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Introduction

In this paper we investigate the structure of generalizations of Witt algebras
over a field T of characteristic zero, and consider a class of infinite-dimensional
simple Lie algebras over f. Let I be a non-empty index set and G be an additive
subgroup of [],;ff, where ¥} (iel) are copies of the additive group f. Let
W(G, I) be the Lie algebra over f with basis {w(a, i)|a € G, ieI} and the multi-
plication

[w(a, i), w(b, j)] = aw(a+b, i) — bw(a+b, j),

where i, jeI and a=(a,)i;, b=(b,);c;€G. The Lie algebra W(G, I) is infinite-
dimensional if G#0.

We note that if the field ¥ is of characteristic p>0, then W(G, I) is isomorphic
to the generalized Witt algebra defined by Kaplansky [3]. It is known that the
generalized Witt algebra is simple if G is “total’’ and f is of characteristic p>2
[3] (see also Ree [5], Seligman [6], and Wilson [7]). It is also known that
W(G, I) is simple if |I|=1, G#0, and f is of characteristic #2 [2, p. 206].

The main results of this paper are as follows: If G#0, then W(G, I) is a
direct sum of the unique maximal ideal R of W(G, I) and a simple subalgebra
S of W(G, I), where S is isomorphic to W(H, J) for some H and J (Theorem
3.1). If G#0, then the following statements are equivalent: () W(G, I) is
simple; (ii)) R=0; (iii) the center of W(G, I) is 0; (iv) G is “‘total’’ (Corollary 3.2).
W(G, I) is a finitely generated Lie algebra if and only if I is a finite set and G
is a finitely generated group (Theorem 4.1). If I={1,...,n} and G=@®"_,Z,
then W(G, I) is isomorphic to the derivation algebra of f[x,, x71,..., x,,, X5 1]
(Proposition 4.2).

Part of this research was carried out at the University of Manchester. The
author wishes to thank Professor B. Hartley for his encouragement and the
members of the Department of Mathematics of the University for their hospitality.

1. Notation and preliminary results

Throughout this paper the ground field f is of characteristic zero and Lie
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algebras over f are not necessarily finite-dimensional. Let L be a Lie algebra over
f. If L has no ideals except 0 and L, and if L?2#0, we call L simple. L is perfect
if L2=L. If H is a subalgebra of L we write H <L, and if H is an ideal we write
H<L. Let H<L. Then I;(H) and C;(H) denote the idealizer and the cen-
tralizer of H in L, respectively. = We write {(L) for the center of L. If S is a subset
of L we let {(S) denote the subalgebra of L generated by S. For n-fold products
we use the notation: [a, ob]=a, [a, ,+b]1=[[a, ,b], b] for all n>0, where
a,beL. For a set A we denote by |A4| the cardinality of 4. Notation and
terminology not mentioned above may be found in [2].

We simply write W instead of W(G, I) if there would be no confusion. Since
I is supposed to be non-empty, W has basis elements w(0, i) (iel), and hence-
dim W>1. For each a € G let W, be the subspace of W spanned by {w(a, i)|iel}.
Then it is clear that W=®,cW, and [W,, W,]<W,,, (a, be G). Hence Wis a
G-graded Lie algebra. Let H, denote H n W, for a subalgebra H of Wand a € G.

Let W} be the dual space of W,. Then we can identify W¥ and ], ff by
the group isomorphism ¢: [, ¥ —» W% defined by ¢(a)(w(0, i))=a; (iel) for
each a=(a,)i; €I Tic: ¥f. Hence G is a subgroup of W§. Let aeG, xe W, and
x=Y ;. 2w(0, i), where a; € and ;=0 for all but a finite number of indices i.
Then a(x)=3; ,a(w(0, i))=3; a,0;. If a0, then a;7#0 for some i € I, and hence
a(x)=a;#0 for x=w(0, i) e W,.

For each a € G let t,: W— W be the linear automorphism of W defined by

t(w(b, i)) = wia+b, i) (beG,iel).

Then clearly W,=t,(W,) and W=@®,t,(W,). We begin with the following
technical lemma.

LemMA 1.1. Leta, beG and x, ye W,. Then

(1) [ta(x); (0] = a(¥)tarp(x) — b(x)t445(y).

(i) [t(x), ¥] = a(p)t(x).

(iii) If a#0 then t,(x)=a(z) " 1[t,(x), z] for some z € W,

Proor. (i) Let t,(x)= 3, aw(a, i), t,(y)= X jer B;w(b, j), where o; and B;
are zero for all but finite sets of iel and jel. Then [t,(x), t(¥)]1=2X;; %p;-
[w(a, D), w(b, D1=(,a,8) (Siomw(a+b, )—(T;be) (;Bwla+b, j))=
a(y)ta+5(X) = b(X)t514(y).

(ii) follows from (i) by letting b=0, and (iii) follows from (ii) since a(z)#0
for some z € W,

It is clear that W, is an abelian subalgebra of W. Furthermore, we have the
following

LemMma 1.2. () (W) Wy=I4(W,).
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(i) UW) = {xeWyla(x) =0 forany aeG}.

Proor. (i) Let xely(W,). Then x=3,X,, where x,e W,. By Lemma
1.1 (ii) we have

ZaeG a(y)xa = [x’ y] € WO (ye WO)'

Hence a(y)x,=0if a#0. However, if a #0 then a(y) #0 for some y € W,,, whence
x,=0 for any a#0. Thus x=x,eW, and I,(Wy)=W,. Clearly {(W)<
Cw(Wo) < Iy(Wo) =W,

(i) Since (W)= W, by (i), it follows immediately from Lemma 1.1 (ii)
that x e {(W) if and only if x € W, and a(x)=0 for any a € G.

Note that W, is a Cartan subalgebra of W by Lemma 1.2 (i). Let xe W,.
Then [t,(y), x]=a(x)t,(y) for any ae G and ye W,. Hence G\{0} is the set of
roots of W relative to Wy, and W= W,®(P,ec\(0;W,) is a root space decom-
position.

LemMA 1.3. Let H be an ideal of W. Then H=W if W,< H for some a € G.

Proor. If G=0, then clearly W=W,=H. So we assume that G#0. If
W, < H and b is a non-zero element of G, then there exists x € W, such that

ty(y) = b(x)"'[t,(y), x]e H (y e Wp)

by Lemma 1.1 (iii). Hence W,= H (0#beG) and H=W. If W, H for some
a#0, then a(x)#0 for some x € W,, and hence for any ye W,

y = a0, t-40) — Sa(aGx)y )] eH

since t,(x)€ W,. Thus W,= H and by the argument above we have W=H.
Now we have the following

ProrosITION 1.4. (i) W is abelian if and only if G=0.
(i) W is non-abelian and perfect if and only if G#O.

Proor. If G=0, then clearly W2=0. So let G#0 and a be a non-zero
element of G. Then by Lemma 1.1 (iii) there exists x € W, such that

t(y) = a(X)'[t(»), xJe W2 (yeWy).

Hence W,=W?2, and so W=W?2 by Lemma 1.3. Thus W is non-abelian and
perfect. The ‘only if” parts are obvious.

COROLLARY 1.5. {(W)& W, if and only if G#O0.
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Proor. If G=0 then W,={(W)< W, by the proposition and Lemma 1.2 (i).
Thus {(W)=W,. Conversely if {(W)=2W,, then {(W)=W by Lemma 1.3, i.e.
W is abelian. Hence G=0 by the proposition.

ReMARK 1.6. If |I|=1 and G=Z, then Wis simple and satisfies the maximal
condition for subalgebras (see [1], [2], and [4]). But if |I|>1, then in general
W has non-trivial ideals, and dose not satisfy the maximal condition for sub-
algebras. For example let I={1, 2} and G=<a)<i*®f*, where a=(l, 0).
Then G~Z and W has a basis {w(na,i)|neZ,i=1,2} over f. Let H be the
subspace of W spanned by {w(na, 2)|neZ}. Then it is easy to see that H is
an infinite-dimensional abelian ideal of W.

2. Ideals of W(G, I)

In this section we show that W has a radical. We begin with the following
LemMA 2.1. Every ideal of W is G-homogeneous.

ProofF. Let H be a non-zero ideal of W. Let x be a non-zero element of H
and x=3 ,¢ X, where x,eW, Set A(x)={aeG|x,#0}. Clearly A(x) is a
finite set. We show by induction on |A(x)| that x, € H for any a € A(x), and we
conclude that H=®,¢H,. If |A(x)|=1 the result is obvious. Suppose that
|A(x)]>1. Let a, be A(x) and a#b. Then there is y in W, such that a(y)#
b(y). Let n=|A(x)] and {cy,..., c,} ={a(y)|ae€ A(x)}, where c,#c, whenever
r#s. Foreachre{l,..., n}, set

Ar(x) = {a € A(x) I a(y) = C,}, Xy = ZaeA,(x) Xg -

Then x=37_, x,e H. Since H<W, we have }I_, ¢,x,=[x, y]Je H. Hence it
follows by the second induction on m that

*) i-ierx, =[x, wyleH  (m=0,1,..,n-1).

Now the coefficients ¢ make an n x n matrix (¢), and det (c") is a Vandermonde
determinant, which is non-zero. Consequently from (*) we have

X, = ZaeA,(x) xaEH (r = 1,..., n).

Since |A(x,)| =|A4,(x)| <n, we have x, € H for a € A,(x) by the inductive hypothesis.
Therefore x, € H for any a € A(x).

We give a criterion for an ideal of W to be proper.

LEMMA 2.2. Let H be an ideal of W, and let G#0. Then
(i) H#O0if and only if Hy#0.
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(ii) H#W if and only if Hy<{(W).

Proor. (i) Let H#0. Then H,#0 for some ae G by Lemma 2.1. We
may assume that a #0 since if a=0 it is trivial that H,#0. Let xe H, and x#0.
Then x=t,(y) for some O#yeW,. If a(y)#0, then by Lemma 1.1 (i) we have
y=—;—a(y)‘1[x, t_.»lelH, L_,J<H, If a(y)=0, since a(z)#0 for some
zeW,, y=a(z)"x, t_,(z)]e Hy,. In both cases we have H,7#0. The converse
is trivial.

(i) Let Hy<{(W). Since G#0, {(W)E W, by Corollary 1.5. Hence H,#
W,, and so H#W. Conversely, assume that HyZ{(W). Let xe Hy\{(W).
Then [t,(y), x]=a(x)t,(y)#0 for some aeG, t,(y)e W,, where 0#ye W,. Hence
a(x)#0, and so t,(z)=a(x)"![t,(z), x] € H for any ze W,, i.e. W,=H. Therefore
H=W by Lemma 1.3.

Now we have the main theorem of this section.

THEOREM 2.3. Let G#0. Then there exists a proper ideal R of W which
satisfies the following properties:

(i) Ro={W) and R,=t,({(W)) for any aeG.

(ii) R is abelian.

(iii) R contains every proper ideal of W.

Proor. We set R,=t,({(W)) for each a € G, and R=®, R,. By Corollary
1.5 we have {(W)& W,, whence R is a proper subspace of W. Let ueR, and
ve W, Then u=t,(x), v=t,(y) for some xe{(W), ye W,. Since b(x)=0 by
Lemma 1.2 (ii), we have [u,v]=a(y)t,.,(x) by Lemma 1.1 (i). Hence
[u, v]1eR,,, by definition of R, and so R<W. Further, if veR,, then y e {(W)
and a(y)=0. Hence [u, v]=0, i.e. R is abelian. Thus R is a proper ideal of W
satisfying (i) and (ii).

Let H=®,cH, be a proper ideal of W. By Lemma 2.2 (ii), Ho = {(W)=R,.
If H,=0foranyO0#aeG,then H=H,=R,<R. Solet H,#0 for some0#a€G.
If u is a non-zero element of H,, then u=t,(x) for some 0#xe W,. Since a#0,
a(y)#0 for some 0#ye W,. Now we have

() a(y)x + a(x)y = [t(x), t_(y)]e[H, W_,] = Ho = {(W).

Hence 2a(x)a(y)t(x)=[t,(x), a(y)x+a(x)y]=0, and so a(x)=0. Therefore
a(y)x=[t,(x), t_,(»)]€l(W) from (*), and hence xe{(W), i.e. ueR, Thus
H,=R, and it follows that H= R. This completes the proof.

COROLLARY 2.4. Let G#0. Then every proper ideal of W is abelian.
We call R of Theorem 2.3 the radical of W.
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3. The structure of W(G, I)

In this section we give a structure theorem for W(G, I), which is one of the
main results of this paper.

THEOREM 3.1. Let G#0, and let R be the radical of W. Then there exists
a subalgebra S of W which satisfies the following conditions:

(i) W=ReS.

(ii) S is simple.

(iii) S is isomorphic to W(H, J) for some H, J.

PrROOF. Let ¢: Wy—W,/R, be the natural map. Then {¢(w(0, i))|iel}
spans W,/R,, which is non-zero by Corollary 1.5. Hence there exists a non-
empty subset J of I such that {¢p(w(0, j))|j € J}is a basis of W,/R,. LetS, be the
subspace of W, spanned by {w(0,j)|jeJ}. Then clearly Wy=R,®S,. Let
S,=1t,S,) for each ae G, and let S=®,¢ S,. Then W,=1,(R,)®Dt,(So)=R,®DS,,
whence

W= (_DaeGm:R@S'

We claim that S is a simple subalgebra of W. LetueS,, veS,. Then u=
t,(x), v="1,(y) for some x, y €Sy, and [u, v]=a(y)ty+,(X) = b(x)t,+4,(y) € Sa4p bY
Lemma 1.1 (i). Hence S<W. Clearly S~W/R, and so S has no proper ideals
by Theorem 2.3. Furthermore, since dim S,>1 for each a € G, S is not abelian.
Thus S is simple, as claimed.

Now we show (iii). Let /: So— W, be the inclusion map, and y*: W§—S%
be the dual map of . We fix bases {w(0, i)|ie I} of W, and {w(0, j)|jeJ} of
So. Then we can identify W§, S§ with [T, ¥}, I'1,, I}, respectively. For any
a=(a;);c; € G we have

Y@ (w0, ) = a0, ) =a;  (jeJ),

and so y*(a)=(a,);c;- We claim that y*|; is injective. Let y*(a)=0, where
aeG. Then a(x)=0 for any x€S,. On the other hand a(y)=0 for any
yel(W)=R, by Lemma 1.2 (ii). Thus a(z)=0 for any ze R,®S,=W,, i.e.
a=0 as claimed. Therefore Y*|;: G-y*(G) is a group isomorphism, and
V*(G)<Ilj,Ii. Let H=y*(G). It is easy to see that the linear map p: S—
W(H, J) defined by p(w(a, j))=w(}*(a), j) (a€G, jel) is an isomorphism.

Let the field T be of characteristic p>0. Then an additive subgroup G of
T T 5 is called total by Kaplansky [3] if the only element a=/(a;);,;, where o;=0
for all but a finite set of i, such that >, a;o;=0 for any a=(a;),;; € G is the zero-
element. It is known that if characteristic p>2 and G is total then W(G, I) is
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simple as remarked in the introduction.
We use the same terminology for a field of characteristic zero. Then we
have the following

COROLLARY 3.2. Let G#0. Then the following conditions are equivalent:
(i) Wis simple.

(ii) The radical R of W is zero.

(iii) The center {(W) of W is zero.

@iv) G is total.

ProoF. Clearly (i)=>(iii), (iii)=-(ii) by Theorem 2.3 (i), and (ii)=>(i) by the
above theorem.

Let a=(o;);c;, Where a;€¥ and «;=0 for all but a finite set of i, and let x=
> aw(0, i) in W,. We consider that G< W§ as before. Then a(x)=3,;a;x;
for any a=(a,);;€G. Hence G is total if and only if {x e W,|a(x)=0 for any
a € G} =0, which is equivalent to {(W)=0 by Lemma 1.2 (ii).

We give a sufficient condition for W to be simple.

COROLLARY 3.3. If the subspace of [l ¥f spanned by G contains the
direct sum @, t}, then W is simple.

Proor. For each jel let e)=(5;);,;, where ; is the Kronecker delta.
Then clearly e) e @, I}, and hence e)=3 a,a, for some finite sets {o,}<F,
{a,}=G. Let x=3 ;. Bw(0, i) e (W), where B;=0 for all but a finite set of i.
Then we have eW)(x)=3;; f:e(W(0, i))=p;. But eW)(x)=3,aa,(x)=0 by
Lemma 1.2 (ii). Thus f;=0 for any je I, i.e. x=0. Hence {(W)=0, and there-
fore W is simple by Corollary 3.2.

4. Finitely generated Lie algebras

In this section we consider finitely generated Lie algebras.

THEOREM 4.1. W is finitely generated if and only if I is finite and G is
finitely generated.

Proor. Let W=<{x,,..., x,>, where n is a positive integer. Then there
exists a finite set of basis elements {w(a,, i,)|r=1,..., m} such that x,,..., x, are
spanned by {w(a,, i)|r=1,...,m}. Hence L={w(a,, i,)|r=1,...,m), so that
forany aeG,iel,

w(a, i) = ZISrt,...,r;.Sm Opsrorn [w(a,l, irl)a“'a w(ar;.7 ir;.)]’

where a,, ,, €f. Itis easy to see that
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[W(arl’ ir, yeees W(a,h, irh)] = Z.'vn=1 )Bsw(ar1+°" +arh’ is),

for some p;ef. Thus a=a, +---+a, for some r,...,r,e{l,..,, m} and i=i
for some se {1,..., m}. Therefore I is finite and G={ay,..., a,).

Conversely, suppose that |I|=n and G is finitely generated. If G=0 then W
is finite-dimensional since {w(0, i)|ie I} is a basis of W. So assume that G#0.
Since G is torsion-free, G is a free abelian group of finite rank. Let G=®7-,
{a™>, where m is the rank of G, and let

F =<{w(=2a®, i), w(Ba®™, )|l <h<m,iel).

Clearly F is finitely generated. We show by induction on m that W=F.

Let m=1. Then G={a®). Since a =(a{V),,#0, there is j e I such that
aS_l);&O. Since [W(ra(l), ])’ W(S(l(l), j)]=(r—s)a$.1)w((r+s)a(1), _]), it is not hard
to see that {w(ra®,j)|reZ}=<w(—2aW,j), w3BaW,j)><F. Hence for
reZ and i#j we have

w(ra®, i) = (2a$)([w((r+2)a®, j), w(—2a®, i)]
— (r+2)aPw(ra®, j))eF,
ie. {w(ra®, i)|reZ}<F, where iel and i#j. Thus W(G, I)=F.
Let m>1, and let

H = @i a®), K =(am).

Then G=H®K. Inductively we may assume that W(H, I)cF, W(K, I)<F.
Let x be a non-zero element of G. Then x=y+z for some y=(y),,;€H, z=
(z)ir€ K. Itis clear that y# z, whence y;#z; for some jeI. Hence

w(x, j) = (y;—2)7 ' [w(y, J), w(z, DI e [wH, I), W(K, I)] < F.
Now either y;#0 or z;#0. If y;#0, then
w(x, i) =y (Iw(y, i), w(z, )] + zw(x, j)) e F

foranyis#j. Ifz;#0, then similarly w(x, i) e F forany i#j. Thus {w(x, i)|ielI}
cF for 0#xeG. It is clear that {w(0,i)|iel}<W(H, I)=F. Therefore
{w(x, i)|xeG,iel}<F,ie W(G, )=F.

Finally we have the following

PRrOPOSITION 4.2. Let I={1,..., n}, n a positive integer, and let G=®!-,Z,
with copies Z; of Z. Then W(G, I) is isomorphic to the derivation algebra of
f[x,, x74..., X, X5 1] in indeterminates x4,..., x,.

Proor. Let R=1[x,, x71,..., x,, x;1]. For x=[]"_; x;€R and ae G we
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write x¢=[]"_; x4, where a=(a;);;. For aeG, iel we define a linear endo-
morphism d(a, i): R—>R by

xré(a, i) = rxr*e (r=()jach).

Let D={d(a, i)|aeG, iel}. It is easy to see that d(a, i) is a derivation of R.
Straightforward calculation shows that

d(a, i)8(b, j) — &(b, j)o(a, i) = a;6(a+b, i) — bd(a+D, j)
for any &(a, i), é(b, j)eD, i.e.
[(a, i), 8(b, )] = a;6(a+b, i) — bd(a+Db, j).

We claim that D spans Der R. Let é be a derivation of R. Then for each
iel we have x;0=73 ., *(a, i)x°, where a(a, i)ef and a(a, i)=0 for all but a
finite set of a. Let e()=(J;;);.; With the Kronecker delta J,;, and let

6 = Z'il=1 ZaEG a(a, i)6(a—e(i), l)

Then 6’ € D. Since x;0(a — e, j)=0 whenever i#j, we have

Jj?

X0 = Y g da, Dxdla—ed, i)=Y  cala, )x*=x;0 (iel).

Clearly the value x;1¢’ is determined by x;0’. Therefore 6’=40, and hence D
spans Der R, as claimed.

Furthermore, we show that D is linearly independent. Suppose that
> > aeq ®a, i)d(a, i)=0, where a(a, i)ef and a(a, i)=0 for all but a finite
set of a. Then we have

xj Z'i'=l ZneG oc(a, l)a(a’ l) = ZaeG ot(a, j)xa+e(1) = 0 (_]GI)

Hence a(a, j)=0 for any a€ G, jel.
Since Der R has a basis D, it is clear that Der R is isomorphic to W(G, I),
where G=@®"%_; Z; and I={1,..., n}, by the map d(a, i)—~w(a, i).
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