Asymptotic behavior of periodic nonexpansive evolution operators in uniformly convex Banach spaces

Dedicated to Professor Isao Miyadera on his sixtieth birthday

Kazuo KOBAYASI (Received September 20, 1985)

1. Introduction

Let $\{C_t\}_{t\geq 0}$ be a family of nonempty closed convex subsets of a Banach space X and let $U = \{U(t, s): 0 \le s \le t\}$ be a nonexpansive evolution operator constrained in $\{C_t\}$, i.e. U is a family of mappings $U(t, s): C_s \rightarrow C_t$ such that

$$U(t, s)U(s, r) = U(t, r), \quad U(r, r) = I,$$
$$\|U(t, s)x - U(t, s)y\| \le \|x - y\|$$

for $0 \le r \le s \le t$ and x, $y \in C_s$. Such an evolution operator U is said to be Tperiodic (T>0) if

$$C_{t+T} = C_t$$
 and $U(t+T, s+T) = U(t, s)$ for $0 \le s \le t$.

The objective of this paper is to study the asymptotic behavior as $t \to \infty$ of bounded orbits U(t, 0)x defined by a *T*-periodic nonexpansive evolution operator *U*. We shall show under appropriate conditions on the space *X* that if U(nT+t, 0)x is bounded in *n* for $x \in C_0$ and $t \in [0, T]$, then the sequence $\{U(nT+t, 0)x\}_{n\geq 1}$ is weakly or strongly almost convergent to some *T*-periodic trajectory U(t, 0)z, where *z* is a point of C_0 with U(T, 0)z = z.

In the case of Hilbert spaces this problem was considered for the evolution operator U associated with an initial value problem of the form

$$\frac{du(t)}{dt} + Au(t) \ni f(t), \quad t \ge 0, \quad u(0) = x,$$

by Baillon and Haraux [2], Baillon [1] and Brezis [4], where A is a maximal monotone operator and f is a T-periodic function.

To state our results we recall that X is said to be of type (F) if the norm of X is Fréchet differentiable, namely, for each $x \in X \setminus \{0\}$ the quotient $t^{-1}(||x+ty|| - ||x||)$ converges as $t \to 0$ uniformly for $y \in X$ with $||y|| \le 1$. It is known that the space L^p is uniformly convex and of type (F) whenever $1 . Further, a sequence <math>\{x_n\}$ in X is said to be weakly (resp. strongly) almost convergent to x, if $n^{-1} \sum_{i=0}^{n-1} x_{i+k}$ converges weakly (resp. strongly) to x as $n \to \infty$ and the con-

Kazuo Kobayasi

vergence is uniform in $k \in N \equiv \{0, 1, 2, ...\}$. We denote by $\mathcal{F}(S)$ the set of all fixed points of a mapping S.

In what follows, let U be a T-periodic nonexpansive evolution operator constrained in $\{C_t\}$ and set

 $u_n(t) = U(nT+t, 0)x$ for $x \in C_0$, $t \in [0, T]$, $n \in N$.

Then we have:

THEOREM 1. Let X be a uniformly convex Banach space over the real field **R**. Suppose that X is of type (F) and $U(t, 0)x_0$ is bounded in $t \ge 0$ for some $x_0 \in C_0$. Then, for each $x \in C_0$, there exists a point $z \in \mathscr{F}(U(T, 0))$ such that $\{u_n(t)\}$ is weakly almost convergent to U(t, 0)z for each $t \in [0, T]$.

THEOREM 2. Let X be a uniformly convex Banach space over \mathbb{R} . Suppose that $U(t, 0)x_0$ is bounded in $t \ge 0$ for some $x_0 \in C_0$. Let $x \in C_0$ be such that $\lim_{n\to\infty} ||u_{n+k}(t)-u_n(t)||$ exists uniformly in $k \in \mathbb{N}$ for each $t \in [0, T]$. Then, there exists a point $z \in \mathscr{F}(U(T, 0))$ such that $\{u_n(t)\}$ is strongly almost convergent to U(t, 0)z for each $t \in [0, T]$.

REMARKS. (a) The author was informed by Professor W. J. Davis that Theorem 1 had been obtained independently by Bruck [8] with a different proof. It would be interesting to compare our proof with that given in [8]. (b) By a fixed point theorem due to Browder and Petryshyn [5] we can easily prove that $\mathscr{F}(U(T, 0)) \neq \emptyset$ if and only if $U(t, 0)x_o$ is bounded in t for some $x_o \in C_0$. In this case U(t, 0)x is also bounded in t for all $x \in C_0$. Moreover, it should be mentioned that if $z \in \mathscr{F}(U(T, 0))$ then U(t, 0)z is periodic in t with period T. Therefore, Theorem 1 states that any bounded orbit given by U is weakly almost convergent to a periodic trajectory. (c) If $\{U(t, 0)x: t \ge 0\}$ is precompact in X, then it can be shown (see [10]) that for each $t \in [0, T]$, $\lim_{n\to\infty} ||u_{n+k}(t)-u_n(t)||$ exists uniformly in $k \in N$.

2. Proofs of the theorems

Let Γ denote the set of strictly increasing, continuous and convex functions $\gamma: [0, \infty) \rightarrow [0, \infty)$ with $\gamma(0)=0$. Let D be a closed convex subset of X. According to Bruck [6] we say that a mapping S: $D \rightarrow X$ is of type (γ) if $\gamma \in \Gamma$ and for x, $\gamma \in D$ and $\alpha \in [0, 1]$ we have

$$\gamma(\|S(\alpha x + (1 - \alpha)y) - \alpha Sx - (1 - \alpha)Sy\|) \le \|x - y\| - \|Sx - Sy\|.$$

It is known ([6, Lemma 1.1]) that if D is bounded, then one can construct a $\gamma \in \Gamma$ such that every nonexpansive mapping $S: D \to X$ is of type (γ). Further, we denote by J the duality mapping of X.

532

LEMMA 3. Put $U_t = U(T+t, t)$ for $t \in [0, T]$. Then we have: (a) For each $t \in [0, T]$ and $w \in \mathscr{F}(U_t)$ there exists $z \in \mathscr{F}(U_0)$ such that U(t, 0)z = w.

(b) For each $t \in [0, T]$ and $z \in \mathscr{F}(U_0)$, $U(t, 0)z \in \mathscr{F}(U_t)$.

PROOF. Let $t \in [0, T]$ and $w \in \mathscr{F}(U_t)$. We first note that $U_{t+T} = U_t$. Put z = U(T, t)w. Then, $U_0 z = U_T z = U(2T, T+t)U_t w = U(T, t)w = z$ and $U(t, 0)z = U(T+t, T)z = U(T+t, T)U(T, t)w = U_t w = w$. This proves (a). Next, let $t \in [0, T]$ and $z \in \mathscr{F}(U_0)$. Then $U_t U(t, 0)z = U(T+t, T)U_0 z = U(t, 0)z$ and so $U(t, 0)z \in \mathscr{F}(U_t)$. Thus (b) is proved.

LEMMA 4. Let X be a uniformly convex Banach space over \mathbb{R} . Suppose that X is of type (F) and $\mathscr{F}(U_0) \neq \emptyset$. Then, for $x \in C_0$ and $z_1, z_2 \in \mathscr{F}(U_0)$, the limit

(1)
$$h(t) = \lim_{n \to \infty} \left(u_n(t) - U(t, 0)z_1, J(U(t, 0)z_1 - U(t, 0)z_2) \right)$$

exists for $t \in [0, T]$ and h(t) is nonincreasing in t.

PROOF. Let $t \in [0, T]$, $x \in C_0$ and $z_1, z_2 \in \mathcal{F}(U_0)$. For $\alpha \in (0, 1]$ and $n \in N$, we put

$$a_n(t, \alpha) = \|\alpha u_n(t) + \beta U(t, 0)z_1 - U(t, 0)z_2\|,$$

where $\beta = 1 - \alpha$. Then, $u_n(t) = U_i^n U(t, 0)x$, U_t is a nonexpansive mapping of C_t into itself and $U(t, 0)z_i \in \mathscr{F}(U_t)$, i = 1, 2, by Lemma 3 (b). Hence, by [6, Lemmas 2.1 and 2.2], $\lim_{n\to\infty} a_n(t, \alpha)$ exists. Moreover, $u_n(t)$ is bounded in n since $\mathscr{F}(U_t) \neq \emptyset$. Since X is of type (F), it follows (see [9]) that

$$(u_n(t) - U(t, 0)z_1, J(U(t, 0)z_1 - U(t, 0)z_2))$$

= $\lim_{\alpha \downarrow 0} (2\alpha)^{-1} \{a_n(t, \alpha)^2 - \|U(t, 0)z_1 - U(t, 0)z_2\|^2\}$

and the convergence is uniform in n. Hence the formula (1) is obtained via the relation

(2)
$$h(t) = \lim_{n \to \infty} \lim_{\alpha \downarrow 0} (2\alpha)^{-1} \{ a_n(t, \alpha)^2 - \| U(t, 0) z_1 - U(t, 0) z_2 \|^2 \}$$
$$= \lim_{\alpha \downarrow 0} \lim_{n \to \infty} (2\alpha)^{-1} \{ a_n(t, \alpha)^2 - \| z_1 - z_2 \|^2 \},$$

where we used the fact that $||z_1 - z_2|| = ||U(T, 0)z_1 - U(T, 0)z_2|| \le ||U(t, 0)z_1 - U(t, 0)z_2|| \le ||z_1 - z_2||$.

Next we show that h(t) is nonincreasing in t. Since $||u_n(0) - z_1|| \ge ||U_0u_n(0) - U_0z_1|| = ||u_{n+1}(0) - z_1||$, $\{||u_n(0) - z_1||\}$ must converge. Take an R > 0 so that $\sup_n ||u_n(0)| \le R$ and $||z_1||$, $||z_2|| \le R$, and put $D = C_0 \cap \{u \in X : ||y|| \le R\}$. Then, there exists $\gamma \in \Gamma$ such that $U(t, 0)|_D$ (the restriction of U(t, 0) to D) is of type (γ)

for all $t \in [0, T]$. Hence

$$\|U(t, 0)(\alpha u_n(0) + \beta z_1) - \alpha U(t, 0)u_n(0) - \beta U(t, 0)z_1\|$$

$$\leq \gamma^{-1}(\|u_n(0) - z_1\| - \|U(t, 0)u_n(0) - U(t, 0)z_1\|)$$

$$\leq \gamma^{-1}(\|u_n(0) - z_1\| - \|u_{n+1}(0) - z_1\|)$$

for $\alpha \in (0, 1]$ and $\beta = 1 - \alpha$. Since $u_n(t) = U(nT+t, nT)u_n(0) = U(t, 0)u_n(0)$, we have

$$a_n(t, \alpha) \le \|U(t, 0)(\alpha u_n(0) + \beta z_1) - U(t, 0)z_2\| + \gamma^{-1}(\|u_n(0) - z_1\| - \|u_{n+1}(0) - z_1\|).$$

Now let $0 \le s \le t$. Then the first term on the right side of the above inequality is estimated as

$$\begin{aligned} \|U(s, 0)(\alpha u_n(0) + \beta z_1) - U(s, 0)z_2\| \\ &\leq \|\alpha U(s, 0)u_n(0) + \beta U(s, 0)z_1 - U(s, 0)z_2\| \\ &+ \|U(s, 0)(\alpha u_n(0) + \beta z_1) - \alpha U(s, 0)u_n(0) - \beta U(s, 0)z_1\| \\ &\leq a_n(s, \alpha) + \gamma^{-1}(\|u_n(0) - z_1\| - \|u_{n+1}(0) - z_1\|). \end{aligned}$$

Consequently, we obtain

$$a_n(t, \alpha) \le a_n(s, \alpha) + 2\gamma^{-1}(\|u_n(0) - z_1\| - \|u_{n+1}(0) - z_1\|).$$

From this relation, (2) and the fact that $\lim_{n\to\infty} ||u_n(0) - z_1||$ exists, we conclude that $h(t) \le h(s)$. Thus the lemma is proved.

PROOF OF THEOREM 1. Let $x \in C_0$ and $t \in [0, T]$. As seen before $\mathscr{F}(U_0) \neq \emptyset$ by the assumption, and hence $\mathscr{F}(U_t) \neq \emptyset$. Since $u_n(t) = U_t^n U(t, 0)x$, it follows from [6, Theorem 2.1] (cf. [9, Theorem 3.1]) that $\{u_n(t)\}$ is weakly almost convergent to a point $z(t) \in \mathscr{F}(U_t)$. Since $u_n(T) = u_{n+1}(0)$ for $n \in N$, we have z(T) = $w-\lim_{n\to\infty} n^{-1} \sum_{i=1}^{n} u_i(0) = z(0)$. Now, take arbitrary elements z_1 , z_2 in $\mathscr{F}(U_0)$. By Lemma 4, we have

$$h(t) = \lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} (u_i(t) - U(t, 0)z_1, g)$$

= $\lim_{n \to \infty} (n^{-1} \sum_{i=0}^{n-1} u_i(t) - U(t, 0)z_1, g)$
= $(z(t) - U(t, 0)z_1, g),$

where $g = J(U(t, 0)z_1 - U(t, 0)z_2)$. This, together with the relation z(0) = z(T), shows that $h(0) = h(T) \le h(t) \le h(0)$. Therefore, $h(t) \equiv h(0)$ for $t \in [0, T]$. We now take $z_1 = z(0) \in \mathscr{F}(U_0)$. Then we have

534

Periodic nonexpansive evolution operator

(3)
$$(z(t) - U(t, 0)z_1, J(U(t, 0)z_1 - U(t, 0)z_2))$$

= $(z(0) - z_1, J(z_1 - z_2)) = 0$ for $t \in [0, T]$.

We then demonstrate that $z(t) = U(t, 0)z_1$ for $t \in [0, T]$. Suppose to the contrary that there exists $t_o \in [0, T]$ such that $z(t_o) \neq U(t_o, 0)z_1$. Since $z(t_o) \in \mathscr{F}(U_{t_o})$, Lemma 3 (a) would imply that there exists $z_2 \in \mathscr{F}(U_0)$ satisfying $U(t_o, 0)z_2 = z(t_o)$. Hence (3) would give $-\|U(t_o, 0)z_1 - U(t_0, 0)z_2\|^2 = 0$ and $U(t_o, 0)z_1 = U(t_o)z_2$. This contradicts the fact that $z(t_o) \neq U(t_o, 0)z_1$. Consequently, we have $z(t) = U(t, 0)z_1$ for all $t \in [0, T]$. Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. Since $u_n(t) = U_t^n U(t, 0)x$ and $\lim_{n\to\infty} ||U_t^{n+k}U(t, 0)x - U_t^n U(t, 0)x||$ exists uniformly in k by the assumption, it follows from [10, Theorem 1] that $\{u_n(t)\}$ is strongly almost convergent to a point $z(t) \in \mathscr{F}(U_t)$. Let $\sup_n ||u_n(0)|| \le R$ and put $D = C_0 \cap \{y \in X : ||y|| \le R\}$. Then, by [7, Theorem 2.1], there exists $\gamma \in \Gamma$, depending only upon R and the modulus of uniform convexity of X, such that

$$\begin{aligned} \gamma(\|U(t, 0)(n^{-1}\sum_{i=0}^{n-1}y_i) - n^{-1}\sum_{i=0}^{n-1}U(t, 0)y_i\|) \\ &\leq \max_{0 \leq i, j \leq n-1}\{\|y_i - y_j\| - \|U(t, 0)y_i - U(t, 0)y_j\|\} \end{aligned}$$

for any $y_0, ..., y_{n-1} \in D$, $t \in [0, T]$ and any $n \ge 1$. Putting $y_i = u_{i+k}(0)$ in the above inequality and noting that $u_n(t) = U(t, 0)u_n(0)$, we have

$$\|U(t,0)(n^{-1}\sum_{i=0}^{n-1}u_{i+k}(0)) - n^{-1}\sum_{i=0}^{n-1}u_{i+k}(t)\| \le \gamma^{-1}(\varepsilon_{k,n})$$

for any k and n, where

$$\varepsilon_{k,n} = \max_{0 \le i, j \le n-1} \left\{ \|u_{i+k}(0) - u_{j+k}(0)\| - \|u_{i+k+1}(0) - u_{j+k+1}(0)\| \right\}.$$

Fix any $\varepsilon > 0$ and take $m = m(\varepsilon, t) \ge 1$ such that $||m^{-1} \sum_{i=0}^{m-1} u_{i+k}(s) - z(s)|| < \varepsilon/2$ for $s \in \{0, t\}$ and $k \in N$. Then we have

$$\begin{aligned} \|U(t, 0)z(0) - z(t)\| \\ &\leq \|U(t, 0)z(0) - U(t, 0)(m^{-1}\sum_{i=0}^{m-1}u_{i+k}(0))\| \\ &+ \|z(t) - m^{-1}\sum_{i=0}^{m-1}u_{i+k}(t)\| \\ &+ \|U(t, 0)(m^{-1}\sum_{i=0}^{m-1}u_{i+k}(0)) - m^{-1}\sum_{i=0}^{m-1}u_{i+k}(t)\| \\ &\leq \varepsilon/2 + \varepsilon/2 + \gamma^{-1}(\varepsilon_{k,m}) \quad \text{for all} \quad k \in N. \end{aligned}$$

Since $||u_{n+p}(0)-u_n(0)||$ is nonincreasing in *n* for each *p*, it follows that $\lim_{k\to\infty} \varepsilon_{k,m} = 0$ and $||U(t, 0)z(0) - z(t)|| \le \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we infer that z(t) = U(t, 0)z(0) with $z(0) \in \mathscr{F}(U_0)$. The proof of Theorem 2 is thereby complete.

3. Periodic forcing

Let A be an m-accretive operator in a Banach space X over **R** and $f \in L^1_{loc}(0, \infty; X)$ be T-periodic. It is well-known that for each $s \ge 0$ and $x \in cl D(A)$ (the closure of the domain of A), there exists a unique integral solution u(t; s, x) of

(4)
$$du(t)/dt + Au(t) \ni f(t), \quad t \in [s, \infty)$$

with initial condition u(s) = x. (See [3] for the notion of *m*-accretive operator, the notion of integral solution and existence theorems for integral solutions of (4).) By setting U(t, s)x = u(t; s, x), we see that $\{U(t, s): 0 \le s \le t\}$ forms a *T*-periodic nonexpansive evolution operator constrained in $C_t \equiv cl D(A)$. In this case, Theorem 1 implies the following result.

COROLLARY 5. Let X be uniformly convex and of type (F). Let $x \in cl D(A)$ and $u_n(t) = u(nT+t; 0, x)$. If u(t; 0, x) is bounded in t, then there is a T-periodic integral solution $\omega(t)$ of equation (4) with s=0 and a T-periodic forcing term f such that $\{u_n(t)\}$ is weakly almost convergent to $\omega(t)$ for each $t \in [0, T]$.

REMARK. Baillon [1] proved this corollary in the case where X is a Hilbert space.

Furthermore, assume in Corollary 5 that X is a Hilbert space, $A = \partial \phi$, the subdifferential of a proper convex lower semicontinuous function $\phi: X \rightarrow (-\infty, \infty]$, and that $f \in L^2_{loc}(0, \infty; X)$. Then, applying the same argument as in [2, Theorem 5] we can choose a subsequence $\{n(k)\}$ such that

$$\int_0^T \|du_{n(k)}(t)/dt - d\tilde{\omega}(t)/dt\|^2 dt \longrightarrow 0$$

as $n(k) \rightarrow \infty$, where $\tilde{\omega}(t)$ is an arbitrary *T*-periodic solution of (4) with s=0 and $A=\partial\phi$. But

$$\begin{aligned} \|u_{n+1}(t) - u_n(t)\| &= \|U(t, 0)u_n(T) - U(t, 0)u_n(0)\| \\ &\leq \|u_n(T) - u_n(0)\| \\ &\leq \int_0^T \|(d/dt)(u_n(t) - \tilde{\omega}(t))\| dt \\ &\leq T^{1/2} \Big(\int_0^T \|(d/dt)(u_n(t) - \tilde{\omega}(t))\|^2 dt \Big)^{1/2} \end{aligned}$$

and hence $||u_{n(k)+1}(t) - u_{n(k)}(t)|| \to 0$ as $n(k) \to \infty$. Since $||u_{n+1}(t) - u_n(t)||$ is non-increasing in *n*, we conclude that $\lim_{n\to\infty} ||u_{n+1}(t) - u_n(t)|| = 0$, which is the so-called

,

Tauberian condition for almost convergent series (see [6, Section 3]). Therefore, in this case, $u_n(t)$ itself converges weakly as $n \to \infty$ to some *T*-periodic solution of (4) with s=0. This is nothing but the result given in [2].

References

- [1] J. B. Baillon, Thèse, Université de Paris VI, 1978.
- [2] J. B. Baillon and A. Haraux, Comportement à l'infini pour les equations d'évolution avec forcing périodique, Arch. Rational Mech. Anal. 67 (1977), 101-109.
- [3] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publ., Leyden, 1976.
- [4] H. Brezis, Asymptotic behavior of solutions of evolution equations, in Nonlinear evolution equations (M. G. Crandall Ed.), Academic Press, New York, 1978.
- [5] F. E. Browder and W. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575.
- [6] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), 107-116.
- [7] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), 304-314.
- [8] R. E. Bruck, Construction of periodic solutions of periodic contraction systems from bounded solutions, to appear.
- [9] K. Kobayasi and I. Miyadera, Some remarks on nonlinear ergodic theorems in Banach spaces, Proc. Japan Acad. 56 (1980), 88–92.
- [10] K. Kobayasi and I. Miyadera, On the strong convergence of Cesàro means of contractions in Banach spaces, Proc. Japan Acad. 56 (1980), 245-249.

Department of Mathematics, Sagami Institute of Technology