Нікозніма Матн. J. 16 (1986), 613–616

When does LCM-stability ensure flatness at primes of depth one?

Susumu ODA and Ken-ichi YOSHIDA (Received January 13, 1986)

Let R be a Noetherian integral domain and let M be an R-module. We say that M is LCM-stable over R if $(aR \cap bR)M = aM \cap bM$ for any elements $a, b \in R$ (cf. [1], [5]). F. Richman [4] proved that when A is an overring of R, that is, A is an intermediate ring between R and the field of quotients K(R) of R, A is flat over R if and only if A is LCM-stable over R. The obstruction ideal $\mathscr{F}_R(A)$ (cf. [3]) has only depth one prime divisors. So if A is flat over R at primes of depth one, A is flat over R. Therefore the following question will arise:

When is the LCM-stable *R*-module *M* flat over *R* at each prime of depth one? It is known that there is a module which is flat over a Noetherian normal domain *R* at each prime of depth one but is not LCM-stable over *R*. Our objective is to prove the following result which shows that the LCM-stable module over a Noetherian integral domain is not necessarily flat at primes of depth one:

Let R be a Noetherian integral domain and let M be a torsion-free, finite R-module. Assume that M is LCM-stable over R. Then M is reflexive if and only if $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for each $\mathfrak{p} \in Dp_1(R)$ (:={ $\mathfrak{p} \in Spec \ R | depth \ R_{\mathfrak{p}} = 1$ }), i.e., M is flat over R at primes of depth one.

The following notation is fixed throughout this paper:

R denotes a (commutative) Noetherian integral doamin,

K the field of quotients of R,

 \overline{R} the integral closure of R in K and

M a non-zero torsion-free finite R-module.

We start with the following definition.

1. DEFINITION. Regard M as an R-submodule of $M_K := M \otimes_R K$. Define $\mathscr{R}(M)$ by

$$\mathscr{R}(M):=\left\{\alpha\in K|\alpha M\subseteq M\right\}.$$

2. ROPOSITION. $\mathscr{R}(M)$ is an integral domain which contains R and is integral over R.

PROOF. It is obvious that $\mathcal{R}(M)$ is an integral domain which contains R.

Let $\{m_1, ..., m_n\}$ be a set of generators of M. For any $\alpha \in \mathcal{R}(M)$, $\alpha m_i = \sum a_{ij} m_j$ $(a_{ij} \in R)$. Thus $det(\alpha \delta_{ij} - a_{ij}) = 0$, where δ_{ij} is Kronecker symbol, since M is torsion-free. This yields an integral dependence of α over R. Q. E. D.

3. We call $\mathscr{R}(M)$ a full coefficient ring of an *R*-module *M*. *R* is said to be full on *M* if $\mathscr{R}(M) = R$.

4. DEFINITION. An *R*-module *N* is called *LCM-stable* over *R* if $(aR \cap bR)M = aM \cap bM$ for any elements $a, b \in R$.

5. **PROPOSITION.** If M is LCM-stable over R, R is full on M.

PROOF. For $\alpha \in \mathscr{R}(M)$, put $I_{\alpha} = \{a \in R | \alpha a \in R\}$, which is a non-zero ideal of R. Then we have that $\alpha \in R$ if and only if $I_{\alpha} = R$. Suppose that $I_{\alpha} \neq R$ and put $\alpha = b/a$ $(a, b \in R)$. It is easy to see that $I_{\alpha} = (a/b)R \cap R$. By the LCM-stability of M, $(aR \cap bR)M = aM \cap bM$. This yields $(R \cap (a/b)R)M = (a/b)M \cap M$. Hence since $\alpha = b/a \in \mathscr{R}(M)$, we have $(b/a)M \subseteq M$ and hence $M \subseteq (a/b)M$. So $I_{\alpha}M = M$. Since M is a non-zero torsion-free finite R-module, we have $I_{\alpha} = 0$, which is absurd. Hence $I_{\alpha} = R$ and consequently $\alpha \in R$. Q. E. D.

6. Let N be an R-module and N^* : = $Hom_R(N, R)$ an R-dual of N. If N is torsion-free over R, a canonical R-homomorphism $N \rightarrow N^{**}$ is injective. N is called reflexive if this canonical homomorphism is bijective.

7. REMARK. Let N, N_1 , N_2 be R-modules. Then it is easy to see that: (i) $N_1 \oplus N_2$ is LCM-stable (resp. reflexive) over R if and only if both N_1 and N_2 are LCM-stable (resp. reflexive) over R.

(ii) N is LCM-stable (resp. reflexive) over R if and only if so is N_{p} for any $p \in Spec R$.

The next result will be required in the proof of Theorem 9 below.

8. PROPOSITION ([6]). Assume that \overline{R} is a finite R-module. Then for $\mathfrak{p} \in Dp_1(R)$, either $\mathfrak{p} \in Ass_{\mathfrak{p}}(\overline{R}/R)$ or $R_{\mathfrak{p}}$ is a discrete valuation ring.

9. THEOREM. Assume that \overline{R} is a finite R-module and that M is LCM-stable over R. Then the following statements are equivalent:

(i) M is reflexive,

(ii) $M_{\mathfrak{p}}$ is reflexive for any $\mathfrak{p} \in Dp_1(R)$,

(iii) $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for any $\mathfrak{p} \in Dp_1(R)$.

PROOF. (i) \rightarrow (iii): Take $p \in Dp_1(R)$. If R_p is a discrete valuation ring, M_p is flat (free) over R_p because M is a torsion-free finite R-module. We assume that R_p is not a discrete valuation ring. By Proposition 8, $p \in Ass_R(\overline{R}/R)$. We may assume that R is a local ring with the maximal ideal $m \in Dp_1(R)$. Let

 $A = \{ \alpha \in K | I_{\alpha} = R \text{ or } I_{\alpha} = m \}$. Then A is an overring of R and integral over R (cf. the proof of Proposition 3). It is easy to see that the conductor $\mathscr{C}(A/R) = m$. For $f \in M^* = Hom_R(M, R)$, if $f(M) \not\equiv m$ then f(M) = R and hence R is a direct summand of M. Let $M = M' \oplus R \oplus \cdots \oplus R$, where M' does not contain R as a direct summand. We shall show that M' = 0. Suppose the contrary. We may assume that M does not contain R as a direct summand. Since M is LCM-stable, we have $\mathscr{R}(M) = R$ by Proposition 5. If we suppose that $\phi \in M^{**} = Hom_R(M^*, R)$ is such that $\phi(M^*) \not\equiv m$, then $\phi(M^*) = R$. So M^* contains R as a direct summand and hence $M^{**} = M$ contains R as a direct summand, which is absurd. So for any $\phi \in M^{**}$, we have $\phi(M^*) \subseteq m$. Since $\mathscr{C}(A/R) = m$, for any $\alpha \in A$, $\alpha \phi(M^*) \subseteq R$. This implies that $\mathscr{R}(M^{**}) \supseteq A$. But since $\mathscr{R}(M^{**}) = \mathscr{R}(M) = R$, we have A = R, that is, $m = \mathscr{C}(A/R) = R$, a contradiction.

(iii) \rightarrow (i): Since $M \subseteq M \otimes_R K$ and $M \otimes_R K$ is a K-vector space, we have $M \subseteq M^{**} \subseteq M \otimes_R K$. Suppose that $M \subsetneq M^{**}$. For any $\mathfrak{p} \in Ass_R(M^{**}/M)$, we have depth $M_{\mathfrak{p}} = 1$. [Indeed, suppose depth $M_{\mathfrak{p}} > 1$. Then there exist $a, b \in \mathfrak{p}$ such that a, b is an $M_{\mathfrak{p}}$ -sequence. so $aM_{\mathfrak{p}} \cap bM_{\mathfrak{p}} = abM_{\mathfrak{p}}$. Since $\mathfrak{p} \in Ass_R(M^{**}/M)$, there exists $m \in M^{**}$ with $Ann_{\mathfrak{p}}\overline{m} = \mathfrak{p}R_{\mathfrak{p}}$, where \overline{m} denotes the residue class of m in M^{**}/M . Since $a, b \in \mathfrak{p}$, both am and bm belong to M. Hence $abm \in aM_{\mathfrak{p}} \cap bM_{\mathfrak{p}} = abM_{\mathfrak{p}}$. Consequently, $m \in M_{\mathfrak{p}}$, which contradicts the choice of m.] Since M is LCM-stable, depth $M_{\mathfrak{p}} = 1$ implies depth $R_{\mathfrak{p}} = 1$. [Indeed, suppose depth $R_{\mathfrak{p}} > 1$. There exist $a, b \in \mathfrak{p}$ such that a, b is an $R_{\mathfrak{p}}$ -sequence. So $aR_{\mathfrak{p}} \cap bR_{\mathfrak{p}} = abR_{\mathfrak{p}}$. Thus $(aR_{\mathfrak{p}} \cap bR_{\mathfrak{p}})M_{\mathfrak{p}} = abM_{\mathfrak{p}}$. As $M_{\mathfrak{p}}$ is LCM-stable over $R_{\mathfrak{p}}$, $abM_{\mathfrak{p}} = aM_{\mathfrak{p}} \cap bM_{\mathfrak{p}}$. But since depth $M_{\mathfrak{p}} = 1$, the homothety:

$$M_{\mathfrak{p}}/aM_{\mathfrak{p}} \xrightarrow{\mathbf{b}} M_{\mathfrak{p}}/aM_{\mathfrak{p}}$$

is not injective, which implies that $aM_{\mathfrak{p}} \cap bM_{\mathfrak{p}} \supseteq abM_{\mathfrak{p}}$, which is absurd.] Since $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}, M_{\mathfrak{p}}^{**} = (M^{**})_{\mathfrak{p}} = M_{\mathfrak{p}}$. Hence $\mathfrak{p} \notin Ass_{R}(M^{**}/M)$, which contradicts the choice of \mathfrak{p} .

(i)⇔(ii) is obvious.

Q. E. D.

10. PROPOSITION. Assume that \overline{R} is a finite R-module. If both M and $M^* = Hom_R(M, R)$ are LCM-stable over R, then M is reflexive over R.

PROOF. By Theorem 9, we have only to show that $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for any $\mathfrak{p} \in Dp_1(R)$. Suppose the contrary. Then there exists $\mathfrak{p} \in Ass_R(\overline{R}/R)$. Delete a direct summand $R \oplus \cdots \oplus R$ of M if necessary. We may assume that for any $f \in M_{\mathfrak{p}}^*, f(M_{\mathfrak{p}}) \subseteq R_{\mathfrak{p}}$. Then we have $\mathscr{R}(M_{\mathfrak{p}}^*) \supseteq R_{\mathfrak{p}}$. [Indeed, let f_1, \ldots, f_n be generators of $M_{\mathfrak{p}}^*$ and put $I = f_1(M_{\mathfrak{p}}) + \cdots + f_n(M_{\mathfrak{p}}) \subseteq \mathfrak{p}R_{\mathfrak{p}}$. Take a non-zero element $a \in I$ with $I \not\subseteq aR_{\mathfrak{p}}$. Then there exists $b \in R_{\mathfrak{p}} / aR_{\mathfrak{p}}$ such that $bI \subseteq aR_{\mathfrak{p}}$ because $\mathfrak{p} \in Dp_1(R)$. Thus $b/a \in K / R_{\mathfrak{p}}$ and $(b/a)I \subseteq R$. Hence $(b/a)M_{\mathfrak{p}}^* \subseteq M_{\mathfrak{p}}^*$. So

 $b/a \in \mathscr{R}(M_{\mathfrak{p}}^*) / R_{\mathfrak{p}}$.] But M^* is LCM-stable over R and hence $M_{\mathfrak{p}}^*$ is LCM-stable over $R_{\mathfrak{p}}$, which is absurd (Proposition 5). Q. E. D.

11. COROLLARY. Assume that \overline{R} is a finite R-module. If both M and M* are LCM-stable over R, then $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for any $\mathfrak{p} \in Dp_1(R)$.

PROOF. By Proposition 10, M is reflexive. The conclusion follows from Theorem 9. Q. E. D.

Now we make preparations for Theorem 15 below which was our main target.

12. Let A be a ring extension of R. The following ideal is introduced in [3]:

 $\mathscr{F}_{R}(A) := \{a \in R | a \neq 0, A[1/a] \text{ is flat over } R[1/a]\} \cup \{0\}.$

This ideal is called the obstruction ideal of flatness.

13. An integral domain A is said to be a locally simple extension of R if for each prime ideal p of R, there exists an element α of A such that $A_p = R_p[\alpha]$.

14. PROPOSITION ([3]). Let A be a finite extension of R. If A is locally simple over R, then each prime divisor of $\mathscr{F}_R(A)$ is of depth one, i.e., depth $R_p = 1$ for any prime divisor of $\mathscr{F}_R(A)$.

Combining Proposition 14 with Theorem 9, we have the following result:

15. THEOREM. Assume that \overline{R} is a finite R-module. Let A be a finite, locally simple extension of R. Then if A is reflexive and LCM-stable over R, A is flat over R.

References

- R. Gilmer, Finite element factorization in group rings, Lec. Notes in Pure and Applied Math. 7, Marcel Dekker, Inc., New York, 1974.
- [2] H. Matsumura, Commutative Algebra, W. A. Benjamin, New York, 1970.
- [3] S. Oda and K. Yoshida, Obstruction ideals of flatness and etale, Math. Rep. Toyama Univ. 7 (1984), 67-78.
- [4] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc., 16 (1965), 794-799.
- [5] K. Yoshida, LCM-stability and flatness, Bull. Fac. Sci., Ibaraki Univ. 17 (1985), 45-47.
- [6] _____, On birational-integral extension of rings and prime ideals of depth one, Japan J. Math. 8 (1982), 49–70.

Uji-Yamada High School (Uraguchi, Ise, Mie)

and

Department of Applied Mathematics, Okayama University of Science