Ideal boundary limit of discrete Dirichlet functions

Dedicated to Professor Yukio Kusunoki on his 60th birthday

Maretsugu Yamasaki

(Received August 20, 1985)

§ 1. Introduction

In the previous paper [5], we proved that every Dirichlet potential $u(x)$ of order $p>1$ on an infinite network $N=\{X, Y, K, r\}$ has limit 0 as x tends to the ideal boundary of N along p-almost every infinite path. Our aim of this paper is to prove the converse of this fact. In case $p=2$, our result has a continuous counterpart in [3], i.e., on a Riemannian manifold Ω, every Dirichlet function (=Tonelli function with finite Dirichlet integral) $u(x)$ has limit 0 as x tends to the ideal boundary of Ω along 2 -almost every curve joining a fixed parametric ball to the ideal boundary of Ω if and only if u is a Dirichlet potential (i.e., the values of u on the harmonic boundary of Ω are 0). Since the proof in [3] is based on some results concerning continuous harmonic flows and the Royden compactification of Ω, it seems to be difficult to follow the reasoning in our case.

We shall prove in $\S 2$ that every Dirichlet function of order p on X can be decomposed uniquely into the sum of Dirichlet potential of order p and a p harmonic function on X. We shall discuss in $\S 3$ the ideal boundary limit of a non-constant p-harmonic function with finite Dirichlet integral of order p. As an application, we shall prove that a Dirichlet function of order p is a Dirichlet potential of order p if and only if it has limit 0 as x tends to the ideal boundary of N along p-almost every infinite path.

We shall freely use the notation in [5] except for the reference numbers; references are rearranged in the present paper.

§ 2. Decomposition of $D^{(p)}(N)$

Let p and q be positive numbers such that $1 / p+1 / q=1$ and $1<p<\infty$ and let $\phi_{p}(t)$ be the real function on the real line R defined by $\phi_{p}(t)=|t|^{p-1} \operatorname{sign}(t)$. For each $w \in L(Y)$, let us define $\phi_{p}(w) \in L(Y)$ by $\phi_{p}(w)(y)=\phi_{p}(w(y))$ for $y \in Y$.

For each $u \in L(X)$, the p-Laplacian $\Delta_{p} u \in L(X)$ of u is defined by

$$
\Delta_{p} u(x)=\sum_{y \in Y} K(x, y) \phi_{p}(d u(y)),
$$

where $d u(y)=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x)$ (a discrete derivative of u). We say that u is p-harmonic on a subset A of X if $\Delta_{p} u(x)=0$ on A. Denote by $\boldsymbol{H D}^{(p)}(N)$
the set of all $u \in \boldsymbol{D}^{(p)}(N)$ which is p-harmonic on X. Some properties of p harmonic functions were discussed in [6] in a more general setting. It should be noted that $\boldsymbol{H} \boldsymbol{D}^{(p)}(N)$ is not a linear space in general if $p \neq 2$.

For $w_{1}, w_{2} \in L(Y)$, we consider the inner product

$$
\left(\left(w_{1}, w_{2}\right)\right)=\sum_{y \in Y} r(y) w_{1}(y) w_{2}(y)
$$

of w_{1} and w_{2} if the sum is well-defined. It is easily seen that $\left.\left(w_{1}, w_{2}\right)\right)$ is welldefined if the support of w_{1} or w_{2} is a finite set or if $H_{p}\left(w_{1}\right)$ (resp. $H_{q}\left(w_{1}\right)$) and $H_{q}\left(w_{2}\right)$ (resp. $\left.H_{p}\left(w_{2}\right)\right)$ are finite. For each $u \in \boldsymbol{D}^{(p)}(N)$, we have

$$
D_{p}(u)=\left\langle\left(\phi_{p}(d u), d u\right)\right\rangle=H_{q}\left(\phi_{p}(d u)\right) .
$$

We begin with some lemmas.
Lemma 2.1. $\left.\quad\left(\phi_{p}\left(w_{1}\right)-\phi_{p}\left(w_{2}\right), w_{1}-w_{2}\right\rangle\right) \geq 0$ for all $w_{1}, \quad w_{2} \in L(Y)$ with finite energy of order p. The equality holds only if $w_{1}=w_{2}$.

Proof. Since $f(t)=H_{p}\left(w_{1}+t\left(w_{2}-w_{1}\right)\right)$ is a strictly convex function of $t \in R$ in case $w_{1} \neq w_{2}$ and the derivative of $f(t)$ at $t=0$ is equal to $\left.p\left(\phi_{p}\left(w_{1}\right), w_{2}-w_{1}\right)\right)$, our assertion follows from [2; p. 25, Proposition 5.4].

Lemma 2.2. (Clarkson's inequality) For $u, v \in \boldsymbol{D}^{(p)}(N)$, the following inequalities hold:

$$
\begin{align*}
& D_{p}(u+v)+D_{p}(u-v) \leq 2^{p-1}\left[D_{p}(u)+D_{p}(v)\right] \text { in case } p \geq 2 \tag{2.1}\\
& {\left[D_{p}(u+v)\right]^{1 /(p-1)}+\left[D_{p}(u-v)\right]^{1 /(p-1)}} \\
& \quad \leq 2\left[D_{p}(u)+D_{p}(v)\right]^{1 /(p-1)} \text { in case } 1<p \leq 2 .
\end{align*}
$$

Proof. Let $t \in R, 0 \leq t \leq 1$. By [1], [4] or [7], we have

$$
\begin{align*}
& (1+t)^{p}+(1-t)^{p} \leq 2^{p-1}\left(1+t^{p}\right) \text { in case } p \geq 2 \tag{2.3}\\
& (1+t)^{p}+(1-t)^{p} \geq\left(1+t^{q}\right)^{p-1} \text { in case } 1<p \leq 2 \tag{2.4}
\end{align*}
$$

Let us put $s=(1-t) /(1+t)$. Then (2.4) is equivalent to

$$
\begin{equation*}
\left[(1+s)^{q}+(1-s)^{q}\right]^{p-1} \leq 2^{p-1}\left(1+s^{p}\right) \tag{2.4}
\end{equation*}
$$

We see easily that (2.1) follows from (2.3) and that (2.2) follows from (2.4)' and the reverse Minkowski's inequality.

Lemma 2.3. $\left.\quad\left(\phi_{p}(d h), d v\right\rangle\right)=0$ for every $v \in \boldsymbol{D}_{0}^{(p)}(N)$ and $h \in \boldsymbol{H D}{ }^{(p)}(N)$.
Proof. Let $v \in \boldsymbol{D}_{0}^{(p)}(N)$ and $h \in \boldsymbol{H} \boldsymbol{D}^{(p)}(N)$. Then there exists a sequence $\left\{f_{n}\right\}$ in $L_{0}(X)$ such that $\left\|v-f_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\begin{aligned}
\left.\left(\phi_{p}(d h), d f_{n}\right)\right) & =\sum_{y \in Y} r(y)\left[\phi_{p}(d h(y))\right]\left[d f_{n}(y)\right] \\
& =-\sum_{x \in X} f_{n}(x)\left[\Delta_{p} h(x)\right]=0,
\end{aligned}
$$

$$
\begin{aligned}
\left|\left\langle\phi_{p}(d h), d\left(v-f_{n}\right)\right)\right| & \leq\left[H_{q}\left(\phi_{p}(d h)\right)\right]^{1 / q}\left[H_{p}\left(d\left(v-f_{n}\right)\right)\right]^{1 / p} \\
& =\left[D_{p}(h)\right]^{1 / q}\left[D_{p}\left(v-f_{n}\right)\right]^{1 / p} \longrightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, so that $\left.\left.\| \phi_{p}(d h), d v\right\rangle\right)=0$.
We shall prove the following decomposition theorem:
Theorem 2.1. Assume that N is of hyperbolic type of order p. Then every $u \in \boldsymbol{D}^{(p)}(N)$ can be decomposed uniquely in the form: $u=v+h$, where $v \in \boldsymbol{D}_{0}^{(p)}(N)$ and $h \in \boldsymbol{H D}^{(p)}(N)$.

Proof. Let $u \in \boldsymbol{D}^{(p)}(N)$ and consider the following extremum problem:
(2.5) Find $\alpha=\inf \left\{D_{p}(u-f) ; f \in D_{0}^{(p)}(N)\right\}$.

Clearly α is finite. Let $\left\{f_{n}\right\}$ be a sequence in $D_{0}^{(p)}(N)$ such that $D_{p}\left(u-f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We show that $D_{p}\left(f_{n}-f_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. In case $p \geq 2$, we have by (2.1)

$$
\begin{aligned}
\alpha & \leq D_{p}\left(u-\left(f_{n}+f_{m}\right) / 2\right) \\
& \leq D_{p}\left(u-\left(f_{n}+f_{m}\right) / 2\right)+D_{p}\left(\left(f_{m}-f_{n}\right) / 2\right) \\
& \leq 2^{p-1}\left[D_{p}\left(\left(u-f_{n}\right) / 2\right)+D_{p}\left(\left(u-f_{m}\right) / 2\right)\right] \\
& =2^{-1}\left[D_{p}\left(u-f_{n}\right)+D_{p}\left(u-f_{m}\right)\right] \longrightarrow \alpha
\end{aligned}
$$

as $n, m \rightarrow \infty$. In case $1<p \leq 2$, we have by (2.2)

$$
\begin{aligned}
\alpha^{1 /(p-1)} & \leq\left[D_{p}\left(u-\left(f_{n}+f_{m}\right) / 2\right)\right]^{1 /(p-1)} \\
& \leq\left[D_{p}\left(u-\left(f_{n}+f_{m}\right) / 2\right)\right]^{1 /(p-1)}+\left[D_{p}\left(\left(f_{m}-f_{n}\right) / 2\right)\right]^{1 /(p-1)} \\
& \leq 2\left[D_{p}\left(\left(u-f_{n}\right) / 2\right)+D_{p}\left(\left(u-f_{m}\right) / 2\right)\right]^{1 /(p-1)} \longrightarrow \alpha^{1 /(p-1)}
\end{aligned}
$$

as $n, m \rightarrow \infty$. Thus we have $D_{p}\left(f_{m}-f_{n}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Since $\left[D_{p}(v)\right]^{1 / p}$ is a pseudonorm, we see easily that $\left\{D_{p}\left(f_{n}\right)\right\}$ is bounded.

Next we show that $\left\{\left|f_{n}(b)\right|\right\}$ is bounded, where $b \in X$ is a fixed element such that $\|u\|_{p} \doteq\left[D_{p}(u)+|u(b)|^{p}\right]^{1 / p}$ (cf. [5]). Supposing the contrary, we may assume that $\left|f_{n}(b)\right| \rightarrow \infty$ as $n \rightarrow \infty$ by choosing a subsequence if necessary. Put $f_{n}^{\prime}(x)=$ $f_{n}(x) / f_{n}(b)$. Then $f_{n}^{\prime}(b)=1$ and $f_{n}^{\prime} \in \boldsymbol{D}_{0}^{(p)}(N)$. Since $\left\{D_{p}\left(f_{n}\right)\right\}$ is bounded, we have $D_{p}\left(f_{n}^{\prime}\right)=D_{p}\left(f_{n}\right) /\left|f_{n}(b)\right|^{p} \rightarrow 0$ as $n \rightarrow \infty$, so that $\left\|f_{n}^{\prime}-1\right\|_{p}=\left[D_{p}\left(f_{n}^{\prime}\right)\right]^{1 / p} \rightarrow 0$ as $n \rightarrow \infty$. Namely $1 \in \boldsymbol{D}_{0}^{(p)}(N)$. This contradicts the assumption that N is of hyperbolic type of order p (cf. [10]). Therefore $\left\{f_{n}(b)\right\}$ is bounded. By choosing a subsequence if necessary, we may assume that $\left\{f_{n}(b)\right\}$ converges. Then $\left\{f_{n}\right\}$ is a Cauchy sequence in the reflexive Banach space $D^{(p)}(N)$. There exists $v \in \boldsymbol{D}^{(p)}(N)$ such that $\left\|f_{n}-v\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Since $\boldsymbol{D}_{0}^{(p)}(N)$ is closed, $v \in \boldsymbol{D}_{0}^{(p)}(N)$. Let us put $h=u-v$ and show that $h \in \boldsymbol{H} \boldsymbol{D}^{(p)}(N)$. For any $f \in L_{0}(X)$ and $t \in R$,
we have $v+t f \in \boldsymbol{D}_{0}^{(p)}(N)$ and $D_{p}(h)=\alpha \leq D_{p}(h-t f)$, so that the derivative of $D_{p}(h-t f)$ with respect to t is zero at $t=0$. If follows that

$$
\begin{equation*}
0=\sum_{y \in \mathrm{Y}} r(y)\left[\phi_{p}(d h(y))\right][d f(y)]=\left\langle\left(\phi_{p}(d h), d f\right\rangle\right) . \tag{2.6}
\end{equation*}
$$

Denote by ε_{z} the characteristic function of the set $\{z\} \subset X$. By taking $f=\varepsilon_{z}$ in (2.6), we have $\Delta_{p} h(z)=0$ for every $z \in X$. Since $h \in \boldsymbol{D}^{(p)}(N)$, we conclude that $h \in \boldsymbol{H} \boldsymbol{D}^{(p)}(N)$, which shows a decomposition of u.

To prove the uniqueness of the decomposition, let us assume that $u=v_{1}+$ $h_{1}=v_{2}+h_{2}$ with $v_{i} \in \boldsymbol{D}_{0}^{(p)}(N)$ and $h_{i} \in \boldsymbol{H} \boldsymbol{D}^{(p)}(N)(i=1,2)$. Since $v_{2}-v_{1} \in \boldsymbol{D}_{0}^{(p)}(N)$, we have by Lemma 2.3

$$
\begin{aligned}
& \left.\left.\| \phi_{p}\left(d h_{1}\right)-\phi_{p}\left(d h_{2}\right), d h_{1}-d h_{2}\right)\right)=《\left(\phi_{p}\left(d h_{1}\right)-\phi_{p}\left(d h_{2}\right), d\left(v_{2}-v_{1}\right)\right) \\
& \quad=\left(\left(\phi_{p}\left(d h_{1}\right), d\left(v_{2}-v_{1}\right)\right)-\|\left(\phi_{p}\left(d h_{2}\right), d\left(v_{2}-v_{1}\right)\right)=0 .\right.
\end{aligned}
$$

Thus $h_{1}=h_{2}$ by Lemma 2.1, so that $v_{1}=v_{2}$. This completes the proof.
Remark 2.1. In case $p=2$, Theorem 2.1 is a discrete analogue of Royden's decomposition of a Dirichlet function (cf. [11]).

Lemma 2.4. Let $u \in \boldsymbol{D}_{0}^{(p)}(N)$ and $w \in L(Y)$. If $u \in L^{+}(X)$ and $\sum_{y \in Y} K(x, y)$. $w(y) \geq 0$ for all $x \in X$, then

$$
\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) w(y) \leq\left[D_{p}(u)\right]^{1 / p}\left[H_{q}(w)\right]^{1 / q} .
$$

Proof. It suffices to prove our inequality in case $H_{q}(w)$ is finite. There exists a sequence $\left\{f_{n}\right\}$ in $L_{0}(X)$ such that $\left\|u-f_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Put $u_{n}(x)=$ $\max \left[f_{n}(x), 0\right]$. Then $u_{n} \in L_{0}^{+}(X)$. Since $T s=\max (s, 0)$ is a normal contraction of R, i.e., $\left|T s_{1}-T s_{2}\right| \leq\left|s_{1}-s_{2}\right|$ for any $s_{1}, s_{2} \in R$, we have $D_{p}\left(u_{n}\right) \leq D_{p}\left(f_{n}\right)$. By our assumption that $u \in L^{+}(X)$, we have

$$
\left|u_{n}(x)-u(x)\right|=\left|T f_{n}(x)-T u(x)\right| \leq\left|f_{n}(x)-u(x)\right| .
$$

Since $\left\{f_{n}\right\}$ converges pointwise to u and $D_{p}\left(f_{n}\right) \rightarrow D_{p}(u)$ as $n \rightarrow \infty, u_{n}(x) \rightarrow u(x)$ as $n \rightarrow \infty$ for each $x \in X$ and $\lim \sup _{n \rightarrow \infty} D_{p}\left(u_{n}\right) \leq D_{p}(u)$. We have

$$
\begin{aligned}
\sum_{x \in X} u_{n}(x) \sum_{y \in Y} K(x, y) w(y) & =\sum_{y \in Y} w(y) \sum_{x \in X} K(x, y) u_{n}(x) \\
& \leq\left[H_{q}(w)\right]^{1 / q}\left[D_{p}\left(u_{n}\right)\right]^{1 / p},
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y) w(y) & \leq \liminf _{n \rightarrow \infty} \sum_{x \in X} u_{n}(x) \sum_{y \in Y} K(x, y) w(y) \\
& \leq \lim \sup _{n \rightarrow \infty}\left[H_{q}(w)\right]^{1 / q}\left[D_{p}\left(u_{n}\right)\right]^{1 / p} \\
& \leq\left[H_{q}(w)\right]^{1 / q}\left[D_{p}(u)\right]^{1 / p} .
\end{aligned}
$$

§3. Main results

Denote by $P_{a, \infty}(N)$ the set of all paths from $a \in X$ to the ideal boundary ∞ of N and by $P_{\infty}(N)$ the union of $P_{a, \infty}(N)$ for all $a \in X$. We call an element of $P_{\infty}(N)$ an infinite path.

For every $u \in \boldsymbol{D}^{(p)}(N), u(x)$ has a limit as x tends to the ideal boundary ∞ of N along p-almost every $P \in P_{\infty}(N)$ (cf. [5; Theorem 3.1]). We denote this limit simply by $u(P)$.

We shall prove
Theorem 3.1. Let $h \in \boldsymbol{H D}^{(p)}(N)$ be nonconstant. Then there is no constant c such that $h(P)=c$ for p-almost every infinite path P.

Proof. First we show that N is of hyperbolic type of order p. Supposing the contrary, we have $\boldsymbol{D}_{0}^{(p)}(N)=\boldsymbol{D}^{(p)}(N)$ by $\left[10\right.$; Theorem 3.2], so that $D_{p}(h)=$ $\left.\left.\| \phi_{p}(d h), d h\right\rangle\right)=0$ by Lemma 2.2, which contradicts the assumption that h is nonconstant.

Let us put $w_{h}(y)=\phi_{p}(d h(y)), \quad Y(x)=\{y \in Y ; K(x, y) \neq 0\}$ and $Y^{+}(x, h)=$ $\left\{y \in Y(x) ; K(x, y) w_{h}(y)>0\right\}$. If $y \in Y^{+}(x, h)$ and $e(y)=\left\{x, x^{\prime}\right\}$, then we have by definition

$$
K(x, y) \operatorname{sign}\left[-K(x, y)\left(h(x)-h\left(x^{\prime}\right)\right)\right]>0,
$$

so that $h(x)<h\left(x^{\prime}\right)$.
Since h is nonconstant, there exists $x_{0} \in X$ such that $w_{h}(y)$ is not identically zero on $Y\left(x_{0}\right)$. By the relation $\Delta_{p} h\left(x_{0}\right)=\sum_{y \in Y} K\left(x_{0}, y\right) w_{h}(y)=0$, we see that $Y^{+}\left(x_{0}, h\right) \neq \emptyset$. Let us define subsets X_{n}^{+}and Y_{n}^{+}for $n \geq 1$ as follows:

$$
\begin{aligned}
& Y_{n}^{+}=\cup\left\{Y^{+}(x, h) ; x \in X_{n-1}^{+}\right\}, \\
& X_{n}^{+}=\cup\left\{e(y)-X_{n-1}^{+} ; y \in Y_{n}^{+}\right\},
\end{aligned}
$$

where $X_{0}^{+}=\left\{x_{0}\right\}$. We put $X^{+}=\cup_{n=0}^{\infty} X_{n}^{+}$and $Y^{+}=\cup_{n=1}^{\infty} Y_{n}^{+}$. Then $N^{+}=$ $\left\langle X^{+}, Y^{+}\right\rangle$is an infinite subnetwork of N. To see this, it suffices to show that $X_{n}^{+} \neq \emptyset$ for each n. We prove this by induction. By the above observation, $Y_{1}^{+}=Y^{+}\left(x_{0}, h\right) \neq \emptyset$, so that $X_{1}^{+} \neq \emptyset$. Suppose that $X_{n-1}^{+} \neq \emptyset$. Since X_{n-1}^{+}is a finite set, there exists $a \in X_{n-1}^{+}$such that $h(a)=\max \left\{h(x) ; x \in X_{n-1}^{+}\right\}$. By definition, we can find $y_{1} \in Y_{n-1}^{+}$such that $e\left(y_{1}\right)=\left\{a, x_{1}\right\}$ for some $x_{1} \in X_{n-2}^{+}$and $y_{1} \in Y^{+}\left(x_{1}, h\right)$. We have $K\left(a, y_{1}\right) w_{h}\left(y_{1}\right)=-K\left(x_{1}, y_{1}\right) w_{h}\left(y_{1}\right)<0$ and $\Delta_{p} h(a)=$ $\sum_{y \in Y} K(a, y) w_{h}(y)=0$, so that $Y^{+}(a, h) \neq \emptyset$. Let $y_{2} \in Y^{+}(a, h)$ and $e\left(y_{2}\right)=$ $\left\{a, x_{2}\right\}$. Then $h(a)<h\left(x_{2}\right)$ by the above observation, so that $x_{2} \notin X_{n-1}^{+}$. Thus $x_{2} \in X_{n}^{+}$, i.e., $X_{n}^{+} \neq \emptyset$.

Let us put $q^{+}(x)=\sum_{y \in Y^{+}} K(x, y) w_{h}(y)$. Then $q^{+}\left(x_{0}\right)>0$ and $q^{+}(x) \geq 0$ for
all $x \in X^{+}$, since $Y^{+}(x, h) \subset Y^{+}$for $x \in X^{+}$. Note that $\inf \left\{h(x) ; x \in X^{+}\right.$ $\left.\left\{x_{0}\right\}\right\}>h\left(x_{0}\right)$. Let Γ^{+}be the set of all paths $P \in P_{x_{0}, \infty}(N)$ contained in N^{+}, i.e., $C_{X}(P) \subset X^{+}$and $C_{Y}(P) \subset Y^{+}$. Let us recall the extremal distance $E L_{p}\left(\left\{x_{0}\right\}\right.$, $\infty ; N^{+}$) of order p of N^{+}relative to $\left\{x_{0}\right\}$ and ∞ :

$$
E L_{p}\left(\left\{x_{0}\right\}, \infty ; N^{+}\right)^{-1}=\inf \left\{H_{p}\left(W ; N^{+}\right) ; W \in E\left(P_{x_{0}, \infty}\left(N^{+}\right)\right)\right\}
$$

where $H_{p}\left(w ; N^{+}\right)=\Sigma_{y \in Y^{+}} r(y)|w(y)|^{p}$ and $E\left(P_{x_{0}, \infty}\left(N_{+}\right)\right)$is the set of all $W \in L^{+}\left(Y^{+}\right)$ such that $\sum_{p} r(y) W(y) \geq 1$ for all $P \in P_{x_{0}, \infty}\left(N^{+}\right)$. Then we see easily that $\lambda_{p}\left(\Gamma^{+}\right)=$ $E L_{p}\left(\left\{x_{0}\right\}, \infty ; N^{+}\right)$. Now we show that $\lambda_{p}\left(\Gamma^{+}\right)<\infty$. Supposing the contrary, we have $E L_{p}\left(\left\{x_{0}\right\}, \infty ; N^{+}\right)=\infty$. Therefore N^{+}is of parabolic type of order p by [10; Theorem 4.1], and hence $\boldsymbol{D}_{0}^{(p)}\left(N^{+}\right)=D^{(p)}\left(N^{+}\right)$. Let $W \in E\left(P_{x_{0}, \infty}\left(N^{+}\right)\right)$ and $H_{p}\left(W ; N^{+}\right)<\infty$. Define $u \in L\left(X^{+}\right)$by $u\left(x_{0}\right)=0$ and

$$
u(x)=\inf \left\{\sum_{p} r(y) W(y) ; P \in P_{x_{0}, x}\left(N^{+}\right)\right\} \text {for } x \neq x_{0}
$$

where $P_{x_{0}, x}\left(N^{+}\right)$is the set of all paths from x_{0} to $x \in X_{+}$in N^{+}. Then u is nonconstant and $\left|\sum_{x \in X^{+}} K(x, y) u(x)\right| \leq r(y) W(y)$ on Y^{+}by [9; Theorem 3]. Put $v(x)=\max [1-u(x), 0]$. Then $v\left(x_{0}\right)=1, v \in L^{+}\left(X^{+}\right)$and

$$
D_{p}\left(v ; N^{+}\right)=\sum_{y \in Y^{+}} r(y)|d v(y)|^{p} \leq D_{p}\left(u ; N^{+}\right) \leq H_{p}\left(W ; N^{+}\right)<\infty .
$$

Since $v \in \boldsymbol{D}_{0}^{(p)}\left(N^{+}\right) \cap L^{+}\left(X^{+}\right)$and $q^{+}(x) \geq 0$ on X^{+}, we have by Lemma 2.4

$$
\begin{aligned}
q^{+}\left(x_{0}\right) & =v\left(x_{0}\right) \sum_{y \in Y^{+}} K\left(x_{0}, y\right) w_{h}(y) \\
& \leq \sum_{x \in X^{+}} v(x) \sum_{y \in Y^{+}} K(x, y) w_{h}(y) \\
& \leq\left[D_{p}\left(v ; N^{+}\right)\right]^{1 / p}\left[H_{q}\left(w_{h} ; N^{+}\right)\right]^{1 / q} \\
& \leq\left[H_{p}\left(W ; N^{+}\right)\right]^{1 / p}\left[H_{q}\left(w_{h}\right)\right]^{1 / q}=\left[H_{p}\left(W ; N^{+}\right)\right]^{1 / p}\left[D_{p}(h)\right]^{1 / q} .
\end{aligned}
$$

It follows that $H_{p}\left(W ; N^{+}\right) \geq\left[q^{+}\left(x_{0}\right)\right]^{p}\left[D_{p}(h)\right]^{-p / q}>0$, so that $E L_{p}\left(\left\{x_{0}\right\}, \infty\right.$; $\left.N^{+}\right)<\infty$. This is a contradiction. Thus $\lambda_{p}\left(\Gamma^{+}\right)<\infty$ and $h(P)>h\left(x_{0}\right)$ for p almost every $P \in \Gamma^{+}$.

Similarly we define an infinite subnetwork $N^{-}=\left\langle X^{-}, Y^{-}\right\rangle$by $X^{-}=\cup_{n=0}^{\infty} X_{n}^{-}$ and $Y^{-}=\cup_{n=1}^{\infty} Y_{n}^{-}$, where $X_{0}^{-}=\left\{x_{0}\right\}$ and for $n \geq 1$

$$
\begin{aligned}
& Y_{n}^{-}=\cup\left\{Y^{-}(x, h) ; x \in X_{n-1}^{-}\right\} \\
& X_{n}^{-}=\cup\left\{e(y)-X_{n-1}^{-} ; y \in Y_{n}^{-}\right\} \\
& Y^{-}(x, h)=\left\{y \in Y(x) ; K(x, y) w_{h}(y)<0\right\}
\end{aligned}
$$

Let us put $q^{-}(x)=\sum_{y \in Y^{-}} K(x, y) w_{h}(y)$. Then $q^{-}(x) \leq 0$ for all $x \in X^{-}$and $q^{-}\left(x_{0}\right)<0$. Let Γ^{-}be the set of all paths $P \in P_{x_{0}, \infty}(N)$ contained in N^{-}. Then we can prove similarly that $\lambda_{p}\left(\Gamma^{-}\right)<\infty$. Furthermore $h(P)<h\left(x_{0}\right)$ for p-almost every $P \in \Gamma^{-}$. This completes the proof.

Corollary. HD ${ }^{(p)}(N)$ consists of only constant functions if and only if for each $u \in \boldsymbol{D}^{(p)}(N)$ there is a constant c_{u} such that $u(P)=c_{u}$ for p-almost every infinite path P.

We shall prove
Theorem 3.2. Let $u \in \boldsymbol{D}^{(p)}(N)$. Then $u \in \boldsymbol{D}_{0}^{(p)}(N)$ if and only if $u(P)=0$ for p-almost every infinite path P.

Proof. In case N is of parabolic type of order p, our assertion is clear. We consider the case where N is of hyperbolic type of order p. By [5; Theorem 3.3], it suffices to show the "if"' part. By Theorem 2.1, u can be decomposed in the form: $u=v+h$, where $v \in \boldsymbol{D}_{0}^{(p)}(N)$ and $h \in \boldsymbol{H} \boldsymbol{D}^{(p)}(N)$. Assume that $u(P)=0$ for p-almost every infinite path P. Since $v(P)=0$ for p-almost every infinite path P by [5; Theorem 3.3], we have $h(P)=0$ for p-almost every infinite path P. It follows from Theorem 3.1 that $h=0$, and hence $u \in \boldsymbol{D}_{0}^{(p)}(N)$.

We say as in [8] that $u \in L(X)$ vanishes at the ideal boundary of N if, for every $\varepsilon>0$, there exists a finite subset X^{\prime} of X such that $|u(x)|<\varepsilon$ on $X-X^{\prime}$.

As an application of Theorem 3.2, we have
Corollary. Let $u \in \boldsymbol{D}^{(p)}(N)$. If u vanishes at the ideal boundary of N, then $u \in \boldsymbol{D}_{0}^{(p)}(N)$.

References

[1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[2] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland American Elsevier, 1976.
[3] M. Glasner and R. Katz, Limits of Dirichlet finite functions along curves, Rockey Mountain J. Math. 12 (1982), 429-435.
[4] E. Hewitt and K. Stomberg, Real and abstract analysis, GTM 25, Springer-Verlag, New York-Heidelberg-Berlin, 1965.
[5] T. Kayano and M. Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), 401-406.
[6] F-Y. Maeda, Classification theory of nonlinear functional-harmonic spaces, ibid. 8 (1978), 335-369.
[7] M. Ohtsuka, Extremal length and precise functions in 3-spaces, Lecture Notes at Hiroshima Univ., 1973.
[8] C. Saltzer, Discrete potential and boundary value problems, Duke Math. J. 31 (1964), 299-320.
[9] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), 223-250.
[10] M. Yamasaki, Parabolic and hyperbolic infinite networks, ibid. 7 (1977), 135-146.
[11] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.

Department of Mathematics, Faculty of Science, Shimane University

