeL, <x> ser L.

f ) For any xeL, <x> wser L.

g) For any xeL, <x> wasc L.

h) JFor tfn>> xeL, <x> <ωL.
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i) For any xeL, adLx is locally nίlpotent.

PROOF. Taking account of Lemma 6, we have the following diagram of
implications:

c ) = > e )

Since a)=>b) is evident, it suffices to show that a)=>c) and f )=>a).
a)=>c) Let H<L. For any finite-dimensional subalgebra F of L,

FEL91C\^<91. Then it is easy to see that HnFsiF. Hence by Lemma
2, H ser L.

f )=>a) Let X be a finite subset of L. Take a finite-dimensional subalgebra
F of L containing X. For any x e F , <x> wserL and therefore by Lemma 1,
<x> wsi F. It follows that adFx is nilpotent. By EngeΓs theorem F e 91. There-
fore L e L5R.

THEOREM 4. Oi er any field I

L$R = L(ser)(9t n S) = L(wser)(9t Π g).

PROOF. Let LeiM and let X be any finite subset of L. Since L91 = L(91 n 5)»
there exists a subalgebra H of L belonging to 91 Π 5 such that I g H . By Theorem
3, # ser L. Hence L e L(ser) (9t n S). Therefore L91 < L(ser) (91 n g). Now we
can easily conclude that the equalities hold.

Finally we examine further relations of the subclasses of L(ser)g stated above.
Evidently

L(ser)g > L(ser)(E2l n g) > L(ser)(9t n 3f) = LSR.

We remark that

L(ser)g^L(ser)(E9I Π g) and L(ser)(E2I Π 5) φ L(ser) (5R n g).

In fact, let L be the direct sum of a non-empty set of finite-dimensional non-
abelian simple Lie algebras. Then LG L(<])g<L(ser)g and L^ L(ser) (E^I Π 5).
Hence the first inequality holds. The other inequality is clear by considering
a direct sum of finite-dimensional non-nilpotent solvable Lie algebras.

References

[ 1 ] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden,
1974.



448 Shigeaki TOGO

[ 2 ] M. Honda: Weakly serial subalgebras of Lie algebras, Hiroshima Math. J. 12 (1982),
183-201.

[ 3 ] M. Honda: Joins of weakly ascendant subalgebras of Lie algebras, Hiroshima Math.
J. 14 (1984), 333-358.

[ 4 ] Y. Kashiwagi: Supersoluble Lie algebras, Hiroshima Math. J. 14 (1984), 575-595.
[ 5 ] S. Togo: Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980),

175-184.
[ 6 ] S. Togo: Locally finite simple Lie algebras, Hiroshima Math. J. 14 (1984), 407-413.

Department of Mathematics,
Hiroshima Institute of Technology




