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§ 1. Introduction

In the previous paper [5], we proved that every Dirichlet potential u(x) of
order p>l on an infinite network N = {X, Y, K, r} has limit 0 as x tends to the
ideal boundary of N along p-alm'ost every infinite path. Our aim of this paper
is to prove the converse of this fact. In case p = 29 our result has a continuous
counterpart in [3], i.e., on a Riemannian manifold Ω9 every Dirichlet function
( = Tonelli function with finite Dirichlet integral) u(x) has limit 0 as x tends to the
ideal boundary of Ω along 2-almost every curve joining a fixed parametric ball to
the ideal boundary of Ω if and only if u is a Dirichlet potential (i.e., the values of
u on the harmonic boundary of Ω are 0). Since the proof in [3] is based on some
results concerning continuous harmonic flows and the Royden compactification
of Ω, it seems to be difficult to follow the reasoning in our case.

We shall prove in §2 that every Dirichlet function of order p on X can be
decomposed uniquely into the sum of Dirichlet potential of order p and a p-
harmonic function on X. We shall discuss in §3 the ideal boundary limit of a
non-constant p-harmonic function with finite Dirichlet integral of order p. As
an application, we shall prove that a Dirichlet function of order p is a Dirichlet
potential of order p if and only if it has limit 0 as x tends to the ideal boundary
of N along p-almost every infinite path.

We shall freely use the notation in [5] except for the reference numbers;
references are rearranged in the present paper.

§ 2. Decomposition of D

Let p and q be positive numbers such that l/p+l/q = l and l<p<oo and
let φp(t) be the real function on the real line R defined by φp(t) = \t\p~1 sign (t).
For each weL(Y), let us define φp(w)eL(Y) by φp(w)(y) = φp(w(y)) for yeY.

For each u e L(X), the jp-Laplacian Apu e L(X) of u is defined by

Λpu(x)=ΣyeγK(x,y)φp(du(y))9

where du(y)= -KjO^Σxexκ(x> y)u(x) (a discrete derivative of u). We say that
u is p-harmonic on a subset A of X if Apu(x) = 0 on A. Denote by HD(P\N)
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the set of all u e D(p\N) which is ^-harmonic on X. Some properties of p-
harmonic functions were discussed in [6] in a more general setting. It should be
noted that HD(P\N) is not a linear space in general if pφ2.

For wl5 w2eL(Y), we consider the inner product

(<>!, w2)) = ΣyeYr(y)w1(y)w2(y)

of w± and w2 if the sum is well-defined. It is easily seen that {wl9 vv2)) is well-
defined if the support of w1 or w2 is a finite set or if Hp{w^) (resp. H^w^) and
Hq(w2) (resp. Hp(w2)) are finite. For each u e D(P\N)9 we have

Dp(u) = lφp(du), du)) = Hq(φp(du)).

We begin with some lemmas.

LEMMA 2.1. IΦpiwJ-φpiwJ, w1-w2))>0 /or α/Z wl9 w2eL(7) wiί/i
/te energy of order p. The equality holds only ifwi = w2.

PROOF. Since f(t) = Hp(wί + t(w2 — wί)) is a strictly convex function of
t E R in case wx ^ w2 and the derivative of/(ί) at t = 0 is equal to piφpiw^), w2 — w1)),
our assertion follows from [2; p. 25, Proposition 5.4].

LEMMA 2.2. (Glarkson's inequality) For u, ve D^P)(N)9 the following
inequalities hold:

(2.1) Dp(u + v) + Dp(u-v) < 2p-1[Dp(μ) + Dp{v)~] in case p > 2;

(2.2) lDJu + Ό)yH*-i) + [Dp(M_t;)]i/(p-i)

< 2[Dp(u) + Z)p(u)]1/^-1) in case 1 < p < 2.

PROOF. Let ί e R9 0< ί < 1. By [1], [4] or [7], we have

(2.3) (1 + ty + (1 - t)p < 2""1(1 + tp) in case p > 2,

(2.4) (l + ί)p + ( l - 0 p ^ (l + ίΌ*7"1 in case 1 < p < 2.

Let us put s = (l-ί)/(l + ί). Then (2.4) is equivalent to

(2.4)' [(i+s)* + (l-syy-1 < 2^- i(i+s^).

We see easily that (2.1) follows from (2.3) and that (2.2) follows from (2.4)'
and the reverse Minkowski's inequality.

LEMMA 2.3. {φp{dh\ dv)) =0 for every v e D(

O

P\N) and h e HD(p\N).

PROOF. Let veD(

o

p\N) and heHD^iN). Then there exists a sequence
{/„} in L0(X) such that ||t;— /Jp->0 as n-»oo. We have

lφp(dh), dfn) = Σyeγr(y)ίφp(dh(y))Udfn(y)l
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\(φp(dh), d(v-fn)))\ < lHq(φp(dh))γ/«[.Hp(d(v-fnWIP

= LDp(hW">lDp(v-fn)γ/r — 0

as n-+oo, so that {φp(dh)9 dv}=0.
We shall prove the following decomposition theorem:

THEOREM 2.1. Assume that N is of hyperbolic type of order p. Then every
ueD(p\N) can be decomposed uniquely in the form: u = υ + h, where veDc

o

p)(N)
and h e HD<<P\N).

PROOF. Let u eD^(N) and consider the following extremum problem:

(2.5) Find α = inf {Dp(u -f) fe Dtf\N)}.

Clearly α is finite. Let {/„} be a sequence in D(

O

P\N) such that Dp(u—fn)-+0 as
n-»oo. We show that Dp(fn—fm)-^0 as n, m->oo. In case jp>2, we have by
(2.1)

α< Dp(u-(/B+/

< Dp(u - Un+fJβ) + Dp((fm-fn)l2)

= 2-i[Dp(« -/„) + Dp{u -fj]

as n, m-+oo. In case l < p < 2 , we have by (2.2)

< U>p(u - (

< 2ίDp((u-fn)l2)

as n, m->oo. Thus we have Dp(fm—fn)-+0 as n, m-^oo. Since [Z)p(^)]1/p is a
pseudonorm, we see easily that {Dp(fn)} is bounded.

Next we show that {|/w(fc)|} is bounded, where beX is a fixed element such
that ||w||p = [Dp(u)+|u(b)|p]1/p(cf. [5]). Supposing the contrary, we may assume
that |/π(6)|->oo as n->oo by choosing a subsequence if necessary. Put/^(x) =
U*)IUb) Then /;(*) = 1 and f'neDtfXN). Since {Z)^)} is bounded, we
have Dp(f'n) = Dp(fn)l\fn(b)\^0 as n->oo, so that H / i - l l l ^ C ^ / ^ ^ ^ O as
n-^oo. Namely leD^p\N). This contradicts the assumption that N is of
hyperbolic type of order p (cf. [10]). Therefore {fn(b)} is bounded. By choosing
a subsequence if necessary, we may assume that {/„(&)} converges. Then {/„}
is a Cauchy sequence in the reflexive Banach space D(P)(N). There exists
v e D^(N) such that \\fn-v\\p-+0 as n->oo. Since Dtf\N) is closed, i; e D(

O

P)(N).
Let us put h = u — v and show that heHD^(N). For any/eL0(X) and
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we have v + tfeD(

o

p\N) and Dp(h) = oc<Dp(h-tf), so that the derivative of

Dp(h ~ tf) w i t h respect to t is zero at t = 0. If follows that

(2.6) 0 = Σyer r(y) LΦp(dh(y))-] [<*/(>;)] = {φp(dh), df)).

Denote by εz the characteristic function of the set {z}<=X. By taking f=εz in
(2.6), we have Aph(z) = 0 for every zeX. Since heD(p\N), we conclude that
ft e HD(p)(N), which shows a decomposition of u.

To prove the uniqueness of the decomposition, let us assume that u = v1 +
h1=υ2 + h2 with VieDtfXN) and ft,eHD^(N) (ί = 1, 2). Since v2-υ1eD(

O

P\N)9

we have by Lemma 2.3

W Λ ) - ΦP(dh2), dh, - dh2)) = ((^

= {φjίdhά d(v2-Vί))) - ((φp(dh2), d(v2-Vi))) = 0.

Thus hί = h2 by Lemma 2.1, so that vϊ=υ2. This completes the proof.

REMARK 2.1. In case JP = 2, Theorem 2.1 is a discrete analogue of Royden's
decomposition of a Dirichlet function (cf. [11]).

LEMMA 2.4. Let u e Dtf\N) and w e L(Y). Ifue L+(X) and Σyeγ K(*, y>
, wOO>O/0r all xeX, then

ΣxeXu(x) ΣyeYK(x, y)w(y) < lDp(u)γfplHq(w)VK

PROOF. It suffices to prove our inequality in case -fiΓ̂ w) is finite. There
exists a sequence {/„} in L0(X) such that \\u-fn\\p->0 as n^oo. Put un(x) =
max[/M(x), 0]. Then uneL%(X). Since Ts = max (s, 0) is a normal contraction
of R, i.e., |Ts 1 -Ts 2 |< |5 1 -s 2 | for any sl9 s2eR, we have Dp(un)<Dp(fn). By
our assumption that ueL+(X), we have

\un(x) - u(x)\ = \Tfn(x) - Tu(x)\ < \fn(x) - u(x)\.

Since {/„} converges pointwise to u and Dp(fn)-^Dp(ύ) as n->oo, un(x)->u(x) as
n->oo for each xeX and limsup,,.^ D^MJ<Dp{u). We have

Σ ^ W«W ΣyeY K(X, y)w(y) = Σy

so that

ΣxeX " W ΣyeY &(.*> j)w(^) < Hm Πlf,,^ ΣxeX Un{x) ΣyeY K(x,
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§ 3. Main results

Denote by PaiO0(N) the set of all paths from aeX to the ideal boundary oo
of N and by P^N) the union of Pay00(N) for all aeX. We call an element of
Poo(N) an infinite path.

For every u e D(P\N), U(X) has a limit as x tends to the ideal boundary oo of
N along p-almost every PeP^N) (cf. [5; Theorem 3.1]). We denote this limit
simply by u(P).

We shall prove

THEOREM 3.1. Let heHDip)(N) be nonconstant. Then there is no constant
c such that h(P) = cfor p-almost every infinite path P.

PROOF. First we show that N is of hyperbolic type of order p. Supposing
the contrary, we have D(

O

P\N) = D^(N) by [10; Theorem 3.2], so that Dp(h) =
(φp(dh), dh}=0 by Lemma 2.2, which contradicts the assumption that h is
nonconstant.

Let us put wh(y) = φp(dh(y))9 Y(x) = {yeΎ; K(x9 y)Φθ} and Y+(x, h) =
{yeY(x); K(x, y)wh(y)>0}. If yeY+(x, h) and e(y) = {x, x'}, then we have
by definition

K(x9 y) sign [ - K(x, y)(h(x) - Λ(χ'))] > 0,

so that h(x)<h(x').
Since h is nonconstant, there exists xoeX such that wh(y) is not identically

zero on Y(x0). By the relation Aph(x0)=ΣyeYK(x0, y)wh(y)=ϋ9 we see that
7+(x0, h)Φ0. Let us define subsets X+ and Y+ for n>\ as follows:

where XJ = {x0}. We put X+ = \j%L0X+ and Y+ = KJ^=1Y^ Then iV+ =
<X+, 7+> is an infinite subnetwork of N. To see this, it suffices to show that
X+Φ& for each w. We prove this by induction. By the above observation,
y+ = y+(x0, Λ)#0, so that X\Φ0. Suppose that X+^^0. Since JSΓ+-! is a
finite set, there exists aeX+-t such that h(a) = ma,x{h(x); x e l + _ j . By defi-
nition, we can find y1eY^ί such that e(<y1) = {α, xt} for some x1eX+-2

 a n ^
yίeY+(xί,h). We have K(α9 yί)wh(yί)=-K(xu yJw^yjKO and ^ 0 ) =
ΣyeγK(α,y)wh(y) = 09 so that Y+(fl, Λ)#0. Let y2 e Y+(α, Λ) and e(y2) =
{α, x2}. Then h(α)<h(x2) by the above observation, so that x2φ.XJ-i. Thus

Let us put ^+(x) = Σ3,eY+iC(x, y)wh(y). Then ^+(x0>>0 and g+(x)>0 for



358 Maretsugu YAMASAKI

all xeX+

9 since Y+(x, h)aY+ for xeX+. Note that inf{h(x); xeX+ -

{xo}}>h(xo). Let Γ+ be the set of all paths PePXoQO(N) contained in iV+, i.e.,

CX(P)<=:X+ and Cγ(P)c:Y+. Let us recall the extremal distance ELp({x0},

oo N+) of order p of N+ relative to {x0} and oo:

ELp({x0}, αo; AT)" 1 = inf {Hp(W; N+); WeE(PX0tO0(N+))},

where ff^w; iV+)= Σ,ey+ KJOIWOOI* and E(PX0>ΰD(N+)) is the set of all JFe L + (Y + )

such that ΣP r(y)W{y) > 1 for all P e PXOtOD(N+). Then we see easily that λp(Γ+) =

£Lp({x0}, oo iV+). Now we show that Ap(Γ+)<oo. Supposing the contrary,

we have ELp({x0}, oo; AΓ+)=oo. Therefore iV+ is of parabolic type of order p

by [10; Theorem 4.1], and hence D(

o

p)(N+) = Dip)(N+). Let WeE(PXΌfQ0(N+))

and iί p(W; N+)<oo. Define weL(X + ) by M(XO) = 0 and

u(x) = inf{Σ1,K>;)^(y);P6PX 0, J C(iV+)} for x ^ x 0 ,

where PXo>x(N+) is the set of all paths from x0 to xeX+ in N+. Then u is non-

constant and \Σxeχ+ K(x, y)u(x)\<r(y)W(y) on Y+ by [9; Theorem 3]. Put

v(x) = max [1 -u(x), 0]. Then φ c 0 ) = 1, i; e L + (^ί + ) and

Dp(v; N+) = Σyer+ r(y)\dv(y)\P<Dp(u; N+) < Hp(W; N+) < oo.

Since veDi

o

p)(N+) Π L + ( Z + ) and q+(x)>0 on X+, we have by Lemma 2.4

It follows that Hp(W; N+)>lq+(xo)¥lDp(h)yp/«>0, so that ELp({x0}, oo;

N+)<oo. This is a contradiction. Thus λp(Γ+)<oo and h(P)>h(x0) for p-

almost every PeΓ+.

Similarly we define an infinite subnetwork N~ =(X~, Y~} by X~ = W " = o ^

and 7 - = wJLi Y~n, where XQ = ί^o) a n d for n > 1

y-(x, h) = {ye Y(x); K(x, y)wh(y) < 0}.

Let us put q-(x)=Σyeγ-K(x, y)wh(y). Then ^ " ( x ) < 0 for all xeX~ and

g-(x o )<0. Let Γ~ be the set of all paths PePX0>Q0(N) contained in N~. Then

we can prove similarly that λp(Γ~)<oo. Furthermore h(P)<h(x0) for p-almost

every PeΓ~. This completes the proof.
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COROLLARY. HD(P)(N) consists of only constant functions if and only if
for each ueDip)(N) there is a constant cu such that u(P) = cufor p-almost every
infinite path P.

We shall prove

THEOREM 3.2. Let 11 e 2><*>(N). Then ueD(

o

p\N) if and only if u(P)=0
for p-almost every infinite path P.

PROOF. In case N is of parabolic type of order p, our assertion is clear. We
consider the case where N is of hyperbolic type of order p. By [5 Theorem 3.3],
it suffices to show the "if" part. By Theorem 2.1, u can be decomposed in the
form: u = v + h, where veD(

o

p\N) and heHD<*\N). Assume that u(P) = 0
for p-almost every infinite path P. Since v(P) = 0 for p-almost every infinite path
P by [5; Theorem 3.3], we have /ι(P) = 0 for p-almost every infinite path P. It
follows from Theorem 3.1 that h = 0, and hence u e Dtf\N).

We say as in [8] that u e L(X) vanishes at the ideal boundary of N if, for
every ε>0, there exists a finite subset X' of X such that |u(x)| <ε on X-Xr.

As an application of Theorem 3.2, we have

COROLLARY. Let ueD^\N). If u vanishes at the ideal boundary of N,
then u e D(

o

p)(N).
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