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Introduction

This paper is concerned with entire solutions of even order semilinear elliptic
equations of the form

(A) Δmu = /(|x|, M, Au,...,Am~lu\ xeR",

where m^l, n^2, A denotes the n-dimensional Laplacian, |x| is the Euclidean
length of x, and /is a given nonnegative continuous function defined on [0, oo)m+1

or on [0, oo) x Rm. By an entire solution of (A) we mean a function u e C2m(Rn)
which satisfies (A) point wise in Rn. Important special cases of (A) are

(B) Amu = p(|x|)tty, xef l" ,

(C) Amu = p(\x\)eu, xe/? w ,

where y>l and p: [0, oo)-*(0, oo) is continuous.
The problem of existence and nonexistence of entire solutions of (A) in the

case m = 1 has been the subject of intensive investigations in the past three decades,
and numerous results have been obtained. Among a vast literature on the sub-
ject, we refer the reader to the recent papers [2-5, 10-12, 14-19, 21, 23, 24] which
are concerned mainly with second order equations of the forms (B) and (C).

It seems to the author, however, that very little is known about entire solutions
for the higher order case of (A) (m^2). As far as the author is aware, Walter
[26, 27] and Walter and Rhee [28] were the only references in this area until the
appearance of Kusano, Naito and Swanson [7-9] and Kusano and Swanson [13],
in which a systematic study of the existence and asymptotic behavior of radial
entire solutions of (A) with m^2 has been attempted. In particular it is shown
in [9] that equation (A) (m^2) may have a variety of radial entire solutions with

different types of asymptotic behavior as |x|->oo.
The main objective of this paper is to further the theory developed in [7-9]

by establishing the existence of a new class of entire solutions for (A). More
specifically, we give conditions under which (A) has a radial entire solution u(x)

with the asymptotic property
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lim , ,2 "ffi , , = 00 for n = 2,
1*1-00 \x\2m~2 log 1*1

lim , ",(*), = 00 for n > 3.
|«|-*oo |*|2m-2

Such a solution is said to be a strongly increasing entire solution of (A). We note

here that the problem under study is essentially an ODE initial value problem.

In fact, a radial function u = y(\x\) is an entire solution of (A) if and only if y(f) is

of class C2m[0, oo) and satisfies the ordinary differential equation

(D) Lmy = f(t, y,Ly,..., Lm~ly), t> 0,

as well as the singular initial condition

(E) (L' O ((>) = «„ (L'jO'(0) = 0, 0 = i ^ m - l ,

for some real constants αf, where L denotes the polar form of the Laplacian A:

L = tl-πW<n-*W> ' - M

We are thus led to the analysis of the initial value problem (D)-(E).

In Section 1 we derive basic results concerning local solutions of the problem

(D)-(E). In Section 2 we construct the desired strongly increasing entire solutions

of (A) by using the results of Section 1 and known criteria [7, 8] for the existence

of entire solutions u(x) of (A) satisfying

lim r-πJ^Γ—rτ = Φ0e(0, oo) for n = 2,l*|->oo |x|2 m-2log|x| v v

lim , "(*)- = c(n)e(0, oo) for n = 3.
|χ|-»oo \XΓm

Some strong nonlinearity hypotheses on / are needed for this purpose. A

related question of interest is to characterize the values c(u) in the above limits,

that is, to determine the set of positive numbers which can be the limits as |x|->oo

of w(X)/|x|2m~2log \x\ (n = 2) or of w(x)/|x|2m~2 (π^3) for some radial entire so-

lutions u(x) of (A). A fairly complete answer to this question is also given in

Section 2. Section 3 concerns the second order case of (A). It is shown that

the results for the radial equation Au=f(\x\9 w), xεR", can be extended, via the

supersolution-subsolution method, to the non-radial equations of the form

Au = g(x, w), xe Rn. The final section (Section 4) is devoted to the discussion

of nonexistence of entire solutions of equation (A) and related differential

inequalities.
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1. Properties of local solutions

As was stated in the Introduction, the problem of finding a radial entire

solution M = y(|x|) of (A) is equivalent to the singular initial value problem

(1.1) Lmy =/(ί, y, Ly,..., Lm^y\ t > 0,

(1.2) (L'3θ(0) = αi, (L'jO'(0) = 0, 0 £ i £ . m - l ,

where αf are constants and L is the operator defined by

L = t ^ d d
dt dt

In this section we present some basic results concerning local solutions of

the problem (1. !)-(!. 2), which play a crucial role in the construction of strongly

increasing entire solutions of (A). We begin with the existence of local solutions

to the problem. In the next lemmas, the order relation v r g w for vectors v = (vt)

and w = (wί) is defined as t^Wj for all i. The symbols <, ^ and > are also

used analogously.

LEMMA 1.1. (i) Let f: [0, oo)m+1->[0, oo) be continuous. Then the

problem (1. !)-(!. 2) has a local solution for any given (α0, α l5..., αm_1)e[0, oo)m.

(ii) Let f: [0, oo)x/?m->[0, oo) be continuous. Then the problem (1.1)-
(1.2) has a local solution for any given (α0, α1?..., αm_!)e/?m.

PROOF. We prove only the statement (i); the proof of (ii) is similar. We

transform the problem (1. !)-(!. 2) into the system of m second order equations

(1.3) Ly=f(t9y), t > 0,

(1.4) X0) = α, /(0) = 0,

where y = (y, Ly,...9 L^y\ /(f, y) = (Ly,..., L^ yj(t, y,..., L»-^)), α = (α0,
α1,...,αm_1) and 0 = (0, 0,...,0). It is easy to see that the problem (1.3)-(1.4)

is equivalent to the system of Integral equations

(1.5) y(t) = a + Γ 5 log (ί/s) ./(s, y(s))ds, t ^ 0, for n = 2,
Jo

(1.6) XO = α + (l-(s/0"-2)/(s,Xs))ds, t ^ 0, for n ̂  3.

In what follows we let a constant T>0 be fixed, put 1 = (1, 1,..., 1) and choose

M>0 so that

0 g /(ί, y)^MΛ for 0 ̂  t ̂  T, a £ y £ a + 1.
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Case I : n = 2, Let (C[0, 5])m, δ = mm {T, 1/M, e}9 be the Banach space of

all continuous m- vector functions on [0, $]. Define the set ^<=(C[0, <5])m and

the mapping &: <^-»(C[0, (5])m by

ΐ fe[0,

and

= a + s log (ί/s) -/(s, Xs))ds, t e [0, 5] .
Jo

Using the inequality

(1.7) s log (ί/s) ̂  ί/e for 0 ̂  s ̂  f,

we see that if y e W, then

α g ̂  v(0 ^ a + (tie) Γ M Ids ^ α + M <5 1 ̂  α + 1, ί 6 [0, 5] ,
Jo

which implies that J^j e ̂ . Therefore J5" maps <& into itself. It is easily verified

that & is continuous and that &<& is relatively compact by the Ascoli-Arzela

theorem. From the Schauder fixed point theorem it follows that & has a fixed

point ye&. This y = y(t) is a solution of (1.5), and hence the first component
y(t) of y(t) is a solution of the problem (1.1)-(1.2) on [0, <$].

Case //: n^3. Put <5 = min {T, 1/M, 1} and define (C[0, (5])m and ^ as in
Case I. Then, it can be shown that the mapping & defined by

ί e [0, 5] ,

is continuous and maps <%/ into a compact subset of .̂ A fixed point y E <%/ of
"̂ then gives a solution of (1.6), the first component of which is a solution of the

problem (1.1)-(1.2) on [0, <5]. This completes the proof.

The next result concerns the continuous dependence on initial values of solu-
tions of the problem (1 . 1 )-(! .2). It may be regarded as a variant of the well-known
theorem of Kamke for regular ODE initial value problems (see Coppel [1, p. 17]).

LEMMA 1.2. Letf be as in Lemma 1.1. Let (0$, αj[,..., α^.J, v = l, 2,..., be
a sequence of points 0/[0, oo)m or Rm converging to (α0, o^,..., αm_ι) as v->oo, and
let yv(t) be any noncontinuable solution of the equation (1.1) satisfying

(IΛy)(0) = αϊ, (W(0) = 0, 0 g i g m - 1, v ̂  1.

// f/ie solution y(t) of the problem (1. !)-(!. 2) /s defined on [0, Γ] and is unique,
then yv(t) is defined on [0, T]/or a// sufficiently large v and
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(1.8)

lira ί»-»(L'Λ)'(0 = f-'CWίO. 0 £ i g m - 1,
v-*oo

uniformly on [0, T].

PROOF. The proof is given only for the case that n = 2 and / is defined on
[0, oo)m+1, since the other cases can be treated similarly. We employ the same
vector notation as in the proof of Lemma 1.1; in particular, αv = (αg, αj[,..., α^_A),

yv(t) = (yv(t), Lyv(f)> > Lm"ίyv(t)). Let M be a constant satisfying

and put <5 = min{T, 1/(3M), e}. Choose an integer v0>0 so that 0^αv<^
MδΊ for v^v0. Then yv(t) exists on [0, δ~] and 0 ̂  >>v(i) < « + 3M<5 1 for te
[0, δ~\ if v^v0. In fact, if this is not true, then there exist t* e(0, <5], v^v0 and
je{0, 1,..., m — 1} such that

Vyv(t) < tXi + 3M(5, 0 ̂  ί < ί*, 0 g i g m - 1,

L^>v(ί*) = α, + 3M(5.

Using (1.7), we have

= α

Mas ^ α7 -h

where /,- denotes the j-th component of /(ί, >>). This contradiction shows that
yv(t) is defined on [0, <5] and satisfies 0 g yv(t) < a + 3M5-1 there if v^v 0 .
Moreover, the sequences {j\(0} and {y'v(t)} are equicontinuous on [0, £], since

and

?/(s, yv(s))ds

for t e [0, <5] and v ̂  v0. Let { yμ(t)} be any subsequence of {^w(ί)} By the Ascoli-
Arzela theorem and a well-known C^-convergence theorem, there exist a sub-

sequence (yμ(k)(i)} °f {yβ(f)} an(l a C1 m-vector function z(ί) on [0, (5] such that

and ty'μ(k)(t)-*tz'(t) as /c->oo

uniformly on [0, δ]. Letting k-^co in the equation
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JV<*)(0 = βμ(Λ) + £ ̂  log (t/s) f(s, yμ(k)(s))ds, t e [0, <5] ,

we obtain

*(0 = α + ί ' 5 log (ί/5) -/(s, z(s))ώ, ί e [0, 5] ,
Jo

which shows that z(ί) is a solution of (1.5) on [0, δ]. It follows that

on [0, <5] by uniqueness. Since {^(0) is an arbitrary subsequence of {yv(t)}9 we
conclude that the whole sequences {yv(i)}9 {y'v(i)} converge uniformly on [0, (5]

and their components satisfy (1.8) (π = 2) there.

To complete the proof it suffices to show that the maximal interval on which

(yv(t)} satisfies (1.8) is [0, T]. But this can be done exactly as in Coppel [1,

p. 18].

It is important to observe that not all local solutions of the problem (1.1)-

(1.2) can be continued to ί=oo. In fact, the solutions with sufficiently large

initial values αf are shown to blow up in a finite "time". To see this it is convenient

to consider differential equations with "quasi-derivatives", of which (1.1) is a

special case.

Let continuous functions qt: (0, oo)->(0, oo), Q^i^N, Λf^2, be given, define

the quasi-derivatives Di9 O^j^TV, by

D°y(t) '
and consider the equation

(1-9) DNy = g(t, D0y,

where g is a nonnegative continuous function on [0, co)N+1 or on [0, oo)xRN.

Motivated by Kiguradze and Kvinikadze [6], we say that equation (1.9) has the

blow-up property if for any t0>0 there exists a constant τ/(ί0)>0 such that any

solution y(t) of (1.9) satisfying

blows up in a finite time in the sense that

lim Djv-iX*) = oo

for some finite Ty> t0. In case g is defined on [0, oo) x RN, the blow-up property

of (1.9) implies that for any t0>Q and (δ0, δί9..., (5#_2)e RN~1 there exists a

constant η(tQ\ <50, δί9...9 δN_2)>0 such that any solution y(t) of (1.9) satisfying
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blows up in a finite time.

A sufficient condition for (1.9) to have the blow-up property is given in the

next lemma which is a generalization of a result of Kiguradze and Kvinikadze

[6, Theorem 1.1] for the equation y(N^ = g(t, y, /,..., y(N~^). The following
notation is used :

s; qi9...9 qt) = \
Js

i £ N.

LEMMA 1.3. Let g: [0, oo)N+1->[0, oo) be continuous. Suppose that there

is a nonnegative continuous function g*(t, MO, uί9..., M^^) on [0, oo)N+i which is

nonincreasing in t and nondecreasing in each ui9 O^i^N— 1, and satisfies

g*(t, MO,..., M j v_1)>0/or Σitb1 Mi>° and

g(t, MO, M!,..., f i j v- i ) ^ g*(t, MO, M I ? . . . , M N _ t )

/or (ί, MO,..., Mjy^^εCO, oo)N+1. For τ>0

hτ(t, U) =

'(ί' U) =

/or ί>τ and M^O. T/ien, equation (1.9) /ιαs ί/ie blow-up property if

<o° /orα// ί > τ > 0

PROOF. Let ί0>0 be fixed, choose τ, tί9 t2, such that τ<tQ<t1<t2, and put

mί = min q^t), mt = min _ , . { , 2 ̂  i ^ TV.

Let δ>0 and 77>0 be such that

(1.10)

and

(1.11) η^-— T .
-*JV-l l^l> ^Oί ίlv j ^N-l)

It is sufficient to show that any solution y(t) of the equation

(1.12) DNy =
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satisfying

(1.13)

blows up at some finite Ty^t2. Suppose to the contrary that this y(t) exists on

[ί0, ί2] In view of (1-13) we see that

and

g ί + 1 ί , τ; ίι,.

for 0 ̂  i ̂  N — 2. Therefore, we have

which combined with (1.12) shows that

DNy(t) ^ Λt(ί, D0XO), ί e [ί0,

We rewrite the above inequality as

multiply both sides by Dly(t) = (D0yy(t)/qί(t)9 and integrate it from ί0 to ί. We

then find

#ιXOAv-ιXO ^ Γ ?τί- ,̂ ΛoX^XDo^'ωώ ^ m.v f^0^, ιι)dιι,
Jίo Hι\s) Jo

or equivalently

ΓA>y(ί)
Dιy(t)(DH-2yy(t) ^ mj»«w-ι(ί) (̂ί, «)du, ί e [ί0, ίj .

Jo

Multiplying the above by D±y(t) and integrating on [ί0, ί], we get

C°oy(t)
(Dίy(i)YDN.2y(t) ^ mNmN^ί (D0y(t)-u)hτ(t, u)du, ίe [/0, /2] .

Jo

Continuing this process, we have

which leads to
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> t e ̂  ̂
It follows that

(1.14) (D0y)'(t) ^ m,(mr m»γi»Hτ(t, D0XO), t e [f0,

On the other hand, integration of DN_ly(t)^η yields

consequently, D^y^^^δ by (1.11). From this inequality, (1.10) and (1.14)

we obtain

τ π > f f T Γ T Π^tV^ί U) Jδ ttτ(t2, U)

This is a contradiction, and hence y(t) must blow up at some finite Ty^t2. This

completes the proof.

REMARK 1.1. The proof of Lemma 1.3 shows that the blow-up property is
determined only by the nonlinear structure of the function g(t, MO,..., W j y - i )
(not by the functions q^f) defining the quasi-derivatives).

EXAMPLE 1.1. The following equations have the blow-up property:

DNy =

DNy =

where ?;>!, ^.>0 are the ratios of odd integers and p, pt\ [0, oo)^ (0, oo) are

continuous functions, 0 ̂  i g N — 1 .

LEMMA 1.4. Let /(ί, u0, M!,..., um_ί) be nonnegative and continuous on
[0, oo)m+1 or on [0, oo)xRm and nondecreasing in each ui9 O^i^m — 1, and
satisfy limuo_oo/(i, MO, 0,..., 0)=oo /or each ί^O. Suppose that equation (1.1)

/ιαs ί/ie blow-up property. Then, any solution of the problem (1. !)-(!. 2) with

α^O, O^i^m — 1, b/0ws up in a finite time provided α0 is sufficiently large.

PROOF. By the blow-up property of (1.1) there exists a constant η>Q such
that any solution y(t) of (1.1) satisfying

^0, 0 ̂  i ̂  m - 1, (L'jOXl) ^0, 0 g i ̂  m - 2,

^ if,
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blows up in a finite time. Choose α0 > 0 so that

which is possible because lim^oo \ tn~lf(t, λ, 0,..., Q)dt=ao, and let y(t) be a
Jo

solution of (1. !)-(!. 2) with this choice of α0 and α^O, I g / ^ m — 1. It is clear

that Xί)^α0, L'XO^O, l^i^m-1, and (L^)'(ί)^0, O^ί^m-1, throughout

the interval of existence of y(i). If y(t) blows up before t= 1, there is nothing to

prove. So, we assume that j (ί) exists on [0, 1]. Then, integrating (1.1), we have

(L»-^)'(i) = f V'/α χo,
Jo

=
o

which implies the blow-up of y(t) at some finite point Ty> 1. Thus the proof of

Lemma 1.4 is complete.

EXAMPLE 1 .2. Consider the equations

(1.15) 4

(1.16) J

where 7f>l , <5j^l are the ratios of odd integers and p, /?,-: [0, oo)->(0, oo) are

continuous, O^ϊ^m — 1. From the above results it follows that (1.15) [resp.

(1.16)] has a unique local radial solution u(x) satisfying the initial condition

^ίιι(0) = αj, Ogigm-1, for every (α0, α l 5..., α w _ 1 )e [0, oo)m [resp. (α0, α l5...,

αm_1)e/?m], that u(x) depends continuously on αf, and that u(x) blows up at a

finite value of |x| if α^O, O^irgw — 1, and α0>0 is sufficiently large.

2. Existence of strongly increasing entire solutions

2.1. The purpose of this section is to study the existence of an entire solution

u(x) of (A) with the asymptotic property

(2.1) Urn "v '

(2.2)

We begin by introducing some notation which will be frequently used in the

discussions that follow. Let Φ and Ψ denote the integral operators
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φfc(ί) = sl'n rn~lh(r)drds, ί^O, n ^ 2,
Jo Jo

and

«PA(f) = Γ s1-" (S rn-^h(r)drds, t ^ 0, n > 3,
Jί Jo ~~

respectively. It is easily verified that Φ maps C[0, oo) into C2[0, oo) and satifises

LΦh(t) = h(t), ί^O, or JΦΛ(|x|) = fc(|jc|), xe/?«, if n ̂  2,

and that Ψ maps the subset of C[0, oo) consisting of all h such that \ t\h(t)\dt < oo
Jo

into C2[0, oo) and satisfies

LΨh(i)=-h(t\ ί^O, or ΔΨh(\x\) = - Λ(|x|), xeR", if n ̂  3.

It is sometimes convenient to rewrite Φh and Ψh as

(2.3) Φh(ί) = Γ s log (ί/s). h(s)ds, ί £ 0, for n = 2,
Jo

(2.4) Φh(t) = -~ {' s(l-(s/f)"-2)Λ(s)ds, ί ̂  0, for n ̂  3,
" z Jo

and

yfc(ί) = -^(C (s/t)n-2sh(s)ds + Γ sh(s)ds\ ί ̂  0, for n ^ 3w ^ V J o Jί /

(note that (2.3) and (2.4) are used in the proofs of Lemmas 1.1. and 1.2). We also
use the abbreviations:

P(n, 0 = ΠJ=ι [2(m-7'

(2.5) p(i) = p(2, i) = [2ί(m-l)(m-2). .(m-0]2,

/>(«, 0) = p(0) = 1.

Hypotheses on / will be selected from the following list.
(AJ /(ί, M0, M!,..., w m _ j ) is continuous and nonnegative on [0, oo)m+1,

nondecreasing in each w f, l^ i^m —1, and strictly increasing in MO. Moreover,
λ~lf(t, /IMO,..., Aw m _ 1 ) is nondecreasing in Ae(0, oo) and

limA-VO, AMO,..., AM m _!) = 0 for each (ί, MO,..., u m _ 1 )e [0, oo)m+1.
λ-»+0

(A2) /(ί, M0, u l5..., M m _!) is continuous and nonnegative on [0, oo)x/?m,
nondecreasing in each w ί? 1 ̂  i ̂  m — 1, and strictly increasing in MO. Moreover

lim/0, MO, 0,..., 0) = oo for each t ^ 0.
no-*00
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In case n = 2 the condition

lim /(f, M0,. ..,um-ι) = 0 foreach (r, w l 5 . . ., t^.^eCO, oo) x I?™-1

MO-*-OO

should be added.
(A3) For each t0>Q the initial value problem for the ordinary differential

equation

Lmy =/(ί, y, Ly,..., L"-^), t>t0,

with given initial values Uy^o), (L^)'(ί0), O^z^m — 1, at t0 has a unique (local)

solution.

(A4) The singular initial value problem

Lmy =/(*, }>, LJV.., L™-1);), t > 0,

has a unique (local) solution for each admissible (α0, α1?..., αm_ x).
(A5) The ordinary differential equation Lmy=f(t, y, Ly,..., Lm~1y) has

the blow-up property.

REMARK 2.1. The hypotheses (A3) and (A4) are satisfied if/(ί, w0,..., um_l)
is locally Lipschitz continuous with respect to ui9 O^z'^w — 1.

Basic to the proof of the main theorems (Theorems 2.1 and 2.2 below) are the
following lemmas ensuring the existence of entire solutions u(x) of (A) such that

(2.6) lim , ,2 "ffi , , = const e(0, oo) for n = 2,
' 1*1-00 |*|2m-2 log 1*1 v '

(2.7) lim , U.(*12 = const e(0, oo) for n ̂  3.
|x|-^oo 1*1

LEMMA 2.1. Let n = 2. Suppose that /satisfies either (AJ or (A2). If there
is a constant c>0 such that

(2.8) f °° ί/(ί, cί2m~2 log ί, cί2m~4 log f,..., c log ί)dί < oo,

then equation (A) has a radial entire solution u(x) satisfying (2.6).

LEMMA 2.2. Letn^3. Suppose that f satisfies either (AJ or (A2). If there
is a constant c>0 such that

(2.9) Γ ί/(ί, cί2w~2,
Jo

oo,
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then equation (A) has a radial entire solution u(x) satisfying (2.7).

In what follows <^m~1[0, oo) denotes the set of all functions y(t) such that

Lty(i), Og i^m — 1, are continuous on [0, oo). In particular (L'}>)'(0) = 0,

O ^ ΐ g m — 2, for any ye<gm~l\Q, oo). Clearly, <g7m~1[0, oo) is a Frechet space

with the topology induced by the seminorms

\\y\\τ =Σf=o 1 sup I
O ^ ί ^ T

PROOF OF LEMMA 2.1. We use the fact [7, Lemmas 3 and 4] that if we put

k(i) = max {1, t} and ΰ(t) = max {1, log t} ,

then

(2 10) Mi

and

0 ^ Φfc(f) ^ £(t) Γ k(t)h(t)dt,
Jo

(2.11)

0 ^ Φ^fc(ί) ^ M1-M7_1[k(0]2 /"2^(0 JJ k(t)h(t)dt, j = 2, 3,...

roo
for any nonnegative continuous function /ι(ί) on [0, oo) such that \ th(t)dt < oo.

Jo
Suppose that (At) holds. From condition (2.8) and the Lebesgue dominated

convergence theorem it follows that

lira r1 Γfe(ί)/(ί, A[fe(ί)]2 "- (̂ί), A[fc(ί)]2m

λ-^+o Jo

so that there is an α>0 sufficiently small such that

M1M2-Mill.l.1 Γ /c(0/(ί, α)dr g p(i>, 0 g i ^ m - 2,
Jo

where p(i) and Mt are defined by (2.5) and (2.10), and

/(ί, α) =/(ί, 3α[/c(0]2m-^(0, 3p(l)α[/c(0]2m-4^(0,..., 3p(m

Let ̂  be the set of all y e <^m~1[0, oo) satisfying the inequalities

0 ^ L'XO ^ 3p(0α[fe(0]2m~2ί~2^(0) 0 g i g m - 1,

for ί^O and define the mapping &\ -̂̂ "̂ [O, oo) by
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(2.12) &y(i) = a(l + t2m-2) + Φm/( , y, Ly,..., Lm~ly)(t\ t ^ 0.

Noting that

= p(ι)at2m-2i-2 + #*-'/(. , y, Ly,..., L^XO, 1 ̂  ί ̂  wi - 1,

and using (2.10) and (2.11) (with Λ=/), we see that .F is continuous and maps
<& into a compact subset of <&. Therefore, by the Schauder-Tychonoff fixed
point theorem, & has a fixed element y e ̂  in particular

(2.13) y(t) = *(\ + t2m-2) + Φ™f(.,y,Ly,...,L™-iy)(i), ί^O.

Differentiation of (2.13) shows that the function w(x) = X|x|) is a radial entire
solution of (A) in R2. That u(x) has the asymptotic property (2.6) is a conse-
quence of the relation

Ϊ = ί/(ί' *'>• L*'> -
which follows from LΉospitaΓs rule.

Suppose next that (A2) holds. Let b e (0, c] be fixed and put

rc»

Using the condition limu _,_oo/(ί, ιι0> «ι> > Mm-ι) = °» we obtain l im α __αo \ fc(0
Jo

•/(ί, α, b)dt = Q, and so there is an α<0 such that

M1M2 M m _ ί _ 1 Γfe(0/0, α, fc)dί ̂  ft, 0 ̂  i ^ m - 2.
Jo

Then, proceeding as in the case of (Ax), it can be shown that the mapping defined
by (2.12) has a fixed element in the set <& consisting of all y e <^m"1[0, oo) such that

p(ϊ)αί2w-2/-2 ^ L'Xί) ^ 6[fe(ί)]2m"2<"2^(0ί 1 ̂  i ^ m - 1,

for ί^O. This fixed element ^ gives rise to a radial entire solution u(x) = X|x|) of
(A) having the property (2.6). This finishes the proof.

PROOF OF LEMMA 2.2. We only consider the case where (A2) holds, since
the case (Aλ) was treated by Kusano, Naito and Swanson [8, Theorem 4], who
showed that equation (2.13) has solutions for sufficiently small α>0. Let b be
any constant such that Q<b^c/p(n, m — 1), and put
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=/(ί, bt2™-2, bp(n, I)*2"1'4,..., bp(n, m-1)).

In view of (2.9) the operator Ψ is applicable to /. Define <& to be the set of all

yE^m~l[09 oo) satisfying for ί^O

bp(n, Ϊ)t2m-2i~2 - Φm-^ψJ(t) ^ Vy(i) ^ bp(n, J)ί2m~2ί~2, 0 g ΐ g m - 1.

It is a matter of simple computation to check that the conditions of the Schauder-

Tychonoίf fixed point theorem are satisfied by the operator

= bt2m~2 - Φm~lΨf(-,y, Ly,..., Ln~ly)(t\ t ̂  0,

defined on <& . A fixed point y e& of & is a solution of the integral equation

y(t) = bt2m~2 - Φm-ιψf(.,y, Ly,..., Lm"ly)(t), t ̂  0.

Since, by LΉospital's rule, Φm~lΨf(', y, Ly,..., Lm-1

<y)(0/ί2m~2->0 as f->oo, the

function u(x) = y(\x\) gives an entire solution of (A) satisfying (2.7): lim^^co w(x)/

\x\2m~2 = b. This completes the proof.

REMARK 2.2. The proofs of Lemmas 2.1 and 2.2 show that the entire

solutions u(x) = y(\x\) obtained for the case (Ax) are positive throughout Rn.

We are now in a position to state and prove the main results of this paper.

THEOREM 2.1. Let n = 2.

(i) Suppose that f satisfies {(AJ, (A3), (A4), (A5)}. // (2.8) holds for all

c>0, then equation (A) has a positive radial entire solution u(x) satisfying (2.1).

(ii) Suppose that f satisfies {(A2), (A3), (A4), (A5)}. // (2.8) holds for all

c>0, then equation (A) has an eventually positive radial entire solution u(x)

satisfying (2.1).

THEOREM 2.2. Let

(i) Suppose that f satisfies {(At), (A3), (A4), (A5)}. // (2.9) holds for all

c>0, then equation (A) has a positive radial entire solution w(x) satisfying (2.2).

(ii) Suppose that f satisfies {(A2), (A3), (A4), (A5)}. // (2.9) holds for all

c>0, then equation (A) has an eventually positive radial entire solution u(x)

satisfying (2.2).

Consider the initial value problem for the equation

(1.1) Lmy =f(t, y, Ly,..., Lm-ly), t > 0,

with singular initial conditions of the type

y(0) = α, Z/XO) = 0, 1 ̂  i ^ m - 2, L^yφ) = p(n, m- l)α,

α (L'̂ )'(0) = 0, 0 g i ̂  m - 1,
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where α is a real constant (in case m = l, (1.2)α means that X0) = α and j/(0) = 0).

Under hypothesis (AJ [resp. (A2)] the problem (l.iχi.2)β has a local solution

ya(f) for any α>0 [resp. αe/?] (see Lemma 1.1). From Lemma 1.2 it follows
that under hypotheses {(AJ, (A3), (A4)} [resp. {(A2), (A3), (A4)}] the solution

yΛ(t) of (1. !)-(!. 2)α is unique and depends continuously on α>0 [resp. αe/?].

Integrating (1.1) and using (1.2)α, we see that yΛ(f) satisfies the integro-diίferential

equation

yΛ(t) = α(l + ί2--^) + Φ-/( , yΛ, Lya9...9 L^

on its interval of existence. Note that this is the same as (2.13).

The following simple comparison principle for the solution of (1. !)-(!. 2)α will
be used in the proofs of Theorems 2.1 and 2.2.

LEMMA 2.3. Suppose that / satisfies either (AJ or (A2). Let yΛ(t) and yβ(t)

denote, respectively, solutions of the problems (l.l)-(1.2)α and (1.1)-(1.2)^ defined
on [0, Γ), T>0. //α<β, then

(2.14) UyΛ(t) < Vyβ(t\ (UyJ(t) < (L^)'(O, 0 £ ί £ m -

/or ί 6(0, T).

PROOF. We first show that

(2.15) L»-^β(0 < L™

for re(0, Γ). Since Lm~lyJ$i) = p(n, m- l)α<p(n, m-l)]9 = Ll"-1^(0), (2.15)
holds for all sufficiently small ί>0. Suppose that 'Lm"1yol(t)'^Lm''iyft(t) for some

1 6 [0, T). Then, there is ^ e (0, T) such that

(2.16) Lf*-ίya(f)<L'*-1yfi)9 te(09 t,\ Lm^yΛ(t,) = L

whence we have

(2.17) L^α(0 ^ L^(f), ίeCO.ίJ, 0 ̂  i g m - 1,

and

(2.18) (L- -^Jίίi) έ (L--1^) !̂) .

From (2.16H2.18) and (1.1) it follows that

0 ^ (L-VJ'Ci) - (L^yϊM

= Γ

Jo
0,

where the monotonicity of /(ί, MO, ...,«,„_!), in particular the strict increasing

nature with respect to w0, has been used. This is a contradiction, and so (2.15)
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must hold for f e(0, T), and repeated integration of (2.15) shows that (2.14) holds
on (0, T) except for the last inequality with i = m — 1 . But this follows immediately
from the relation

f(s,yε(s^^ ε = α or ft

and the monotonicity of/. This completes the proof.

REMARK 2.3. Suppose that (Ax) or (A2) holds. Let a<β and let yΛ(t) and
yβ(f) be solutions of (1. !)-(!. 2)α and (1. !)-(!. 2)β, respectively. If yβ(f) exists on
[0, T), then ya(i) also exists on [0, T) and satisfies (2.14) there.

PROOF OF THEOREM 2.1. Our idea of the proof is to find an appropriate
value of α for which the solution yΛ(i) of the problem (l.l)-(1.2)α exists on [0, oo)
and has the desired asymptotic behavior as ί->oo.

(i) We define the subsets A, B of (0, oo) by

A = {αe(0, oo): yΛ(t) exists on [0, oo) and t(Lm~ίya)
r(f) is bounded on [0, oo)},

B = {αe(0, oo): yΛ(t) blows up in a finite time} .

According to the proof of Lemma 2.1, for any sufficiently small α>0, there exists
a solution y(t) of the integro-differential equation (2.13) on [0, oo), which clearly is

a solution of the problem (1. !)-(!. 2)α on [0, oo) satisfying lim,^ y(t)/t2m~2 log t =
const >0. This shows that A is not empty and contains an interval of the form
(0, α0). Hypothesis (Ax) implies that limαo _>«,/(*, w0, 0,..., 0)=oo for ί^O,
and by Lemma 1.4 the solution of (1. !)-(!. 2)α blows up in a finite time provided
α>0 is sufficiently large. Hence B contains an interval of the form (αl9 oo).

In view of Lemma 2.3 we see that if α e A and β e B9 then α<β, so that 0<

sup A ̂  inf B < oo . We claim that

(2.19) inf B <£ B and sup A £ A.

Put β* = inf B and suppose that β* e B. Since yβ+(i) blows up in a finite time,

there is T, 0< T< oo, such that limf_Γ-ί(Lm~1j;/JJ'(ί)= °° Because of (A5) there
is a constant f/(T)>0 such that any solution y(i) of (1.1) satisfying

Vy(T} ^ 0, 0 ̂  i ̂  m - 1,
(2.20)

blows up at some finite point Ty>T. Let ε>0 be small enough so that (T— ε)

(Lm~1yβφ)'(T-ε)>η(T). Hypotheses (A3) and (A4) enable us to apply Lemma 1.2

to infer that if β<β* is sufficiently close to β*, then yβ(t) exists on [0, T— ε] and
satisfies (T-ε)(Lm-1^)/(T-ε)>f/(Γ). If j ί̂) blows up before Γ, then βeB,

which contradicts the definition of β*. Therefore yβ(t) exists on [0, T]. Since

i/y^O, fOL^yίOί O^ϊ^m — 1, are nondecreasing, y — yβ(t) satisfies (2.20) and
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so blows up at some finite point to the right of T. This is also a contradiction and

completes the proof of β*£B.

Now put α* = suρA and suppose that a*eA. Then yα*(0 exists on [0, oo)

and satisfies lim,^ t(Lm~ly^y(ή = λ for some constant λ >0. Let K be a positive

constant such that

L^α*(l) < K, 0 ̂  ί ^ m - 1, (L'jvXίl) < £, 0 ̂  i g m - 2,

and define

o < i < m - 2_ / _ i)i]2 U S i S m 2 ,

From condition (2.8) for all c>0, there exists tί>l such that

(2.21) Γ ί/(ί, k0(0, MO,-, fe,H-ι(0)Λ < λ.
J f i

By Lemma 1.2, if α>α* is sufficiently close to α*, then jα(ί) exists on [0, ίj and
satisfies

Llya(l) < K, 0 ̂  i ̂  m - 1, (L^α)Xl) < K, 0 ̂  i ̂  m - 2,

ί(L--Vα)'(0 < Λ O^tZti.

It will be shown that such a ^α(ί) can be extended to ί=oo and satisfies

(2.22) l(Lm-lyΛ)'(t) < 2λ for t ^ 0.

In fact, if this is not true, then there is t2 > ̂  such that

t(L"-iyJ(t) <2λ, 0 g t < t29 t2(L»-*yJ(t2) = 2λ.

Integration of (1.1) on [ίx, t2~] yields

2λ = t2(L»-1ya)'(t2)

(2.23) = t^-iyJM

On the other hand, successive integration of the inequality (Lm~lya)'(i)^2λlt9

I£t£t2, shows that

UyΛ(t) ^ /cf(0, 0 ̂  ΐ ^ m - 1, I £ t £ t2,

which combined with (2.21) and (2.23) leads to a contradiction:
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2A.

Therefore, yα(ί) must exists on [0, oo) and satisfy (2.22). But this shows that
α e A, contradicting the definition of α*. Thus we conclude that α* ̂  A.

Now consider the interval [sup A, inf β], which is not empty because of (2.19)
(it may reduce to one point). It is easily seen that for any α e [sup A, inf 5] the

solution yΛ(t) of the initial value problem (1. !)-(!. 2)α exists throughout [0, oo) and

has the asymptotic property lim^α, yΛ(t)/t2m~2\ogt=ao. The function M(X) =

yα(|x|) then gives a positive radial entire solution of equation (A) satisfying (2.1).

(ii) Define

A = {α e R: ya(t) exists on [0, oo) and ί(Lm-Vα)'(0 is bounded on [0, oo)} ,

B = {α e R : ya(t) blows up in a finite time}.

From the proofs of Lemmas 2.1 and 1.4 it follows that A contains an interval
(—00, α0), α0<0, and B contains an interval (αl5 oo), αx >0. Lemma 2.3 implies
that — oo < sup ^4 g inf B<oo. That sup A £ A is proved exactly as in (i). It

remains to prove that β* = infB£B. Suppose to the contrary that β*eB. Let

ά e A be fixed. Obviously α< /?*. Let Γ>0 be the time at which yβj(t) blows up.
In view of (A5) there exists a constant η>Q such that any solution y(t) of (1.1)
satisfying

L'XΓ) ^ L'>5(Γ), 0 g i ̂  m - 1,

(2.24) T(L'jO'(T) ^ T(L^)'(T), 0 ̂  i ̂  m - 2,

blows up in a finite time. Take a small ε>0 such that

-e) > ly.

If α e (α, j?#) is sufficiently close to /?*, then by Lemma 1.2 ya(t) exists on [0, T— ε]

and satisfies

Such a yα(0 blows up in a finite time, because if it exists on [0, T], then y = yΛ(t)

satisfies (2.24). But this contradicts the definition of /?*, and hence inf B £ B.

To each αe[sup^4, inf B} there corresponds an eventually positive entire

solution u(x) = yΛ(\x\) which satisfies (2.1). Thus the proof of Theorem 2.1 is

complete.

PROOF OF THEOREM 2.2. (i) We now define A and B by
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A = {αe(0, oo): ya(t) exists on [0, oo) and Lm~lyΛ(f) is bounded on [0, oo)},

B = {α e (0, oo) : yΛ(t) blows up in a finite time} .

Proceeding exactly as in the proof of Theorem 2.1, we can show that A ̂ 0,
0<sup^4^infB<oo and infB^ B (the proof of A^0 is based on Lemma 2.2).
It remains to show that sup A φ. A.

Suppose that α* = sup^e^. Clearly the limit λ = limf_>00L
m~1^α,(ί) is finite

and positive. Let μ>0 and α>α* be fixed and define

Π -|_ MW2(m-i-l )

1 - ' - m ~ 2'

Choose tl >0 so large that

(2.25) Γ (' (-f Y'Vίs, Ms), MS),-, /cm- ι(s)MsΛ < μ,
Jίi JO \ * /

which is possible because of (2.9). If α 6 (α*, α) is sufficiently close to α*, then by
Lemma 1.2 yα(ί) exists on [0, ίj and satisfies Lm~lyΛ(t)<λ on [0, ίj. This yΛ(t)
is shown to exist on [0, oo) and satisfies Lm~lya(t)<λ + μ there. In fact, if this is
not the case, there exists t2 > ti such that

Lm-iyΛ(t) < λ + μ on [0, ί2) and L1""1^^) = ^ + μ

(note that if yΛ(t) blows up at some finite T, then L"1"1}̂ )-* oo as ί-> T"). Then,
integrating the above successively, we have VyJ^^k^t), tε [0? ί2], O^i^m — 1,
so that from (1.1) and (2.25), we find

λ + μ = L^ya(t2)

Γ (' (±]"~lf(s, /c0(s),
J r i Jθ\ t /

This contradiction shows that yα(ί) exists on [0, oo) and satisfies Lm~ίyιx(t)<λ + μ
there, implying that α e A But this contradicts the definition of α* and it follows
that a* =

(ii) Let A and 5 be the sets defined by

A = {αel?: yα(f) exists on [0, oo) and L"1""1)^*) is bounded on [0, oo)},
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B = {α e R : yΛ(f) blows up in a finite time} .

The proof of Lemma 2.2 ensures, for any b e R, the existence of a solution of (1.1)

on [0, oo ) obtained as a solution of the integro-differential equation

(2.26) y(t) = bt2m~2 - Φ

Noting by (2.26) that

L'XO) = 0, 0 ̂  i ̂  m - 2,

L--V(O) = P(n, m-l)b - Ψf( , y,...,

Lm~ly(f) -> p(n, m — 1)6 as ί->oo,

and applying the same argument as in the proof of Lemma 2.3, we infer that, for

all α<0 sufficiently close to — oo, the solutions yΛ(f) of (1. !)-(!. 2)α exist on [0, oo)

and have bounded derivatives Lm~lyΛ(i) on [0, oo). It follows that A=£0. The

relation sup A £ A is proved exactly as in the proof of (i). It can also be shown that

and inf B £ B. This completes the proof.

2.2. In this subsection we will strengthen Theorems 2.1 and 2.2 by showing

that under the conditions of these theorems equation (A) possesses a radial entire

solution u(x) satisfying

(2.27) lim . I2 "ffi , , = a for n = 2,
Ixl-oo \x\2m~2 log 1*1

(2.28) lim , ",ffi 2 = a for n > 3,
V ' |x|-oo \X\2m~2

for any prescribed value of α>0. In fact, we can prove the following theorems.

THEOREM 2.3. Let n = 2.

(i) Under the hypotheses {(AJ, (A3), (A4), (A5)}, if (2.8) holds for all

c>0, then, for any given αe(0, oo], equation (A) has a positive radial entire

solution u(x) satisfying (2.27).

(ii) Under the hypotheses {(A2), (A3), (A4), (A5)}, if (2.8) holds for all

c>0, then, for any given 0e(0, oo], equation (A) has an eventually positive

radial entire solution u(x) satisfying (2.27).

THEOREM 2.4. Let n ̂  3.

(i) Under the hypotheses {(A^, (A3), (A4), (A5)}, if (2.9) holds for all

c>0, then, for any given αe(0, oo], equation (A) Λαs α positive radial entire

solution u(x) satisfying (2.28).

(ii) Under the hypotheses {(A2), (A3), (A4), (A5)}, if (2.9) holds for all

c>0, then, for any given αe(0, oo], equation (A) /ιαs an eventually positive
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radial entire solution u(x) satisfying (2.28).

Since the above results are true for a — oo by Theorems 2.1 and 2.2, we need
only to examine the case where a > 0 is finite. The following theorems will suffice
for our purpose.

THEOREM 2.5. Let n = 2.

(i) Under {(Aj), (A3), (A4), (A5)}, if (2.8) holds for some c>0, then,
for any a e(0, c/p(m — 1)], equation (A) has a positive radial entire solution

u(x) satisfying (2.27).

(ii) Under {(A2), (A3), (A4), (A5)}, if (2.8) holds for some c>0, then,
for any αe(0, c/p(m — 1)], equation (A) has an eventually positive radial entire
solution u(x) satisfying (2.27).

THEOREM 2.6. Let n^3.

(i) Under {(AJ, (A3), (A4), (A5)}, if (2.9) holds for some c>0, then,
for any αe(0, c/p(n, m —1)], equation (A) /zαs α positive radial entire solution
u(x) satisfying (2.28).

(ii) Under {(A2), (A3), (A4), (A5)}, if (2.9) holds for some c>0, then,
for any a e (0, c/p(n, m — 1)], equation (A) /ιαs an eventually positive radial entire
solution u(x) satisfying (2.28).

PROOF OF THEOREM 2.5. (i) Let ya(t) denote the solution of the problem

(l.l)-(1.2)α and define the sets A and B as in the proof of Theorem 2.1-(i). It is
clear that ^4 = (0, α*) or A = (0, α*] for some finite α*>0 (the second possibility

is not excluded because (2.8) is assumed to hold for some c>0). For α e A

define j2?(α) by

Γ°°o£?(α) = lim t(Lm~1yay(t) = \ tf(t9 yΛ(f), LyΛ(t),...9 Lm~1ya(t))dt.

Then the function J$?: v4->(0, oo) is continuous and strictly increasing. The

increasing nature of 3? follows from Lemma 2.3. To prove the continuity let
α, α0 e A and α-»α0. Take OLI e A so that α0^αx and α^αx for α sufficiently close

to α0. Note that

/(ί, yΛ(t\ Lya(t),..., L»-V.(0) ^/(ί, Λ,(0, ̂ (ί),-, ̂ --̂ .,(0)

for ί^O, and that Uy^-^Uy^i) as α-^ α0 pointwise on [0, oo) by Lemma 1.2.
Γ°°

By \ ί/(ί, }> (f)» > L1""1^ (ί))Λ<oo, the Lebesgue dominated convergence
Jo

theorem shows that

lim = lim Γ tf(t9
α-*αo JO

= tf(t,
Jo
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implying the continuity of &.
Since, for a radial entire solution u(x) = y(\x\) of equation (A), lim^^ y(f)/

ί2 m~2logί = α if and only if limf_>oo t(Lm~1y)f(t) = p(m — l)α, the proof will be
complete if we show that the range of & contains the interval (0, c]. Since
limα_^0j^(α) = 0 by the proof of Lemma 2.1, it is sufficient to show that 3?(&)~^.c
for some oceA.

We first consider the case A = (Q, α*). By the definition of A and B9 we
see that yα*(ί) exists on [0, oo) and \imt^aQt(Lm~1y^y(t)=co. There is tί>0
such that ί1(Lm~1yα*)'(ί1)>c, and so tl(Lm~1yJ(t1)>c provided αe(0, α*) is
sufficiently close to α*. In view of the increasing nature of t(Lm"1ya)

r(t) we

obtain lim^oo ί(Lm~1^α)'(Oe(c? °°)» showing that j£?(α)>c. Therefore (0, c]c
&(A) (as a matter of fact, we have «£?(/!) = (0, oo) in this case).

Next we consider the case ^4 = (0, α*]. Suppose that the assertion fails
to hold. Then, there exists c* e (0, c) such that Jδ?(α*) = c*. Put 2<5 = c - c* > 0,
let K > 0 be a constant such that

L'jvCl) < X, 0 ̂  i ^ m - 1, (ί/}v)'(l) < X, 0 ̂  i ^ m - 2,

and define the functions /cf(ί) by

2 - " - 2 ' - 2 * 0 < ί < m 2

' ° = l - m ~ 2'

Choose t2 > 1 large enough so that

By Lemma 1.2, if α>α* is sufficiently close to α*, then yx{i) exists on [0, ί2] and
satisfies

I/Λ(1) < K, 0 g i ̂  m r- 1, (LfjJ'(l) < K, 0 g i ̂  m - 2,

KL -'yJ'ίO < c* for ίe[0, f2].

We claim that this j>a(f) exists on [0, oo) and satisfies

(2.29) ί(Lm-lyay(t) < c* + δ, t^O.

If we assume to the contrary that there is (3 > ί2 such that

tL -iyJtί) <c* + δ, Q^t<t3, t3(L«-1yJ(t3) = c* + δ,

then, we have L'j;α(f)^fcj(f)» I^ί^ί3, O^z'^m — 1, by integrating the above
inequality, and furthermore from (1.1) we find
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c* + δ = t3(L^yJ(t3)

= t2(L^yJ(t2) + Γ3 f/(ί, Λ(0,. , L^yΛ
J*2

< c* + Γ tf(t, k0(t),..:9 k^^dt < c* + δ.

This contradiction implies the truth of (2.29). This, however, leads to a con-
tradiction that there is an α > α* = sup A which belongs to A. It follows therefore
that &(A) contains (0, c].

(ii) It suffices to repeat the same arguments as above by replacing the sets A
and B by the ones used in the proof of Theorem 2.1-(ii). Clearly, A is of the
form (—00, α*) or (—00, α*], and use of the fact that lim^.^ «^(α) = 0, which
follows from the proof of Lemma 2.1, easily establishes the desired assertion.

PROOF OF THEOREM 2.6. (i) Define the sets A and B as in the proof of
Theorem 2.2-(i). From Lemma 2.2 A is not empty, and it is clear that A = (Q, α*)
or v4 = (0, α*] for some finite α*>0. Here we define the function
to be

= lim L»-^β(0 = P(n, m- l)α -
n &

Then, arguing as in the proof of Theorem 2.5-(i), £?(&) is shown to be continuous
and strictly increasing on A. Since, for a radial entire solution u(x) = y(\x\) of
equation (A), lim^oo y(t\/t2m~2 = a if and only if limt^00L

m~ίy(ή = p(n, m-l)α,
it is sufficient to show that the range of 3? contains the interval (0, c]. From
Kusano, Naito and Swanson [8, Theorem 4], it follows that limα^0 o£?(α) = 0.
We only consider the case A = (Q, α*], because the case A = (0, α*) is treated as
in the proof of Theorem 2.5-(i).

Suppose that the conclusion of the theorem fails. Then there exists c* e (0, c)
such that J^(α*) = c*. Put 2δ = c - c* > 0, and let α > α* be fixed. Define

Ki<m-2
= = '

Choose tί >0 so large that

Γ Γ (r)""1 '̂ fco(s)'-' km-ι(Wsdt < δ.
Jfi Jo \ ί /

By Lemma 1.2, for any αe(α*, α) sufficiently close to α*, yΛ(t) exists on [0,
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and satisfies Lm~ίyΛ(t) < c* there. Arguing as in the proof of Theorem 2.2-(i), we

conclude that this yΛ(t) exists on [0, oo) and satisfies Lm~1yΛ(t)<c* + δ for
This contradicts the definition of α*, α* = supA

(ii) This statement has been proved in Lemma 2.2.

EXAMPLE 2.1. Consider the equation

(2.30) ^mι* = ΣΓ=o1Pι(

where yt > 1 and pt : [0, oo)-»(0, oo) is continuous, 0 ̂  i ̂  m — 1 . The correspond-
ing ordinary differential equation is

Lmy = Σΐ=olpM(Lίyγi, t>0,

for which the hypotheses {(Aj), (A3), (A4), (A5)} are clearly satisfied. Conditions

(2.8) and (2.9) reduce, respectively, to

(2.31) Γ f ι+2yι(»-ι-D (log f)^Pi(i)dt < oo, 0 g i ̂  m - 1,

and

(2.32) (°° t^^-i-Vpάfidt < oo, 0 ̂  i ̂  m - 1.
Jo

Theorems 2.3 and 2.4 imply that:

(i) if n = 2 and (2.31) holds, then (2.30) has a positive radial entire solution
w(x) satisfying (2.27) for any given a e (0, oo]

(ii) if nΞ>3 and (2.32) holds, then (2.30) has a positive radial entire solution
w(x) satisfying (2.28) for any given a e(0, oo].

EXAMPLE 2.2. Next consider the equation

(2.33) Δmu = p(\x\)eu, x e Rn,

where p: [0, oo)-»(0, oo) is continuous. Conditions (2.8) and (2.9) for the corre-
sponding ordinary differential equation Lmy = p(t)ey read

S oo
tp(ί) exp (ct2m~2 log ί)dt < oo,

and

(2.35) Γ tp(f) exp (ct2m~2)dt < oo,
Jo

respectively, and we have the following statements from Theorems 2.3-2.6.
(i) Let n = 2. If (2.34) holds for some c>0, then (2.33) has an eventually

positive radial entire solution u(x) satisfying (2.27) for any given α e (0, c/ρ(m — 1)].
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If (2.34) holds for all c>0, then (2.33) has an eventually positive radial entire
solution u(x) satisfying (2.27) for any given a e(0, oo].

(ii) Let n^3. If (2.35) holds for some c>0, then (2.33) has an eventually

positive radial entire solution w(x) satisfying (2.28) for any given a e(0, c/p(n9 m —

1)]. If (2.35) holds for all c>0, then (2.33) has an eventually positive radial entire

solution u(x) satisfying (2.28) for any given a e(0, oo].

3. Second order equations without radial symmetry

We have so far been concerned with radial entire solutions of equation (A)
which is radially symmetric. The results obtained in the preceding section seem to
be new even when specialized to the second order case, i.e.,

(3.1) Au=f(\x\9u)9 xeR».

The purpose of this section is to proceed further and show that our results for (3.1)
can be applied, with the aid of the supersolution-subsolution method, to establish
the existence of strongly increasing entire solutions (not necessarily radial) for
second order equations without radial symmetry of the form

(3.2) Au = g(x9u)9 xeRn.

We refer to the paper [25] for closely related results concerning the exterior Diri-

chlet problem for equations of the form (3.2).

Hypotheses required for (3.2) are as follows:

(Bx) g(x9 u) is a positive locally Holder continuous (with exponent θ e (0, 1))

function on Rn x (0, oo) which is strictly increasing in u for any x e Rn.

(B2) There exist positive locally Holder continuous (with exponent θ) func-
tions g*(t9 u) and g*(t9 u) on [0, oo) x (0, oo) such that

g*(\x\, u) ̂  g(x9 u) ̂  g*(\χ\, u) for (x, u) e R» x (0, oo).

Moreover g*(t, u) and g*(t9 u) satisfy the hypotheses {(AJ, (A3), (A4), (A5)} (with
m = 1 and/=#*, #*) given in Section 2.

(B3) g(x9 u) is a positive locally Holder continuous (with exponent θ)
function on Rn+ί which is strictly increasing in u for any x e Rn.

(B4) There exist positive locally Holder continuous (with exponent θ)

functions g*(t, u) and g*(t9 u) on [0, oo) x R such that

gM u) ̂  g(x9 u) ί g*(\x\, u) for (x, u) e R"+*.

Moreover g*(t9 u) and g*(t9 u) satisfy the hypotheses {(A2), (A3), (A4), (A5)} (with
m = l and/=0*, g*) given in Section 2.
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We begin by stating an existence result on which the supersolution-subsolution
method is based.

LEMMA 3.1. Let g(x, u) be locally Holder continuous (with exponent ΘG
(0, 1)) on /?"x(0, oo) or Rn+l. If there exist functions v, w e C f f c

θ ( R n ) such
that

(3.3) Λv(x) ^ g(x, t (x)), xeR»9

(3.4) Aw(x) ^ g(x, w(x)), x e Rn,

(3.5) w(x) g v(x\ xeR",

then equation (3.2) has an entire solution ueC^c(Rn) satisfying w(x)^u(x)^
v(x) throughout Rn.

For the proof of this lemma see Noussair and Swanson [20]. A function v(x)
[resp. w(x)] satisfying (3.3) [resp. (3.4)] is called a supersolution [resp. sub-
solution] of equation (3.2).

Our first result concerns the existence of entire solutions u(x) of (3.2) having
the prescribed limits lim^i^ w(x)/log |x| for n = 2, and lim^i^oo u(x) for n^3.

THEOREM 3.1. Let n = 2.
(i) Suppose that (Bt) and (B2) hold. If

(3.6) (" tg*(t, c\ogt)dt < oo

for some c>0, then, for every αe(0, c], equation (3.2) has a unique positive
entire solution u(x) satisfying

(3.7) lim ^^-r = a.
|x|-oo log I*)

(ii) Suppose that (B3) and (B4) hold. If (3.6) holds for some c>0, then,
for every a e(0, c], equation (3.2) /ιαs α unique eventually positive entire solution
u(x) satisfying (3.7).

THEOREM 3.2. Let n^3.
(i) Suppose that (BJ and (B2) ΛoW. //

(3.8) Γ tg*(t, c)dt
Jo

< 00

for some c>0, then, for every αe(0, c], equation (3.2) ftαs α unique positive
entire solution u(x) satisfying
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(3.9) lim n(x) = a.
|x|^oo

(ii) Suppose that (B3) and (B4) hold. If (3.8) holds for some c>0, then,

for every a e(0, c], equation (3.2) has a unique eventually positive entire solution

u(x) satisfying (3.9).

PROOF OF THEOREM 3.1. (i) (Existence) Let 0e(0, c] be fixed arbitrarily.

By (i) of Theorem 2.5 there exist positive functions y, z e C?^?[0, oo) which satisfy

(3.10) LXO = </*(*, XO), t > 0; /(O) = 0,

(3.11) iimZiiI= f lV ' ,->oolθgί

and

(3.12) Lz(f) = 0*(f, z(0), * > 0 ; z'(0) = 0,

(3.13) iim*(0_ = fl,v y f-,oo log ί

respectively. It is clear that t;(x) = X|x|) is a supersolution of (3.2) and w(x) =

z(|x|) is a subsolution of (3.2). We shall show that z(ί) ̂  y(t) for ί ̂  0. To prove

first that z(O)^XO), we assume the contrary: z(0)>χθ). Then, the argument of

the proof of Lemma 2.3 shows that z(ί)>XO for ί^O. By (3.10) and (3.12) we

then have

The right hand side of the above is clearly bounded away from zero for all f ̂  1,

whereas the left hand side tends to zero as f->oo because of (3.11) and (3.13).

Therefore we must have z(O)^χθ). Suppose now that z(ί1)>Xί1) for some

tί >0. Let Te [0, ίt) be the first point at which Xί) = z(ί), and choose t2e(T, t^

so that z(t2)>y(t2) and z'(t2)>y'(t2) Then, z(ί)>XO for t^t2 (see Lemma 1
of [25]). Again from (3.10) and (3.12) we have

ί[z'(0-/(0] = t2lz'(t2)-y'(t2y] + Γ s[0*(s,
Jt2

which is a contradiction since f[z'(ί) — /(ί)]-*0 as ί->oo. We therefore conclude

that z(ί)^XO> t = Q> as desired. From Lemma 3.1 it follows that equation (3.2)
possesses an entire solution u(x) satisfying z(|x|)gu(x)^X|x|) in R2. The

asymptotic behavior (3.7) of tφc) is a consequence of (3.11) and (3.13).

(Uniqueness) Let u^x) and u2(x) be positive entire solutions of (3.2) satisfying

the same condition (3.7). We distinguish the two cases: (a) u1(x) — u2(x) is of



Semilinear elliptic equations 203

constant sign throughout R2\ and (b) uί(x) — u2(x) changes sign in R2.
Case (a). We may suppose that u1(x)^u2(x) in R2. Since

A(ul(x)-u2(x)) = g(x, iiiίx)) - g(x, ιι2(x)) ^ 0, x e R2,

and

ul(x)-u2(x)
^̂

_
•'••'•ill ι i I — 11111 ι i
l*ι-κ> log|x| i^oo log |

we see from a Liouville type theorem (Protter and Weinberger [22, p. 130]) that
MI(X) — u2(x) = C in R2 for some constant C. This constant C must be zero,
because

0 = Δ(uί(x)-u2(x)) = g(x, w2(x) + C) - g(x, w2(x)), xe/? 2,

and g(x, u) is strictly increasing in u. Thus uί(x) = u2(x) in R2.
Case(b). Put Γ = {xe R2: M1(x)-w2(x)>0} and let x0eR2 be a point

at which M^XQ) — M2(x0)<0. Let R0 denote the distance between x0 and flΓ,
choose a positive constant R with 0<jR<^0, and consider the function

U(x)= - 2 Γ
v ' - '

Take a point xί eΓ. For any ε>0 there is Rε>R0 such that \xί — x0| <.Rε and

|u1(x)-M2(x)| ^ elog(|x-x 0 |/Λ) for |x-x0| = ̂ ε.

Let D be a connected component of ΓΠ{xeR2: \x — x0\<RE} containing x
Since

Λ(t7(x)log(|x-x0 |/K)) = J(ιι1(x)-ιι2(x))

= g(x, Wι(x)) - g(x, U2(x)) ^0, x e D,

and

J(l/(x)log(|x-x0 |/Λ)) =

U(x) satisfies the differential inequality

^ °
Note that dD^dΓ u {x: |x-x0| = /U, I7(x) = 0 for x e <3Γ and |l/(x)| ̂ ε for |x-x0|
= Rε. Applying the strong maximum principle, we have
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Q < u(x)= ι-U2 <ε for
log(\x-x0\/R) ~

in particular

0 < M^xO - u2(x1) ^ εlogφcjL-

Since ε>0 is arbitrary, this leads to a contradiction, and hence case (b) is

impossible. This completes the proof of (i) of Theorem 3.1.

To prove (ii) it suffices to construct eventually positive solutions y(t)9 z(i) of

the problems (3.10)-(3.11), (3.12)-(3.13), by means of (ii) of Theorem 2.5 and
repeat the same arguments as in (i).

The proof of Theorem 3.2 is essentially same as that of Theorem 3.1, and so
will be omitted.

REMARK 3.1. Theorem 3.1 improves Theorem 1 of Kawano, Kusano and
Naito [5] and Theorem 1 of Usami [23]. Theorem 3.2 is an extension of the
superlinear part of the result of Naito [17].

Application of Theorems 2.1 and 2.2 to the construction of strongly increas-
ing solutions of (3.2) will be given below.

THEOREM 3.3. In addition to (Bx) and (B2) suppose that there exist positive
constants C and ε such that

(3.14) g*(*> u)<C for all (t, «) e [0, oo) x (0, oo) ,
ί/*vΛ u)

and

(3.15) u~l~εg*(t, u) is nondecreasing in u for any t ^ 0.

(i) In case n = 2, if (3.6) holds for all c>0, then equation (3.2) has a

positive entire solution u(x) satisfying

(3.16) lim "(*), = oo.
I*!-**, log|x|

(ii) In case n^3, z/(3.8) holds for all c>0, then equation (3.2) has a positive
entire solution u(x) satisfying

(3.17) lim ιι(jc) = oo.
|jc|^oo

THEOREM 3.4. In addition to (B3) and (B4) suppose that there exist positive
constants C, k and δ such that

(3.18) ff*γ> u\ ^ C for all (t, tι)e [0, oo) x R
t, u)
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and

(3.19) ^*(y~(3) £ fc < 1 for all (t, u) e [0, oo) x R.

(i) In case n = 2, if (3.6) holds for all c>0, then equation (3.2) has an
eventually positive entire solution u(x) satisfying (3.16).

(ii) In case n^3, if (3.8) holds for all c>0, then equation (3.2) has an
eventually positive entire solution u(x) satisfying (3.17).

PROOF OF THEOREM 3.3. By (i) of Theorems 2.1 and 2.2, there exists a
positive function y e C?+c

θ[0, oo) such that

(3.20) LXO = <7*0, XO), * > 0 ; /(O) = 0

and

(3.21) lim = oo for n = 2, l i m X O = o o for n ^ 3.
f-»00 lOg t f-KJO

If Ae(0, 1), then by (3.14) and (3.15)

9*(t, λu) __ g*(t, λu) u^
, u) ~ (λu)" ' gt(t, u)

+ . _
~ ul+ε g+(t, u)

for (ί, u) e [0, oo) x (0, oo), so that there is A e (0, 1) such that

g*(t, λu) ̂  λg*(t, ιι), (ί, u) e [0, oo) x (0, oo) .

Define z(t) = λy(t). Then z(ί) satisfies z'(0) = 0,

Lz(ί) = ̂ *(ί, XO) ̂  ̂ *(ί, AXO) = g*(t, z(r)), ί > 0

and

lim|^- = 00 for n = 2, lim z(0 =00 for n ^ 3.

Since z(ί)^XO> ^0, the functions v(x) = y(\x\) and w(x) = z(|x|) are a super-
solution and a subsolution of equation (3.2) satisfying (3.5), and the conclusions
of the theorem follow from Lemma 3.1.

PROOF OF THEOREM 3.4. From (ii) of Theorems 2.1 and 2.2 there exists an
eventually positive solution XO of the problem (3.20)-(3.21). Conditions (3.18)
and (3.19) imply that

g*(t,u-Nδ) ^g*(t,u-Nδ) g*(t, u) <
9*(t, u) g*(t, u) g+(t, u) ~



206 Hiroyuki USAMI

for (ί, u) e [0, oo) x R and N= 1, 2,..., whence there is a constant μ>0 that

(3.22) 0*(f, tι -μ) ^ gφ(t, u), (ί, 11) 6 [0, oo) x R .

If we define z(f) = y(t) — μ9 then in view of (3.22) it is easy to see that w(x) = z(|x|)

is a subsolution of (3.2). Since ι>(x) = X|x|) is a supersolution of (3.2) and z(ί)^
y(i), f^O, Lemma 3.1 guarantees the existence of an eventually positive entire

solution u(x) of (3.2) satisfying (3.16) or (3.17) according as n = 2 or π^3.

EXAMPLE 3.1. Consider the equation

(3.23) Δu

where y > l and φ: /?n-»(0, oo) is locally Holder continuous (with exponent Θe

(0, 1)).
Hypotheses (Bx) and (B2) are satisfied for (3.23) with

g(x, 11) = φ(x)u\ g*(t, u) = φ*(t)u*9 g*(t, u) = φ

where

(3.24) φ*(t) = max φ(x), φ*(t) = min φ(x), t ^ 0.
|*|=r |x|=i

Conditions (3.6) and (3.8) reduce, respectively, to

(3.25) Γ ί(log tγφ*(t)dt < oo
Ji

and

(3.26) Γ tφ*(t)dt < oo.

Since (3.25) and (3.26) are independent of c, from (i) of Theorems 3.1 and 3.2
we see that, for any given a>0, equation (3.23) has a positive entire solution
w(x) satisfying (3.7) for n = 2 or (3.9) for n^3 if (3.25) or (3.26) is satisfied.

Noting that (3.14) for (3.23) is equivalent to

(3.27) 4*τ4- ̂  C for t ^ 0
Φ*w

and that (3.15) is satisfied with ε = y — 1, we conclude from Theorem 3.3 that if

(3.27) holds for some C>0, then (3.25) or (3.26) is a sufficient condition for
(3.23) with n = 2 or n^3 to possess a positive entire solution u(x) which satisfies

(3.16) or (3.17).

EXAMPLE 3.2. Consider the equation

(3.28) Au = φ(x)eu, xeR\
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where φ : /?"->(0, oo) is locally Holder continuous (with exponent 0). Hypotheses
(B3) and (B4) hold with

g(x, ii) = φ(x)e\ g*(t, 11) = 0*(i)«", #*(*, u) =

where 0*(f) and <£*(0 are defined by (3.24). In this case condition (3.6) reduces to

(3.29) Γ tί+cφ*(t)dt < oo,
Jl

conditions (3.8) and (3.18) become, respectively, to (3.26) and (3.27), and condition

(3.19) is automatically satisfied.

From (ii) of Theorem 3.1 it follows that if (3.29) holds for some c>0, then,

for every a e(0, c], equation (3.28) (n = 2) has a unique eventually positive entire
solution u(x) satisfying (3.7). If, for example, there are constants k>0 and £>2

such that

(3.30) ΦM = \Ϊ\* forlarSe W

then (3.29) holds for any c<ΰ — 29 so that for every αe(0, £ — 2), there exists a

unique entire solution u(x) of (3.28) (n = 2) satisfying (3.7). Recently McOwen

[15] has show that under (3.30) equation (3.28) (n = 2) has an entire solution UM(X)

such that

UM(X) = a log \x\ + 0(1) as \x\ -» oo

for every αe (0,^ — 2). By uniqueness, his solution coincides with the one
constructed by our procedure.

From (i) of Theorem 3.4 it follows that if (3.27) and (3.29) hold for all c>0,

then equation (3.28) (n = 2) has an eventually positive entire solution u(x) with

the property (3.16). Any locally Holder continuous function φ(x) on R2 such that

(3.31) Kί^p(-\x\2)^φ(x)^K2^p(-\x\2) for |x| large

for some positive constants K{ and K2 satisfies the above mentioned requirements.

We note that, under (3.31), Ni [18] has proved the existence of an entire solution

UN(X) of (3.28) (n = 2) such that

2 as |x |->oo,

which is strongly increasing in the sense that limj^oo uN(x)/log \x\ = oo.

4. Nonexistence of entire solutions

The question of nonexistence of entire solutions for higher order elliptic
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equations was first studied by Walter [26] and then by Walter and Rhee [28].

To the best of author's knowledge, there is no paper other than [26, 28] which is

concerned with this question. Our purpose here is to extend the result of Walter

[26] to elliptic equations of the form (A). We first discuss the differential

inequality

(4.1) A>»u ^ p(\x\)f(u), xeR",

and then establish criteria for the nonexistence of entire solutions of equation (A)

with the use of the spherical mean of solutions.

The conditions we assume for (4.1) are as follows:

(Cj) /: (0, oo)->(0, oo) is continuous and nondecreasing.

(C2) /: /?-»(0, oo) is continuous and nondecreasing.

(C3) p: [0, oo)->(0, oo) is continuous.

We use the notation :

that is,

1 ^ i ^ 2m - 1.

We start with the two-dimensional case of (4.1).

THEOREM 4.1. Let m^2 and n = 2. Suppose that either {(CJ, (C3)} or

{(C2), (C3)} is satisfied. Suppose moreover that there exists a continuous

function p* : [0, oo)->(0, oo) such that

(4.2)

and

(4.3) t~δp*(t) is nonincreasing on (0, oo) for some (5^

(4.4) \ [/2m-ι(w)] 1/(2m)dw < co

and

(4.5) \ [p*(0]1/(2m)df = 0° >

then, in case {(CJ, (C3)} holds, (4.1) has no positive radial entire solution, and

in case {(C2), (C3)} holds, (4.1) has no radial entire solution.
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The following simple lemma, which is a variant of LΉopsitaΓs rule, is needed
in the proof of this theorem.

LEMMA 4.1. // g(t) and h(t) are continuously differentiate on [0, oo) and
satisfy lim,^*, h(f)=oo and g'(t)^Mh'(t) for some constant M>0 and for all
sufficiently large ί, then

lim inf > M.
r-,00 h(t) ~

PROOF OF THEOREM 4.1. Let {(C ,̂ (C3)} be satisfied and suppose the
existence of a positive entire solution u(x) = y(\x\) of (4.1).

Step 1. Let T>0 be fixed. Integrating Γ\t(Lm-^y)'(i)y = Lmy(t) repeatedly
and taking account of the positivity of the right side of (4.1), we find

(4.6) L- -'XO = aJ2i-2 log t + Ptf) + ΦJlΛKO. t ^ T,

for Igi^m, where α f>0 are constants, P (t) are continuous functions such that
Pi(t) = o(t2i~2\og 0 as ί->oo and Φl

τ is the ΐ-th iterate of Φτ: C[T, oo)->C2[Γ, oo)
defined by

φτh(t) = Γ 5-1 (S

T rh(r)drds9 t ^ T, he C[T9 oo) .

An important consequence of (4.6) is that L'j (ί), (Lfyy(f), O g i g m — 1, are
all eventually positive.

Step 2. We assert that y"(i) > 0 for all large t. Integrate (4.6) with i •= m - 1
to obtain

y'(i) = αί2m"3logί + bt2m~3 4- ct'1 + r1 \ slP^^ + Φy^L^s^ds
JT

for ί^Twith some constants α>0, b and c, and then differentiate the above
to obtain

(4.7) y"(t) = (2m-3)αί2--4logί 4- [α + (2m-3)ί>]ί2"'-4 - cΓ2

+ Pm_ι(0 - r2 Γ sPm_1(s)rfs + Φψ-^- XO - r2

Jr

forί^T. Noting that

Pm_ !(ί) - r 2 sPm_ !(s)ds = o(t2m~4 log i) as ί -> oo

and

- r2 Γ sΦy-1Lϊ»χs)ds ^ 4"
Jr ^
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for t^ T, we see from (4.7) that y"(t)>Q for all sufficiently large t.
Step 3. Let t0 > 0 be such that y'(f) > 0 and y"(i) > 0 for t ̂  ί0. We show that

(4 8) liminf "" ,.,,„„ ^~

for any α ̂  0 and 1 ̂  z g 2m — 1. We easily see that for 1 ̂  i ̂  2m — 1

Γ fi(y(sW(s)ds
JtQ

+ /ί(XO)/(0 (« - »o), « ̂  ίo ,

which implies

f ι ( y ( t ) ) < /iCK*o)) , ^- fo , > ,
' ' °

Therefore we have

(4-9) Iimsup777£^ί217_^ι.

Since

-dϊ}to>j^»yy>»* _ Γ ι α/x^co)

the desired inequality (4.8) follows from Lemma 4.1 and (4.9).
Step 4. Lei ί0 be so large that, in addition to y'(f) and y"(t\ L*y(t) ana

(Vyy(t\ O^i^m-1, are positive for ί^ί0. From (4.1)

We multiply the above by ί/(0 and integrate it from ί0 to ί. Integration by parts
and use of the monotonicity of t~δp*(i) then show that

(4.ιo) t(L*-ιyy(t) . ty'(t) ^ r'pM Γ 52+ Vί(X*))/ω<fe, ^ ίo -
Jίo

From Step 3 there exist constants Cί >0 and t± ̂ ί0 such that

(' s2+Vi(Xs)) '̂(S)rf5 ̂  Ciί̂ '/.ίXO), ί ̂  ί, ,
Jίo

which, combined with (4.10), yields

(L»-^)'(ί) ί2j;'(0 ^ C^^^OΛWO), ί ̂  ίi -
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Multiply the above by /(ί), integrate it on [tl9 f] and apply the same argument as
in Step 3. We then see that there exist constants C2 >0 and t2^tί such that

(tyW2 ^ C2'

Continuing in this manner, we are led to the inequality

(4.11) (ί/(0)' -(ί/(0)2"-2 ^ C2m-2ί
2»-%(θ/2m-2(XOX t ̂  r 2 m _ 2 ,

for some constants C 2 m_ 2>0 and ί2 m_2>0. Again multiplying (4.11) by ty'(f)
and integrating on [ί2w_2, ί]> we obtain after some manipulations

(4.12) /(O ^ C[pίH(0]1/(2->[/2m-1(XO)]1/(2m), t ^ t*9

where C>0 and ί*^ί2m_2 are constants, whence we find

--\
-\
^,

t

t*

y(t)
- ί / ( 2 m ) du

This leads to a contradiction because of (4.4) and (4.5). Consequently, there is
no positive radial entire solution of (4.1).

To complete the proof it suffices to observe that, when (C2) and (C3) hold,
the relation (4.6) is also satisfied by any possible radial entire solution of (4.1).

We now turn to the higher dimensional case of (4.1). The result below is
formally weaker than Theorem 4.1 in that a stronger assumption is needed with
respect to f ( u ) .

THEOREM 4.2. Let m^2 and n^3. Suppose that either {(Q), (C3)} or
{(C2), (C3)} is satisfied. In addition to the' same conditions on p(t) and f ( u ) as
in Theorem 4.1, assume that there exists a constant fc>0 such that

(4.13) f ( u ) ^ k for we(0, oo)

in case {(Q), (C3)} holds, or

(4.14) f(u)^k for uεR

in case {(C2), (C3)} holds, and that

(4.15)
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Then, in the case of {(C^), (C3)}, (4.1) has no positive radial entire solution, and

in the case of {(C2), (C3)}, (4.1) has no radial entire solution.

PROOF. A sketch of the proof is given only for the case where {(Cj), (C3)}

is satisfied. Suppose to the contrary that there is a positive radial entire solution

u(x) = y(\x\) of (4.1). Integrating (4.1), we have in view of (4.13)

(4.16) L™-iy(t)^c0 + Φ(p*f(y))(t)2:c0 + kΦpM9 t^Q,

where c0 is a constant. Since Φp*(t)-+cQ as t-+ao by (4.15), (4.16) implies the
existence of a constant cί such that Lm~ΐy(f)^.cί>0 for all large ί, and hence,

there is a constant c>0 such that

(4.17) y(f) ^ ct2m~2 for all large t.

Successive integration oft1~n(tn~1(Lm~lyy(t)y = Lmy(t) and use of (4.17) show that

(4.18) Lm-'X*) = a fr
2 i~2 + Pf(0 + Φ^Lmj(ί), t ^ T9 1 ̂  i ^ m,

provided T>0 is sufficiently large, where α f >0 are constants, PJ(t) are continuous

functions such that Pi(t) = o(t2i~2) as f-»oo, and Φτ is the operator defined by

φτh(ί) = s1'" rn-lh(r)drds9 t ̂  T9 he C[T, oo) .
Jr Jr

It can be shown that /'(ί)>0, L'XO>0 and (Lίy)/(ί)>0, O g i g m - 1 , for ί
sufficiently large, say ί^ί0 (see Step 2 of the proof of Theorem 4.1).

We now proceed similarly to Step 4 of the proof of Theorem 4.1 starting with
the inequality

(4.19) (t*-i(L~-iyy(t)γ ^ f-Wo/(XO), ** ^0 -

Namely, we multiply (4.19) by tn~ίyf(i)9 integrate on [ί0, ί] and use the nonin-
creasing nature of t~δp*(i) to obtain

«-*y'(t) ^ Γ «pφ(f) Γ S2t
Jr0

Since (4.8) also holds in this case, it follows from the above that

for some constants C1>Q and t^tQ. Next we integrate the above multiplied
by y'(t) and transform the resulting inequality by using the decreasing nature of

t~*P*(i) and (4.8) again. Continuing in this manner, we arrive at (4.12), from
which a contradiction follows as before.

REMARK 4.1. (i) If condition (4.13) [resp. (4.14)] is deleted from
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Theorem 4.2, then we assert that, in case {(Cj), (C3)} [resp. {(C2), (C3)}] holds,

(4.1) has no radial entire solution which is bounded below by a positive constant

[resp. bounded below] in /?", n^3. In fact, if such an entire solution u(x) =

y(\x\) exists, then it satisfies /(XO) ̂  /c, f^O, for some constant fc>0.

(ii) Moreover if conditions (4.13) [resp. (4.14)] and (4.15) are deleted from

Theorem 4.2, then we assert that, in case {(CJ, (C3)} [resp. {(C2), (C3)}] holds,

(4.1) has no radial entire solution u(x) = y(\x\) satisfying (4.17) for any c>0.

Especially, (4.1) has no strongly increasing radial entire solution.

Nonexistence criteria given in Theorems 4.1 and 4.2 can be slightly improved

if (4.1) is specialized to the inequalities

(4.20) Amu ^ X|x|)ιι', xeR",

(4.21) Δmu ^ p(|x|y , x e R",

where m^2, y>l, and p: [0, oo)->(0, oo) is continuous.

COROLLARY 4.1. Suppose that there is a continuous function p*: [0, oo)

(0, oo) satisfying (4.2) and (4.3). Moreover (4.15) is added for n^3.

(0 //

(4.22) (*|>φ(0]1/(2m)[«ll(0](y"1)/(2l")"'Λ=oo for some ε

where

q2(t) = f2m-2 log ^ qjβ = t2m-2 fQr „ ̂

then (4.20) for n = 2 has no positive radial entire solution, and (4.20) for n^3

has no radial entire solution which is bounded below by a positive constant.

(ϋ) //

(4.23) Γ [p*(0]1/(2m) exp [cqn(t)]dt = oo for all c> 0,

then (4.21) for n = 2 has no radial entire solution, and (4.21) for n^3 has no

radial entire solution which is bounded below.

PROOF. If u(x) = y(\x\) is such an entire solution of (4.20) or (4.21), then

y(t) satisfies (4.12) (specialized to the case/(w) = w y or/(u) = eM) for some C>0

and ί*>0 (see Remark 4.1-(i) for n^3).

(i ) Rewriting (4. 12) (with f(u) = u?) as

y'(t) ^ C[p#(0]1/(2m)[XO](v-1)/(2m)-ε[XO]1+ε, t ̂  r*,

and using the fact that XO^CΊg^ί), ί^?, for some Cί >0 and ϊ^ί*, we have
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LKfXΓ^'/ίO ^ C2Cp*(0]1/(2w)[^(0](y"1)/(2m)"ε, t ̂  J,

where C2 >0 is a constant. Integrating the above from ? to t and letting ί-> oo, we
obtain a contradiction to (4.22).

(ii) We rewrite (4.12) (with f(u) = eu) as

y'(t) ^ C[j?#(0]1/(2m)^(1/(2m)"ε)3'(ί) ^ε)'(ί), ί ̂  ί*,

where εe(0, l/(2m)), and use XO^C^ί) for f^ ϊ with some Cί>0 and ϊ^ί*,

to obtain

which upon integration yields a contradiction to (4.23). This completes the proof.

Finally, we derive conditions which guarantee the nonexistence of entire
solutions for the equation

(4.24) Amu = g(x, u), x e Rn,

where g(x, u) is continuous either on Rn x(0, oo) or on Rn+ί. In what follows
/ denotes either (0, oo) or R.

THEOREM 4.3. Let m^2 and suppose that

9(x, u) ̂  p*(|x|)/(ιι) for (x, ιι) e R» x /,

where p*\ [0, oo)->(0, oo) is continuous and f: /->(0, oo) is continuous, non-
decreasing and convex. Suppose moreover that (4.3), (4.4) and (4.5) are satisfied.
Then the following statements hold:

( i ) If n = 2 and / = (0, oo), then equation (4.24) has no positive entire
solution.

(ii) Ifn = 2 and I = R, then equation (4.24) has no entire solution.

(iii) Ifn^3and 7 = (0, oo), and if '(4.15) and(4Λ3) with some k>0 hold, then
equation (4.24) has no positive entire solution.

(iv) Ifn^3 and I = R, and if (4.15) and (4.14) with some k>Q hold, then
equation (4.24) has no entire solution.

PROOF. Suppose that n = 2 and / = (0, oo). Let u(x) be a positive entire
solution of (4.24). Let ΰ(t) denote the mean value of u(x) over the circle |x| = t,

u(t) = -^~r { u(x)ds = J- (2π u(t cos 0, t sin θ)dθ.
zπΐ J\x\ = t zπ Jo

By taking the mean value of the inequality
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over |x| = ί and using Jensen's inequality, we see that ΰ(ί) satisfies the differential

inequality

L*tϊ(0 ̂

and the initial condition

(L'tt)'(O) = 0, 0 g i g m - 1,

which means that M(|X|) is a positive radial entire solution of an inequality of the
form (4.1) in R2. This, however, is impossible in view of Theorem 4.1, proving
the truth of (i). The remaining statements are proved similarly.

EXAMPLE 4.1. Consider the equations

(4.25) Δmu = φ(x)u*9 x e Rn,

(4.26) Amu = φ(x)eu, x e Rn,

where w^2, y>l and φ: /?w->(0, oo) is continuous. Assume the existence of a
positive continuous function p+(i) satisfying φ(x)^pί|5(|x|) for xεRn and (4.3).

Assume moreover that (4.15) holds when n^3. Combining the proofs of
Theorem 4.3 and Corollary 4.1, we have the following statements:

(i) If (4.22) holds, then (4.25) for n = 2 has no positive entire solution, and

(4.25) for n ̂  3 has no positive entire solution which is bounded below by a positive

constant.

(ii) If (4.23) holds, then (4.26) for n = 2 has no entire solution, and (4.26)
for n ̂  3 has no entire solution which is bounded below.

REMARK 4.2. From the proof of Theorem 4.3 we see that the same conclusion
holds for a more general equation

Amu = g(x, u, Ju,..., J"1"1!/), xe Rn, n ̂  2,

if #(x, u0, M l 5 . . . , u m _ x ) is a continuous function such that

0(x, MO, M!,..., M m _!) ̂  p*(|x|)/(w0) on Rn x I x Rm~l.
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