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1. Introduction

Fefferman [2] proved that if u is a continuously differentiable function on
Rn with gradient in U{Rn) and l<p<n, then

(1) lim^^oo u(x', xn) = const.

holds for almost every x'ei?""1. The author improved his result in [8] by
showing that the set of (x', 0) for which (1) does not hold is of Bessel capacity of
index (1, p) zero (see Meyers [6] for the definition of Bessel capacities).

In this paper we deal with Beppo Levi functions of general order (cf. [1])
and discuss the existence of radial and perpendicular limits. For this purpose
we establish an integral representation of Beppo Levi functions as a generalization
of [7; Theorem 4.1], and apply the technique of [5] to study the behavior at
infinity of potential type functions.

2. Integral representation of Beppo Levi functions

Let Rn denote the n-dimensional euclidean space. For a multi-index λ =
(λί9...,λn)9 we set

where x = (x1,..., xn) is a point of Rn. Following Deny-Lions [1], we use the
notation BLm(Lp(Rn)) to denote the space of all functions ueLp

l0C(Rn) such that
DλueLp(Rn) for any λ with \λ\ = m9 where l<p<oo, m is a positive integer and
the derivatives are taken in the sense of distributions. A function u e BLm(Lp(Rn))
is called a Beppo Levi function of order m attached to the space Lp(Rn), or briefly
an (m, p)-BL function on Rn, if u is (m, p)-quasi continuous in the sense of [7],

Let fcm denote the Riesz kernel of order 2m, which is defined by

f |x|2m"n if 2m < n or if 2m > n and n is odd,
km(x) =

[ — |x|2m~w log |x| if 2m ^ n and n is even.
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For a nonnegative integer £ and a multi-index λ, we set

kmιλ(x) = &hjx)

and

ί K.ά*-y) - Σn ̂ iίμO-MD^iX-y) if IJΊ ̂  1,

I K,ι{χ-y) if bl < l.

We first state some properties of functions Kmλjί9 which can be proved by

elementary calculus (cf. [3; Lemma 4.2], [10; Lemma 4]).

LEMMA 1. (i) The function KmfλtJL(-, y) is polyharmonic of order m in

Rn~-{y}>that is>

AmKmtλ9g(.,y) = 0 on R*-{y}.

(ii) If2m-n-\λ\-£^0, then

\KmM(x, y)\ S const. |xJi+i|3,|2m-..-μ|-i-i

whenever | > ; | ^ 2 | Λ : | ^ 1 .

(iii) If\λ\ = m and m-n-£^0, then

{ log(4|x|/|3;|) in case £ = m — n,

\y\m n & in case £ > m — n,

whenever l**\y\^2\x\ and \x-y\^\x\/2.

Let aλ be constants so chosen that

(2) φ(x) = Σμι-maλ^kmtλ(x-y)D*φ(y)dy for any φeC%(R»)

(seeWallin[12;p. 71]).

THEOREM 1. IfueBLm(LP(Rn)) and mp^n, then

u(x) = Σ\λ\=maλ^KmtλtΛ(x, y)Dλu(y)dy + P&(x)

holds for almost every xeRn, where £ is a nonnegative integer such that £^

m — n/p<£ + l and P^ is a polynomial of degree at most m — 1. If u is an

(m, p)'BL function on Rn, then the equality holds for xeRn except those in a

set whose Bessel capacity of index (m, p) is zero.

REMARK. Kurokawa [4] has obtained an integral representation of Beppo

Levi functions different from ours, and applied it to the discussion of weighted
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U estimates of Beppo Levi functions.

To prove Theorem 1, we prepare the following lemma.

LEMMA 2. Let mp^n and £ be the integer such that £^m-n\p<£Λ-\.

IffeLP(Rn) and |A| = m, then

\ \KmtλΛ(x, y)f{y)\dy ^ const. \x\»-*'p\\f\\

whenever | x | > l .

PROOF. By Lemma 1 (ii) we have for x e Rn-B(0, 1),

\κm>λtίί(x9 y)f{y)\dy
; | y | ^ 2 | x | >

S const. |x|A+1 [ ly |m"π"£"Ί
J{yι\y\*2\x\}

P

By our assumptions, p'(m — n — £ — ϊ) + n<0, so that the required assertion

follows from Holder's inequality, where

From this lemma, we can easily derive the following two facts.

COROLLARY 1. Under the assumptions in Lemma 2 we have

lim|,Hβ |*|< --'>" ί Km,λΛ{x, y)f{y)dy = 0.

My;\y\^2\x\}

COROLLARY 2. Under the assumptions in Lemma 2, if φ e CJCR"), then

m>λΛ(χ, y)f(y)Φ(χ)\dydx < oo.

PROOF OF THEOREM 1. In view of the facts in [12; p. 71], for φeCo(Rn)

we find

(3) \κm>λΛ(x, y)A»>φ(x)dx = c w ( -

where cm is a constant independent of λ,. £ and φ. Hence, Δm — cm Σμι=m

by (2) and (3). In view of Corollary 2 to Lemma 2 we can apply Fubini's theorem

to obtain

= cm \u(y) Σ\λ\=maχD2λΦ(y)dy = \u{y)Δ™φ(y)dy
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for φ e C$(Rn), which implies

Now Theorem 1 follows from Lemma 4.1 in [7] and the following result.

LEMMA 3. IffeLP(Rn), then [κmfλΛ(x, y)f(y)dy are (m, p)-BL functions

on Rn whenever m, p, λ and £ are given as in Lemma 2.

PROOF. Set v(x) = \κmtλt&(x, y)f(y)dy. For r > 0 , we write vr(x) =

\ Kmλ &(x, y)f(y)dy9 where £(0, r) = {y e Rn \y\ < r}. Then it is easy to see
JB(0,r) ' ' Γ

that v — vr is continuous on J3(0, r). Since vr(x)=\ (Dλkm)(x — y)f(y)dy +
JB(O,r)

a polynomial, Lemma 3.3 (iii) in [7] implies that vr is (m, p)-quasi continuous
on Rn. Thus v is (m, p)-quasi continuous on £".

On the other hand, for φ e Co(Rn) and a multi-index μ with length m, we
have

mtλti(x, y)D»<Kx)dx}f(y)dy

^ c o n s t . \\φ\\f\\f\\p

on account of Lemma 3.3 (ii) in [7], where l/p+ί/p''=.1. This implies that
v e BLm(Lp(Rn))9 and hence v is an (m, p)-BL function on Rn.

3. Radial limits

We denote by B(a, r) the open ball with center at a and radius r, and by S
the boundary dB(0, 1). By using the integral representations in [7] and the same
method as in the proof of Corollary 4.7 in [5], we can establish the following
result.

THEOREM 2. If mp<n and u is an (m, p)-BL function on Rn, then there
exist a polynomial P of degree at most m—1 and a set EczS such that Bm p(E)=0
and

lim,.^ ήn~mP^lp{u{rΘ)-P{rΘ)} = 0 for every ΘeS - E,

where Bmp denotes the Bessel capacity of index (m, p) (see [6]).

Our main aim in this section is to extend Theorem 2 to general cases. For



Existence of limits along lines 391

that purpose we need some lemmas.

LEMMA 4. Suppose there exists a nonnegatίve integer £ such that £<m —

n/p<£ + l. If\λ\ = m andfeL*>(Rn)9 then

lim,,,.^ \χ\(»-™P)/P ί KmtλΛ(x9 y)f(y)dy = 0.
J{y;\χ-y\*\χ\/2}

PROOF. By Corollary 1 to Lemma 2 we have only to prove

Km>λΛ(x, y)f(y)dy = 0,
)

where E(x) = {y; \x-y\^\x\/2, \y\<2\x\}. If | x | > l and yeE(x), then

|Km>λ)fi(x, y)\<L const. |x|£ |^|m"n~Mog(4|x|/|y|) on account of Lemma 1 (iii).

Hence we obtain for η > 1,

\x\(n-mpyP { \KmtλΛ(x, y)f{y)\dy
JE(X)

^ const. \χ\(n'mPyp+ί f | ̂  | w-« - £ | y (^) | l o g (4\x\/\y\)dy
JB(0,2\X\)

^ const. |χ|(n~mP)/i> + 1 \ IJΊ111""11"1 1/(^)1 log (41x1/1^1)^
JB(O,η)

+ const, iί \f{y)\pdyY'\
UR"-B(O,η) )

so that

limi*!^ \x\ί'-mp)iP ^ \Km>λtl(x, y)f(y)\dy

g const, {ί \f{y)\'dyy"

Letting η^oo, we derive the desired equality.

LEMMA 5. Suppose £ = m — n/p is a nonnegative integer. If \λ\ = m and

fe LP(Rn), then

lim,,,.^ \χ\(»-mpyp (log |χ|)-i/p' [ Km>λΛ(x, y)f{y)dy = 0.
J{y,\χ-y\^\χ\l2}

PROOF. In view of Lemma 1 (iii), we have

\χ\ln-mp)lpβog \χ\yilP> ^ ^ J K ^ l ^ ^ ) / W I ^

^ const, (log I x l ) " 1 ^ ' \Eχ_B0 χ \y\~n/pf\f(y)\dy
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+ const. M- ' [ \x-y\m-"\f(y)\log(2 + \x-y\)dy

with E(x) defined as above. Here the second term of the right hand side clearly

tends to zero as |x|->oo, and the first term of the right hand side can be evaluated

as in the previous proof.

Following [5], we say that a set E in Rn is (m, p)-thin at infinity if

Σΐ-i-B^E'j) < oo,

where E'j = {xeRn\ 2JxeE, l ^ | x | < 2 } . In case mp>n, we find easily that

Bmp(A)^Bm)P({0})>0 whenever A is not empty, so that E is (m, p)-thin at infinity

if and only if E is bounded.

LEMMA 6. Let mp^n. IffeLp(Rn), \λ\ = m and ί is a nonnegative integer,

then there exists a set E, which is (m, p)-thin at infinity, such that

limlxl^tXeRn.E \χ\<*--p)/p \ KmiλΛ(x, y)f(y)dy = O.
J{y;\χ-y\<\χ\/2}

PROOF. Since m<n, \Km>λΛ(xr y)\£ const. \x — y\m~n whenever l ^ | x | / 2 g

^2|x | . Now, applying Lemma 4.4 i) in [5], we obtain the required assertion.

LEMMA 7. Suppose mp>n. Iff, λ and £ are as in Lemma 6, then

\ Km.A.ι(x, y)f(y)dy=O.
{y;\χ-y\<\x\/2}

PROOF. From the definition of KmλJί9 it follows that

{ \x — y\m~n if m < n,

\x-y\m~nlog(\x\l\x-y\) if m ^ n
whenever | x | ^ l and |x —j |<]x |/2. Now Holder's inequality yields the desired

equality.

For simplicity, define

{ r(n-mp)/p if m — nip is not a nonnegative integer,

r(n-mp)/p(\Og Γ ) - I / P ' if m - n/p is a nonnegative integer.

THEOREM 3. Let u be an (m, p)-BL function on Rn.

(i) // mp>n, then there exists a polynomial P of degree at most m — 1

such that lim|JC|^oo^l(|x|){M(x)-P(x)} = 0.

(ii) // mp = n, then there exists a polynomial P of degree at most m — 1
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and a set E such that E is (ra, p)-thίn at infinity and

lim|,|-.oc,^"-£(log|x|)-1/"{u(x)-P(x)} = 0.

Applying the contractive property of Bessel capacities (cf. [9; Lemma 5]),
we can prove the following radial limit theorem; we also refer to Theorem 4.5 and
its Corollary 4.7 in [5].

COROLLARY. Ifmp = n and u is an (m, p)-BL function on Rn, then there
exist a polynomial P of degree at most m —1 and a set EaS such that Bmp(E) = 0
and

limr_ „ (log r)-Vp'{u(rθ)-P(rθ)} = 0

for every ΘeS—E.

PROOF OF THEOREM 3. Let £ be a nonnegative integer such that £^m —
n/p <£ + \. In view of Theorem 1, we can find a polynomial P of degree at most
m — 1 and a set Ex such that Bmp(E1) = 0 and

Φ) = Σ\x\=m<>λ\Km.λ.ι(x> y)Dλ<y)dy + P(x) for xeRn - E±.

We note here that £ x is (m, p)-thin at infinity; in case mp>n, E1 is empty and the
functions defined by the above integrals are all continuous. We write u =
u2 + P outside El9 where

MiW = Σ μ| =m aλ \ KmtλΛ{x, y)Dλu(y)dy

and

\
Ay;\χ-y\<\χ\/2}

We infer from Lemmas 4 and 5 that l i m ^ . ^ ^4(|X|)M1(X) = 0. Moreover, taking
Lemmas 6 and 7 into consideration, we can show the existence of E2 such that
E2 is (m, jp)-thin at infinity and

l im^i^^an. .^ |X|(»-"»P)/P u2(x) = 0.

Since E = Eί U E2 is (m, p)-thin at infinity, our theorem is proved.

4. Perpendicular limits

By the integral representations of Beppo Levi functions in [7] and the proof
of Proposition 1 in [8], we can prove the following result.
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THEOREM 4. If mp<n and u is an (m, p)-BL function on Rn, then there
exist a polynomial P of degree at most m — 1 and a set EaR"'1 x {0} such that
BmtP(E) = 0and

(4) l i m ^ ί φ ' , t)-P(x',t)} = 0 for every (*', 0)eRn~1 x {0} - E.

REMARK. Unlike the conclusion of Theorem 2, (4) can not be replaced by

lim^^ A(t){u(x', t)-P(x', t)} = 0

(see Example 6 in Section 5).

In view of Theorem 3, only the case mp — n remains to be discussed for the
existence of perpendicular limits of (m, p)-BL functions.

THEOREM 5. // mp = n and u is an (m, p)-BL function on Rn, then there
exist a polynomial P of degree at most m — 1 and a set E such that

l i n r ^ ^ ^ O o g \x\)~^p'{u(x)-P(x)} = 0

and

where xn denotes the n-th coordinate of x, 1/p-f l/p' = l and

PROOF. By Theorem 1 we can find a set Et and a polynomial P of degree
at most m — 1 such that J5mp(£1) = 0 and

Φ) = Σμι=«*ΛJ*»,A,o(*> y)Dλu(y)dy + P(x)

for any xeRn—E1. Write u = uί + u2 + u3 + P on Rn — Eu where

uj(x) = Σ\M=m<*x\D . Kmfλt0(x, y)Dλu(y)dy, j = 1, 2, 3,

with D(l) = {yeRn; \x-y\^\x\/2}, D(2) = {yeR»; l^ |x-^ |< |x |/2} and D(3) =
B(x9 1). It follows from Lemma 5 and Holder's inequality that

lim | x H β 0 (log |X|)-1 / P '{M1(X) + u2(x)} = 0.

By the definition of functions Kmtλ>0 we can find a nonnegative function / in
U(Rn) such that

|n3(χ)| ^ \ gm(*-y)f(y)dy,
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where gm denotes the Bessel kernel of order m (see [6], [11]). Take a sequence

{tj} of positive numbers such that lim^^^ tj=oo and

f{y)pdy«o.
y=(y',yn);j-Kyn<j+2}

Define

) = \x = (*', xn);j £χΛ<j + l,\ gjx-y)f(y)dy > r

for each positive integer j . By the definition of Bessel capacities we have

Bm,p(EU)) g tj \ f(y)pdy,

from which it follows that ΣJ=i BmtP(E^)< oo. Clearly,

hmXn^a0tXeRn-E2 \ gm(χ-y)f(y)dy = o,
JB(x,l)

where ^2 = ^7=1 EU)> Therefore £ = £ ^ £ 2 ^ a s the required properties in our
theorem, and the proof is complete.

For E<=Rn, denote by E* the projection of E to the hyperplane Λ""1 x {0}.

If Σ?=i Bm,p(EU))< °o w i t h t h e a b o v e notation, then Bm>p(r\^=i KJj=k E^>*) = 0 on

account of the contractive property of Bessel capacities (cf. [9; Lemma 5]). Thus

Theorem 5 has the following corollary.

COROLLARY. Ifmp = n and u is an (m, p)-BL function on Rn, then there

exist a polynomial P of degree at most m — \ and a set E<^Rn~x x {0} such that

BmtP(E) =

(log t)-ύp-{u(x', 0 - P(x', 0} = 0

for every (*', 0) e K""1 x {0} -E.

5. Best possibility with respect to the order at infinity

We shall give below examples which show the best possibility of our theorems

with respect to the order at infinity. The functions appearing in the following

examples will be of potential type; so we prepare

PROPOSITION. Let m > 0 , p>\ and α ^ m —n/p<α + l. Let K(x, y) be a

Borel function on Rn xRn for which there is M>0 such that

\K(x, y)\ ^ M|*|β + 1 | .y |m-"-β- 1 when \y\ ̂  2|x| > 1,
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\K(x, y)\ ^ M\x\«\y\m-n~* when 1 ̂  \y\ < 2\x\ and \x-y\ > \x\/2

and

\K(x, y)\ ^ M\x-y\m~n when \x-y\ ̂  \x\/2.

ForfeLP(R"), we define Kf(x)={κ(x9 y)f(y)dy. Then there exists a set EczR"

which is (m, p)-thin at infinity such that

l i m , , , ^ ^ - * A(\x\)Kf(x) = 0.

Ifmp^n, then there exists a set F<=Rn such that Σ?=i B,n,p(FW)<oo and

]imXn^QOtXeRn.FB(\x\)Kf(x) = 0,

where FU) = {xeF; j^xn<j + l}, B(r)=l in case mp<n and B(r) = A(r) in

case mp = n.

The proof of the proposition is similar to those of Theorems 3 and 5.

If \λ\ = m and £^m — n/p<£ + l, then Kmλjί satisfies all the conditions on

K with α = £ + ε for some ε ̂  0.

We shall give other examples of K. Let m be a positive integer and set

{ |x|m-n ]Og | x | jf m _ n is a nonnegative even integer,

|x|m"n otherwise.

Letting £ be a nonnegative integer, we define

(-y) if yeR»-B(0,l),
Rm,!.(X> y) = ,

Rm(x-y) if yeB(0, 1).

If mp^ n and £^m — n/p<£ + l, then Rm& satisfies all the conditions on K in the

proposition and, in the same manner as in the proof of Lemma 3, RmJίf is shown

to be an (m, p)-BL function on Rn whenever feLp(Rn), on account of Lemmas

3.3 and 4.3 in [7].

EXAMPLE 1. Let mp = n and fcbea nondecreasing function on R1 such that

lim^oo h(t)= oo. Then we can find an (m, p)-BL function u on Rn such that

\imlxl^OOiXeRn-E(log\x\)~ί/Pfu(x) = 0 for some E which is (m, p)-thin at infinity

but \im\x\->o0fXeAh(\x\)(log\x\)-1/p'u(x)=co for some A which is not (m, p)-thin

at infinity.

This example shows that Theorem 3 (ii) is best possible as to the order at

infinity.

For the construction of such w, take a sequence {kj} of positive integers such
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that 2kj <kj+u h(22kή > 0 and Σ ?= i h(22kJ)~1 < oo. Now we define

Ej = {y = ( / , yn) e Λw \y\ < y/2 yH9 2kJ < \y\ < 22kJ},

ί ^ " O ' ^ ' b Γ ^ l o g l^l)"1/p when - yeEj9

Ay) =
[ 0 when - yeR" - \JJ=ί Ej

and

iι(x) = - ^.o/ix) = - ({iχ-^im-π - b i m - n } / ω ^ .

Then we see easily t h a t / e Lp(Rn), and hence, by the consideration given after the

Proposition, u is an (m,p)-BL function on Rn. If 22kJ^\x\<22kj+1 and \x\<yβ

xn, then |x — y\ > \y\ whenever — y e W°P=1 E y . Consequently, if j is large enough,

then

u(x) >\ {\y\m-n-\χ-y\m-n}f(y)dy
J { E }

\\ \y\-"(loS\y\)-v*dy
UEJ

\y\-m(log\y\)-v*dy\
Ej )

where cx and c2 are positive constants independent of j . Thus, setting A =

\jf=ί {x; \x\<yj2 xn, 2 2 ^ < | x | < 2 2 ^ +1}, we obtain

yVp'uix) = oo.

Since A is not (m, p)-thin at infinity, u satisfies the last condition in Example 1.
Thus, in view of the Proposition, u is a required function.

EXAMPLE 2. Let 0 < m - n / p < l and h be as in Example 1. Then, in the
same manner as above, we can construct an (m, p)-BL function u on ,RΠ such
that lim^i^^ |x|( f |-m^w(x) = 0 but

limsup^^ fc(0ί(n~mp)/pu(0, t) = oo.

This example together with the following three examples will show the best
possibility of Theorem 3 (i) as to the order at infinity.

EXAMPLE 3. Let h be a nondecreasing function on -R1 such that
limr_oo h(r) = oo. Suppose m — n<£^m — n/p<£ + l for some positive even
integer £. Then we can find a function u e BLm(Lp(Rn)) satisfying
lim^,^^ A(\x\)u(x) = 0 and
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lim sup,^ htfAtffar"-1)-1 ( u(x)dS(x) = oo,
JdB(O,r)

where σn denotes the area of the boundary dB(0, 1) of 5(0, 1).

For this purpose, find a nonnegative function feLp(Rn) for which there

exists a sequence {rj} of positive numbers tending to oo such that

l i m ^ h(rj)A(rj)r*j ̂  ^ ̂  \y\m~n~Sif(y)dy = oo

and

lim .̂ oo \\ \y\m'n"i f{y)dy\\rj \\y\m~n~SL+i(rj-\-\y\)-2f(y)dv\ = oo

see (A) and (C) in Appendix. Applying (3.2) in [7], we establish

xλdS(x)
dB(O,r)

for 7 = 1,..., £* = £/2, where cj9 dj and d'] are constants such that d'&*^0 and

ί/ϊ* = O. Consider f<x) = JRWiJί/(x). Then v e BLm(U(Rn)) as remarked after

the Proposition. Further we obtain

{σnr»-^ \ v{x)dS(x) = \Uσnr»-i)-A Rm(x~y)dS(x)

- ΣT=or2J\y\m-n-2Jίdj + d'jlog \y\-]]f{y)dy.

If m — n is not a nonnegative even integer, then

K r " - 1 ) - ! ί Rm(x-y)dS(x) Z M^""
JdB(O,r)

for yeB(0, 2r) and d'j = O for all j = 0,..., £*, where M x is a positive constant.

If m —n is a nonnegative even integer, then |x|m~w is a polynomial of degree less

than £, so that,

Λ v(x)dS(x)
dB(O,r)

\x-y\m-"log(\x-y\lr)dS(x)
dB(O,r)

} f(y)dy.
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Since \ |JC — >Ίm~wI log \x — y\\dS(x) is continuous on Rn, ther&exists M 2 > 0
JdB(O,l)

such that

^ - M2r
m~n

|
dB(O,r)

whenever yeB(0, 2r). Hence, noting that
whenever \y\ ^2|x| > 1, we establish

v(x)dS(x)
dB(O,r)

\y\«""-"f{y)dy - M^- '-Λ f(y)dy
fl(0,2r) jB(O,2r)

- M5 Σj^o1 r2J-> \
JB(0,2r)

- M6r[ \y\m-"-t

jRn-B(0,2r)

| _ κ | / ( 3 ) 7 ^

β(O,r) Jβ(O,r)

\y\m-"-i-1f(y)dy\,
n-B(O,r) )

where M 3 ^ M 8 are positive constants. By the construction off, the right hand
side is not bounded above. Thus M = ( — d'ίL*)~1v satisfies the last condition in
Example 3, and thus it is a required function in view of the Proposition.

If £ is odd, then we need consider the weighted mean value of u over the
surface dB(0, r).

EXAMPLE 4. Let h be as above. Suppose £^m — n/p<£ + l for some
positive odd integer £. Then we can find a function u e BLm(Lp(Rn)) satisfying
l i m ^ i ^ ,4(|x|)u(x) = 0 and

lim sup^^ fcίrMίrXv ")- 1 [ u(x)xndS(x) = oo,
JdB(O,r)

where τn=\ |xΛ|dS(x) and x = (x1,..., xn).

For this, we first note by (3.2) in [7] that for j = 1,..., £* =(£ -1)/2,

Σμι=2J+i (λ\)-i(D*Rm)(-y)(τnr»yi \ x*xndS(x)
1 1 . JdB(O,r)
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\y\m-*-2'-2{d'j + d"j log \y\)

with constants cj9 d) and d) such that d'^Φϋ and d% = 0. Find a nonnegative
function feLp(Rn) for which there exists a sequence {r,} of positive numbers
tending to oo such that

h(rj)A(rj)r'j \

and

U(0,r/)

see Appendix (D). Setting v(x) = Rm^/(x), we find, as in the above arguments
for Example 3,

JδB(O,r) JB(0,r)

\y\m~n'ί~1f(y)dy\y\f(y)y 2 [
B(0,r) jRn-B(0,r)

with positive constants Mt and M 2 . Thus we see that w = ( — d'&*)~1v has the
properties required in Example 4.

EXAMPLE 5. Suppose m — n is a positive even integer and m — n/p < m — n + 1 ,
that is, n[p'<l. If /ι is as above, then we can find ueBLm(Lp(Rn)) such that

. lim sup,.,*, h^Airχσ^-ψ1 [ u(x)dS(x) = oo.
JdB(O,r)

For the construction of such u, find a nonnegative function feLp(Rn) for
which there is a sequence {r,-} of positive numbers such that l i m ^ ^ rj=oo,

lim,.^ h(rj)r]n/p' ^ ^ ̂  /(y) log (rjl\y\)dy = oo

and

see Appendix (B). Letting £ = m — n, we consider t;(x) = JRm £/(x). Since £
is even, we obtain

1)- 1 ί »
JδB(O,r)

dB(O,r)
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f{y)dy,

where d) and d) are constants such that d'1+φθ and £* = £/2. Thus, in the same
manner as above, we derive

1 ) " 1 f »(*) AS(*) ^ r* ί /(y) log (rl\y\)dy
JdB(0,r) JB(O,Γ)

\y\~ίf(y)dy
fl(O)B(0,Γ)

for some positive constants Mx and M2. As before, M = (d£*)~1t; is seen to satisfy
the required assertions in Example 5.

We next consider the best possibility as to the order at infinity of our results
concerning perpendicular limits.

EXAMPLE 6. Let mp<n and h be a nondecreasing function on R1 such that
lim^^ ft(ί)=oo. Then there exists a nonnegative function feU{Rn) such that

l i m s u p ^ h{i) [\(x'9 t)-y\m~nf(y)dy=oo for any xfeRn~K

In view of Lemma 3.3 in [7], the potential Rmf(x) = \ \x-y\m~nf(y)dy is an

(m, p)-BL function on Rn. Further, in the same way as in the proof of Proposi-
tion 1 in [8], we can find a set E c ^ x j O } such that BmtP(E) = 0 and
limt^ooRmf(xf,t) = 0 for any x'ei?"" 1 with (V, 0)£E. Hence Theorem 4 is
best possible as to the order at infinity.

For the construction of such/, take φeC$(Rn) such that φ^O on Rn,
φ = l on B(0, 1/2) and φ = 0 outside B(0, 1), and find a sequence {r,.} of positive
numbers such that r y + l < r J + 1 - l and Σj^i h(rj)-1<oo. Now define /O) =
Σ7=i HrjY1/pΦ(y-rje) with e = (0,..., 0, l)ejRn. Then we see easily that

fe LP(Rn). Further, setting * ω = (*', rj) eΛn,we have

Kr^RJix^) ^ h(rjy/p'Rmφ((x', 0)) — > ex) as 7 — + 00.

EXAMPLE 7. Let 0_m — n/p<l and /ι be as above. Then the functions u
obtained in Examples 1 and 2 may be taken to satisfy

lim sup^oo h{i)A{i)u{x\ i) = 00 for any x' e Λ""1.

This shows that Theorem 5 is best possible as to the order at infinity.

Appendix

Let ft be a positive nondecreasing function on R1 such that lim,.^^ h(r)= 00.
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(A) Let ίi be a positive number such that n/p' — l<a<nlpf. Then we
shall find a nonnegative function fe&(Rn) satisfying

\ I jΊVOO> = oo
JB(0,rj)

(A2) l i m ^ \
lJβ(O,Γj)

for some sequence {r,} of positive numbers which tends to oo.

For this purpose, take sequences {sj} and {ε,} of positive numbers such that
l i m , ^ εy = 0, ε y + 1 <ε y <l/2, Sj<SjSj+i and Σ"=i h(sj)-1<oo. We now define

ί Ksjri/p\y\'Hίp if sj<\y\<2sj,
f(y) =

{ 0 otherwise.

Then there exist positive constants cl9 c2, c3 and c 4 such that for 2sk<r<sk+1

we have

(A3) \Ayydy = Cι Σ?^ih(sj)^< co

(A4)

(A5) \y\
B(0,Γ)

(A6) ί b | - " - 1 / ( > ' ) ^ = cA Σ7=k+i hisjy-U'sj'+ "''-1 < 00.
jR"-B(0,r)

From (A3) it follows that/e Lp(Rn). By (^4) we have

(A7) Λ(r)r -»/i'' ί b r β / ω d y ^ ^2^)1/p'(r/5fc)«-«/^.
Jβ(O,r)

Since sy > εl~jsk for j > fc, we derive from (A6) that

(A8) Λ \y\~a-1f(y)dy
JRn-B(0,r)

We can choose a sequence {M^} of positive numbers such that

2 < Mj < Sj+Jsp l i in ,^ Mj = 00

lim,.^ h(sjyi*'Mγ-'nl*f = 00 and liin,-.^ Mjε°-n/p'+ί = 0.
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Then, by setting rk = Mksk9 (A7) implies (AJ, and (A5) together with (A8) implies

(A2).

(B) Suppose n/p'<l. Then, in the same manner, we can construct a non-
negative function fe Lp(Rn) for which there exists a sequence {r,} of positive
numbers tending to oo such that

(BO lim,.^ Krj)rr/P' \ f(y) log (rjl\y\)dy = oo

(B2) l i m ^ { ( f(y) log (rjl\y\)dy\ \τ, \(rj+\y\)~ίf(y)dy\~ί = oo.
K.J B(0,rj) ) K J )

(C) As in the discussion after Example 1 we can find a nonnegative function
fe Lp(Rn) and a sequence {r,} of positive numbers tending to oo such that

(CO l im^ ω h(rj)(log rj)-^' \ \y\-*l*'fWy = oo

(C2) l im^ β \\ \y\-""Άy)dy\
UB(0,rj) )

\\y\~n/p'+1(rj + \y\

(D) Let a be a positive number such that n/p' — l<a^nlp'. Then we can
construct a nonnegative function feLp(Rn) which has a sequence {r,-} of positive
numbers tending to oo such that

(DO lim,.^ h(rj)Ά(rj) J ^ yn\y\-a-1f(y)dy = oo

( D 2 ) ^ o
UB(0,rj)

where A(r) = ra~n^' if a<n/p' and ^(r) = (logr)~1/^/ if a = n/p'.
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