# On self $\boldsymbol{H}$-equivalences of homotopy associative $\boldsymbol{H}$-spaces 

Norichika Sawashita and Masahiro Sugawara<br>(Received September 10, 1986)

## §1. Introduction

For an $H$-space $X$, we call a homotopy equivalence $f: X \rightarrow X$ a self $H$-equivalence with respect to a multiplication $m$ on $X$ if $f$ is a self $H$-map of $(X, m)$, i.e., $f m \sim m(f \times f)$ (homotopic); and we mean by $[f] \in \operatorname{HE}(X)$ that $f$ is such one with respect to any multiplication on $X$.

In this note, we prove the following theorem similar to Theorem 4.1 of [10] for $U(n), S U(n)$ and $S p(n)$ :

Theorem 1.1. Let $G$ be the exceptional Lie group $G_{2}, F_{4}, E_{6}, E_{7}$ or $E_{8}$. Then, any $f: G \rightarrow G$ with $[f] \in \operatorname{HE}(G)$ induces the identity isomorphisms on $H^{*}(G ; \boldsymbol{Z}) /$ Tor, $H^{*}\left(G ; \boldsymbol{Z}_{p}\right)$ and $H^{*}\left(G ; \boldsymbol{Z}_{(p)}\right)$ for any prime $p>1,3,3,3$ or 5 , respectively; and $f_{(p)} \sim \operatorname{id}: G_{(p)} \rightarrow G_{(p)}$ if $p>1,24,24,36$ or 60 , respectively, for the localization - ${ }_{(p)}$ at a prime $p$.

To show this, we assume that
(1.2) an $H$-space $X$ has the homotopy type of a 1-connected finite $C W$-complex and a homotopy associative multiplication $m: X \times X \rightarrow X$, and the type of $X$ is $N=\left(n_{1}, \ldots, n_{l}\right)$ for odd integers $n_{i}$ with $3 \leqq n_{1} \leqq \cdots \leqq n_{l}$.

Then, we recall the following
(1.3) $H^{*}(X ; Z) /$ Tor $=\Lambda\left(x_{1}, \ldots, x_{l}\right)$ by primitive elements $x_{i}$ with respect to $m o f \operatorname{deg} x_{i}=n_{i}$.

For the $p$-localization $-_{(p)}$, consider the natural homotopy equivalence $u=$ $\left(\left(\mathrm{pr}_{j}\right)_{(p)}\right):\left(\prod_{j} Y_{j}\right)_{(p)} \Im \Pi_{j}\left(Y_{j}\right)_{(p)}$ and its homotopy inverse $u^{-1}$. Then:
(1.4) $X_{(p)}$ is a homotopy associative $H$-space by $m_{(p)} u^{-1}: X_{(p)} \times X_{(p)} \simeq$ $(X \times X)_{(p)} \rightarrow X_{(p)}$.

Also, for the $n_{i}$-sphere $S^{n_{i}}\left(n_{i}\right.$ : odd) and $p \geqq 5$, the following is due to Adams [1]:
(1.5) $S_{i}=S_{(p)}^{n_{i}}$ is an $H$-space with a homotopy associative and homotopy commutative multiplication $m_{i}$; hence so is $S_{N}=\prod_{i=1}^{l} S_{i}$ with $\left(\prod_{i} m_{i}\right)$ : $S_{N} \times$ $S_{N} \approx \prod_{i}\left(S_{i} \times S_{i}\right) \rightarrow S_{N}$.

Now, we have the following results:

Theorem 1.6. For any prime $p>n_{l}+1$, there is a p-equivalence e: $S^{N}=$ $\prod_{i=1}^{l} S^{n_{i}} \rightarrow X$ such that the homotopy equivalence $\bar{e}=e_{(p)} u^{-1}: S_{N}=\prod_{i} S_{i} \rightarrow S_{(p)}^{N} \rightarrow$ $X_{(p)}$ is an H-map with respect to $\left(\prod_{i} m_{i}\right) T$ and $m_{(p)} u^{-1}$ in (1.4-5). Especially $m_{(p)} u^{-1}$ is also homotopy commutative.

We note that the latter half was proved by McGibbon [8] when $X$ is a loop space and $m$ is the loop multiplication.

Theorem 1.7. Assume $n_{i}<n_{i+1}$ for $i<l$, and let $f: X \rightarrow X$ be a self H-map of $(X, m)$. Then:
(i) There are integers $\eta_{i}(1 \leqq i \leqq l)$ with $f^{*} x_{i}=\eta_{i} x_{i}$ in $H^{*}(X ; Z) /$ Tor (see (1.3)).
(ii) $f_{(p)} \sim \bar{e}\left(\prod_{i} \eta_{i}\right) \bar{e}^{-1}: X_{(p)} \rightarrow X_{(p)}$ for any prime $p>n_{l}+1$ by $\bar{e}$ in Theorem 1.6 and the product map $\Pi_{i} \eta_{i}: S_{N}=\prod_{i} S_{i} \rightarrow S_{N}$ of $\eta_{i}: S_{i} \rightarrow S_{i}$ of degree $\eta_{i}$.
(iii) If $[f] \in \operatorname{HE}(X)$, then the integers $\eta_{i}(1 \leqq i \leqq l)$ in (i) satisfy $\eta_{i}= \pm 1$ and $\eta_{k}=\prod_{i} \eta_{i}^{\varepsilon_{i}}$ for any $k$ and $\varepsilon_{i} \in\{0,1,2\}$ such that the $p$-component of $\pi_{n}\left(S^{n_{k}}\right)$ ( $n=\sum_{i} \varepsilon_{i} n_{i}$ ) is non-trivial for some $p>n_{l}+1$.

We prove Theorem 1.1 by showing $\eta_{i}=1$ for $[f] \in \operatorname{HE}(G)$ from the equalities in Theorem 1.7 (iii) when $n=n_{k}+2 p-3$ (see §4). We prove Theorem 1.6 by using the result due to Kumpel [7] and Harper [5] that $X$ is $p$-equivalent to $S^{N}$ for $p>n_{l} / 2$ (see $\S 2$ ), and Theorem 1.7 by using Theorem 1.6 in a way similar to [10] (see §3).

## § 2. Proof of Theorem 1.6

For $X$ in (1.2), the following is due to Browder [3] and [4], Kumpel [7] and Harper [5]:
(2.1) If $p>n_{l} / 2$, then $H^{*}(X ; Z)$ is $p$-torsion free, and there is a p-equivalence $e: S^{N}=\prod_{i=1}^{l} S^{n_{i}} \rightarrow X$, and so $e_{(p)}: S_{(p)}^{N} \rightarrow X_{(p)}$ is a homotopy equivalence.

Lemma 2.2. If $p>n_{l}+1$, then $e$ in (2.1) can be so taken that the homotopy equivalence $\bar{e}=e_{(p)} u^{-1}: S_{N}=\prod_{i} S_{i} \rightrightarrows S_{(p)}^{N} \rightarrow X_{(p)}$ is an $H$-map with respect to $M=\left(\prod_{i} m_{i}\right) T$ and $\bar{m}=m_{(p)} u^{-1}$ in (1.4-5).

Proof. Take a $p$-equivalence $h: S^{N} \rightarrow X$ by (2.1), and consider

$$
\begin{aligned}
h_{i}=h \mathrm{in}_{i}: S^{n_{i}} & \subset S^{N} \rightarrow X, \quad h_{i}=\left(h_{i}\right)_{(p)}: S_{i} \rightarrow X_{(p)} \text { and } \\
e & =m\left(\prod_{i} h_{i}\right): S^{N} \rightarrow X^{l} \rightarrow X,
\end{aligned}
$$

where $m$ denotes also the iterated multiplication of $m$. Then, we see that

$$
\begin{gathered}
e_{(p)} \sim m_{(p)}\left(\prod_{i} h_{i}\right)_{(p)} \sim \bar{m}\left(\prod_{i} \bar{h}_{i}\right) u=h^{\prime}: S_{(p)}^{N} \rightarrow X_{(p)}, \\
h_{*}^{\prime}=h_{(p) *}: \pi_{*}\left(S_{(p)}^{N}\right) \rightarrow \pi_{*}\left(X_{(p)}\right),
\end{gathered}
$$

and $e_{(p)}$ is a homotopy equivalence since so is $h_{(p)}$. Furthermore, $\pi_{*}\left(X_{(p)}\right) \cong$ $\pi_{*}\left(S_{N}\right)=0$ for $*=n_{i}+n_{j}$ by Serre [11], since $p>n_{l}+1$. Hence, we see that

$$
\bar{m}\left(\bar{h}_{i} \times \bar{h}_{j}\right) \sim \bar{m}\left(\bar{h}_{j} \times \bar{h}_{i}\right) T: S_{i} \times S_{j} \rightarrow X_{(p)}, \quad \bar{m}\left(\bar{h}_{i} \times \bar{h}_{j}\right) \sim \bar{h}_{i} m_{i} \text { when } j=i
$$

and so $\bar{m}(\bar{e} \times \bar{e}) \sim \bar{e} M$ as desired, since $\bar{e} \sim \bar{m}\left(\prod_{i} \bar{h}_{i}\right)$ and $\bar{m}$ is homotopy associative.
Thus, Theorem 1.6 follows from Lemma 2.2 and (1.5).
Remark. We note that $e: S^{N} \rightarrow X$ in Lemma 2.2 can be taken to be independent of $p>n_{l}+1$. In fact, take representatives $e_{i}: S^{n_{i}} \rightarrow X(1 \leqq i \leqq l)$ of generators of the free part of $\sum_{i \leqq n_{1}} \pi_{i}(X)$, and consider $e=m\left(\prod_{i} e_{i}\right): S^{N} \rightarrow X^{l} \rightarrow X$. Then, we see that $e_{*}: \pi_{i}\left(S_{(p)}^{N}\right) \cong \pi_{i}\left(X_{(p)}\right)$ for $i \leqq n_{l}+1$ and so $e^{*}: H^{i}\left(X ; Z_{p}\right) \cong$ $H^{i}\left(S^{N} ; Z_{p}\right)$ for all $i$. Hence $e$ is a $p$-equivalence. Also, by the same way as the above proof we see that $e_{(p)} u^{-1}$ is an $H$-map with respect to $M$ and $\bar{m}$.

## § 3. Proof of Theorem 1.7

Assume that $n_{i}<n_{i+1}(i<l)$ and $f:(X, m) \rightarrow(X, m)$ is an $H$-map. Then, it is clear that
(3.1) $f^{*} x_{i}=\eta_{i} x_{i}$ in $H^{*}(X ; \boldsymbol{Z}) /$ Tor of (1.3) for some $\eta_{i} \in \boldsymbol{Z}(1 \leqq i \leqq l)$.
(3.2) $\bar{f}=\bar{e}^{-1} f_{(p)} \bar{e}: S_{N} \leadsto X_{(p)} \rightarrow X_{(p)} \leadsto S_{N}$ for $p>n_{l}+1$ and $\bar{e}$ in Theorem 1.6 is a self H-map of $\left(S_{N}=\prod_{i} S_{i}, M=\left(\prod_{i} m_{i}\right) T\right)$, since so is $f_{(p)}$ of $\left(X_{(p)}, \bar{m}=m_{(p)} u^{-1}\right)$.

Now, by the localization map $J: X \rightarrow X_{(p)}$, consider

$$
\begin{aligned}
& H^{*}(X ; Z) / \text { Tor } \xrightarrow{j} H^{*}\left(X ; Z_{(p)}\right) \stackrel{J^{*}}{\cong} H^{*}\left(X_{(p)} ; Z_{(p)}\right) \\
& \stackrel{e^{*}}{\cong} H^{*}\left(S_{N} ; Z_{(p)}\right)=\Lambda_{Z_{(p)}}\left(s_{1}, \ldots, s_{l}\right),
\end{aligned}
$$

where $j$ is the natural monomorphism by the first half of (2.1) and $s_{i}$ 's are primitive generators with respect to $M$ of $\operatorname{deg} s_{i}=n_{i}$ corresponding to $S_{i}=S_{(p)}^{n_{i}}$. Then:
(3.3) $H^{*}\left(S_{N} ; \boldsymbol{Z}_{(p)}\right)=\Lambda_{\boldsymbol{Z}_{(p)}}\left(y_{1}, \ldots, y_{l}\right)$ by primitive elements $y_{i}=\bar{e}^{*} J^{*-1} j x_{i}$ with respect to $M$ of $\operatorname{deg} y_{i}=n_{i}$; hence $y_{i}=a_{i} s_{i}$ for some units $a_{i} \in \boldsymbol{Z}_{(p)}$,
by (1.3), Theorem 1.6 and the assumption $n_{i}<n_{i+1}(i<l)$. Furthermore, (3.1) and (3.3) yield that

$$
\begin{equation*}
\bar{f}^{*} s_{i}=\eta_{i} s_{i}, \text { because } \bar{f}^{*} y_{i}=\bar{e}^{*} J^{*-1} j f^{*} x_{i}=\eta_{i} y_{i} \tag{3.4}
\end{equation*}
$$

According to (3.2), (2.3.4) of [10] and $\left[S_{i}, S_{j}\right]=\pi_{n_{i}}\left(S^{n_{j}}\right) \otimes \boldsymbol{Z}_{(p)}=0$ for $i \neq j$, (3.4) implies that

$$
\begin{align*}
& \bar{f} \sim \prod_{i} \eta_{i}: S_{N}=\prod_{i} S_{i} \rightarrow \prod_{i} S_{i}=S_{N} \text { by considering }  \tag{3.5}\\
& \qquad \eta_{i} \in Z \subset Z_{(p)}=\left[S_{i}, S_{i}\right] .
\end{align*}
$$

Now, consider any $0 \leqq \varepsilon_{i} \leqq 2(1 \leqq i \leqq l)$ and $1 \leqq k \leqq l$ such that
(3.6) there is an element $\alpha \in \pi_{n}\left(S^{n_{k}}\right)$ of order $p$ for $n=\sum_{i} \varepsilon_{i} n_{i}$, and so $\sum_{i} \varepsilon_{i}>2$.

Take $\delta=\left(\delta_{1}, \ldots, \delta_{2 l}\right) \in\{0,1\}^{2 l}$ with $\varepsilon_{i}=\delta_{i}+\delta_{l+i}$ and $\sum_{i} \delta_{i} \neq 0 \neq \sum_{i} \delta_{l+i}$, and
(3.7) the multiplication $M(\alpha)=M+\mathrm{in}_{k} \alpha_{(p)} \pi_{\delta}: S_{N} \times S_{N} \rightarrow S_{N}(+$ is induced by $M)$, where $\pi_{\delta}: S_{N} \times S_{N} \rightarrow \wedge_{\delta_{j}=1} S_{j} 工 S_{(p)}^{n}\left(S_{l+i}=S_{i}\right)$ is the composition of the collapsing map and the homotopy equivalence, and $\mathrm{in}_{k}: S_{k} \subset S_{N}$. Then:
(3.8) There is a multiplication $m(\alpha): X \times X \rightarrow X$ such that if $f: X \rightarrow X$ is a self $H$-map with respect to $m(\alpha)$, then so is $\bar{f}=\bar{e}^{-1} f_{(p)} \bar{e}: S_{N} \rightarrow S_{N}$ with respect to $M(\alpha)$.

In fact, let $-_{\bar{p}}$ be the localization at the set $\bar{p}$ of all primes $\neq p$, and consider

$$
\begin{gathered}
m^{\prime}=\bar{e} M(\alpha)(\bar{e} \times \bar{e})^{-1} u:(X \times X)_{(p)} \leadsto X_{(p)} \times X_{(p)} \rightarrow X_{(p)} \text { and } \\
m_{\bar{p}}:(X \times X)_{\bar{p}} \rightarrow X_{\bar{p}} .
\end{gathered}
$$

Then, we see that their rationalizations coincide with each other, because $\alpha$ is of finite order and $\bar{e} M(\bar{e} \times \bar{e})^{-1} u \sim \bar{m} u \sim m_{(p)}$ by Theorem 1.6. Hence, we have a multiplication $m(\alpha)$ on $X$ with $m(\alpha)_{(p)} \sim m^{\prime}$ and $m(\alpha)_{\bar{p}} \sim m_{\bar{p}}$ by Corollary 5.13 of Hilton-Mislin-Roitberg [6], and (3.8) holds.
(3.9) If $f: X \rightarrow X$ is a self $H$-equivalence with respect to $m$ and also to $m(\alpha)$ in (3.8), then the integers $\eta_{i}$ 's given in (3.1) satisfy

$$
\eta_{i}= \pm 1(1 \leqq i \leqq l) \text { and } \prod_{i} \eta_{i}^{\varepsilon_{i}}=\eta_{k} \text { for } 0 \leqq \varepsilon_{i} \leqq 2 \text { and } 1 \leqq k \leqq l \text { with }
$$

In fact, $\eta_{i}= \pm 1$ since $f^{*}$ is isomorphic. Furthermore, in the same way as (3.2.1) of [10] we see that $\left(\Pi_{i} \eta_{i}^{\varepsilon_{i}}\right) \cdot \alpha=\eta_{k} \cdot \alpha$ in $\pi_{n}\left(S^{n_{k}}\right) \otimes \boldsymbol{Z}_{(p)}$ by (3.7-8) and (3.5). Hence the second equality holds, since $\alpha$ is of order $p$.

Thus, Theorem 1.7 is proved completely.

## §4. Proof of Theorem 1.1

Theorem 1.1 for $G=G_{2}$ is trivial, because $f \sim \mathrm{id}: G_{2} \rightarrow G_{2}$ for any self $H$ equivalence $f$ with respect to the group multiplication on $G_{2}$ by Theorem II of [9].

For $G_{l}=F_{4}(l=4), E_{l}(l=6,7$ or 8$)$, we recall the following:
(4.1) The type $\left(n_{1}, \ldots, n_{l}\right)$ of $G_{l}$ is $(3,11,15,23),(3,9,11,15,17,23)$, $(3,11,15,19,23,27,35)$ or $(3,15,23,27,35,39,47,59)$, respectively.

Note that the $p$-component of $\pi_{n}\left(S^{n_{k}}\right)$ is $Z_{p}$ for $n=n_{k}+2 p-3$ by Serre [11], and $H^{*}\left(G_{l} ; \boldsymbol{Z}\right)$ is $p$-torsion free if $p>3,3,3$ or 5 , respectively, by Borel [2]. Then, Theorem 1.1 is proved for $G_{l}$ by Theorem 1.7 and the following:
(4.2) Assume that $\eta_{i}= \pm 1(1 \leqq i \leqq l)$ satisfy $\eta_{k}=\prod_{i} \eta_{i}^{\varepsilon_{i}}$ for any $1 \leqq k \leqq l$ and $0 \leqq \varepsilon_{i} \leqq 2$ such that $\sum_{i} \varepsilon_{i} n_{i}=n_{k}+2 p-3$ for ( $n_{1}, \ldots, n_{l}$ ) in (4.1) and a prime $p>n_{l}+1$. Then, $\eta_{i}$ 's are all equal to 1 .

We see (4.2) quite arithmetically, because the assumptions contain the following equalities which imply $\eta_{i}=1$ as desired:

$$
\begin{aligned}
(l=4) \quad \eta_{1} & =\eta_{1}^{2} \eta_{2}^{2} \eta_{3}^{2} \quad(p=29), \quad \eta_{2}=\eta_{1}^{2} \eta_{3}^{2} \eta_{4}^{2} \quad(p=37), \\
& \eta_{3}
\end{aligned}=\eta_{1}^{2} \eta_{2}^{2} \eta_{4}^{2}, \quad \eta_{4}=\eta_{1}^{2} \eta_{3}^{2} \eta_{4}^{2} \quad(p=31) . \quad . \quad \begin{aligned}
(l=6) \quad \eta_{1} & =\eta_{1}^{2} \eta_{3}^{2} \eta_{4}^{2}=\eta_{1}^{2} \eta_{2}^{2} \eta_{3} \eta_{6}=\eta_{1} \eta_{2}^{2} \eta_{3}^{2} \eta_{4}=\eta_{1}^{2} \eta_{2} \eta_{3} \eta_{4} \eta_{5} \\
& =\eta_{1} \eta_{2} \eta_{6}^{2} \quad(p=29), \quad \eta_{1}=\eta_{1} \eta_{2}^{2} \eta_{3} \eta_{4}^{2} \quad(p=31) . \\
(l=7) \quad \eta_{1} & =\eta_{1} \eta_{2} \eta_{3} \eta_{5} \eta_{7}^{2}=\eta_{1} \eta_{2} \eta_{5}^{2} \eta_{6} \eta_{7}=\eta_{1} \eta_{2}^{2} \eta_{6} \eta_{7}^{2}=\eta_{1} \eta_{3} \eta_{4} \eta_{5} \eta_{6} \eta_{7} \\
& =\eta_{2}^{2} \eta_{3}^{2} \eta_{7}^{2}=\eta_{1} \eta_{3}^{2} \eta_{5}^{2} \eta_{7} \quad(p=61), \quad \eta_{1}=\eta_{1} \eta_{3} \eta_{5}^{2} \eta_{7}^{2} \quad(p=67) . \\
(l=8) \quad \eta_{1} & =\eta_{1}^{2} \eta_{3}^{2} \eta_{5}^{2}=\eta_{1}^{2} \eta_{2}^{2} \eta_{6} \eta_{7}=\eta_{1}^{2} \eta_{2} \eta_{4} \eta_{5} \eta_{6}=\eta_{1} \eta_{2}^{2} \eta_{1}^{2} \eta_{5}=\eta_{1}^{2} \eta_{2} \eta_{4}^{2} \eta_{7} \\
& =\eta_{1}^{2} \eta_{2}^{2} \eta_{4} \eta_{8}=\eta_{1}^{2} \eta_{2} \eta_{3} \eta_{6}^{2} \quad(p=61), \quad \eta_{1}=\eta_{1}^{2} \eta_{3}^{2} \eta_{5} \eta_{7} \quad(p=67) .
\end{aligned}
$$

## References

[1] J. F. Adams, The sphere, considered as an $H$-space $\bmod p$, Quart. J. Math. Oxford (2), 12 (1961), 52-60.
[2] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2), 13 (1961), 216-240.
[ 3] W. Browder, Torsion in $H$-spaces, Ann. of Math., 74 (1961), 24-51.
[4] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc., 107 (1963), 153176.
[ 5] J. R. Harper, Regularity of finite $H$-spaces, Illinois J. Math. 23 (1979), 330-333.
[6] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent Groups and Spaces, Mathematics Studies 15, Notas de Matemática (55), North-Holland, 1975.
[7] P. G. Kumpel, Jr, On $p$-equivalences of $\bmod p H$-spaces, Quart. J. Math. Oxford (2), 23 (1972), 173-178.
[8] C. A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math., 106 (1984), 665-687.
[9] N. Sawashita, Self $H$-equivalences of $H$-spaces with applications to $H$-spaces of rank 2, Hiroshima Math. J., 14 (1984), 75-113.
[10] N. Sawashita and M. Sugawara, On self $H$-equivalences of an $H$-space with respect to any multiplication, Hiroshima Math. J., 16 (1986), 1-20.
[11] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.

Department of Mathematics, Faculty of Engineering, Tokushima University and

Department of Mathematics, Faculty of Science, Hiroshima University

