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1. Introduction

This paper studies the existence and nonexistence of global solutions for

(1.1) Aw - (-~X-VW + OLW\ + |w|""1w = 0

in Rn for various p> 1, a^O, where x • V = £"=i Xjd/dxj.
In [8] we studied the blow-up of solutions of the semilinear heat equation

(1.2) u t - Au - \U\P-^U = 0.

We have shown that the asymptotic behavior near the blow-up time is described
by special solutions of (1.2) called backward self-similar solutions, i.e., functions
of the form

(1.3) u(x, t) = (-ty^p-^wixK-tyi1)

which solve (1.2) in Rnx(-oo, 0); see also [7]. Plugging (1.3) in (1.2) yields
an elliptic equation (1.1) for w with ct = l/(p — 1).

In [8] we have proved that (1.1) has no bounded global solutions except
constant solutions provided a=l/(p—1) and n/2g(p+l)/(p—1) (equivalently,
p^(n + 2)l(n — 2) or n^2) . In this paper a is considered a parameter. It turns
out that 1/0?— 1) is a 'bifurcation point', namely, there is a nonconstant bounded
global solution to (1.1) provided a>l/(p—1) and njl<(p-\-\)j(p — 1). For
technical reasons we confine ourselves to radial functions, i.e., functions depending
only on r = \x\. A radial function w is called radially decreasing if w is monoto-
nically decreasing as a function of r > 0.

THEOREM 1. (Existence) There is a positive radially decreasing solution
w o/(l.l) in Rn provided a > l / ( p - l ) and

THEOREM 2. (Asymptotic behavior) A positive radially decreasing so-
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lution w 0/(1.1) outside some ball with center zero satisfies the estimate

(1.4) 0 < w(r) ^ M/r2*

with some constant M independent of r. Moreover, there is a constant c0 such
that

(1.5) lim w(r)r2* = c0 > 0

provided <

THEOREM 3. (Nonexistence) If (x^l/(p — 1), there are no positive radially
decreasing solutions 0/(1.1) in Rn provided n/2^(p+l)/(p—1). (Note that
the critical exponent is included.)

The major difficulty comes from the second term in (1.1). If we drop this
term, the equation becomes

(1.6) Au - u + \U\P~1U = 0,

which is well studied. Using a variational method, Strauss [11] has constructed
a global positive radially decreasing solution of (1.6) when n/2<(p+l)l(p-l).
In [2] Berestycki, Lions and Peletier give an ODE (ordinary differential equation)
approach called the shooting method, to construct a positive solution. If we
change the sign in front of (x- Pw/2 + ocw) in (1.1), we get the equations related
to forward self-similar solutions [7] of (1.2):

(1.7) Aw + y x - Fw + aw + Iwf^w = 0.

This equation is first attacked by Haraux and Weissler [9] for a=l/(p— 1) using
an ODE approach; for more recent results see [10]. Recently, Escobedo and
Kavian [5] extend their results by using a variational method. The results read:
when n/2<(p+l)/(p — 1) there are always infinitely many rapidly decreasing
solutions; however, the existence of a positive solution is proved only when a< n/2.
There are some results for (1.7) even if n /2>(p+l) / (p- l ) , [1, 5, 9, 10]. The
equation having an opposite sign in front of the nonlinear term in (1.7) is studied
by Brezis, Peletier and Terman [3] for a=l/(p—1). Their results are extended
by Escobedo and Kavian [5].

Compared with (1.6) and (1.7), our original problem (1.1) has different
aspects. First, a bifurcation point for a is not n/2 but l/(p—l). Second, the
decay of solution is not exponential but of finite order. Recently, Peletier, Terman
and Weissler [10] show that there are no Hl solution for (1.1) if a<n/4 and njl<
(p+\)l(p—\). Their nonexistence result is compatible with our existence result,
at least when a + 2>n, because (1.5) implies that w is not in L2(Rn) if a<n/4.
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To show the existence we are forced to appeal to the shooting method since
variational approaches [5, 11] apparently fail to work because of the lack of com-
pactness. Our method is related to that of [2]. We rewrite (1.1) for positive
radial functions and obtain an ODE:

(1.8) w" + ^~-wf - ^~- - aw + w* = 0, '= dldr.

We try to find an initial value rj giving a positive decreasing solution to (1.8)
with

(1.9) w(0) = fj, w'(0) = 0.

To carry out this idea we use Sturm's comparison lemma for oscillations since
the method in [2] is not applicable.

In Section 2 we prove Theorem 1. The asymptotic behavior of solution is
studied in Section 3. The proof of Theorem 2 is rather technical. In Section 4
we prove our nonexistence result. The key tool is a Pohozaev-type identity,
a particular case of which is used in [8]. To avoid technical and notational
complexity we do not attempt any possible generalizations for the nonlinear term
|w|p~1w.

I am grateful to Professor Robert Kohn and Professor Louis Nirenberg
for valuable discussions and encouragements.

2. Existence

The goal of this section is to find the initial data rj such that the corresponding
solution w(fy, r) of (1.8-9) are positive and decreasing for all r > 0 . We begin by
reviewing the idea of the shooting method [2]. We observe that the function
f(w) = — aw + wp changes its sign from negative to positive only at fc = a1/(p~1).
For technical reasons we put /(w) = 0 if w<0. If rj>k9 w(rj, r) of (1.8-9) i.e.
the solution of

(2.1) w" 4- ~ ^ - w' - ^~- + f(W) = 0, /(w) = - a w + #

(2.2) w(0) = i/, w'(0) = 0

is decreasing on a sufficiently small interval (0, <5), <5>0, since w takes no local
minimum larger than k. We classify initial data rj>k by the behavior of w(f/, r).
Let /+ be the set of initial data rj such that w(rj, r) attains positive local minimum
before it reaches zero:

7+ = {rj>k; 3ro>0 such that w'(rj9 ro) = 0 and w(^, r ) > 0 for 0 < r < r o } .
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Let /_ be the set of rj such that w(r\, r) reaches zero before it attains local minimum:
Since w is decreasing on (0, 3) for some 6 > 0, we have

/_ = {rj>k; 3 r o >0 such that w(rj, ro) = 0 and w'(f7, r )<0 for 0 < r < r o } .

The complement of the union of /+ and /_ on (k, oo) consists of initial data £
we are looking for. (w(rj, r) exists globally for every f/>fcaswe shall prove in
Proposition 1.) By the continuous dependence on initial data / + and /_ are open.
Since (k, oo) is connected and /+ and /_ are mutually disjoint, there exists an
initial data ( such that w(f, r )>0 and w'(C, r )>0 for r > 0 , provided that both
/+ and /_ are nonempty.

It remains to show that /+ and /_ are nonempty. Unfortunately, the
method for (1.6) in [2] should not be applicable. To show /_^</>, we also use
a variational approach, which requires the restriction on p, n/2<(p+l)/(p—l).
However, to get radially decreasing solutions extra difficulty arises since results
in [6] are not applicable to (2.1). We are forced to use Sturm's comparison
lemma. We construct a radially decreasing solution for the Dirichlet problem
on a ball with sufficiently small radius. This process is carried out in
Propositions 2 and 3. The proof for I+¥=(/> is substantially different from [2].
We apply Sturm's comparison lemma to compare the original problem with the
linearized problem around k. We shall show in Proposition 4 that if a is larger
than l/(p— 1), the solution w(rj, r) oscillates at least once provided rj>k is
sufficiently close to k. If a<l/(p—1), J+ should be empty, otherwise it would
contradict the nonexistence results in Theorem 3.

PROPOSITION 1. For every rj>09 there is a unique global solution of (2.1-2).

PROOF. Although (2.1) is singular at r = 0, there is a unique local solution w
since w'(0) = 0. Let [0, r^) be the maximal interval on which the solution w is
defined. We shall prove below that ^ = 0 0 . Let 0(r) = exp ( — r2/2). Multiplying
(2.1) by 0w' yields

i-(0|w ' |2) ' + - ^ i f l l w ' l 2 + 0F(w)' = 0,

rw
where F(w) = \ f(s)ds. Integrating this equation over (0, r) gives

Jo

0F(w)'ds = 0
2 Jo s

since w/(0) = 0. Integrating by parts, we have

(2.3) -i- 0W lw/l2(r) + T ^ — " 0\w'\2ds + 6(r)F(w(r)) + f s9F(w)ds = F(rj).2 Jo s Jo
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Suppose that r^<oo. We may assume that w(r)->oo as r->rn since otherwise
w'(r) would be bounded near rn which contradicts the maximality of rr Since
w(r)->oo as r-^r^ the second term in (2.3) tends to + oo while the first two terms
are positive. Thus the third term should tend to — oo. However, this is im-
possible because F(w) is bounded below. Therefore we have proved r^=oo
which completes the proof. Q

To show /_ /</>, we consider the boundary value problem

(2.4) Aw - yx -Fw - aw + wp = 0 in B(R) = {\x\<R}

(2.5) *W) = 0.

We would like to get positive radially decreasing solutions. If we consider the
same problem for (1.6) we know by [6] that all positive solutions are radially
decreasing. For (2.4-5), results in [6] are not applicable, so we directly find a
positive radially decreasing solution. We first construct a positive radial solution
by a variational method (cf. [11]).

PROPOSITION 2. Assume n / 2 < ( p + l ) / ( p - l ) . Then (2.4-5) has a positive
radial solution.

PROOF. Consider a minimizing problem for

)B(R)

under constraints:

\ \w\p+1pdx = 1, w\dB(R) = 0, w is radial,
JB(R)

where p(x) = exp( — |x|2/4). If n/2<(p+l) / (p — 1), a minimizing sequence
converges to some radial function w0 strongly in Lp+1 since the inclusion H^cz
Lp+1 is compact. We may assume that w0 is nonnegative by taking |wo| if neces-
sary. The function w0 solves the Euler-Lagrange equation:

(2.6) \ p(FwO'F(p+ocwo-(p) - \x \
JB(R) JB(R)

with some constant \i for all radial (peHl(B(R)). Since V -(pFw0) is radial,
integrating by parts yields

j V • (pFw0) - aw0 + fiwp
0 = 0 in B(R).
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We see the multiplier \i should be positive by plugging cp = w0 in (2.6) and noting
/(wo)>0. The function w = fi1/ip~1)w0 is a nontrivial nonnegative radial solution
of (2.4-5). Since all nonnegative solution must be positive in B(R) by the
maximum principle, w is the desired positive solution of (2.4-5). D

The solution constructed in Proposition 2 may not be radially decreasing.
We shall apply Sturm's comparison lemma to prove that all radial solutions are
monotone provided the radius is sufficiently small. We give a version of Sturm's
lemma and its proof for completeness.

LEMMA 1 (Sturm's comparison). Suppose that u and v solve differential
equations

(2.7) (™')' + <x<h«=/i

(2.8) (<rvy + (rq2v= - f2

on an interval (a, b), where <r>0, ql9 q2 are continuous functions and fl9 / 2 > 0 .
Suppose that u>0 on (a, b) and u(b) = 0. At a we assume either u(a) = v(a) = 0,
v'(a)>0 or w'(a) = i/(a) = 0, v(a)>0. If q2>qi, then v has zero in (a, b) unless
4i=g2>/i=/2=0.

PROOF. Suppose v had no zero in (a, b). Then y>0on (a, b). Computing
v-(2.7)-U'(2.8) yields

v(<TUfy - U((TVJ + o{q1-q2)uv = vfx 4- uf2.

Integrating this over (a, b) gives

<y(vu'-uv')\b
a 4- [b<r(qi-q2)uvdr -^(vfx+uf2)dr = 0.

Ja Ja

Since uf(b)^09 the boundary condition yields

This leads to a contradiction since the other two terms are strictly negative unless
qi = q2ifi = / 2 = 0. Thus, the proof is completed. D

We shall use Lemma 1 to compare (2.1) with its linearized equation around
non-zero equilibrium fe = a1/(p~1). We recall some properties of eigenvalues for

w" + J 5 - Z ± W ' _ Z_ w ' + Xw = 0

or

(2.9) (orwy 4- XGW = 0 with a = r""1 exp(-r 2 /4) .
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We consider (2.9) on (a, b) with w(a) = w(b) = 0, where a is positive, and denote
the first eigenvalue by X{a, b). If b — oo, we understand that there is no condition

at infinity except that \ \w\2adr is finite. When we consider (2.9) on (0, b) with

w'(0) = w(b) = 0, the first eigenvalue is denoted by X(b).

LEMMA 2. (i) Ifbl>b2>09 then X(b2)>k(b1). Also A(b)-»oo as fc->0.
(ii) Relation (al9 b1)a(a29 b2) implies A(a1? bl)>A(a2, b2) unless ax = a2,
bt = b2. Also X{a, fe)~*oo as b-^a.
(iii) For a<b we have A(b)<A(a, b).
(iv)

PROOF. The first three results are standard (e.g. [4]) since X(b) and A(a, b)
are, respectively

X(a, b)=infw(a)=w(b)=0 ( T a\w'\2dr/[b a\w\2dr) .

It remains to prove (iv). The function r2 — 2n solves (2.9) with A= 1. Since
^jln is the only zero of r2 — 2n on (0, oo) and positive eigenfunctions correspond
to the first eigenvalue, we obtain A(x/2n)=l. The variational definition for
A(a, oo) immediately yields A(>/2n, oo)<l by plugging w = r2 — In. (It is not
difficult to check A(^/2n, oo) = 1; however, we skip it since we do not use it in the
sequel.)

PROPOSITION 3. (i) All radial solutions of (2.4-5) are radially decreasing
provided R is sufficiently small.
(ii) The set /_ for (2.1-2) is nonempty provided n /2<(p+ l ) / (p-1) .

PROOF, (i) We begin by rewriting (2.1) by w = k-u, fc = a1/(p~1):

(2.10) (<w')# + (P - l)a<™ = h(u),

where h(u)>0 unless M = 0 and h(u) = o(\u\). Suppose that w were not monotone
decreasing on (0, R). Then there would exist (0, b) or (a, b) (a>0) in (0, R)
such that M > 0 on (0, b) or (a, b), respectively, with u'(0) = u(b) = 0 (resp. u{a) =
u(b) = 0). Applying Lemma 1 to (2.10) and

(av'y + (p-l)(X(jv = 0,

we obtain that X(b\ A(a, b)<(p- l)a by Lemma 2 (i) (ii). If R is small enough,
by Lemma 2 (i), we have X(R)>(p- l)a. This implies that A(,R)>A(b) or X{a, b)
for some 0 < a < b < R which is absurd by Lemma 2 (i) (ii). We thus conclude that
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w is monotone decreasing provided R is sufficiently small,
(ii) Proposition 2 and (i) imply that /_ is nonempty.

PROPOSITION 4. If <x>l(p — 1), then I+ contains (k, k + d) for some small
<5>0. In particular, I+ is nonempty.

PROOF. AS in Proposition 3, plugging w = i; + /c in (2.1) gives

(2.11) (ev'Y + (p- 1)OL<JV + h(v) = 0, v(0) > 0, v'(0) = 0

where h(v)>0 unless v = 0 and h(v) = o(\v\). Since a(p—1)> 1, applying Lemma 1
to (2.11) and

(truj + GU = 0, u'(0) = 0, uCv^n) = 0,

u > 0 in (0, ^/2n) (cf. Lemma 2 (iv))

shows that the first zero r* of v is less than yjln.
Let 5 be a small positive number such that 1 + S<oc(p — 1). Since A(yj2n, oo)

^ 1 , applying Lemma 2 (ii) yields that there is Ro such that A(^/2n, /^ 0)=l + ^.
Since /[(r*, R0)<kQ2n, Ro), there is # < # 0

 s u c n t h a t ^(r*» /?) = 1 + <5; here, we
again apply Lemma 2 (ii). In other words,

(2.12) ((ni/y + (l + *>7ii = 0 in (r*, R)

with M(r̂ ) = w(î ) = 0 has a positive solution.
There is a constant e such that

a(p-l)crz + h(z) = (1 +(5)<rz + #(z) for

with g(z) • z > 0 (unless z = 0). We compare

(avj 4- (1 + 5)<rv + flf(i;) = 0 in (r*, ,

t<r1,) = O, i;'(%) < 0

with (2.12), where t; + /c = w solves (2.1) on (0, R). Since Ro is independent of
initial data i;(0), we may assume \v| g e on (0, JR0) by taking initial data v(0) = w(0) —
/c sufficiently small. Applying Lemma 1 by taking v= — v, we see that v should
have a zero in (r*, R). In particular w has a local minimum in (r*, .R). This
means that all initial data>fc sufficiently close to k belong to / + , provided a > l /
(p— 1). This completes the proof.

PROOF OF THEOREM 1. If a > l / (p -1) and n /2<(p+ l ) / (p-1) , both /+ and
/_ are nonempty by Proposition 4 and Proposition 3 (ii). Since /+ and /_ are
open (cf. [2]), the complement of the union of/+ and /_ in (k, oo) is nonempty.
By Proposition 1, this implies that there exists an initial data £ such that w(£, r )>0
and w'(C, r )<0 for r > 0 where w solves (2.1-2). Since (2.1-2) is (1.1) for radial
functions, the proof is completed.
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3. Asymptotic behavior

This section is devoted to the proof of Theorem 2.

PROPOSITION 5. Suppose that w>0 solves (2.1) in (a, oo) and is decreasing,
where a>0. Then limr_> ̂  w(r) = 0.

PROOF. Let q be the limit of w as r->oo. We first observe that q<k =

ai/(p-i)5 since otherwise w"<0 for sufficiently large r which contradicts w>k
(unless w = k).

Divide (2.1) by r to get

(3.1) J^ + ^ W ' _ ^ = -ML.

Since q<k, there is r0 such that/(w)(r) < 0 on (r0, oo).
We shall claim that the left hand side of (3.1)

_ w" n-\ , _ w'
9~ r + r2 W "2"

is integrable on (r0, oo). Since wr is integrable on (r0, oo) the second two terms
of g are integrable. Since ^ > 0 on (r0, oo), it remains to prove that there is a
sequence r/-»oo such that

\ dr exists as i -> oo.

Integrating by parts yields

The integrand of the right hand side (RHS) is integrable on (r0, oo). Since w'
is integrable, there is a sequence r,—»oo such that w'(rj)-*0 as j^oo. We have
thus proved that g is integrable.

Since g is integrable on (r0, oo) so is /(w)/r by (3.1). Thus, q<k should
equal zero since otherwise f(w)/r would not be integrable on (r0, oo).

PROPOSITION 6. Suppose that w>0 solves (2.1) in (a, oo) and is monotone
decreasing, where a > 0 . Then, for a given 9<a

(3-2) w(r) < g

« constant C independent of r.
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PROOF. Since w(r)->0 by Proposition 5 and w'<0, (2.1) gives

where /*<«. The function W=Mr~2e, M > 0 , 6<jx solves

For a large r, say r > r 0 , W satisfies

W" - ^ - - fiW<0.

Take M large so that W(r0) > w(r0). By comaprison we conclude w < Wfor r > r0,
which is the same as (3.2). Q

The estimate (3.2) is not sharp. In fact we may replace 6 in (3.2) by a.

PROPOSITION 7. Suppose that w>0 solves (2.1) in (a, oo) and is decreasing,
where a>0. Then

(3.3) Mr) < -^r

with a constant C independent of r.

PROOF. We transform the dependent variable by w = r~2az. Since

(3.4) H/

(2.1) can be written as

(3.5) z" -±rz'+ (n~l-^)z- + Mcc + 2-n) z* =

The estimate (3.2) yields for every S

(3.6) z(r) < Cr\ r> a

with C = C((5). Since w' <0 , (3.6) together with (3.4) yields

(3.7) z'(r) < Cr'-1

with C' = C'(<5, a). Applying (3.6) and (3.7) to (3.5), we have for small e > 0
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(3.8) _ z'(r)
2

for some constant M = M(s, a, p).

Integrating by parts yields

By (3.7) the first two terms of RHS converge as r-»oo. This implies-
that lim,..^ z(r) exists since LHS converges as r->oo by (3.8). In particular z
is bounded which means that w • r2a is bounded. Thus, we have completed the
proof.

PROPOSITION 8. Suppose that w>0 solves (2.1) in (a, oo) and is decreasing,
where a>0. Then there is a positive constant c0 such that

(3.9) w(r)r2" > c0

as r-*oo provided <x + 2>n.

PROOF. We shall claim z in the Proof of Proposition 7, is monotone increas-
ing provided a + 2>n. We argue by contradiction. Suppose that z were not
monotone increasing. Since a + 2 > n, (3.5) says that there are no positive minima
of z. We may assume z '<0on some interval (ro, oo) since there is at most one
point where z' changes its sign. We may also assume

j n-l-4* > 0 o n [ r o o )

by taking r0 large. There is a point r 1>r 0 where zrf(r1)>0, otherwise z"<0
on (r0, oo) which contradicts z>0. Since z'ir^KO and r1>rOi (3.5) implies
z/'(r1)<0, which leads again to a contradiction. We thus conclude that z is
monotone increasing.

Since z is bounded by (3.3) and monotone increasing, co = limr_oo z(r) exists
and is positive. This is the same as (3.9).

REMARK. If a + 2<n, a positive solution of (3.5) may tend to zero, so the
asymptotic behavior would be much more complicated. Some logarithmic
decay for z is likely; however, we do not pursue this problem here.

PROOF OF THEOREM 2. The estimate (1.4) is the same as (3.3) and (1.5) is
the same as (3.9).
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4. Nonexistence

The essence of our analysis in this section is a simple integral identity called
a Pohozaev-type identity for w of (1.1). Proposition 8 in [8] gives an integral
identity for a = l/(jp— 1) which is easily extended to general a.

PROPOSITION 9. Ifw(x) is a bounded solution o/( l . l ) in Rn and \Fw\ grows
at most polynomially in \x\, then

(4.1)

+ «y(a, p)\\w\2pdx - J^EL \\x\
2\w\2pdx = 0,

where p = exp( —|x|2/4),

and the integrals are over Rn.

PROOF. The proof is found in [8, Proposition 2] with trivial modifications.
However, for the reader's convenience, we present here an outline. We shall
obtain (4.1) as a linear combination of three other identities. The first is

(4.2) {\Fw\2pdx + a {\w\2pdx - {\w\p+1pdx = 0,

obtained formally by multiplying (1.1) by — wp, intergrating over Rn, and using
integration by parts. This proceduce is easily justified since p decreases expo-
nentially as |x|-KX), while w and \Fw\ grow polynomially in |x| by hypothesis; it
suffices to do the integration by parts on a ball of radius R and then let R->co.

The second identity is

(4.3) j \x\2\Fw\2pdx + ( a + y ) J M2\w\2pdx

- n {\w\2pdx - {\x\2\w\p+1pdx = 0.

It is obtained by multiplying (1.1) by —\x\2wp, integrating over Rn, and using
integration by parts; see [8].

The third identity is

(4.4) \(2-n)

\\\x\2\Fw\2pdx
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It can be obtained by multiplying (1.1) by — (x- F)wp and using integration by
parts. All procedure is justified since \F2w\ grows at most polynomially in
|x|; the estimate follows from the boundedness of w and \Fw\ and a priori estimates
for A. An attractive derivation of (4.4) is found in [8].

To complete the proof, we eliminate the terms involving \w\p+1 and |x|2|w|p+1

by taking linear combination

p+l y^J

which is the same as (4.1).

PROOF OF THEOREM 3. Suppose w were a positive global radial decreasing
solution of (1.1). Since w is bounded and solves (2.1), w' grows at most poly-
nomially in r. Thus, we may apply Proposition 9 to our w.

We first observe

\w\2pdx= -

Rewriting (4.1) by using this relation, we obtain

- y(a, p) JL I ̂ = 0.

Note that the condition a < l/(p - 1 ) is equivalent to y > 0. If njl < (p + l)/(p -1)
the above identity yields

This inequality excludes radially decreasing function. Thus the proof is
completed.

REMARK. If a=l/(p—1), in [8] the nonexistence is shown in the class of
bounded solutions. We do not know whether the same type of the nonexistence
is true even for a< l / (p —1).
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