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1. Introduction

Recently there has been an increasing interest in studying parabolic equations
with functional arguments. It seems, however, that very little is known about
the oscillatory behavior of solutions for such equations. The only results that
the author knows of in this connection are oscillation theorems obtained by
Bykov and Kultaev [1] and Kreith and Ladas [5].

The purpose of this paper is to establish oscillation criteria for the nonlinear
parabolic equations

ut = a(t)Au -q(x, t)f(u(x, σ(0)), (x, t)eΩ x R+ ,

ut = a(t)Δu + q(x, t)f(u(x, τ(ί))), (x, 0 e Ω x R+ ,

where A is the Laplacian in Rn, R+ = [0, oo) and Ω is a bounded domain in Rn

with piecewise smooth boundary dΩ. We assume throughout this paper that:
(A-I) a(t) is a nonnegative continuous function in R+ and q(x, t) is a non-

negative continuous function in Ω xR +
(A-II) f(s) is continuous in R1, /(s) is positive and convex in (0, oo), and

/ ( ) f
(A-III) σ(t) and τ(t) are continuous functions in R+ such that limί_+ooσ(ί) =

111^^1(0=00.

In Sections 2 and 3 we consider the equations (E_) and (E+), respectively.
In each section we give conditions which imply that every (classical) solution u
of (E_) [or (E+)] satisfying the first or the third boundary condition is oscillatory
in the sense that u has a zero in Ωx[τ, oo) for any τ>0. Our approach is to
reduce the multi-dimensional problem under study to a one-dimensional oscillation
problem for ordinary differential equations or inequalities.

2. Oscillation criteria for the equation (£_)

We consider two kinds of boundary conditions:

(1) u = 0 on dΩ x R+,
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(2) -^± + μU = 0 on dΩ x R+,

where v is the unit exterior normal vector to dΩ and μ is a nonnegative continuous

function on dΩxR + .

It is well known that the first eigenvalue λx of the eigenvalue problem

Aυ + λv = 0 in Ω9

v = 0 on dΩ

is positive and the corresponding eigenfunction Φ(x) is positive in Ω.

Associated with a function u e C(Ω x R+), we define

(*) l/(ί) = ί iι(x, t)Φ(x)dx/[ Φ{x)dx,
JΩ I JΩ

(**) O

where |Ω| denotes the volume of Ω, i.e. | Ω | = \ dx.
JΩ

The following notation will be used:

A(t) = \ a(s)ds, Q(t) = min {q(x, t): x e Ω}.
Jo

THEOREM 1. Assume that (A-I)-(A-III) /zoW, and ί/iaί:

(A-IV) f{s1s1)^f1{s1)f2{s2) for st>0, s2>0, where MsJ^O, f2(s2)>0 and

f2(s2) is nondecr easing for s2>0.

If every eventually positive solution y(t) of the first order ordinary differential

inequality

(3) y\t) + β(0 exp (M(0)Λ(exp ( " hA{σ{t))))f2{y{σ{t))) ̂  0

satisfies lim^^ ^(0 = 0, ί/î n every solution u of the problem (E_), (1) is oscil-

latory in ΩxR+, or satisfies

(4) I i m , ^ β ) e x p ( M ( 0 ) ϋ ( ί ) = 0,

where U(t) is given by (*).

PROOF. Suppose that there is a nonoscillatory solution u which does not

satisfy (4). Without loss of generality we may assume that u > 0 i n Ωx [ίo, oo)

for some ί o >0. Since Umt^00σ(t)=oo9 u(x, σ(t))>0 in Ωx\_tί9 oo) for some

t^tQ. Multiplying (E_) by Φ(x) and integrating over Ω, we obtain
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(5) 4f(Sa

uΦixy

From Green's formula it follows that

(6) ( (Au)Φ(x)dx = [ uAΦ(x)dx = - λΛ uΦ(x)dx.
JΩ JΩ JΩ

An application of Jensen's inequality [6, p. 160] shows that

(7) ( q(x, t)f(u(x, σ{i)))Φ{x)dx > Q(t) \ /(iι(x, σ(t)))Φ(x)dx
JΩ JΩ

Combining (5)-(7) yields

U'(t) ϊ - λMtMt) - Q{t)f{U{σ{t))),

which is equivalent to

(8) -A (exp (M(0)U(0) + G(0

By assumption (A-IV) we get

(9) /(t/(σ(0)) = /(exp ( - M(σ(ί)))' e x P (^i

^ Λ(exp ( - M(σ(0)))/2(exp (A

In view of (9) we see that (8) can be rewritten as

0.

Hence, exp 0^4(0)1/(0 is a positive solution of (3) in (tί9 oo) such that
limf_>ooexp(A14(0)C/(0τέ0. This contradicts the hypothesis and completes the
proof.

THEOREM 2. Assume that (A-I)-(A-III) hold. If every eventually positive
solution y(t) of the first order ordinary differential inequality

(10) y'(t) + Q(t)f(y(σ(t))) ^ 0

satisfies Umt^aoy(t) = 09 then every solution u of the problem (E_), (2) is oscil-
latory in ΩxR + 9 or satisfies
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(11) l i m ^ { u(x, ήdx = 0.
JΩ

PROOF. Suppose to the contrary that there exists a solution u of the problem

(E_), (2) such that w>0 in Ω x [ ί 0 , oo) for some ί o > 0 and l i m , ^ \ u(x, t)dx^0.
JΩ

By (A-III) we get u(x, σ(t))>0 in Ω x [tu oo) for some tί ^ t0. Integrating (E_)

over Ω and using the divergence theorem, we obtain

(12) * \ u(x, t) dx = a(t) \ %dS-\ q(x9 t)f(u(x, σ(t)))dx.
Clΐ JΩ JdΩ CIV JΩ

Since /(s) is convex in (0, oo), we have

(13) J β q(x, t)f(u(x, σ(t)))dx ^ Q(t) \Ω\f(j^ ^ u(x, σ{i))dx).

Combining (12) and (13) yields

dor L u(x> ° dx)+ Q(t)Kw\ L u ^ σ ( t ) ) d x )•ar

^ (a(t)/\Ω\) [ ^ L d S = - ( α ( ί ) / | O | ) ( μ u d S ^ 0 , t > t l 9
JdΩ OV JdΩ

which shows that the function U(t) defined by (**) is a positive solution of (10)

satisfying l i m ^ ^ U(t)±?0. This contradicts the hypothesis and completes the

proof.

In the linear case we can improve Theorems 1 and 2. By the same arguments

as were used in Theorems 1 and 2, we obtain the following theorems.

THEOREM 3 (linear case). Assume that (A-I) and (A-III) hold. If the

ordinary differential inequality

(14) y'(t) + Q(t) exp (λM{t)-A(σ(t))))y{σ(i)) ^ 0

has no eventually positive solution, then every solution u of the linear parabolic

equation

(15) ut = a(t)Δu - q(x, t)u(x, σ(ή)

satisfying (1) is oscillatory in ΩxR+.

THEOREM 4 (linear case). Assume that (A-I) and (A-III) hold. If the
ordinary differential inequality

(16) y'(t) + β(0Xσ(0) ύ 0
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has no eventually positive solution, then every solution u of (15) satisfying (2)

is oscillatory in ΩxR+.

Oscillation criteria for first order functional differential inequalities have

been established by numerous authors, see, e.g. Fukagai and Kusano [2],

Kitamura and Kusano [3], Koplatadze and Canturija [4], Tomaras [7] and the

references cited therein.

COROLLARY 1. Under assumptions (A-I)-(A-IV), every solution u of the

problem (E_), (1) is oscillatory in ΩxR + , or satisfies (4), if

(17) ( Q(t) exp M ί M (exp ( - M(σ(0)))Λ = oo,
J*[σ]

where jR[σ] = {t eR+ : 0<>σ(t)^t}.

PROOF. Condition (17) implies that every eventually positive solution

y(t) of (3) satisfies l i m , ^ y(t)=O (see [3, Theorem 2]). The conclusion follows

from Theorem 1.

COROLLARY 2. Under assumptions (A-I)-(A-III) and the following

(A-V) f(s) is nondecreasing for s>0,

every solution u of the problem (E_), (2) is oscillatory in ΩxR+, or satisfies

(11), if

\ Q(t)dt = oo.

The proof follows by using the same arguments as in Corollary 1 and will

be omitted.

Applying a result of [4] to (14) and (16), we obtain the following.

COROLLARY 3 (linear case). Under assumptions (A-I), (A-III) and the

following

(A-VI) σ(t)^t (t^.t0) and σ(t) is nondecr easing for t^t0,

every solution u of the problem (1), (15) is oscillatory in ΩxR + , if

(18) lim inf,^ Γ Q(s) exp (λί(A(s)-Λ(σ(s))))ds > 1/e.
Jσ(t)

COROLLARY 4 (linear case). Under assumptions (A-I), (A-III) and (A-VI),

every solution u of the problem (2), (15) is oscillatory in ΩxR+9 if

(19) l i m i n f ^ Γ Q(s)ds
Jσ(t)σ(t)

REMARK 1. In case σ(t)<^t (teR+), i?[σ]=^[T, oo) for some Γ>0.
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A special case of the problem (E_), (1) is

(20) ut = uxx - q(x, t) (w(x, t - h))v, (x, t) e (0, L) x R + ,

(21) iι(0, 0 = ιι(L, 0 = 0, * > 0 ,

where h is a positive constant and γ ( ^ 1) is the quotient of odd integers.

COROLLARY 5. / /

(22) j°° Q(t) exp ((π/L)2(l -y)i)dt = <x>,

then every solution u of the problem (20), (21) is oscillatory in (0, L)xR + , or
satisfies

(23) l i m ^ exp ((π/L)20 Γ u(x, i) sin (πjL)xdx = 0.
Jo

PROOF. In the case where Ω = (0, L)c=Rι, we observe that λί=(πlL)2 and
Φ(jc) = sin(π/L)x. Since f(s) = sy

9 we may choose /i(s)=/2(s) = sy. It is easy
to see that condition (22) implies

L^Oίexpί- ίπ/L)^-/ !)))^ = oo.

Hence, the conclusion follows from Corollary 1.

EXAMPLE 1. We consider the parabolic equation

(24) ut = uxx - exp(-/ι((π/L)2 + l))W(x, t-h\ (x, t)e(0, L)xR+.

Here n = l, a(t) = l, σ(t) = t — h and y = l. Corollary 3 is not applicable to (24),
since

[ exp ( - h((π/L)2 +1)) exp ((π/L)2h)ds = he~h ^ 1/e (ft > 0).
Jt-h

ΛOO

Since \ exp(-ft((π/L)2 + l))ί/ί=oo, from Corollary 5 it follows that every

nonoscillatory solution u of (21), (24) satisfies (23). In fact,

w(x, 0 = exp(-((π/L)2 + l)0sin(π/L)x

is a nonoscillatory solution of (24) satisfying (23).

EXAMPLE 2. Consider the boundary value problem

(25) ut = a(i)uxx - e2<-\u(x, t -1))3, (x, l ) e ( 0 , L ) x R + ,

(26) -w,(0, 0 + μi(t)u(0, f) = ux{L, 0 + μ2(0w(L, 0 = 0, t > 0,
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where μf(ί) (i = l, 2) are nonnegative continuous functions in R+. Here n = l,

e2t-3^t=o0y Corollary 2 implies that

every nonoscillatory solution u of (25), (26) satisfies

(27) \imt^

In fact, one such solution is M(X, ί) = e~ί.

EXAMPLE 3. Consider the parabolic equation

(28) ut = uxx-e-*u(x,t-2), (x, ί)e(0, π) x R+ .

Here a(t) = l, L = π,γ = l and Q(t) = e~4 . Since

\ e~4ds = 2e"4 <; 1/e, \ = oo,

Corollary 4 does not apply but Corollary 2 does, and we conclude that every

solution u of (26), (28) is oscillatory in (0, π) x R + 9 or satisfies (27). There exists

an oscillatory solution u(x, t) = e~2t cosx of (26), (28) with the property that

lim^^ \ u(x, t)dx = 0.
Jo

REMARK 2. If u = 0 on 8ΩxR+ and M > 0 in Ωx[ ί 0 , oo) for some ί o >0,

we find that-^- ^ 0 on dΩx [ί0, oo). Hence, Theorems 2 and 4, Corollaries 2

and 4 remain true if (2) is replaced by (1).

REMARK 3. Our results in this section can easily be generalized to the

parabolic equation

ut = a(t)Au - φc, t, M(X, 0, u(x, σ(t))),

where c(x, t, ξ9 η) satisfies

(i) φc9t,-ξ,-η)=-c(x9t9ξ,η) for (x, t)eΩ x R + , ξ ^ 0, η ^ 0,

(ii) c(x, t, ξ, η) ^ q(x9 t)f(η) for (x,t)eΩxR + , ξ^ 0, i; ^ 0.

3. Oscillation criteria for the equation (E+)

In this section we shall derive oscillation criteria for (E+). Boundary con-

ditions to be considered are (1) and the following:

(29) ^~ - μu = 0 on ΘΩ x R+,

where μ^0 on dΩxR+.
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THEOREM 5. Assume that (A-I)-(A-IV) hold. If the ordinary differential

inequality

(30) y'(t) - Q(t) exp (λ.AiφMexp (-Mtt0)))ΛG<τ(0)) ̂  0

has no eventually positive solution, then every solution u of the problem (E+),

(1) is oscillatory in ΩxR + .

PROOF. Suppose to the contrary that there exists a nonoscillatory solution

u of (E+), (1). We may assume that w>0 in β χ [ / 0 , oo) for some ί o > 0 . Pro-

ceeding as in the proof of Theorem 1, we find that exp(A1^4(ί))l/(ί) is a positive

solution of (30) in (tί9 oo) for some ί i ^ ί o This contradicts the hypothesis and

the proof is complete.

THEOREM 6. Assume that (A-I)-(A-ΠI) hold. If the ordinary differential

inequality

(31) y'(t) - Q(t)f(y«t))) > o

has no eventually positive solution, then every solution u of the problem (E+),
(29) is oscillatory in ΩxR + .

PROOF. Suppose that there is a solution u of (E + ), (29) such that « > 0 in

Ω x [t0, oo) for some ί o > 0 . Arguing as in the proof of Theorem 2, we observe

that ΰ(t) is a positive solution of (31) in (tl9 oo) for some tx^.tQ. The con-

tradiction establishes the theorem.

Using a result of Kitamura and Kusano [3, Theorem 1], we obtain the

following results.

COROLLARY 6. Under assumptions (A-I)-(A-IV), every solution u of the

problem (E+), (1) is oscillatory in ΩxR + , if

0 - * < o o for any M > 0,
M J2\S)

\ Q(t) exp (M(O)Λ

where A\τ] = {teR+\ τ(t)^t}.

COROLLARY 7. Under assumptions (A-I)-(A-III) and (A-V), every solution

u of the problem (E+), (29) is oscillatory in ΩxR+, if

°° f°r any M > 0, [ Q(t)dt = oo.

Applying Corollary 6 to the equation
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(32) ut = uxx + q(x, t)(u(x9 t + h)y, (x, t)e(0, L) x R+ ,

where ft is a positive constant and γ (>1) is the ratio of odd integers, we have

the following.

COROLLARY 8. // condition (22) is satisfied, then every solution u of the

problem (21), (32) is oscillatory in (0, L)xR+.

REMARK 4. It is easy to extend oscillation results in this section to the

more general equation

ut = a(t)Δu + c(x, t, u(x, 0, u(x,

where c(x, t9ξ9 η) satisfies conditions (i) and (ii) of Remark 3.

EXAMPLE 4. It is known that Duffing's equation 0" + 4# + 403 = O has a

periodic solution g(x). We see that the periodic solution g{x) is oscillatory

at x = oo. There exists an interval (a, b) such that g(a) = g(b) = 0 and g(x)>0

in (a, b). We consider the parabolic equation

(33) ut = uxx + 2w + e-2<-\u(x, t +1))3, (x, t) e(0, L) x R+ ,

where L = 2(b — a). It is clear that

2M + £T2ί-3(u(x, ί + 1))3 ^e~2t-\u{x, ί+1)) 3 if u ^ 0.

We combine Corollary 8 and Remark 4 to conclude that every solution u of (21),

(33) is oscillatory in (0, L) x R + , if (22) is satisfied. Since

f°°β-^-3exp(-2(π/L)20Λ < oo,

condition (22) is violated. In this case, there is a nonoscillatory solution u(x, i) =
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