Ideal boundary limit of discrete Dirichlet functions

Dedicated to Professor Yukio Kusunoki on his 60th birthday

Maretsugu YAMASAKI (Received August 20, 1985)

§1. Introduction

In the previous paper [5], we proved that every Dirichlet potential u(x) of order p > 1 on an infinite network $N = \{X, Y, K, r\}$ has limit 0 as x tends to the ideal boundary of N along p-almost every infinite path. Our aim of this paper is to prove the converse of this fact. In case p=2, our result has a continuous counterpart in [3], i.e., on a Riemannian manifold Ω , every Dirichlet function (=Tonelli function with finite Dirichlet integral) u(x) has limit 0 as x tends to the ideal boundary of Ω along 2-almost every curve joining a fixed parametric ball to the ideal boundary of Ω if and only if u is a Dirichlet potential (i.e., the values of u on the harmonic boundary of Ω are 0). Since the proof in [3] is based on some results concerning continuous harmonic flows and the Royden compactification of Ω , it seems to be difficult to follow the reasoning in our case.

We shall prove in §2 that every Dirichlet function of order p on X can be decomposed uniquely into the sum of Dirichlet potential of order p and a pharmonic function on X. We shall discuss in §3 the ideal boundary limit of a non-constant p-harmonic function with finite Dirichlet integral of order p. As an application, we shall prove that a Dirichlet function of order p is a Dirichlet potential of order p if and only if it has limit 0 as x tends to the ideal boundary of N along p-almost every infinite path.

We shall freely use the notation in [5] except for the reference numbers; references are rearranged in the present paper.

§ 2. Decomposition of $D^{(p)}(N)$

Let p and q be positive numbers such that 1/p+1/q=1 and 1 and $let <math>\phi_p(t)$ be the real function on the real line R defined by $\phi_p(t) = |t|^{p-1} \operatorname{sign}(t)$. For each $w \in L(Y)$, let us define $\phi_p(w) \in L(Y)$ by $\phi_p(w)(y) = \phi_p(w(y))$ for $y \in Y$.

For each $u \in L(X)$, the *p*-Laplacian $\Delta_p u \in L(X)$ of *u* is defined by

$$\Delta_p u(x) = \sum_{y \in Y} K(x, y) \phi_p(du(y)),$$

where $du(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x)$ (a discrete derivative of u). We say that u is p-harmonic on a subset A of X if $\Delta_p u(x) = 0$ on A. Denote by $HD^{(p)}(N)$

the set of all $u \in D^{(p)}(N)$ which is *p*-harmonic on X. Some properties of *p*-harmonic functions were discussed in [6] in a more general setting. It should be noted that $HD^{(p)}(N)$ is not a linear space in general if $p \neq 2$.

For $w_1, w_2 \in L(Y)$, we consider the inner product

 $((w_1, w_2)) = \sum_{y \in Y} r(y) w_1(y) w_2(y)$

of w_1 and w_2 if the sum is well-defined. It is easily seen that (w_1, w_2) is welldefined if the support of w_1 or w_2 is a finite set or if $H_p(w_1)$ (resp. $H_q(w_1)$) and $H_q(w_2)$ (resp. $H_p(w_2)$) are finite. For each $u \in D^{(p)}(N)$, we have

$$D_p(u) = \langle\!\langle \phi_p(du), du \rangle\!\rangle = H_q(\phi_p(du)).$$

We begin with some lemmas.

LEMMA 2.1. $(\!(\phi_p(w_1) - \phi_p(w_2), w_1 - w_2)\!) \ge 0$ for all $w_1, w_2 \in L(Y)$ with finite energy of order p. The equality holds only if $w_1 = w_2$.

PROOF. Since $f(t) = H_p(w_1 + t(w_2 - w_1))$ is a strictly convex function of $t \in R$ in case $w_1 \neq w_2$ and the derivative of f(t) at t = 0 is equal to $p(\langle \phi_p(w_1), w_2 - w_1 \rangle)$, our assertion follows from [2; p. 25, Proposition 5.4].

LEMMA 2.2. (Clarkson's inequality) For $u, v \in D^{(p)}(N)$, the following inequalities hold:

(2.1) $D_p(u+v) + D_p(u-v) \le 2^{p-1}[D_p(u) + D_p(v)]$ in case $p \ge 2$;

(2.2)
$$[D_p(u+v)]^{1/(p-1)} + [D_p(u-v)]^{1/(p-1)}$$

 $\leq 2[D_p(u) + D_p(v)]^{1/(p-1)}$ in case 1 .

PROOF. Let $t \in R$, $0 \le t \le 1$. By [1], [4] or [7], we have

(2.3)
$$(1+t)^p + (1-t)^p \le 2^{p-1}(1+t^p)$$
 in case $p \ge 2$,

(2.4) $(1+t)^p + (1-t)^p \ge (1+t^q)^{p-1}$ in case 1 .

Let us put s = (1-t)/(1+t). Then (2.4) is equivalent to

$$(2.4)' \qquad \qquad [(1+s)^q + (1-s)^q]^{p-1} \le 2^{p-1}(1+s^p).$$

We see easily that (2.1) follows from (2.3) and that (2.2) follows from (2.4)' and the reverse Minkowski's inequality.

LEMMA 2.3.
$$(\!(\phi_p(dh), dv)\!) = 0$$
 for every $v \in D_0^{(p)}(N)$ and $h \in HD^{(p)}(N)$.

PROOF. Let $v \in D_0^{(p)}(N)$ and $h \in HD^{(p)}(N)$. Then there exists a sequence $\{f_n\}$ in $L_0(X)$ such that $||v - f_n||_p \to 0$ as $n \to \infty$. We have

Ideal boundary limit of discrete Dirichlet functions

$$|\langle\!\langle \phi_p(dh), d(v-f_n)\rangle\!\rangle| \le [H_q(\phi_p(dh))]^{1/q} [H_p(d(v-f_n))]^{1/p}$$

= $[D_p(h)]^{1/q} [D_p(v-f_n)]^{1/p} \longrightarrow 0$

as $n \to \infty$, so that $\langle\!\langle \phi_p(dh), dv \rangle\!\rangle = 0$.

We shall prove the following decomposition theorem:

THEOREM 2.1. Assume that N is of hyperbolic type of order p. Then every $u \in D^{(p)}(N)$ can be decomposed uniquely in the form: u = v + h, where $v \in D_0^{(p)}(N)$ and $h \in HD^{(p)}(N)$.

PROOF. Let $u \in D^{(p)}(N)$ and consider the following extremum problem:

(2.5) Find
$$\alpha = \inf \{ D_p(u-f); f \in D_0^{(p)}(N) \} .$$

Clearly α is finite. Let $\{f_n\}$ be a sequence in $D_0^{(p)}(N)$ such that $D_p(u-f_n) \to 0$ as $n \to \infty$. We show that $D_p(f_n - f_m) \to 0$ as $n, m \to \infty$. In case $p \ge 2$, we have by (2.1)

$$\begin{aligned} \alpha &\leq D_p(u - (f_n + f_m)/2) \\ &\leq D_p(u - (f_n + f_m)/2) + D_p((f_m - f_n)/2) \\ &\leq 2^{p-1} [D_p((u - f_n)/2) + D_p((u - f_m)/2)] \\ &= 2^{-1} [D_p(u - f_n) + D_p(u - f_m)] \longrightarrow \alpha \end{aligned}$$

as $n, m \rightarrow \infty$. In case 1 , we have by (2.2)

$$\begin{aligned} \alpha^{1/(p-1)} &\leq [D_p(u - (f_n + f_m)/2)]^{1/(p-1)} \\ &\leq [D_p(u - (f_n + f_m)/2)]^{1/(p-1)} + [D_p((f_m - f_n)/2)]^{1/(p-1)} \\ &\leq 2[D_p((u - f_n)/2) + D_p((u - f_m)/2)]^{1/(p-1)} \longrightarrow \alpha^{1/(p-1)} \end{aligned}$$

as $n, m \to \infty$. Thus we have $D_p(f_m - f_n) \to 0$ as $n, m \to \infty$. Since $[D_p(v)]^{1/p}$ is a pseudonorm, we see easily that $\{D_p(f_n)\}$ is bounded.

Next we show that $\{|f_n(b)|\}$ is bounded, where $b \in X$ is a fixed element such that $||u||_p = [D_p(u) + |u(b)|^p]^{1/p}$ (cf. [5]). Supposing the contrary, we may assume that $|f_n(b)| \to \infty$ as $n \to \infty$ by choosing a subsequence if necessary. Put $f'_n(x) = f_n(x)/f_n(b)$. Then $f'_n(b) = 1$ and $f'_n \in D_0^{(p)}(N)$. Since $\{D_p(f_n)\}$ is bounded, we have $D_p(f'_n) = D_p(f_n)/|f_n(b)|^p \to 0$ as $n \to \infty$, so that $||f'_n - 1||_p = [D_p(f'_n)]^{1/p} \to 0$ as $n \to \infty$. Namely $1 \in D_0^{(p)}(N)$. This contradicts the assumption that N is of hyperbolic type of order p (cf. [10]). Therefore $\{f_n(b)\}$ is bounded. By choosing a subsequence if necessary, we may assume that $\{f_n(b)\}$ converges. Then $\{f_n\}$ is a Cauchy sequence in the reflexive Banach space $D^{(p)}(N)$. There exists $v \in D^{(p)}(N)$ such that $||f_n - v||_p \to 0$ as $n \to \infty_*$. Since $D_0^{(p)}(N)$ is closed, $v \in D_0^{(p)}(N)$. Let us put h = u - v and show that $h \in HD^{(p)}(N)$. For any $f \in L_0(X)$ and $t \in R$,

355

Maretsugu YAMASAKI

we have $v+tf \in D_0^{(p)}(N)$ and $D_p(h) = \alpha \le D_p(h-tf)$, so that the derivative of $D_p(h-tf)$ with respect to t is zero at t=0. If follows that

(2.6)
$$0 = \sum_{y \in Y} r(y) [\phi_p(dh(y))] [df(y)] = \langle\!\langle \phi_p(dh), df \rangle\!\rangle.$$

Denote by ε_z the characteristic function of the set $\{z\} \subset X$. By taking $f = \varepsilon_z$ in (2.6), we have $\Delta_p h(z) = 0$ for every $z \in X$. Since $h \in D^{(p)}(N)$, we conclude that $h \in HD^{(p)}(N)$, which shows a decomposition of u.

To prove the uniqueness of the decomposition, let us assume that $u = v_1 + h_1 = v_2 + h_2$ with $v_i \in \mathbf{D}_0^{(p)}(N)$ and $h_i \in H\mathbf{D}^{(p)}(N)$ (i=1, 2). Since $v_2 - v_1 \in \mathbf{D}_0^{(p)}(N)$, we have by Lemma 2.3

$$\begin{split} & \langle \langle \phi_p(dh_1) - \phi_p(dh_2), dh_1 - dh_2 \rangle \rangle = \langle \langle \phi_p(dh_1) - \phi_p(dh_2), d(v_2 - v_1) \rangle \rangle \\ & = \langle \langle \phi_p(dh_1), d(v_2 - v_1) \rangle - \langle \langle \phi_p(dh_2), d(v_2 - v_1) \rangle \rangle = 0. \end{split}$$

Thus $h_1 = h_2$ by Lemma 2.1, so that $v_1 = v_2$. This completes the proof.

REMARK 2.1. In case p=2, Theorem 2.1 is a discrete analogue of Royden's decomposition of a Dirichlet function (cf. [11]).

LEMMA 2.4. Let $u \in D_0^{(p)}(N)$ and $w \in L(Y)$. If $u \in L^+(X)$ and $\sum_{y \in Y} K(x, y) \cdot w(y) \ge 0$ for all $x \in X$, then

$$\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) w(y) \le [D_p(u)]^{1/p} [H_q(w)]^{1/q}.$$

PROOF. It suffices to prove our inequality in case $H_q(w)$ is finite. There exists a sequence $\{f_n\}$ in $L_0(X)$ such that $||u - f_n||_p \to 0$ as $n \to \infty$. Put $u_n(x) = \max[f_n(x), 0]$. Then $u_n \in L_0^+(X)$. Since $Ts = \max(s, 0)$ is a normal contraction of R, i.e., $|Ts_1 - Ts_2| \le |s_1 - s_2|$ for any $s_1, s_2 \in R$, we have $D_p(u_n) \le D_p(f_n)$. By our assumption that $u \in L^+(X)$, we have

$$|u_n(x) - u(x)| = |Tf_n(x) - Tu(x)| \le |f_n(x) - u(x)|.$$

Since $\{f_n\}$ converges pointwise to u and $D_p(f_n) \rightarrow D_p(u)$ as $n \rightarrow \infty$, $u_n(x) \rightarrow u(x)$ as $n \rightarrow \infty$ for each $x \in X$ and $\limsup_{n \rightarrow \infty} D_p(u_n) \le D_p(u)$. We have

$$\sum_{x \in X} u_n(x) \sum_{y \in Y} K(x, y) w(y) = \sum_{y \in Y} w(y) \sum_{x \in X} K(x, y) u_n(x)$$
$$\leq [H_a(w)]^{1/q} [D_n(u_n)]^{1/p},$$

so that

$$\begin{split} \sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) w(y) &\leq \liminf_{n \to \infty} \sum_{x \in X} u_n(x) \sum_{y \in Y} K(x, y) w(y) \\ &\leq \limsup_{n \to \infty} [H_q(w)]^{1/q} [D_p(u_n)]^{1/p} \\ &\leq [H_q(w)]^{1/q} [D_p(u)]^{1/p}. \end{split}$$

§3. Main results

Denote by $P_{a,\infty}(N)$ the set of all paths from $a \in X$ to the ideal boundary ∞ of N and by $P_{\infty}(N)$ the union of $P_{a,\infty}(N)$ for all $a \in X$. We call an element of $P_{\infty}(N)$ an infinite path.

For every $u \in D^{(p)}(N)$, u(x) has a limit as x tends to the ideal boundary ∞ of N along p-almost every $P \in P_{\infty}(N)$ (cf. [5; Theorem 3.1]). We denote this limit simply by u(P).

We shall prove

THEOREM 3.1. Let $h \in HD^{(p)}(N)$ be nonconstant. Then there is no constant c such that h(P) = c for p-almost every infinite path P.

PROOF. First we show that N is of hyperbolic type of order p. Supposing the contrary, we have $D_0^{(p)}(N) = D^{(p)}(N)$ by [10; Theorem 3.2], so that $D_p(h) = ((\phi_p(dh), dh)) = 0$ by Lemma 2.2, which contradicts the assumption that h is nonconstant.

Let us put $w_h(y) = \phi_p(dh(y))$, $Y(x) = \{y \in Y; K(x, y) \neq 0\}$ and $Y^+(x, h) = \{y \in Y(x); K(x, y)w_h(y) > 0\}$. If $y \in Y^+(x, h)$ and $e(y) = \{x, x'\}$, then we have by definition

$$K(x, y) \operatorname{sign} [-K(x, y)(h(x) - h(x'))] > 0,$$

so that h(x) < h(x').

Since h is nonconstant, there exists $x_0 \in X$ such that $w_h(y)$ is not identically zero on $Y(x_0)$. By the relation $\Delta_p h(x_0) = \sum_{y \in Y} K(x_0, y) w_h(y) = 0$, we see that $Y^+(x_0, h) \neq \emptyset$. Let us define subsets X_n^+ and Y_n^+ for $n \ge 1$ as follows:

$$Y_n^+ = \bigcup \{Y^+(x, h); x \in X_{n-1}^+\},\$$

$$X_n^+ = \bigcup \{e(y) - X_{n-1}^+; y \in Y_n^+\},\$$

where $X_0^+ = \{x_0\}$. We put $X^+ = \bigcup_{n=0}^{\infty} X_n^+$ and $Y^+ = \bigcup_{n=1}^{\infty} Y_n^+$. Then $N^+ = \langle X^+, Y^+ \rangle$ is an infinite subnetwork of N. To see this, it suffices to show that $X_n^+ \neq \emptyset$ for each n. We prove this by induction. By the above observation, $Y_1^+ = Y^+(x_0, h) \neq \emptyset$, so that $X_1^+ \neq \emptyset$. Suppose that $X_{n-1}^+ \neq \emptyset$. Since X_{n-1}^+ is a finite set, there exists $a \in X_{n-1}^+$ such that $h(a) = \max\{h(x); x \in X_{n-1}^+\}$. By definition, we can find $y_1 \in Y_{n-1}^+$ such that $e(y_1) = \{a, x_1\}$ for some $x_1 \in X_{n-2}^+$ and $y_1 \in Y^+(x_1, h)$. We have $K(a, y_1)w_h(y_1) = -K(x_1, y_1)w_h(y_1) < 0$ and $\Delta_p h(a) = \sum_{y \in Y} K(a, y)w_h(y) = 0$, so that $Y^+(a, h) \neq \emptyset$. Let $y_2 \in Y^+(a, h)$ and $e(y_2) = \{a, x_2\}$. Then $h(a) < h(x_2)$ by the above observation, so that $x_2 \notin X_{n-1}^+$. Thus $x_2 \in X_n^+$, i.e., $X_n^+ \neq \emptyset$.

Let us put $q^+(x) = \sum_{y \in Y^+} K(x, y) w_h(y)$. Then $q^+(x_0) > 0$ and $q^+(x) \ge 0$ for

all $x \in X^+$, since $Y^+(x, h) \subset Y^+$ for $x \in X^+$. Note that $\inf \{h(x); x \in X^+ - \{x_0\}\} > h(x_0)$. Let Γ^+ be the set of all paths $P \in P_{x_0,\infty}(N)$ contained in N^+ , i.e., $C_X(P) \subset X^+$ and $C_Y(P) \subset Y^+$. Let us recall the extremal distance $EL_p(\{x_0\}, \infty; N^+)$ of order p of N^+ relative to $\{x_0\}$ and ∞ :

$$EL_{p}(\{x_{0}\}, \infty; N^{+})^{-1} = \inf \{H_{p}(W; N^{+}); W \in E(P_{x_{0}, \infty}(N^{+}))\},\$$

where $H_p(w; N^+) = \sum_{y \in Y^+} r(y) |w(y)|^p$ and $E(P_{x_0,\infty}(N_+))$ is the set of all $W \in L^+(Y^+)$ such that $\sum_p r(y)W(y) \ge 1$ for all $P \in P_{x_0,\infty}(N^+)$. Then we see easily that $\lambda_p(\Gamma^+) = EL_p(\{x_0\}, \infty; N^+)$. Now we show that $\lambda_p(\Gamma^+) < \infty$. Supposing the contrary, we have $EL_p(\{x_0\}, \infty; N^+) = \infty$. Therefore N^+ is of parabolic type of order p by [10; Theorem 4.1], and hence $D_0^{(p)}(N^+) = D^{(p)}(N^+)$. Let $W \in E(P_{x_0,\infty}(N^+))$ and $H_p(W; N^+) < \infty$. Define $u \in L(X^+)$ by $u(x_0) = 0$ and

$$u(x) = \inf \{ \sum_{p} r(y) W(y); P \in P_{x_0, x}(N^+) \} \text{ for } x \neq x_0,$$

where $P_{x_0,x}(N^+)$ is the set of all paths from x_0 to $x \in X_+$ in N^+ . Then u is nonconstant and $|\sum_{x \in X^+} K(x, y)u(x)| \le r(y)W(y)$ on Y^+ by [9; Theorem 3]. Put $v(x) = \max [1-u(x), 0]$. Then $v(x_0) = 1$, $v \in L^+(X^+)$ and

$$D_{p}(v; N^{+}) = \sum_{v \in Y^{+}} r(y) |dv(y)|^{p} \leq D_{p}(u; N^{+}) \leq H_{p}(W; N^{+}) < \infty.$$

Since $v \in D_0^{(p)}(N^+) \cap L^+(X^+)$ and $q^+(x) \ge 0$ on X^+ , we have by Lemma 2.4

$$\begin{aligned} q^{+}(x_{0}) &= v(x_{0}) \sum_{y \in Y^{+}} K(x_{0}, y) w_{h}(y) \\ &\leq \sum_{x \in X^{+}} v(x) \sum_{y \in Y^{+}} K(x, y) w_{h}(y) \\ &\leq [D_{p}(v; N^{+})]^{1/p} [H_{q}(w_{h}; N^{+})]^{1/q} \\ &\leq [H_{p}(W; N^{+})]^{1/p} [H_{q}(w_{h})]^{1/q} = [H_{p}(W; N^{+})]^{1/p} [D_{p}(h)]^{1/q}. \end{aligned}$$

It follows that $H_p(W; N^+) \ge [q^+(x_0)]^p [D_p(h)]^{-p/q} > 0$, so that $EL_p(\{x_0\}, \infty; N^+) < \infty$. This is a contradiction. Thus $\lambda_p(\Gamma^+) < \infty$ and $h(P) > h(x_0)$ for p-almost every $P \in \Gamma^+$.

Similarly we define an infinite subnetwork $N^- = \langle X^-, Y^- \rangle$ by $X^- = \bigcup_{n=0}^{\infty} X_n^$ and $Y^- = \bigcup_{n=1}^{\infty} Y_n^-$, where $X_0^- = \{x_0\}$ and for $n \ge 1$

$$Y_{n}^{-} = \bigcup \{Y^{-}(x, h); x \in X_{n-1}^{-}\},\$$

$$X_{n}^{-} = \bigcup \{e(y) - X_{n-1}^{-}; y \in Y_{n}^{-}\},\$$

$$Y^{-}(x, h) = \{y \in Y(x); K(x, y)w_{h}(y) < 0\}.$$

Let us put $q^{-}(x) = \sum_{y \in Y^{-}} K(x, y) w_{h}(y)$. Then $q^{-}(x) \le 0$ for all $x \in X^{-}$ and $q^{-}(x_{0}) < 0$. Let Γ^{-} be the set of all paths $P \in P_{x_{0},\infty}(N)$ contained in N^{-} . Then we can prove similarly that $\lambda_{p}(\Gamma^{-}) < \infty$. Furthermore $h(P) < h(x_{0})$ for p-almost every $P \in \Gamma^{-}$. This completes the proof.

COROLLARY. $HD^{(p)}(N)$ consists of only constant functions if and only if for each $u \in D^{(p)}(N)$ there is a constant c_u such that $u(P) = c_u$ for p-almost every infinite path P.

We shall prove

THEOREM 3.2. Let $u \in D^{(p)}(N)$. Then $u \in D_0^{(p)}(N)$ if and only if u(P) = 0 for p-almost every infinite path P.

PROOF. In case N is of parabolic type of order p, our assertion is clear. We consider the case where N is of hyperbolic type of order p. By [5; Theorem 3.3], it suffices to show the "if" part. By Theorem 2.1, u can be decomposed in the form: u=v+h, where $v \in D_0^{(p)}(N)$ and $h \in HD^{(p)}(N)$. Assume that u(P)=0 for p-almost every infinite path P. Since v(P)=0 for p-almost every infinite path P. It follows from Theorem 3.1 that h=0, and hence $u \in D_0^{(p)}(N)$.

We say as in [8] that $u \in L(X)$ vanishes at the ideal boundary of N if, for every $\varepsilon > 0$, there exists a finite subset X' of X such that $|u(x)| < \varepsilon$ on X - X'.

As an application of Theorem 3.2, we have

COROLLARY. Let $u \in D^{(p)}(N)$. If u vanishes at the ideal boundary of N, then $u \in D_0^{(p)}(N)$.

References

- [1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [2] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland American Elsevier, 1976.
- [3] M. Glasner and R. Katz, Limits of Dirichlet finite functions along curves, Rockey Mountain J. Math. 12 (1982), 429–435.
- [4] E. Hewitt and K. Stomberg, Real and abstract analysis, GTM 25, Springer-Verlag, New York-Heidelberg-Berlin, 1965.
- [5] T. Kayano and M. Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), 401–406.
- [6] F-Y. Maeda, Classification theory of nonlinear functional-harmonic spaces, ibid. 8 (1978), 335–369.
- [7] M. Ohtsuka, Extremal length and precise functions in 3-spaces, Lecture Notes at Hiroshima Univ., 1973.
- [8] C. Saltzer, Discrete potential and boundary value problems, Duke Math. J. 31 (1964), 299-320.
- [9] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), 223-250.
- [10] M. Yamasaki, Parabolic and hyperbolic infinite networks, ibid. 7 (1977), 135-146.
- [11] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.

Maretsugu YAMASAKI

Department of Mathematics, Faculty of Science, Shimane University