On self *H*-equivalences of homotopy associative *H*-spaces

Norichika SAWASHITA and Masahiro SUGAWARA (Received September 10, 1986)

§1. Introduction

For an *H*-space *X*, we call a homotopy equivalence $f: X \to X$ a self *H*-equivalence with respect to a multiplication *m* on *X* if *f* is a self *H*-map of (X, m), i.e., $fm \sim m(f \times f)$ (homotopic); and we mean by $[f] \in \text{HE}(X)$ that *f* is such one with respect to any multiplication on *X*.

In this note, we prove the following theorem similar to Theorem 4.1 of [10] for U(n), SU(n) and Sp(n):

THEOREM 1.1. Let G be the exceptional Lie group G_2 , F_4 , E_6 , E_7 or E_8 . Then, any f: $G \rightarrow G$ with $[f] \in HE(G)$ induces the identity isomorphisms on $H^*(G; \mathbb{Z})/Tor$, $H^*(G; \mathbb{Z}_p)$ and $H^*(G; \mathbb{Z}_{(p)})$ for any prime p > 1, 3, 3, 3 or 5, respectively; and $f_{(p)} \sim id: G_{(p)} \rightarrow G_{(p)}$ if p > 1, 24, 24, 36 or 60, respectively, for the localization $-_{(p)}$ at a prime p.

To show this, we assume that

(1.2) an *H*-space X has the homotopy type of a 1-connected finite *CW*-complex and a homotopy associative multiplication $m: X \times X \to X$, and the type of X is $N = (n_1, ..., n_l)$ for odd integers n_i with $3 \le n_1 \le \cdots \le n_l$.

Then, we recall the following

(1.3) $H^*(X; \mathbb{Z})/\text{Tor} = \Lambda(x_1, ..., x_l)$ by primitive elements x_i with respect to m of deg $x_i = n_i$.

For the *p*-localization $-_{(p)}$, consider the natural homotopy equivalence $u = ((\text{pr}_j)_{(p)}): (\prod_j Y_j)_{(p)} \cong \prod_j (Y_j)_{(p)}$ and its homotopy inverse u^{-1} . Then:

(1.4) $X_{(p)}$ is a homotopy associative H-space by $m_{(p)}u^{-1}: X_{(p)} \times X_{(p)} \cong (X \times X)_{(p)} \to X_{(p)}$.

Also, for the n_i -sphere S^{n_i} (n_i : odd) and $p \ge 5$, the following is due to Adams [1]:

(1.5) $S_i = S_{(p)}^{n_i}$ is an H-space with a homotopy associative and homotopy commutative multiplication m_i ; hence so is $S_N = \prod_{i=1}^{l} S_i$ with $(\prod_i m_i)T: S_N \times S_N \approx \prod_i (S_i \times S_i) \rightarrow S_N$.

Now, we have the following results:

THEOREM 1.6. For any prime $p > n_i + 1$, there is a p-equivalence $e: S^N = \prod_{i=1}^{l} S^{n_i} \to X$ such that the homotopy equivalence $\bar{e} = e_{(p)}u^{-1}: S_N = \prod_i S_i \to S^N_{(p)} \to X_{(p)}$ is an H-map with respect to $(\prod_i m_i)T$ and $m_{(p)}u^{-1}$ in (1.4–5). Especially $m_{(p)}u^{-1}$ is also homotopy commutative.

We note that the latter half was proved by McGibbon [8] when X is a loop space and m is the loop multiplication.

THEOREM 1.7. Assume $n_i < n_{i+1}$ for i < l, and let $f: X \rightarrow X$ be a self H-map of (X, m). Then:

(i) There are integers η_i $(1 \le i \le l)$ with $f^*x_i = \eta_i x_i$ in $H^*(X; \mathbb{Z})/\text{Tor}$ (see (1.3)).

(ii) $f_{(p)} \sim \bar{e}(\prod_i \eta_i) \bar{e}^{-1}: X_{(p)} \to X_{(p)}$ for any prime $p > n_l + 1$ by \bar{e} in Theorem 1.6 and the product map $\prod_i \eta_i: S_N = \prod_i S_i \to S_N$ of $\eta_i: S_i \to S_i$ of degree η_i .

(iii) If $[f] \in \text{HE}(X)$, then the integers η_i $(1 \le i \le l)$ in (i) satisfy $\eta_i = \pm 1$ and $\eta_k = \prod_i \eta_i^{\varepsilon_i}$ for any k and $\varepsilon_i \in \{0, 1, 2\}$ such that the p-component of $\pi_n(S^{n_k})$ $(n = \sum_i \varepsilon_i n_i)$ is non-trivial for some $p > n_i + 1$.

We prove Theorem 1.1 by showing $\eta_i = 1$ for $[f] \in \text{HE}(G)$ from the equalities in Theorem 1.7 (iii) when $n = n_k + 2p - 3$ (see §4). We prove Theorem 1.6 by using the result due to Kumpel [7] and Harper [5] that X is p-equivalent to S^N for $p > n_l/2$ (see §2), and Theorem 1.7 by using Theorem 1.6 in a way similar to [10] (see §3).

§2. Proof of Theorem 1.6

For X in (1.2), the following is due to Browder [3] and [4], Kumpel [7] and Harper [5]:

(2.1) If $p > n_l/2$, then $H^*(X; \mathbb{Z})$ is p-torsion free, and there is a p-equivalence $e: S^N = \prod_{i=1}^l S^{n_i} \to X$, and so $e_{(p)}: S^N_{(p)} \to X_{(p)}$ is a homotopy equivalence.

LEMMA 2.2. If $p > n_i + 1$, then e in (2.1) can be so taken that the homotopy equivalence $\bar{e} = e_{(p)}u^{-1}$: $S_N = \prod_i S_i \cong S_{(p)}^N \to X_{(p)}$ is an H-map with respect to $M = (\prod_i m_i)T$ and $\bar{m} = m_{(p)}u^{-1}$ in (1.4-5).

PROOF. Take a *p*-equivalence $h: S^N \rightarrow X$ by (2.1), and consider

$$h_i = h \operatorname{in}_i \colon S^{n_i} \subset S^N \to X, \quad \bar{h}_i = (h_i)_{(p)} \colon S_i \to X_{(p)} \quad \text{and}$$

 $e = m(\prod_i h_i) \colon S^N \to X^1 \to X,$

where m denotes also the iterated multiplication of m. Then, we see that

$$e_{(p)} \sim m_{(p)} (\prod_i h_i)_{(p)} \sim \overline{m} (\prod_i \overline{h}_i) u = h' \colon S^N_{(p)} \to X_{(p)},$$

$$h'_* = h_{(p)*} \colon \pi_* (S^N_{(p)}) \to \pi_* (X_{(p)}),$$

220

and $e_{(p)}$ is a homotopy equivalence since so is $h_{(p)}$. Furthermore, $\pi_*(X_{(p)}) \cong \pi_*(S_N) = 0$ for $* = n_i + n_j$ by Serre [11], since $p > n_i + 1$. Hence, we see that

$$\overline{m}(\overline{h}_i \times \overline{h}_j) \sim \overline{m}(\overline{h}_j \times \overline{h}_i)T: S_i \times S_j \to X_{(p)}, \quad \overline{m}(\overline{h}_i \times \overline{h}_j) \sim \overline{h}_i m_i \text{ when } j = i,$$

and so $\overline{m}(\overline{e} \times \overline{e}) \sim \overline{e}M$ as desired, since $\overline{e} \sim \overline{m}(\prod_i \overline{h}_i)$ and \overline{m} is homotopy associative.

Thus, Theorem 1.6 follows from Lemma 2.2 and (1.5).

REMARK. We note that $e: S^N \to X$ in Lemma 2.2 can be taken to be independent of $p > n_l + 1$. In fact, take representatives $e_i: S^{n_i} \to X$ $(1 \le i \le l)$ of generators of the free part of $\sum_{i \le n_l} \pi_i(X)$, and consider $e = m(\prod_i e_i): S^N \to X^l \to X$. Then, we see that $e_*: \pi_i(S_{(p)}^N) \cong \pi_i(X_{(p)})$ for $i \le n_l + 1$ and so $e^*: H^i(X; \mathbb{Z}_p) \cong H^i(S^N; \mathbb{Z}_p)$ for all *i*. Hence *e* is a *p*-equivalence. Also, by the same way as the above proof we see that $e_{(p)}u^{-1}$ is an *H*-map with respect to *M* and \overline{m} .

§3. Proof of Theorem 1.7

Assume that $n_i < n_{i+1}$ (i < l) and $f: (X, m) \rightarrow (X, m)$ is an H-map. Then, it is clear that

(3.1)
$$f^*x_i = \eta_i x_i$$
 in $H^*(X; \mathbb{Z})/\text{Tor of } (1.3)$ for some $\eta_i \in \mathbb{Z}$ $(1 \le i \le l)$.

(3.2) $\overline{f} = \overline{e}^{-1} f_{(p)} \overline{e} : S_N \cong X_{(p)} \to X_{(p)} \cong S_N$ for $p > n_l + 1$ and \overline{e} in Theorem 1.6 is a self H-map of $(S_N = \prod_i S_i, M = (\prod_i m_i)T)$, since so is $f_{(p)}$ of $(X_{(p)}, \overline{m} = m_{(p)}u^{-1})$.

Now, by the localization map $J: X \rightarrow X_{(p)}$, consider

$$H^{*}(X; \mathbb{Z})/\text{Tor} \xrightarrow{j} H^{*}(X; \mathbb{Z}_{(p)}) \xleftarrow{J^{*}}{\cong} H^{*}(X_{(p)}; \mathbb{Z}_{(p)})$$
$$\xrightarrow{\tilde{e}^{*}}{\cong} H^{*}(S_{N}; \mathbb{Z}_{(p)}) = \Lambda_{\mathbb{Z}_{(p)}}(s_{1}, ..., s_{l}),$$

where j is the natural monomorphism by the first half of (2.1) and s_i 's are primitive generators with respect to M of deg $s_i = n_i$ corresponding to $S_i = S_{(p)}^{n_i}$. Then:

(3.3) $H^*(S_N; \mathbb{Z}_{(p)}) = \Lambda_{\mathbb{Z}_{(p)}}(y_1, \dots, y_l)$ by primitive elements $y_i = \bar{e}^* J^{*-1} j x_i$ with respect to M of deg $y_i = n_i$; hence $y_i = a_i s_i$ for some units $a_i \in \mathbb{Z}_{(p)}$,

by (1.3), Theorem 1.6 and the assumption $n_i < n_{i+1}$ (*i* < *l*). Furthermore, (3.1) and (3.3) yield that

(3.4) $\bar{f}^*s_i = \eta_i s_i$, because $\bar{f}^*y_i = \bar{e}^* J^{*-1} j f^*x_i = \eta_i y_i$.

According to (3.2), (2.3.4) of [10] and $[S_i, S_j] = \pi_{n_i}(S^{n_j}) \otimes \mathbb{Z}_{(p)} = 0$ for $i \neq j$, (3.4) implies that

Norichika Sawashita and Masahiro Sugawara

(3.5) $\vec{f} \sim \prod_i \eta_i$: $S_N = \prod_i S_i \to \prod_i S_i = S_N$ by considering

$$\eta_i \in \mathbb{Z} \subset \mathbb{Z}_{(p)} = [S_i, S_i].$$

Now, consider any $0 \le \varepsilon_i \le 2$ $(1 \le i \le l)$ and $1 \le k \le l$ such that

(3.6) there is an element
$$\alpha \in \pi_n(S^{n_k})$$
 of order p for $n = \sum_i \varepsilon_i n_i$, and so $\sum_i \varepsilon_i > 2$.

Take $\delta = (\delta_1, ..., \delta_{2l}) \in \{0, 1\}^{2l}$ with $\varepsilon_i = \delta_i + \delta_{l+i}$ and $\sum_i \delta_i \neq 0 \neq \sum_i \delta_{l+i}$, and

(3.7) the multiplication $M(\alpha) = M + \operatorname{in}_k \alpha_{(p)} \pi_{\delta}: S_N \times S_N \to S_N$ (+ is induced by M),

where $\pi_{\delta}: S_N \times S_N \to \bigwedge_{\delta_j=1} S_j \cong S_{(p)}^n (S_{l+i} = S_i)$ is the composition of the collapsing map and the homotopy equivalence, and $\operatorname{in}_k: S_k \subset S_N$. Then:

(3.8) There is a multiplication $m(\alpha): X \times X \to X$ such that if $f: X \to X$ is a self H-map with respect to $m(\alpha)$, then so is $\overline{f} = \overline{e}^{-1} f_{(p)} \overline{e}: S_N \to S_N$ with respect to $M(\alpha)$.

In fact, let $-\bar{p}$ be the localization at the set \bar{p} of all primes $\neq p$, and consider

$$m' = \bar{e}M(\alpha)(\bar{e} \times \bar{e})^{-1}u \colon (X \times X)_{(p)} \cong X_{(p)} \times X_{(p)} \to X_{(p)} \quad \text{and}$$
$$m_{\bar{p}} \colon (X \times X)_{\bar{p}} \to X_{\bar{p}}.$$

Then, we see that their rationalizations coincide with each other, because α is of finite order and $\bar{e}M(\bar{e}\times\bar{e})^{-1}u\sim\bar{m}u\sim m_{(p)}$ by Theorem 1.6. Hence, we have a multiplication $m(\alpha)$ on X with $m(\alpha)_{(p)}\sim m'$ and $m(\alpha)_{\bar{p}}\sim m_{\bar{p}}$ by Corollary 5.13 of Hilton-Mislin-Roitberg [6], and (3.8) holds.

(3.9) If $f: X \to X$ is a self H-equivalence with respect to m and also to $m(\alpha)$ in (3.8), then the integers η_i 's given in (3.1) satisfy

$$\eta_i = \pm 1 \ (1 \leq i \leq l) \text{ and } \prod_i \eta_i^{\varepsilon_i} = \eta_k \text{ for } 0 \leq \varepsilon_i \leq 2 \text{ and } 1 \leq k \leq l \text{ with } (3.6).$$

In fact, $\eta_i = \pm 1$ since f^* is isomorphic. Furthermore, in the same way as (3.2.1) of [10] we see that $(\prod_i \eta_i^{\epsilon_i}) \cdot \alpha = \eta_k \cdot \alpha$ in $\pi_n(S^{n_k}) \otimes Z_{(p)}$ by (3.7-8) and (3.5). Hence the second equality holds, since α is of order p.

Thus, Theorem 1.7 is proved completely.

§4. Proof of Theorem 1.1

Theorem 1.1 for $G = G_2$ is trivial, because $f \sim id: G_2 \rightarrow G_2$ for any self *H*-equivalence *f* with respect to the group multiplication on G_2 by Theorem II of [9].

For $G_l = F_4$ (l=4), E_l (l=6, 7 or 8), we recall the following:

222

(4.1) The type $(n_1, ..., n_l)$ of G_l is (3, 11, 15, 23), (3, 9, 11, 15, 17, 23), (3, 11, 15, 19, 23, 27, 35) or (3, 15, 23, 27, 35, 39, 47, 59), respectively.

Note that the *p*-component of $\pi_n(S^{n_k})$ is Z_p for $n = n_k + 2p - 3$ by Serre [11], and $H^*(G_l; Z)$ is *p*-torsion free if p > 3, 3, 3 or 5, respectively, by Borel [2]. Then, Theorem 1.1 is proved for G_l by Theorem 1.7 and the following:

(4.2) Assume that $\eta_i = \pm 1$ $(1 \le i \le l)$ satisfy $\eta_k = \prod_i \eta_i^{\varepsilon_i}$ for any $1 \le k \le l$ and $0 \le \varepsilon_i \le 2$ such that $\sum_i \varepsilon_i n_i = n_k + 2p - 3$ for $(n_1, ..., n_l)$ in (4.1) and a prime $p > n_l + 1$. Then, η_i 's are all equal to 1.

We see (4.2) quite arithmetically, because the assumptions contain the following equalities which imply $\eta_i = 1$ as desired:

References

- J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford (2), 12 (1961), 52-60.
- [2] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2), 13 (1961), 216-240.
- [3] W. Browder, Torsion in H-spaces, Ann. of Math., 74 (1961), 24-51.
- W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153– 176.
- [5] J. R. Harper, Regularity of finite H-spaces, Illinois J. Math. 23 (1979), 330-333.
- [6] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent Groups and Spaces, Mathematics Studies 15, Notas de Matemática (55), North-Holland, 1975.
- [7] P. G. Kumpel, Jr, On p-equivalences of mod p H-spaces, Quart. J. Math. Oxford (2), 23 (1972), 173–178.
- [8] C. A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math., 106 (1984), 665-687.
- [9] N. Sawashita, Self H-equivalences of H-spaces with applications to H-spaces of rank 2, Hiroshima Math. J., 14 (1984), 75-113.
- [10] N. Sawashita and M. Sugawara, On self H-equivalences of an H-space with respect to any multiplication, Hiroshima Math. J., 16 (1986), 1-20.

[11] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.

> Department of Mathematics, Faculty of Engineering, Tokushima University

and

Department of Mathematics, Faculty of Science, Hiroshima University