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1. Introduction

Let {Ct}t^0 be a family of nonempty closed convex subsets of a Banach
space X and let U = {U(t, s): 0<s<t} be a nonexpansive evolution operator
constrained in {CJ, i.e. U is a family of mappings U(t, s): Cs-+Ct such that

U(t, s)U(s, r) = U(t, r\ U(r,r) = I9

\\U(t,s)x-U(t,s)y\\ < \\x-y\\

for 0<r<s<t and x, yeCs. Such an evolution operator U is said to be T-
periodic (T>0) if

Ct+T = Ct and U(t+ T, s + T)= U(t, s) for 0 < s < t.

The objective of this paper is to study the asymptotic behavior as f->oo of
bounded orbits U(t, 0)x defined by a T-periodic nonexpansive evolution operator
U. We shall show under appropriate conditions on the space X that if
U(nT+1, 0)x is bounded in n for x e Co and t e [0, T], then the sequence {l/(nT+
t, 0)x}n^t is weakly or strongly almost convergent to some T-periodic trajectory
U(t9 0)z, where z is a point of Co with U(T, 0)z = z.

In the case of Hilbert spaces this problem was considered for the evolution
operator U associated with an initial value problem of the form

du(t)ldt + Au(t) 9/(0, t > 0, M(0) = x,

by Baillon and Haraux [2], Baillon [1] and Brezis [4], where A is a maximal
monotone operator and/is a T-periodic function.

To state our results we recall that X is said to be of type (F) if the norm of X
is Frechet differentiable, namely, for each x e I \ { 0 } the quotient "̂HIÎ  + ^II ~*
||x||) converges as t-+0 uniformly for yeX with | |y||<l. It is known that the
space Lp is uniformly convex and of type (F) whenever l<p<oo. Further, a
sequence {xn} in X is said to be weakly (resp. strongly) almost convergent to x,
if n~l Z?=o*i+fc converges weakly (resp. strongly) to x as n-+oo and the con-
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vergence is uniform in fee A^={0, 1, 2,...}. We denote by &{S) the set of all
fixed points of a mapping S.

In what follows, let U be a T-periodic nonexpansive evolution operator
constrained in {Ct} and set

Un(t) = U(nT+1, 0)x for x e Co, te [0, T], n e N.

Then we have:

THEOREM 1. Let X be a uniformly convex Banach space over the real field
R. Suppose that X is of type (F) and U(t, 0)x0 is bounded in t>0 for some
x o eC o . Then, for each xeC 0 , there exists a point ze^{U{T9 0)) such that
{un(t)} is weakly almost convergent to U(t, 0)z for each te[0, T].

THEOREM 2. Let X be a uniformly convex Banach space over R. Suppose
that U(t,Q)x0 is bounded in t>0 for some xoeCo. Let xeC0 be such that
Urn,,-,*, ||w,,+*(0~wn(0ll exists uniformly in keN for each fe[0, T]. Then,
there exists a point z e &"(U(T9 0)) such that {un(t)} is strongly almost convergent
to U(t, 0)zfor each re[0, T].

REMARKS, (a) The author was informed by Professor W. J. Davis that
Theorem 1 had been obtained independently by Bruck [8] with a different proof.
It would be interesting to compare our proof with that given in [8]. (b) By a
fixed point theorem due to Browder and Petryshyn [5] we can easily prove that
^(U(T, O))#0 if and only if U(t, 0)xo is bounded in t for some x0 e Co. In this
case U(t, 0)x is also bounded in t for all x e Co. Moreover, it should be mentioned
that if z e ^ ( l / ( T , 0)) then U(t9 0)z is periodic in t with period T. Therefore,
Theorem 1 states that any bounded orbit given by U is weakly almost convergent
to a periodic trajectory, (c) If {U(t, 0)x: t>0} is precompact in X,then it can
be shown (see [10]) that for each fe[0, T], l im,,^ \\un+k(t)-un(t)\\ exists uni-
formly in ke N.

2. Proofs of the theorems

Let F denote the set of strictly increasing, continuous and convex
functions y: [0, oo)-*[0, oo) with y(0) = 0. Let D be a closed convex subset of X.
According to Bruck [6] we say that a mapping S: D-»X is of type (y) if yeF
and for x> yeD and a e [0, 1] we have

7(||5(ax + ( l - a )> ; ) - aSx- ( l - a )5 j ; | | )< \\x-y\\ - \\Sx-Sy\\.

It is known ([6, Lemma 1.1]) that if D is bounded, then one can construct a
yeF such that every nonexpansive mapping 5: D-+X is of type (y). Further, we
denote by J the duality mapping of X.
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LEMMA 3. Put Ut= U(T+1, i)for te [0, T]. Then we have:
(a) For each fe[0, T] and we^(Ut) there exists ze^{U0) such that

U(t,0)z = w.
(b) For each t e [0, T] and z e ̂ (Uo), U(t, 0)z e ^{Ut).

PROOF. Let fe[0, T] and we^(Ut). We first note that Ut+T=Ut. Put
z = U(T, t)w. Then, Uoz = UTz = U(2T, T+ t)Utw = U(T, t)w = z and U(t, 0)z =
l/(T+f, T)z=U(T+t, T)U(T, t)w=Utw = w. This proves (a). Next, let te
[0, T] and ze^ ( l / 0 ) . Then UtU(t, 0)z = L/(T+f, T)Uoz = U(t, 0)z and so
L/(r, 0)z e J^"(t/f). Thus (b) is proved.

LEMMA 4. Lef X be a uniformly convex Banach space over R. Suppose
that X is of type (F) and ^"(L/o)#0. Then, for xeC0 and zl9 z2 e ̂ {Vo\ the
limit

(1) h(t) = linw(un(t)-U(t, 0)z1, J(U(t, 0)z1 -U(t9 0)z2))

exists for te [0, T] and ft(f) is nonincreasing in t.

PROOF. Let t e [0, T], xeC0 and z1? z2 e ^{UQ). For a e (0, 1] and neN,
we put

an(f, a) = \\aun(t) + pU(t, 0)zx - U(t, 0)z2||,

where JS=1 —a. Then, un(t)=U?U(t, 0)x, l/r is a nonexpansive mapping of
C, into itself and £/(*, O)zf6^(t/r), i = l, 2, by Lemma 3 (fc). Hence, by [6,
Lemmas 2.1 and 2.2], lim,,^^ an(t, a) exists. Moreover, un(t) is bounded in n
since J^(L/f)#0. Since AT is of type (F), it follows (see [9]) that

(un(0- U(t, 0)z1, J(C/(r, 0)z1 - U(t, 0)z2))

)z^U(t, 0)z2P}

and the convergence is uniform in n. Hence the formula (1) is obtained via the
relation

(2) h(t) = limw_0Olimai0(2a)-H^a a)2-||l/(r, 0)zx-U(t9 0)z2P}

where we used the fact that | |z1-z2 | | = \\U(T9 0)z1-l/(T5 0)z2|| <\\U(t, 0)z1-
£/(f, 0)z2||< | | Z l -z 2 1| .

Next we show that h(t) is nonincreasing in t. Since || wB(0) — zt || > || Uoun(0) —
^ozill = l|wn+i(0)-2ill, {llw^CQ-zJ} must converge. Take an R>0 so that
supn ||t/n(0)||<i^ and HzJ, ||z2||^Jl, and put D = Co0{ueX: \\y\\<R}. Then,
there exists yeT such that U(t, 0)\D (the restriction of U(t, 0) to D) is of type (y)
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forallfe[0, T]. Hence

\\U(t9 WauJ$>) + fri)-*V{t9 O)uJLO)-PU(t, 0)2!||

< y-l(\\un(0)-zi\\ - \\u{t, 0K(0)-i/(t, 0)2,11)

for ae(0, 1] and 0 = 1 - a . Since un(t)=U(nT+t, nT)un(0)= U(t, 0)tiB(0), we
have

«n0, a) < \\U(t, 0)(auB(0) + /?Zl)-l/(f, 0)z2||

Now let 0 < s < t. Then the first term on the right side of the above inequality is
estimated as

s, 0)2l - U{s, 0)z2||

+ || U(s, 0)(xun(0) + Pzi)-«U(s, 0)un(0)-pU(s, 0)zJ

£ aJLs, a) + y- i(ll«/0)-z1 | |-| |u I1+1(0)-z1 | |).

Consequently, we obtain

an(U a) < aB(s, a) + 2y-i(||«ll(0)-21|| - ||u l l+1(0)-21||).

From this relation, (2) and the fact that lim^^ ||MW(0) — zt\\ exists, we conclude
that h(t) < h(s). Thus the lemma is proved.

PROOF OF THEOREM 1. Let x e Co and t e [0, T]. As seen before ^{Uo)^ 0
by the assumption, and hence ^(I7 r)^0. Since un(t)=U1}U(t, 0)x, it follows
from [6, Theorem 2.1] (cf. [9, Theorem 3.1]) that {un(t)} is weakly almost con-
vergent to a point z(t)e^"(£/f). Since wn(T)=uw+1(0) for neiV,we have z(T) =
w-lim,,̂ ^ n~l Z?=i wi(0) = z(0). Now, take arbitrary elements zl9 z2 in
By Lemma 4, we have

h(t) = l i m ^ , n"1 E?^1 (MAf)-U(t, 0)2!, 0)

U(t, 0)2!, g)

where g = J(U(t, O)z1-U(t, 0)z2). This, together with the relation z(0) = z(T),
shows that A(0) = h(T) < h(i) < /i(0). Therefore, h{i) = h(0) for f e [0, T]. We
now take zx = z(0) e ^(UQ). Then we have
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(3) ( z ( 0 - U(t, 0)zl5 J(U(t, 0)z, - V(t, 0)z2))

= (z(0)-z l 9 J{zx -z2)) = 0 for t e [0, T] .

We then demonstrate that z(f) = U(t, 0)z1 for t e [0, T]. Suppose to the contrary
that there exists foe[0, T] such that z(fo)^ l/(ro, 0 ^ . Since z(f o )e«f([ /J ,
Lemma 3 (a) would imply that there exists z2 e ^(UQ) satisfying U(to9 0)z2 = z(t0).
Hence (3) would give - \\U(t09 0 ) z 1 - l/(t0, 0)z2||2 = 0 and l/(r0, 0)z1 = l/(ro)z2.
This contradicts the fact that z(to)^U(to9 0)z1. Consequently, we have z(f) =
l/(f, 0)z! for all t e [0, T]. Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. Since un(t) = U?U(t, 0)x and l i m ^ m \\ U?+kU(t, 0)x-
U"U(t9 0)x\\ exists uniformly in k by the assumption, it follows from
[10, Theorem 1] that {un(t)} is strongly almost convergent to a point z(t) e
J^( ig . Let supn ||wM(0)|| <R and put D = Cof] {ye X:\\y\\<R}. Then, by [7,
Theorem 2.1], there exists y e T , depending only upon R and the modulus of
uniform convexity of X, such that

y(\\ U(t, 0)(n-i Zi=i yd ~ n-i YU U(t9 0)yt\\)

- U(t,0)yj\\}

for any y0,..., yn-1 GD, r e [0 , T] and any n>\. Putting y. = ui+k(Q) in the
above inequality and noting that un(i) = U(t, 0)ww(0), we have

II U(t, 0)(n~i Z?^1 ui+k(0)) - n-i L&1 ui+k(t)\\ < r 1 ^ , , , )

for any k and n, where

, - ! {\\ui+k(0)-uj+k(0)\\ - \\ui+k+l(0)-uj+k+1(0)\\} .

Fix any e>0 and take m = m(e, t)>l such that \\rn~1 Ef^o1 ui+k(s)-z(s)\\ < e / 2

for s e {0, f} and /c e N. Then we have

\\U(t9 0)2(0)-

+ II U{t9 0Xm-i Zr-o1 w«

< e/2 + e/2 + y-^e*. J for all k e iV.

Since ||Mn+p(0) —wfI(0)|| is nonincreasing in n for each p, it follows that
limk^ooefcm = 0 and \\U(t9 0)z(0) —z(r)|| <e. Since e > 0 is arbitrary, we infer
that z(t)=U(t, 0)z(0) with z (0 )e^ ( l / o ) . The proof of Theorem 2 is thereby
complete.
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3. Periodic forcing

Let A be an m-accretive operator in a Banach space X over R and /e LJoc(0,
oo: X) be T-periodic. It is well-known that for each s > 0 and xeclD(A) (the
closure of the domain of A), there exists a unique integral solution u(t; s, x) of

(4) du(t)/dt + i4ii(f)9/(0. *e.[s, °°)

with initial condition u(s) = x. (See [3] for the notion of m-accretive operator,
the notion of integral solution and existence theorems for integral solutions of
(4).) By setting U(t, s)x = u(t; s, x), we see that {U(t, s):O<s<t} forms a T-
periodic nonexpansive evolution operator constrained in Ct = clD(A). In this
case, Theorem 1 implies the following result.

COROLLARY 5. Let X be uniformly convex and of type (F). Let xe
clD(A) and un(t) = u(nT+t; 0, x). / / u(t; 0, x) is bounded in t, then there is a
T-periodic integral solution co(t) of equation (4) with s = 0 and a T-periodic
forcing term f such that {un(t)} is weakly almost convergent to co(t) for each
fe[O, T].

REMARK. Baillon [1] proved this corollary in the case where X is a Hilbert
space.

Furthermore, assume in Corollary 5 that X is a Hilbert space, A = d<f>,
the subdifferential of a proper convex lower semicontinuous function </>: X-+
(—oo, oo], and that fe L\ oc(0, oo; X). Then, applying the same argument as in
[2, Theorem 5] we can choose a subsequence {n(k)} such that

'\\dun(k)(t)ldt-d<b(t)ldt\\2dt—>0

as n(k)-* oo, where cb(t) is an arbitrary T-periodic solution of (4) with 5 = 0 and
A = d(/). But

\\un+1(t)-un(t)\\ = \\U(t9 0)un(T)-U(t, 0)un(0)||

< \\un(T)-un(0)\\

<[T\\(d/dt)(un(t)-m)\\dt
Jo

O r \i/2

||(^0(Wn(0-^(0)l|2^) ,
0 /

and hence \\un(k)+i(t)-un(k)(t)\\-*O as n(fc)->oo. Since \\uH+1(t)-un(t)\\ is non-
increasing in n, we conclude that lim,,.^ \\un + 1(t)-un(t)\\ =0, which is the so-called
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Tauberian condition for almost convergent series (see [6, Section 3]). Therefore,
in this case, un(t) itself converges weakly as n->oo to some T-periodic solution of
(4) with s = 0. This is nothing but the result given in [2],
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