On normality of ASL domains

Shiroh Itон
(Received December 5, 1985)

In this note we shall give a sufficient condition for a graded ASL domain over a field to be normal. (For the detail, see §4.) As an easy corollary to our result, we can give an alternative proof of the normality of homogeneous coordinate rings of Grassmann varieties using the straightening relations. The proof of our result is based on two facts: Firstly, a graded ASL has a standard filtration whose associated graded ring is a discrete ASL ([2], Proposition 1.1); secondly, bad height one prime ideals of a discrete ASL on a poset H over a field correspond with special subsets of H which we call spindles of H (Lemma 3, §3).

It should be remarked here that, as shown in [4], every homogeneous ASL domain on a poset H over a field is not normal even if H is a wonderful poset.

§ 1. Preliminaries

We here recall some basic properties of a graded ASL from [2] and [3].
Let H be a finite poset, and let N^{H} be the set of functions from H to N; a monomial on H is an element of N^{H}. The support of a monomial M on H is the set $\operatorname{Supp} M=\{x \in H \mid M(x) \neq 0\}$; a monomial M is called standard if Supp M is a chain. For $x \in H, \operatorname{dim} x$ is the maximal length of a chain of H ascending from x. For the empty subset \varnothing of H, we put $\min \varnothing=+\infty$ and $\max \varnothing=-\infty$; we shall agree that $-\infty<x<+\infty$ for every $x \in H$.

Let k be a ring, A a k-algebra, H a finite poset contained in A which generates A as a k-algebra. Let ψ be the map from N^{H} to A defined by $\psi(M)=\prod_{x \in H} x^{M(x)}$ for $M \in N^{H}$. We will usually identify M and $\psi(M)$. Then we say that A is an ASL on H over k if the following axioms are satisfied: (ASL-1) The algebra A is a free k-module whose basis is the set of standard monomials; (ASL-2) if x and y in H are incomparable and if $x y=\sum r_{j} N_{j}\left(0 \neq r_{j} \in k\right)$ is the unique expression for $x y \in A$ as a linear combination of distinct standard monomials, then min Supp $N_{j}<$ x, y for every j.

An ASL on H over k is called discrete if $x y=0$ for all incomparable pairs x, y in H. In this note $k[H]$ denotes a discrete ASL on H over k. Note that if H is a chain, then $k[H]$ is a polynomial ring of $\# H$ variables with coefficients in k. An ASL on H over k is called graded if A is a graded ring such that every element of H is a homogeneous element of degree >0 and k is the set of homogeneous
elements of degree 0 ; a graded ASL on H is called homogeneous if $\operatorname{deg} x=1$ for every $x \in H$.

Let A be an ASL on H over k. Let L_{A} be the maximal number of factors of standard monomials appearing in the right-hand side of the relations in (ASL-2) for all incomparable pairs of elements in H. For a monomial M on H, we define the weight of M to be the number $w(M)=\sum_{x \in H}\left(2 L_{A}+1\right)^{\operatorname{dimx}} M(x)$, and we denote by [M] the set of standard monomials which appear in the expression for $M \in A$ as a linear combination of distinct standard monomials (cf. [4]).

Let A be a graded ASL on H over k. Then the proof of Proposition 1.1 in [2] is also valid in our case; consequently, if M is a non-standard monomial, then $w(N)>w(M)$ for all $N \in[M]$. Therefore if R is an A-subalgebra of $A\left[t, t^{-1}\right]$, where t is an indeterminate, generated by $\left\{x t^{-w(x)} \mid x \in H\right\}$ and t, then it follows from Theorem 2.1 in [2] that R is an ASL on H over $k[t]$ and $R / t R$ is a discrete ASL on H over k, where the embedding $q: H \rightarrow R$ is given by $q(x)=x t^{-w(x)}$.

§ 2. Weights of monomials

Let A be an ASL on a poset H over a ring k.
Lemma 1. Let N and N^{\prime} be monomials, and choose $v \in \operatorname{Supp} N$ and $u \in$ Supp N^{\prime} so that $\operatorname{dim} v=\max \{\operatorname{dim} x \mid x \in \operatorname{Supp} N\}$ and $\operatorname{dim} u=\max \{\operatorname{dim} x \mid x \in$ Supp $\left.N^{\prime}\right\}$. Assume that $\operatorname{dim} v>\operatorname{dim} u$. Then we have the following assertions:
i) If $\sum_{x \in H} N^{\prime}(x) \leq L_{A}$, then $w(N) \geq 2 w\left(N^{\prime}\right)+w(u)$.
ii) If $\sum_{x \in H} N^{\prime}(x) \leq 2 L_{A}$, then $w(N)>w\left(N^{\prime}\right)$.

Proof. i) $\quad w(N) \geq w(v)=\left(2 L_{A}+1\right)^{\operatorname{dim} v} \geq\left(2 L_{A}+1\right)^{\operatorname{dim} u} 2 L_{A}+\left(2 L_{A}+1\right)^{\operatorname{dim} u} \geq$ $2 w\left(N^{\prime}\right)+w(u)$. Similarly we have the assertion ii).

Let u and v be elements in H such that $v \leq u$, and let r be a positive integer. We then denote by $V\left(u \mid v^{r}\right)$ the k-submodule of A generated by standard monomials N satisfying one of the following conditions:
(a) $\min \operatorname{Supp} N \not \equiv v$;
(b) $\min \operatorname{Supp} N=v, u \neq v$ and $N(v)>r$;
(c) $N(v)=r$ and $N(z)>0$ for some z in H such that $z \not \equiv u$.

Lemma 2. Let N be a standrd monomial belonging to $V\left(u \mid v^{r}\right)$, and suppose that $\sum_{x \in H} N(x) \leq L_{A}$ and $r \leq L_{A}$. Then for every $M \in[u v N], w(M)>w\left(u^{s} v^{r}\right)+$ $w(u v)$, where $s=L_{A}-r$.

Proof. Suppose first that $\alpha=\min \operatorname{Supp} N \nsupseteq v$. If $\alpha<v$, then $w(N)>w\left(u^{s} v^{r}\right)$ by Lemma 1 ; if α is incomparable with v, then for every $N^{\prime} \in[\alpha v]$, it follows from Lemma 1 that $w\left(N^{\prime}\right)>w\left(u^{s} v^{r}\right)+w(v)$. Therefore the assertion follows in this case. Suppose next that $\min \operatorname{Supp} N=v, u \neq v$ and $N(v)>r$. Since
$w(v)>w\left(u^{s}\right)$ by Lemma $1, w\left(v^{r+1}\right)>w\left(u^{s} v^{r}\right)$, and hence $w(N)>w\left(u^{s} v^{r}\right)$; thus the assertion follows. Finally suppose that $N(v)=r$ and $N(z)>0$ for some z in H with $z \nsupseteq u$. Then for every $N^{\prime} \in[u z], w\left(N^{\prime}\right)>w\left(u^{s}\right)+w(u)$ by Lemma 1. Therefore for every $N^{\prime \prime} \in[u N], w\left(N^{\prime \prime}\right)>w\left(v^{r}\right)+w\left(u^{s+1}\right)$, and this shows that $w(M)>$ $w\left(v^{r+1}\right)+w\left(u^{s+1}\right)$ for every $M \in[u v N]$. This completes the proof.

§3. Height one prime ideals of a discrete ASL over a field

Let A be a discrete ASL on a poset H over a field k, and let $\Delta_{1}, \ldots, \Delta_{h}$ be the maximal chains of H. Let $H_{i}=H-\Delta_{i}$ for $i=1, \ldots, h$. It is well known that $\left\{H_{1} A, \ldots, H_{h} A\right\}$ is the set of minimal prime ideals of A.

Let \mathfrak{p} be a height one prime ideal of A. We say that \mathfrak{p} is of type 1 if there exists a minimal prime ideal $H_{j} A$ such that $\mathfrak{p} \supset H_{j} A$ and $\Delta_{j} \cap \mathfrak{p}=\varnothing$. If \mathfrak{p} is of type 1 , then it is easy to see that \mathfrak{p} contains a unique minimal prime ideal of A and $A_{\mathfrak{p}}$ is a $D V R$. We say that \mathfrak{p} is of type 2 if \mathfrak{p} is not of type 1 .

Assume that \mathfrak{p} is of type 2 in the rest of this section. Let $H_{j} A$ be a minimal prime ideal of A contained in \mathfrak{p}. By our assumption, $\Delta_{j} \cap \mathfrak{p} \neq \emptyset$. Since $h t \mathfrak{p}=1$, $\Delta_{j} \cap \mathfrak{p}$ consists of one element α. (Note that $A / H_{j} A \cong k\left[\Delta_{j}\right]$ and $k\left[\Delta_{j}\right]$ is a polynomial ring over k.) Let $\Gamma=\Delta_{j}-\{\alpha\}$. Then Γ is independent of minimal prime ideals of A contained in \mathfrak{p}, and $\mathfrak{p}=(H-\Gamma) A$. Let $u=\min \{x \in \Gamma \mid \alpha<x\}$ and $v=$ $\max \{x \in \Gamma \mid x<\alpha\}$. Let $W=\{x \in H \mid v<x<u\}$. Since $h t p=1, W$ is a clutter i.e., no two elements in W are comparable, and moreover $\mathfrak{p} A_{\mathfrak{p}}$ is minimally generated by W; in particular, if $\# W=1$, then A_{p} is a $D V R$.

Definition. ($\Gamma, u, v, W)$ is a spindle of H if
(1) $\quad \Gamma$ and W are non-empty subsets of H and $\# W \geq 2$,
(2) $u, v \in H \cup\{+\infty,-\infty\}$,
(3) $W=\{x \in H \mid v<x<u\}$ and
(4) for each $x \in W, x \notin \Gamma$ and $\Gamma \cup\{x\}$ is a maximal chain of H.

Summarizing the above arguments, we have the following
Lemma 3. Let \mathfrak{p} be a height one prime ideal of A. Then $A_{\mathfrak{p}}$ is a DVR or there exists a spindle (Γ, u, v, W) of H such that $\mathfrak{p}=(H-\Gamma) A$; in the latter case, $\mathfrak{p} A_{\mathfrak{p}}$ is minimally generated by W.

§4. Normality of graded ASL domains over a field

In this section, A is a graded ASL on a poset H over a field k, and we assume that $k[H]$ is Cohen-Macaulay and every maximal chain of H has the same length. Let $R=A[\{q(x) \mid x \in H\}, t]$, where $q(x)=x t^{-w(x)}$. Note that if (Γ, u, v, w) is a spindle of H, then every element x in W has the same weight.

Lemma 4. A is a normal domain if and only if,for each spindle ($\Gamma, u, v, M)$ of H, R_{p} is normal, where P is the prime ideal of R generated by t and $q(H-\Gamma)$.

Proof. Let $M=A_{+}, M^{*}=M\left[t, t^{-1}\right] \cap R$ and $N=\left(M^{*}, t\right) R$. If A is a normal domain, then R is a normal domain because $R / t R$ is reduced and R_{t} is a normal domain, and hence R_{N} is normal. Conversely, if R_{N} is normal, then $A\left[t, t^{-1}\right]_{M\left[t, t^{-1}\right]}=R_{M^{*}}=\left(R_{N}\right)_{M^{*}}$ is normal, and hence A_{M} is normal i.e., A is a normal domain. Since $R / t R(\cong k[H])$ is Cohen-Macaulay, R_{N} is normal if and only if R_{P} is normal for each height two prime ideal P of R such that $t \in P$. Let P be a height two prime ideal of R with $t \in P$. Then by Lemma $2, R_{P}$ is regular or $P=(t, q(H-\Gamma)) R$ for some spindle (Γ, u, v, W) of H. This completes the proof.

Theorem. Assume that for every spindle $\left(\Gamma, u^{\prime}, v^{\prime}, W\right)$ of H, one of the following conditions is satisfied:
(a) There exist x, y in $W(x \neq y)$ and $u^{s} v^{r} \in[x y]$ such that (a-1) $s, r>0$, $u, v \in \Gamma, v \leq v^{\prime}, u^{\prime} \leq u$ and $(\mathrm{a}-2)$ for every $z(\neq x)$ in $W, z x \equiv a u^{s} v^{r}\left(\bmod V\left(u \mid v^{r}\right)\right)$ with $0 \neq a \in k$.
(b) Let $W=\left\{x_{1}, \ldots, x_{n}\right\}$. There exist $v \in \Gamma$ and $r>0$ such that $v \leq v^{\prime}$ and for all $i \neq j, x_{i} x_{j} \equiv a_{i j} x_{i} v^{r}+b_{i j} x_{j} v^{r}+c_{i j} v^{2 r}\left(\bmod V\left(v \mid v^{r}\right)\right)$, where $a_{i j}, b_{i j}, c_{i j} \in k$ and $a_{i j} b_{i j}+c_{i j} \neq 0$.
(c) $W=\{x, y\}$ and there exists $u^{s} v^{r} \in[x y]$ such that $s, r>0, u, v \in \Gamma$, $v<u \leq v^{\prime}$ and $x y \equiv a x v^{r}+b y v^{r}+c u^{s} v^{r}\left(\bmod V\left(u \mid v^{r}\right)\right)$, where $a, b, c \in k, c \neq 0$.

Then A is a normal domain. Moreover if the condition (a) is satisfied at a spindle $\left(\Gamma, u^{\prime}, v^{\prime}, W\right)$, then $\# W=2$.

Proof. Let $\left(\Gamma, u^{\prime}, v^{\prime}, W\right)$ be a spindle of H, and let $P=(t, q(H-\Gamma)) R$. It is sufficient to show that R_{P} is normal. Consider the case (a): Choose x, y in $W(x \neq y)$ and $u^{s} v^{r} \in[x y]$ satisfying the conditions (a-1) and (a-2). Then by Lemma 2, $q(u) q(v) q(x) q(y)=t^{\delta} f^{\prime}$ with $f^{\prime} \in R-P$, where $\delta=w\left(u^{s} v^{r}\right)-w(x)-w(y)$; therefore $q(x) q(y)=t^{\delta} f$ for some $f \in R_{P}-P R_{P}$. By replacing y with $z(\neq x)$ in W in the above argument, we have that $q(x) q(z)=t^{\delta} g$ for some $g \in R_{P}$. Therefore $q(z)=g f^{-1} q(y)$, and this implies that $W=\{x, y\}$ by Lemma 3. Thus there exists a surjective homomorphism $D=K[[X, Y, T]] /\left(X Y-T^{\delta}\right) \rightarrow\left(R_{P}\right)^{\wedge}$, where K is a coefficient field of $\left(R_{P}\right)^{\wedge}$. Since D is a normal domain of dimension 2, the above homomorphism must be an isomorphism, and hence R_{P} is normal.

Consider the case (b): Choose $v \in \Gamma, r>0$ and $a_{i j}, b_{i j}, c_{i j} \in k$ so that, for all $i \neq j, a_{i j} b_{i j}+c_{i j} \neq 0$ and $x_{i} x_{j}=a_{i j} x_{i} v^{r}+b_{i j} x_{i} v^{r}+c_{i j} v^{2 r}\left(\bmod V\left(v \mid v^{r}\right)\right)$. Let $S=R_{P}$ and $F=S\left[t s^{-1}, q\left(x_{1}\right) s^{-\delta}, \ldots, q\left(x_{n}\right) s^{-\delta}, s\right]$, where s is an indeterminate and $\delta=$ $w\left(v^{r}\right)-w\left(x_{i}\right)$. If $F / s F$ is a normal domain, then so is S by filtered version of Theorem 3 in [5], Chapter VIII. Therefore it is sufficient to show that $F / s F$ is a normal domain. By Lemma 2, $q\left(x_{i}\right) q\left(x_{j}\right)=a_{i j} q\left(x_{i}\right) q\left(v^{r}\right) t^{\delta}+b_{i j} q\left(x_{j}\right) q\left(v^{r}\right) t^{\delta}+$
$c_{i j} q\left(v^{r}\right)^{2} t^{2 \delta}+t^{2 \delta+1} g_{i j}$ for some $g_{i j} \in R_{P}$. Therefore there exists a surjective homomorphism $\theta: D=K\left[X_{1}, \ldots, X_{n}, T\right] / I \rightarrow F / s F$ such that $\theta\left(X_{i}\right)=q\left(x_{i}\right) s^{-\delta} / q\left(v^{r}\right)$ for $i=1, \ldots, n$ and $\theta(T)=t s^{-1}$, where I is the ideal generated by $X_{i} X_{j}-a_{i j} X_{i} T^{\delta}-$ $b_{i j} X_{j} T^{\delta}-c_{i j} T^{2 \delta}$ for all $i \neq j$ and $K=R_{P} / P R_{P}$. Since $\operatorname{dim} F / s F=2$, it is sufficient to show that D is a normal domain of dimension 2. Let $I(v)$ be the ideals of A generated by $\{z \in H \mid z \not \equiv v\}$. Then by Proposition 1.2 in [2], $I(v)=V(v \mid v)$ and $A / I(v)$ is an ASL on $\{z \in H \mid z \geq v\}$ over k. Let J be the ideal of $K\left[X_{1}, \ldots, X_{n}, T^{\delta}\right]$ generated by $X_{i} X_{j}-a_{i j} X_{i} T^{\delta}-b_{i j} X_{j} T^{\delta}-c_{i j} T^{2 \delta}$ for all $i \neq j$. It then follows from our assumption that there exists a homomorphism $\sigma: K\left[X_{1}, \ldots, X_{n}, T^{\delta}\right] / J \rightarrow$ $(A / I(v)) \otimes_{k} K$ such that $\sigma\left(X_{i}\right)=x_{i}$ for $i=1, \ldots, n$ and $\sigma\left(T^{\delta}\right)=v^{r}$. Since $(A / I(v)) \otimes_{k} K$ is an ASL on $\{z \in H \mid z \geq v\}$ over K, it follows from the axiom (ASL-1) that σ must be injective; hence $K\left[X_{1}, \ldots, X_{n}, T^{\delta}\right] / J$ is an ASL on $H^{\prime}=\left\{x_{1}, \ldots, x_{n}, v\right\}$. Since H^{\prime} is a Cohen-Macaulay poset, $K\left[X_{1}, \ldots, X_{n}, T^{\delta}\right] / J$ is Cohen-Macaulay, and therefore $D=K\left[X_{1}, \ldots, X_{n}, T\right] / I$ is also Cohen-Macaulay because $I=J K\left[X_{1}, \ldots\right.$, $\left.X_{n}, T\right]$ and $K\left[X_{1}, \ldots, X_{n}, T\right]$ is free over $K\left[X_{1}, \ldots, X_{n}, T^{\delta}\right]$. Let $B=K\left[X_{1}, \ldots\right.$, $\left.X_{n}, T\right]$. We shall now prove that $D=B / I$ is a normal domain of dimension 2. For each e with $2 \leq e \leq n$, we put $C_{e}=K\left[X_{1}, \ldots, X_{e}, T\right] / I_{e}$, where I_{e} is the ideal generated by $X_{i} X_{j}-a_{i j} X_{i} T^{\delta}-b_{i j} X_{j} T^{\delta}-c_{i j} T^{2 \delta}$ for all i, j with $i<j \leq e$. By arguments similar to the above, C_{e} is also Cohen-Macaulay for each e, and moreover $C_{e} \subset C_{e+1}$ for $e=2, \ldots, n-1$. We shall now prove that C_{e} is a normal domain of dimension 2 by induction on e. Assume that $e=2$. Then $C_{2} \cong$ $K[X, Y, T] /\left(X Y-T^{2 \delta}\right)$, and therefore C_{2} is a normal domain of dimension 2. Assume that $e \geq 2$ and C_{e-1} is a normal domain of dimension 2. Let $Q^{\prime}=\left(X_{1}-\right.$ $\left.b_{1 e} T^{\delta}, \ldots, X_{e-1}-b_{e-1, e} T^{\delta}\right) C_{e-1}$ and $Q=\left(Q^{\prime}, T\right) C_{e}$. Note here that $\sqrt{ } Q^{\prime} C_{e}=Q$. Since $\left(X_{i}-b_{i e} T^{\delta}\right)\left(X_{e}-a_{i e} T^{\delta}\right)=\left(c_{i e}+a_{i e} b_{i e}\right) T^{2 \delta}$ in C_{e} for $i=1, \ldots, e-1$, Spec $\left(C_{e-1}\right)$ $-V\left(Q^{\prime}\right) \cong \operatorname{Spec}\left(C_{e}\right)-V(Q)$. Therefore if $h t Q \geq 2$, then C_{e} is normal. If $h t Q=1$, then $X_{e}-a_{i e} T^{\delta} \notin Q$, and hence $\left(C_{e}\right)_{Q}$ is a $D V R$ whose maximal ideal is generated by T; therefore C_{e} is also normal in this case. Consequently $D=C_{n}$ is normal. Note here that D is a graded ring such that $\operatorname{deg} X_{i}=\delta$ for $i=1, \ldots, n-1$ and $\operatorname{deg} T=$ 1. Therefore D is a domain.

Finally consider the case (c): Write $x y=a x v^{r}+b y v^{r}+c u^{s} v^{r}(\bmod V(u \mid v))$ with $a, b, c \in k, c \neq 0$. By Lemma 2, $q(x) q(y)=a q(x) q\left(v^{r}\right) t^{w\left(v^{r}\right)-w(y)}+b q(y) q\left(v^{r}\right)$. $t^{w\left(v^{r}\right)-w(x)}+c q\left(u^{s}\right) q\left(v^{r}\right) t^{\delta}+t^{\delta+1} f$ for some $f \in R_{P}$, where $\delta=w\left(u^{s}\right)+w\left(v^{r}\right)-w(x)-$ $w(y)$. Let $S=R_{P}$ and $F=S\left[t T^{-1}, q(x) T^{-w\left(u^{s}\right)+w(x)}, q(y) T^{-W\left(v^{r}\right)+w(y)}, T\right]$, where T is an indeterminate. It is sufficient to show that $F / T F$ is a normal domain. Let $\delta^{\prime}=w\left(v^{r}\right)-w(y)$ and $\delta^{\prime \prime}=w\left(u^{s}\right)-w(x)$. Note that $\delta^{\prime}>\delta^{\prime \prime}$. Since $\left(q(x) T^{-\delta \prime \prime}\right)$. $\left(q(y) T^{-\delta^{\prime}}\right)=a q\left(v^{r}\right)\left(q(x) T^{-\delta^{\prime \prime}}\right)\left(t T^{-1}\right)^{\delta^{\prime}}+c q\left(u^{s}\right) q\left(v^{r}\right)\left(t T^{-1}\right)^{\delta^{\prime}+\delta^{\prime \prime}}+T g$ for some $g \in F$, there exists a surjective homomorphism $D=K[X, Y, T] /\left(X Y-a^{\prime} X T^{\delta^{\prime}}-T^{\delta}\right) \rightarrow$ $F / T F$, where $K=R_{P} / P R_{P}$. Since D is a normal domain and both D and $F / T F$ are two-dimensional, $F / T F$ must be a normal domain. This completes the proof.

If the poset H satisfies the additional condition that for every spindle (Γ, u, $v, W), \# W=2$ (e.g., H is a distributive lattice), then we have the following

Corollary. Assume that for every spindle ($\Gamma, u, v,\{x, y\}$), one of the following conditions is satisfied:
(a) $x y \equiv u v(\bmod V(v \mid v))$;
(b) $x y \equiv a u v+b y v+c v^{2}(\bmod V(v \mid v))$ and $a b+c \neq 0$.

Then A is a normal domain.
It is known that the homogeneous coordinate ring of a Grassmann variety is a homogeneous ASL domain on a distributive lattice satisfying the condition (a) in the above Corollary (cf. [1]); therefore it is normal by the above corollary and the fact that distributive lattices are Cohen-Macaulay posets.

Note that if A satisfies the conditions in the above corollary, then, for every w in $H, A / I(w)(I(w)=V(w \mid w))$ also satisfies the same conditions; therefore $A / I(w)$ is also a normal domain. Thus we have an alternative proof of the fact that Schubert varieties are projectively normal.

References

[1] C. De Concini, D. Eisenbud and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129-165.
[2] C. De Concini, D. Eisenbud and C. Procesi, Hodge algebras, Astérisque 91 (1982).
[3] D. Eisenbud, Introduction to algebras with straightening laws, Ring theory and algebra III, Dekker, 1980, 243-268.
[4] T. Hibi and K. Watanabe, Study of three-dimensional algebras with straightening laws which are Gorenstein domains I, Hiroshima Math. J. 15 (1985), 27-54.
[5] O. Zariski and P. Samuel, Commutative Algebra Vol. II, Springer-Verlag, New York/ Heidelberg/Berlin, 1960.

Department of Mathematics,
Faculty of Science,
Hiroshima University

